
GenDLN: Evolutionary Algorithm-Based Stacked LLM Framework for
Joint Prompt Optimization

Anonymous ACL submission

Abstract

With Large Language Model (LLM)-based001
applications becoming more common due to002
strong performance across many tasks, prompt003
optimization has emerged as a way to extract004
better solutions from frozen, often commercial005
LLMs that are not specifically adapted to a006
task. LLM-assisted prompt optimization meth-007
ods provide a promising alternative to man-008
ual/human prompt engineering, where LLM009
“reasoning” can be used to make them opti-010
mizing agents. However, the cost of using011
LLMs for prompt optimization via commer-012
cial APIs remains high, especially for heuristic013
methods like evolutionary algorithms (EAs),014
which need many iterations to converge, and015
thus, tokens, API calls, and rate-limited net-016
work overhead. We propose GenDLN, an effi-017
cient genetic algorithm-based prompt pair op-018
timization framework that leverages commer-019
cial API free tiers. Our approach allows teams020
with limited resources (NGOs, non-profits, aca-021
demics. . .) to efficiently use commercial LLMs022
for EA-based prompt optimization. We con-023
duct experiments on CLAUDETTE for legal024
terms of service classification and MRPC for025
paraphrase detection, performing in line with026
selected prompt optimization baselines, at no027
cost. Our code is available in <omitted>.028

1 Introduction029

LLMs (large language models) are increasingly030

replacing traditional classification and inference031

models due to their generality, ability to perform a032

wide range of tasks, and seemingly advanced “rea-033

soning." As the use of LLMs for domain-specific034

tasks becomes more ubiquitous, prompt optimiza-035

tion emerges as an important area of research to036

improve the task-specific performance of LLMs, es-037

pecially in complex domains like legal text analysis038

and interpretation (Hakimi Parizi et al., 2023; Lai039

et al., 2024). In recent years, several prompt design040

and optimization techniques have been proposed.041

LLM1

sentence1
sentence2

…
sentencej

P1

in

response

dataset

+

LLM2 classification
(labelî)

sentencei+
label1
label2

…
labelj

for sentence
i→j in train

set

accuracy, F1,
other metrics
for individual

out

in

task
output

P2

Figure 1: Running an individual through the DLN,
where an individual is a prompt pair (p1, p2); LLM1

responds to p1, and this response, along with p2, is fed
into LLM2 for classification. E.g.: p1: "Interpret <ToS
sentence i>" - p2: "Based on the above interpretation,
classify <ToS sentence i> as fair or unfair."

Some examples are edit-based instruction search 042

GRIPS (Prasad et al., 2023) and reflection-based 043

frameworks that incorporate LLM self-critique 044

such as ProTeGi (Pryzant et al., 2023) and OPRO 045

(Yang et al., 2024). 046

Deep Language Networks (DLNs) is a novel ap- 047

proach that stacks LLMs as computational units 048

(Sordoni et al., 2023). Like other prompt opti- 049

mization methods, the goal is to use frozen-weight 050

LLMs for inference while refining input prompts 051

for better results. However, they stack two LLMs, 052

jointly optimizing two input prompts, where the 053

output of the first LLM, along with the second 054

prompt, are fed into the second LLM, as shown 055

in Fig. 1. The prompts are treated as learnable 056

parameters of the generative distribution, and the 057

prompt pair is jointly optimized using variational 058

inference. 059

We introduce our framework, GenDLN, where 060

we retain the stacked LLM structure and joint 061

prompt optimization introduced in DLN, but re- 062

place the variational inference-based optimization 063

with a Genetic Algorithm (GA) (Fig. 2). The ad- 064

1

initialization
for every individual in P:

mutatecrossover

for every individual in P’:

compute fitness

replace
only keep top N fittest individuals from P’

YN
EXIT

LLM-assisted genetic operators

END?

select

compute fitness

Figure 2: High-level GenDLN Optimization Framework.
Initialization starts from a bank of manual prompts,
with optional LLM augmentation. Selection, crossover,
and mutation follow the chosen strategies. P : starting
population. P ′: population post-genetic operators.

vantage of using a GA is the ability to explore a065

large search space and end up with a large pool066

of candidate prompts. We apply our framework to067

legal document classification, which aims to cat-068

egorize legal documents into predefined classes,069

specifically, Terms of Service (ToS) classification.070

Also known as Terms and Conditions or Terms of071

Use, ToS are legal agreements between a service072

provider and its users, sometimes employing de-073

liberately confusing language (Yerby and Vaughn,074

2022), or featuring unfair clauses to users (Loos075

and Luzak, 2021). Due to ToS length and complex-076

ity, users often accept them without fully reading077

them. To that end, automated unfair clause detec-078

tion allows consumers to better assess ToS in less079

than the 45 minutes required to completely read an080

average ToS agreement (Obar and Oeldorf-Hirsch,081

2020). We run further tests on the Microsoft Re-082

search Paraphrase Corpus (MRPC) for paraphrase083

detection.084

Our contributions include a GA framework that085

successfully improves a population of prompt pairs086

for classification across several runs and parameter087

sets, performing in line with state-of-the-art prompt088

optimization methods. More importantly, our main089

contribution is an efficient, parameter-rich, LLM-090

based genetic algorithm framework for text editing091

that tackles several problems of applying GAs to092

prompt optimization, including the bottleneck of093

using API calls for prompt scoring and the addi-094

tional overheads and limitations imposed by com-095

mercial LLM providers. GenDLN can be used by096

teams with limited resources to quickly generate a097

pool of optimized prompts for a given task.098

2 Background 099

2.1 Prompt Optimization 100

Prompt optimization is the process of systemati- 101

cally refining or designing the textual instructions 102

(prompts) that guide a Large Language Model to- 103

ward producing higher-quality, task-specific out- 104

puts. Various prompt optimization methods have 105

emerged in recent years. Reflection-based frame- 106

works (Pryzant et al., 2023; Ma et al., 2024) collect 107

error feedback or “textual gradients” from LLM 108

output, then edit prompts accordingly, while edit- 109

based approaches (Prasad et al., 2023) iteratively 110

rewrite instructions using operations such as para- 111

phrasing and swapping. Some methods take a 112

meta-prompts approach (Yang et al., 2024), dy- 113

namically updating instructions based on histor- 114

ical performance. Additionally, evolutionary al- 115

gorithm–driven solutions (Guo et al., 2024) sim- 116

ulate natural selection and evolve a population of 117

prompts across generations. All these methods 118

share the same objective: balancing exploration of 119

different prompt variations with exploiting the most 120

promising edits in order to improve the LLM’s abil- 121

ity to follow instructions across a range of tasks. 122

In the next sections, we introduce the prompt opti- 123

mization background used in GenDLN. 124

2.2 The Stacked LLM 125

Chaining, stacking, and joining different LLMs 126

has been increasingly explored (Lu et al., 2024; 127

Villarreal-Haro et al., 2024; Ferreira et al., 2024) 128

and shown to perform well across domains for var- 129

ious use cases. The stacked LLM, where outputs 130

from one LLM serve as inputs for another, has 131

proven useful for decomposing complex tasks. One 132

LLM processes raw input, generating intermedi- 133

ate representations or insights; another interprets 134

these representations to complete tasks (classifica- 135

tion, reasoning, decision-making). This decompo- 136

sition boosts accuracy and interpretability (Zhang 137

et al., 2021b) and enhances performance through 138

specialization. Since LLMs excel at when narrowly 139

prompted, this division of labor reduces individual 140

LLM loads and improves result quality (Krishna- 141

murthy et al., 2023). It also allows greater flexibil- 142

ity and modularity in solution design (Khot et al., 143

2023) while enhancing interpretability, as interme- 144

diate outputs clarify reasoning steps (Proca et al., 145

2024), crucial in fields where black-box decision- 146

making is unsuitable, such as law. Lastly, this 147

stacked paradigm mirrors human inference ("First, 148

2

analyze and interpret. Second, draw conclusions149

and decide" (Correa et al., 2023)). Regardless of150

the optimization method, stacked LLM architec-151

tures offer a clear advantage.152

Sordoni et al. (2023) introduced DLNs as a153

prompt optimization technique leveraging chained154

LLM calls. Like other prompt optimization meth-155

ods, the goal is to use frozen-weight LLMs for156

inference while refining input prompts for better157

results. They present two models: DLN-1 (single-158

layer) and DLN-2 (two-layer), treating LLMs as159

stochastic language layers with learnable natural160

language prompts as parameters. In DLN-2, the161

first layer’s output is considered a latent variable162

requiring inference, while prompts are learned as163

parameters of the generative distribution. It em-164

ploys variational inference for joint prompt opti-165

mization in the stacked LLM structure. The ad-166

vantage of the stacked LLM in DLN is the ability167

to perform multi-step reasoning through the chain-168

ing of prompts and outputs. Similar to the stacked169

DLN-2 framework, our approach jointly optimizes170

a prompt pair (p1, p2) for classification, where the171

scoring function depends on classification metrics.172

We use the term "DLN" to refer to a two-layer173

deep neural network (DLN-2). Fig. 1 illustrates174

GenDLN’s prompt pair evaluation.175

Unlike DLN, which employs variational infer-176

ence, we use an LLM-assisted GA for optimization.177

While LLMs exhibit reasoning-like behavior, re-178

search on their stability is mixed, showing high179

randomness and incoherence (Ma et al., 2024). To180

mitigate this, we rely on a heuristic optimization181

strategy (GA) with a reasoning-based evaluation182

step (DLN) to balance these issues while exploring183

a larger search space.184

2.3 Genetic Algorithms185

Genetic Algorithms (GAs) are a class of Evolu-186

tionary Algorithms (EAs), global stochastic opti-187

mization techniques inspired by Darwin’s Theory188

of Evolution and Natural Selection. They itera-189

tively evolve a "population" of candidate solutions190

toward the fittest, where the best individual repre-191

sents the optimal solution (Holland, 1992). Evolu-192

tionary approaches excel where traditional methods193

like gradient descent fail-when the search space is194

vast, complex, or non-differentiable (Yu and Liu,195

2024). Starting with an initial population, candi-196

dates are evaluated using a fitness function, with197

high-fitness individuals more likely to be selected198

for crossover. Crossover combines features from199

parents to generate offspring, which serve as new 200

solutions. To maintain diversity, mutations-random 201

occasional changes-are introduced. Repeating this 202

cycle over multiple generations steadily refines so- 203

lutions, making EAs effective for black-box opti- 204

mization with minimal system knowledge. 205

Using GAs for prompt optimization is not new; 206

GAs are proven metaheuristic prompt optimiza- 207

tion methods (Pan et al., 2024), with few-shot ge- 208

netic prompt search surpassing manual tuning (Xu 209

et al., 2022) and evolutionary principles success- 210

fully applied to tasks like game comment toxicity 211

classification (Taveekitworachai et al., 2024), pre- 212

prompt optimization for mathematical reasoning 213

(Videau et al., 2024), Japanese prompting (Tanaka 214

et al., 2023), and emotional analysis (Resendiz 215

and Klinger, 2024). EvoPrompt (Guo et al., 2024) 216

employs LLMs for evolutionary operations like 217

crossover and mutation while EAs guide optimiza- 218

tion. The framework implements only one type of 219

selection, crossover, and mutation, all executed 220

by LLMs based on generic instructions, using 221

both manual and LLM-generated initial popula- 222

tions. Our approach, GenDLN (Fig. 2), performs 223

joint prompt-pair optimization instead of single 224

prompt optimization, introduces multiple selection, 225

crossover, and mutation strategies, and implements 226

a richer parameter pool for the GA. 227

3 Methodology 228

GenDLN is a multi-objective, steady-state, hybrid 229

genetic algorithm. More details on GenDLN’s 230

GA characterization can be found in Appendix A. 231

In this section, we outline the 5 steps of the GA 232

prompt optimization lifecyle in GenDLN (Fig. 2). 233

234

Initialization (3.1): An initial population of 235

prompt pairs (p1, p2) is sampled from a predefined 236

prompt bank, with optional augmentation. 237

Fitness Computation (3.2): Each individual is 238

scored based on classification metrics by running 239

it through the DLN. 240

Selection (3.3): Individuals are chosen based on 241

fitness using various implemented strategies. 242

Genetic Operators (3.4): 243

Crossover (3.4.1): Combines two parents to gen- 244

erate semantically valid offspring. 245

Mutation (3.4.2): Introduces controlled varia- 246

tions to explore new solutions. 247

Replacement (3.5): The next generation is formed 248

by selecting the top individuals, and early stop cri- 249

3

sentence1

sentence2

…

sentencej

label1
label2

…

labelj

search for
(p1, p2) in

fitness cache
found

return metrics from cache

not found

prompt pair (p1, p2)

I1
(p1, p2)

I2
(p1, p2)

… IN
(p1, p2)

population P

w: number of workspaces
for every set Tm of {Ii, I(i+1), … I(i+w)}
individuals, where m = 0 → N/w

input
batches

2 API
calls / batch

run DLN (classify) batch with (p1, p2)

compute, aggregate
and return metrics

Ii
(p1, p2)

… Ii+w
(p1, p2)

…
w sets Tm, w parallel jobs Jm

job Jm

for every Ii in set Tm:

evaluate (p1, p2)

…

save to fitness cache

h parallel jobs (batches)

Figure 3: Efficiency strategies implemented as part of
GenDLN. Not shown: workspace level rate-limiter that
keeps the frequency of API calls below the platform-
defined limit.

teria are defined.250

3.1 Population Initialization251

A population P is a set of individuals. Chromo-252

some encoding refers to how an individual is repre-253

sented. Each individual I is a prompt pair (p1, p2),254

where p1 is the first-layer prompt for added context255

and p2 is the second-layer prompt for classification.256

For a population of size N , the initial population257

consists of N pairs (p1, p2) sampled from a pre-258

defined prompt bank, where example prompts are259

manually added. If the selected size exceeds the260

available prompts, a Population Initialization LLM261

optionally generates additional diverse prompts us-262

ing the prompt bank as examples. Details are in263

Appendix B.264

3.2 Fitness Function / Scoring265

The fitness of a prompt pair is computed as a266

weighted sum of classification metrics, including267

accuracy and F1 scores, using a multi-objective268

scoring approach. Fitness is evaluated by running269

the individual through the DLN (Fig. 1) and com-270

paring predicted labels ŷ to ground truth y. Met-271

ric weights are configurable per GA run to reflect272

different classification goals. Invalid individuals273

(e.g., with empty prompts) are assigned a fitness274

of −1 to avoid propagation. Additional fitness im-275

plementation and system prompt details for output276

specification are in Appendix C and E.277

Rate-Limiting Step: DLN Evaluation The bot-278

tleneck in GenDLN is the evaluation of individuals279

through the DLN, which requires two sequential280

API calls per data point. Since genetic algorithms281

require exploring large populations over many gen-282

erations, and given the need to use larger models 283

due to the limitations of using smaller ones for 284

prompt optimization (Zhang et al., 2024b), this be- 285

comes both time- and cost-prohibitive. To address 286

this, we implement fitness caching, rate limiting, 287

and concurrency across two levels (Fig. 3). First, 288

at the population level (above the dotted line), in- 289

dividuals are evaluated in parallel across w inde- 290

pendent workspaces (each representing a compute 291

node with its API key), creating w jobs J that eval- 292

uate subsets of the population. Second, within 293

each job J (below the dotted line), the dataset is 294

split into batches. Each batch is then classified 295

using two API calls (one per DLN layer) instead 296

of two calls per data point. Before evaluating a 297

prompt pair (p1, p2), we check for its presence in 298

a persistent fitness cache. If found, stored met- 299

rics are reused, avoiding an expensive DLN eval- 300

uation. These optimizations, for a dataset of size 301

100, increase throughput from ≈ 18 to ≈ 300 in- 302

dividuals/hour on an 8-core machine, a 16-fold 303

improvement. More details on efficiency strategies 304

and throughput computation are in Appendix F. 305

3.3 Selection 306

Selection can be considered the driving force of 307

the GA; it determines which individuals from the 308

current population will potentially undergo muta- 309

tion and crossover (and conversely, which mem- 310

bers of the current population are discarded), usu- 311

ally based on some function of the individual’s 312

fitness. The key is guiding the evolutionary process 313

towards better solutions by preferentially select- 314

ing for higher fitness while maintaining population 315

diversity, which is essential to avoid premature con- 316

vergence. Selection pressure refers to the degree to 317

which individuals with higher fitness are favored 318

during the selection process and directly influences 319

the balance of exploration and exploitation. Higher 320

selection pressure increases the likelihood that fitter 321

individuals will be chosen to pass on their genes, fa- 322

voring exploitation. This may result in more rapid 323

convergence but also premature convergence if di- 324

versity is lost too quickly. Conversely, lower se- 325

lection pressure allows for a more diverse set of 326

individuals to be selected, favoring exploration but 327

potentially slowing down convergence (Haasdijk 328

and Heinerman, 2018). 329

The choice of selection strategy is a param- 330

eter in GenDLN. We implemented most of the 331

commonly used GA selection strategies, where 332

each has distinct characteristics and influences the 333

4

algorithm’s selection pressure and, thus, explo-334

ration/exploitation. Selection is the only genetic335

operator in GenDLN that is not fully or partially336

LLM-assisted. We implement Random Selection337

(lack of selection strategy used for comparison pur-338

poses), Roulette Wheel Selection (Holland, 1975),339

Tournament Selection (Miller et al., 1995), Rank-340

Based Selection (Baker, 2014), Stochastic Uni-341

versal Sampling (SUS) (Baker et al., 1987), and342

Steady-State Selection. More details on each strat-343

egy’s exploration-exploitation balance and imple-344

mentation can be found in Appendix G.345

Preprocessing and Elitism Before applying any346

selection method, an optional parameter elitism (k)347

is used to directly preserve the top k individuals348

with the highest fitness scores. This ensures that349

the best-performing solutions are not lost due to350

stochastic selection effects. For fitness score ties,351

indices are shuffled, and ties are broken randomly.352

When k ̸= 0, the individuals are ranked by fitness,353

and the top k elites are selected for direct inclusion354

in the next generation. The remaining individuals355

undergo selection according to the chosen strategy.356

3.4 Genetic Operators in the Textual Space357

Since our chromosome is encoded as a tuple of two358

strings, applying typical crossover/mutation strate-359

gies presents challenges. Crossover and mutation360

are usually performed on bitstrings, numeric vec-361

tors, or structured representations of individuals,362

often following deterministic rules involving slic-363

ing, recombining, or editing genes based on strict364

positional encoding, which is straightforward for365

bitstring and numeric chromosomes. In the textual366

space, this is more complex. We discuss these con-367

siderations in Appendix H. Work on grammatically-368

based genetic programming (Whigham et al., 1995)369

for creating computer programs has shown the com-370

plexity of this task, even in code and query opti-371

mization (arguably easier to tokenize than natural372

language but still sufficiently character- and token-373

sensitive) (Whigham, 1995).374

Research on genetic programming for natural375

language generation emphasizes the importance376

of maintaining semantic and syntactic coherence377

(Araujo, 2020). Thus, we leverage LLMs’ ability378

to dynamically interpret, generate, and refine text379

as crossover and mutation operators, with prompts380

passed to an LLM. The response is parsed using381

regex-based JSON extraction to obtain children382

in crossover and the mutated prompt in mutation,383

with a fallback for invalid responses, detailed in 384

Appendix D. Although we have iteratively tested 385

various Mutation and Crossover prompts across dif- 386

ferent LLMs and included stable ones in GenDLN, 387

these operations remain dependent on LLM re- 388

sponses, with results varying by model and temper- 389

ature. 390

3.4.1 Crossover 391

We define a set of crossover strategies to allow 392

different levels of exploration and exploitation. 393

The LLM is crucial in ensuring that the offspring 394

are grammatically valid, structurally coherent, and 395

meaningful. We implement 5 strategies: Single- 396

Point, Two-Point, Semantic Blending, Phrase 397

Swapping, and Token-Level crossover. Details 398

about their implementation and behavior can be 399

found in Appendix I. Crossover is applied to indi- 400

viduals with a user-defined “crossover rate” Cr, the 401

probability of an individual getting picked to partic- 402

ipate in a crossover, and each crossover operation 403

between 2 parents yields 2 children. 404

3.4.2 Mutation 405

Much like crossover, we define a set of different 406

mutation strategies leveraging LLMs. The chal- 407

lenge with mutation is the necessity of “limiting” 408

the edits to only a portion of the prompt, as muta- 409

tion is typically used to introduce comparatively 410

small changes to the chromosome with a user- 411

defined mutation rate Mr. The goal of mutation 412

is to introduce controlled diversity into the popula- 413

tion while maintaining the semantic and syntactic 414

coherence of the prompts. We implement 8 differ- 415

ent mutation strategies (Random, Swap, Scram- 416

ble, Inversion, Deletion, Insertion, Semantic, and 417

Syntactic) with different editing modalities, whose 418

details and prompts can be found in Appendix J. 419

Mr sets the probability of a “gene” (in our case, a 420

prompt is a gene) to undergo mutation. A “mutate 421

elites” boolean parameter can be used to protect 422

elites from mutation when elitism k ̸= 0. Our 423

choice of strategies and corresponding prompts 424

for both crossover and mutation were made based 425

on our experience and trial and error during the 426

framework’s development. It allows for easy edit- 427

ing/extension to include more crossover/mutation 428

types and different prompts. Invalid responses are 429

dealt with using the same retry-fallback mecha- 430

nism. 431

5

3.5 Replacement and Termination432

After mutation and crossover, the fitness of the re-433

sulting population (now containing approximately434

(N+Cr ∗N) individuals) is calculated, and the top435

N individuals are the final population of the current436

generation, with the fittest one being declared the437

"best in generation."438

A GA run is defined for a specific number of439

generations, but optional stopping criteria can be440

set, and the GA run will terminate when one of441

them is met. A “fitness goal” can end the run when442

the best individual achieves a fitness score equal443

to or greater than the goal, and a maximum num-444

ber of stagnant generations S can be set to prema-445

turely terminate the run if the best individual’s fit-446

ness doesn’t improve for S consecutive generations.447

Otherwise, the GA runs for the predetermined num-448

ber of generations.449

3.6 Logging and Post-Processing450

GenDLN features a modular, detailed log struc-451

ture that allows full retracing of any run. It logs452

abstractions like best/worst individuals per genera-453

tion, average metrics, and genetic operator details,454

alongside full and extracted LLM responses. Sys-455

tem details and runtime are also recorded. The out-456

put and logging structure is detailed in Appendix457

K. While implemented in Python, we provide R458

scripts for post-analysis and extensive GA lifecycle459

plotting. GenDLN is open source and easily exten-460

sible. Additional plots and reproducibility notes461

are in Appendix L and N.462

The following sections describe experiments for463

binary and multi-label ToS classification on the464

CLAUDETTE dataset, and binary paraphrase de-465

tection on MRPC.466

4 Datasets467

4.1 CLAUDETTE468

The CLAUDETTE dataset (Lippi et al., 2019) fo-469

cuses on Terms of Service agreements from ma-470

jor online platforms, identifying potentially unfair471

clauses. It includes 50 contracts from providers472

like Dropbox, Spotify, Facebook, and Amazon, to-473

taling 12,011 sentences, with 1,032 labeled as po-474

tentially unfair. Each document is annotated for475

two classification tasks: binary classification (fair476

vs. unfair) and multi-label classification, where477

unfair sentences receive one or more unfairness478

categories. These include Arbitration, Unilateral479

change, Content Removal, Jurisdiction, Choice of480

Law, Limitation of Liability, Unilateral termina- 481

tion, and Contract binding upon usage. Experts 482

manually labeled sentences based on EU consumer 483

law guidelines and court rulings. The dataset is 484

imbalanced across both tasks. For our experiments, 485

we split the data into train, test, and validation 486

sets. LegalBERT and SVM baselines use the full 487

training set, while prompt optimization baselines 488

(OPRO and GrIPS) and our method use a balanced 489

subset of 100 samples per task. A 1000-sample test 490

set is used for evaluation. 491

4.2 Microsoft Research Paraphrase Corpus 492

The Microsoft Research Paraphrase Corpus 493

(MRPC) (Dolan and Brockett, 2005) is a standard 494

benchmark for sentence-level semantic equivalence. 495

It contains 5,801 sentence pairs from news sources, 496

labeled for binary paraphrase detection. We chose 497

MRPC to evaluate GenDLN on a more general, 498

smaller dataset that may not suit fine-tuning or 499

traditional, non-prompt optimization methods. De- 500

spite its popularity, MRPC includes formatting ar- 501

tifacts that complicate its use in output-constrained 502

LLM pipelines. We therefore created an LLM-safe 503

version via two key preprocessing steps: 504

Quote sterilization: All quote characters (e.g., 505

smart, curly, raw double quotes) were replaced 506

with a Unicode-safe symbol to prevent JSON se- 507

rialization errors. Mismatched or dangling quotes 508

were manually corrected. 509

Trigger filtering: We removed examples contain- 510

ing high-risk commercial LLM trigger terms. 511

Our LLM-safe version (See Appendix P for de- 512

tails) preserves task structure and label distribution 513

while ensuring compatibility with LLM-based clas- 514

sification. For experiments, we used 100 balanced 515

training samples and 1000 stratified test samples. 516

5 Baselines 517

We compare our approach to both state-of-the-art 518

and classical prompt optimization methods. Op- 519

timization by PROmpting (OPRO) (Yang et al., 520

2024) iteratively refines prompt instructions using 521

an LLM. It uses a meta-prompt containing a prob- 522

lem description, top-performing instructions, and 523

task examples to guide the LLM in generating and 524

evaluating new prompts. Since Legal-BERT per- 525

forms well in legal NLP classification (Chalkidis 526

et al., 2020), we fine-tuned it on the full training 527

set for all tasks. Our SVM baseline uses TF-IDF 528

vectorization and is trained separately for each task 529

6

Figure 4: Metrics (best individual) and average fitness
(population) for best CLAUDETTE multi-label run in
Table 1.

on the full training set. The other baselines use530

the same data splits as our approach. The most531

comparable method to ours is GrIPS (Gradient-532

free, Edit-based Instruction Search) (Prasad et al.,533

2023), which edits prompts via deletion, addition,534

and word swapping, as well as paraphrasing using535

another LLM. Unlike our approach, it uses simple536

edit operations and selects top prompts determinis-537

tically, without stochastic operators like mutation538

or crossover.539

6 Results and Discussion540

We ran over 110 GenDLN executions on541

CLAUDETTE with various parameter sets across542

both tasks (binary and multi-label), and around543

35 on MRPC. All runs draw from the same set544

of 10 binary and 10 multi-label manual prompts545

for CLAUDETTE, and 25 for MRPC, shown in546

Appendix B, Tables 3–7.547

Table 1 lists the runs yielding the best-548

performing prompts across the different parameter549

sets we tried, selected based on Macro F1 perfor-550

mance on the test set. The full prompts for the runs551

are in Appendix M, Tables 11, 12 and 13. Com-552

mon parameters for all reported runs: k = 1; no553

elite mutation; fitness function: 0.2 ∗ (accuracy) +554

0.4 ∗ (macro avg. F1) + 0.4 ∗ (weighted avg. F1).555

We use Mistral Large (“mistral-large-2411”, 123B556

parameters), with LLM temperatures for initializa-557

tion, crossover, and mutation set to 0.7.558

Fig. 4 shows the best non-stagnating multi-559

label CLAUDETTE run (Table 1). Interestingly,560

it used an insertion mutation strategy, leading to561

longer prompts, suggesting insertion is exploratory-562

supported by the diversity plot 7 in Appendix N,563

which shows a consistently diverse population after564

the first few generations. While shorter prompts of-565

Figure 5: Metrics (best individual) and average fitness
(population) for best CLAUDETTE binary run in Table
1. Individual metric lines overlap in the binary case.

Figure 6: Metrics (best individual) and average fitness
(population) for best MRPC binary run in Table 1.

ten yield better results (Brown et al., 2020), this run 566

did not early-stop, and could improve with more 567

generations. 568

Fig. 5 presents metrics for the best binary 569

CLAUDETTE run. Like the multi-label case, we 570

observe stable convergence and fitness improve- 571

ments across generations. Table 1 lists the best 572

binary run parameters. Unlike multi-label runs, 573

where high-performing prompts were longer, bi- 574

nary runs maintained a more stable prompt length, 575

suggesting structural modifications were more ef- 576

fective than exploratory insertions. 577

Fig. 6 shows the best MRPC run. MRPC runs 578

resulted in an improvement in accuracy of 6 per- 579

centage points on average, with the range of im- 580

provement between 3–8 percentage points. Over- 581

all, GenDLN consistently improves initial prompts 582

across reasonable parameter settings and remains 583

stable over diverse configurations, and this con- 584

sistency holds across both datasets. Appendix M 585

includes additional selected runs, parameters, best 586

prompts, and results. Appendix N contains fur- 587

ther plots on metrics, convergence, diversity, and 588

7

Task Fitness Performance (Test) GA Parameters Early
StopAcc. Macro F1 W. F1 Sel. Cross. Cr Mut. Mr Pop. Gen.

C
LA

U
D

E
TT

E Binary 0.879 0.79 0.652 0.826 Rank Sem. Blend 0.8 Semantic 0.2 10 16 Yes

Multi 0.938 0.825 0.862 0.856 Rank Phrase Swap 0.85 Insertion 0.3 30 30 No

M
R

P
C

Binary 0.849 0.813 0.796 0.816 Steady-State Single Point 0.85 Semantic 0.20 30 16 Yes

Table 1: Best GenDLN runs across tasks and datasets. Dataset label is shown in first column. GA Parameters
include Selection, Crossover and Mutation types, Population and Generation size, crossover rate Cr and mutation
rate Mr. Early stop indicates that the run stopped early due to stagnation. W. F1: Weighted F1 score.

CLAUDETTE MRPC
Binary Multi Binary

Acc. Macro F1 W. F1 Acc. Macro F1 W. F1 Acc. Macro F1 W. F1
GenDLN 0.79 0.65 0.83 0.83 0.86 0.86 0.81 0.80 0.82
OPRO 0.80 0.64 0.83 0.71 0.84 0.84 0.80 0.77 0.80
(Legal-)BERT* 0.94 0.85 0.94 0.97 0.91 0.91 0.80 0.78 0.80
SVM TF-IDF 0.93 0.79 0.93 0.77 0.86 0.86 0.70 0.59 0.66
GRIPS 0.82 0.45 0.85 0.94 0.82 0.82 0.79 0.76 0.79

Table 2: Test set performance comparison of baseline optimizers across datasets. W. F1: Weighted F1 score. *BERT
was used for MRPC, Legal-BERT was used for CLAUDETTE.

similarity for our best runs (Tables 8, 9, and 10 in589

Appendix M). We also conduct an ablation study590

on the best runs, re-running them with "random591

selection" to isolate selection impact. As expected,592

ablation results show flatlined metrics, confirming593

that removing selection pressure collapses the GA594

into random search (details in Appendix O).595

Our results align with expected GA behavior. All596

our runs had a maximum population size and gen-597

eration size of 30, which is the bare-minimum,598

exploratory number for GA convergence. Rather599

than declaring "optimal" parameter sets for spe-600

cific tasks, we demonstrate that GenDLN converges601

across diverse settings, tasks, and datasets. Ad-602

ditionally, Table 2 highlights GenDLN’s strong603

performance against state-of-the-art baselines. In604

CLAUDETTE binary classification, GenDLN out-605

performs OPRO and GRIPS in macro F1-score (our606

prioritized metric due to dataset imbalance). Al-607

though LegalBERT and SVM reach the highest608

scores overall, they rely on full dataset fine-tuning609

and are not viable for prompt-based few-shot set-610

tings. In contrast, GenDLN consistently improves611

across reasonable parameter configurations using612

only 100 examples. This is especially notable for613

MRPC, which, unlike CLAUDETTE, does not re-614

quire domain specificity. GenDLN achieves the615

overall best performance, and is in line with the616

highest few-shot F1 benchmark of 78.3 in the liter-617

ature reported by Zhang et al. (2021a). For multi- 618

label ToS classification, GenDLN also delivers 619

strong macro and weighted F1 scores, outperform- 620

ing OPRO and GRIPS in both and surpassing SVM 621

in accuracy, demonstrating its ability to optimize 622

prompt pairs effectively without requiring exten- 623

sive model adaptation. 624

7 Conclusion 625

We introduce GenDLN, an efficient evolution- 626

ary algorithm-based framework for joint prompt 627

optimization using a stacked LLM architecture. 628

Our approach successfully refines populations of 629

prompt pairs, achieving strong performance on 630

ToS classification and paraphrase detection, in 631

line with baselines such as OPRO and GrIPS on 632

the CLAUDETTE dataset while remaining rela- 633

tively cost and computationally efficient compared 634

to traditional GA implementations. Through its 635

efficiency strategies at several levels, GenDLN 636

leverages commercial API free tiers to optimize 637

prompt pairs at no cost. This enables resource- 638

limited teams to use commercial LLMs for EA- 639

based prompt optimization, as applied to well- 640

defined tasks. Our findings highlight the poten- 641

tial of evolutionary strategies as a scalable alter- 642

native to traditional prompt engineering and fine- 643

tuning, paving the way for more accessible and 644

cost-effective LLM-driven classification methods. 645

8

8 Limitations646

Given its reliance on classification based on extrac-647

tion from an LLM response, the fitness function648

is subject to model biases and can be influenced649

by factors such as dataset quality, prompt structure,650

and stochastic behavior of LLMs. Consequently,651

fitness scores in this framework serve as an ap-652

proximation of the true generalization ability of653

candidate solutions.654

Another limitation is the necessary use of the655

cache, which may lead to bias, but is essential if656

using commercial LLMs.657

Moreover, our framework is limited to658

tasks/problems where it is possible to encode a659

solution as a semi-structured, multi-dimensional660

individual that lends itself to crossover and mu-661

tation, and can be assessed by a fitness function.662

For reasoning/analysis tasks, especially those of a663

legal nature, the suitability of a solution may be664

less straightforward to encode and evaluate. Such665

tasks would require looking at a solution as a multi-666

step task (possibly using more DLN layers and a667

learned-heuristic approach), such as the work done668

by Chen et al. (2024).669

Additionally, due to the modular logging struc-670

ture, it is possible to run genetic operators indi-671

vidually and post-process their data. As such, it672

would be interesting to look at the use of LLMs as673

genetic operators more closely and examine how674

they compare to the established stochastic methods,675

and the bias and differences among different LLMs,676

temperatures, and parameters.677

LLMs are known to sometimes suffer from un-678

controlled bias (Bender et al., 2021; Li, 2023; Gal-679

legos et al., 2024). In the context of GenDLN, this680

may lead to search space restriction due to trigger681

word sensitivity (Zhao et al., 2024), pretraining682

bias (Mina et al., 2025), and over-optimization bias683

(since LLMs are trained to minimize loss on text684

generation rather than maximize diversity). We685

have observed anecdotal evidence and instances of686

the above occuring, but this needs formal explo-687

ration.688

Furthermore, we do not vary the LLMs and689

temperature parameters across our different runs.690

Ideally, instead of relying on the same LLM for691

all GA operations, different models for mutation,692

crossover, and evaluation can be used. This ap-693

proach would introduce flexibility and attempt to re-694

duce systemic bias. Since mutation requires diver-695

sity, and a model that introduces novelty, an open696

model would allow unfiltered, exploratory muta- 697

tions. Crossover, on the other hand, requires consis- 698

tency and meaning preservation, and an instruction- 699

tuned LLM would be more suitable. For the DLN, 700

a task-specific fine-tuned model would be more 701

reliable for consistent classification. 702

Moreover, it is important to mention that unlike 703

methods that optimize prompts based on error feed- 704

back, GenDLN does not "learn" the dataset in the 705

traditional sense. Due to its reliance on competition 706

and exploration-driven evolution, it shows adaptive 707

improvement, and optimizes prompt pairs for clas- 708

sification with the specific target LLM model used 709

for optimization. This is in line with expected EA 710

behavior. For this reason, specific signals from the 711

dataset will not necessarily make their way to the 712

optimized prompts, and any learning is implicit and 713

general, rather than dataset-specific. 714

Importantly, we include strong system prompts 715

(based on trial and error) to supplement our op- 716

timized prompt pairs. Recent work has explored 717

optimizing system prompts (Zhang et al., 2024a); 718

a development of the idea would be to refine our 719

chromosome encoding to include system prompts. 720

This would make the chromosome carry more than 721

a couple of genes, which is typically the case in 722

GAs. 723

In addition, due to time constraints, we were not 724

able to run all possible/plausible parameter set com- 725

binations. For that same reason, we did not re-run 726

our GA with the same parameter sets, with differ- 727

ent random seeds, as is usually done and rely on 728

the high stability (consistent improvement across 729

different parameters sets, tasks, and datasets) of 730

our framework. 731

Lastly, we only tried one specific fitness score 732

combination, and all our experiments had elitism = 733

1. We welcome any effort to extend the framework, 734

explore more parameter combinations, and/or for- 735

malize parameter exploration for GenDLN through 736

grid search or other techniques. 737

References 738

E. Alba and M. Tomassini. 2002. Parallelism and evolu- 739
tionary algorithms. IEEE Transactions on Evolution- 740
ary Computation, 6(5):443–462. 741

Lourdes Araujo. 2020. Genetic programming for natu- 742
ral language processing. Genetic Programming and 743
Evolvable Machines, 21. 744

James E Baker et al. 1987. Reducing bias and ineffi- 745
ciency in the selection algorithm. 746

9

https://doi.org/10.1109/TEVC.2002.800880
https://doi.org/10.1109/TEVC.2002.800880
https://doi.org/10.1109/TEVC.2002.800880
https://doi.org/10.1007/s10710-019-09361-5
https://doi.org/10.1007/s10710-019-09361-5
https://doi.org/10.1007/s10710-019-09361-5

James Edward Baker. 2014. Adaptive selection methods747
for genetic algorithms. In Proceedings of the first748
international conference on genetic algorithms and749
their applications, pages 101–106. Psychology Press.750

Emily M. Bender, Timnit Gebru, Angelina McMillan-751
Major, and Shmargaret Shmitchell. 2021. On the752
dangers of stochastic parrots: Can language models753
be too big? .754

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie755
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind756
Neelakantan, Pranav Shyam, Girish Sastry, Amanda757
Askell, Sandhini Agarwal, Ariel Herbert-Voss,758
Gretchen Krueger, Tom Henighan, Rewon Child,759
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,760
Clemens Winter, Christopher Hesse, Mark Chen, Eric761
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,762
Jack Clark, Christopher Berner, Sam McCandlish,763
Alec Radford, Ilya Sutskever, and Dario Amodei.764
2020. Language models are few-shot learners.765

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-766
siotis, Nikolaos Aletras, and Ion Androutsopoulos.767
2020. LEGAL-BERT: the muppets straight out of768
law school. CoRR, arXiv:2010.02559.769

Yongchao Chen, Jacob Arkin, Yilun Hao, Yang Zhang,770
Nicholas Roy, and Chuchu Fan. 2024. Prompt op-771
timization in multi-step tasks (promst): Integrating772
human feedback and heuristic-based sampling.773

Carlos G. Correa, Mark K. Ho, Frederick Callaway,774
Nathaniel D. Daw, and Thomas L. Griffiths. 2023.775
Humans decompose tasks by trading off utility and776
computational cost.777

William B. Dolan and Chris Brockett. 2005. Automati-778
cally constructing a corpus of sentential paraphrases.779
In Proceedings of the Third International Workshop780
on Paraphrasing (IWP2005).781

Agoston E. Eiben and James E. Smith. 2015. Introduc-782
tion to Evolutionary Computing. Springer.783

Tarek El-Mihoub, Adrian Hopgood, Lars Nolle, and784
Alan Battersby. 2006. Hybrid genetic algorithms: A785
review.786

Silvan Ferreira, Ivanovitch Silva, and Allan Martins.787
2024. Organizing a society of language models:788
Structures and mechanisms for enhanced collective789
intelligence. Preprint, arXiv:2405.03825.790

Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow,791
Md Mehrab Tanjim, Sungchul Kim, Franck Dernon-792
court, Tong Yu, Ruiyi Zhang, and Nesreen K. Ahmed.793
2024. Bias and fairness in large language models:794
A survey. Computational Linguistics, 50(3):1097–795
1179.796

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao797
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yu-798
jiu Yang. 2024. Connecting large language models799
with evolutionary algorithms yields powerful prompt800
optimizers. Preprint, arXiv:2309.08532.801

Evert Haasdijk and Jacqueline Heinerman. 2018. Quan- 802
tifying selection pressure. 803

Ali Hakimi Parizi, Yuyang Liu, Prudhvi Nokku, Sina 804
Gholamian, and David Emerson. 2023. A compara- 805
tive study of prompting strategies for legal text clas- 806
sification. In Proceedings of the Natural Legal Lan- 807
guage Processing Workshop 2023, pages 258–265, 808
Singapore. Association for Computational Linguis- 809
tics. 810

Peter J. B. Hancock. 1994. An empirical comparison of 811
selection methods in evolutionary algorithms. 812

John H Holland. 1975. Adaptation in natural and arti- 813
ficial systems. University of Michigan Press google 814
schola, 2:29–41. 815

John H Holland. 1992. Adaptation in natural and artifi- 816
cial systems: an introductory analysis with applica- 817
tions to biology, control, and artificial intelligence. 818

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan 819
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea 820
Madotto, and Pascale Fung. 2023. Survey of halluci- 821
nation in natural language generation. ACM Comput. 822
Surv., 55(12). 823

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao 824
Fu, Kyle Richardson, Peter Clark, and Ashish Sab- 825
harwal. 2023. Decomposed prompting: A modu- 826
lar approach for solving complex tasks. Preprint, 827
arXiv:2210.02406. 828

Yamuna Krishnamurthy, Chris Watkins, and Thomas 829
Gaertner. 2023. Improving expert specialization in 830
mixture of experts. Preprint, arXiv:2302.14703. 831

Jinqi Lai, Wensheng Gan, Jiayang Wu, Zhenlian Qi, and 832
Philip S Yu. 2024. Large language models in law: A 833
survey. 834

Zihao Li. 2023. The dark side of chatgpt: Legal and 835
ethical challenges from stochastic parrots and hallu- 836
cination. arXiv preprint arXiv:2304.14347. 837

Marco Lippi, Przemysław Pałka, Giuseppe Contissa, 838
Francesca Lagioia, Hans-Wolfgang Micklitz, Gio- 839
vanni Sartor, and Paolo Torroni. 2019. Claudette: an 840
automated detector of potentially unfair clauses in 841
online terms of service. Artificial Intelligence and 842
Law, 27:117–139. 843

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, 844
Hiroaki Hayashi, and Graham Neubig. 2023. Pre- 845
train, prompt, and predict: A systematic survey of 846
prompting methods in natural language processing. 847

M. Loos and J. Luzak. 2021. Update the unfair contract 848
terms directive for digital services. PE 676.006. 849

Jinliang Lu, Ziliang Pang, Min Xiao, Yaochen Zhu, 850
Rui Xia, and Jiajun Zhang. 2024. Merge, ensem- 851
ble, and cooperate! a survey on collaborative strate- 852
gies in the era of large language models. Preprint, 853
arXiv:2407.06089. 854

10

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.2139/ssrn.4539091
https://doi.org/10.2139/ssrn.4539091
https://doi.org/10.2139/ssrn.4539091
https://doi.org/10.1371/journal.pcbi.1011087
https://doi.org/10.1371/journal.pcbi.1011087
https://doi.org/10.1371/journal.pcbi.1011087
https://aclanthology.org/I05-5002/
https://aclanthology.org/I05-5002/
https://aclanthology.org/I05-5002/
https://doi.org/10.18653/v1/2021.mrl-1.1
https://doi.org/10.18653/v1/2021.mrl-1.1
https://doi.org/10.18653/v1/2021.mrl-1.1
https://doi.org/10.1201/9780429453427-2
https://doi.org/10.1201/9780429453427-2
https://doi.org/10.1201/9780429453427-2
https://doi.org/10.1038/s41562-024-01959-9
https://doi.org/10.1038/s41562-024-01959-9
https://doi.org/10.1038/s41562-024-01959-9
https://doi.org/10.1038/s41562-024-01959-9
https://doi.org/10.1038/s41562-024-01959-9
https://doi.org/10.1162/coli_a_00524
https://doi.org/10.1162/coli_a_00524
https://doi.org/10.1162/coli_a_00524
https://doi.org/10.1109/cec60901.2024.10611913
https://doi.org/10.1109/cec60901.2024.10611913
https://doi.org/10.1109/cec60901.2024.10611913
https://doi.org/10.1109/cec60901.2024.10611913
https://doi.org/10.1109/cec60901.2024.10611913
https://doi.org/10.1162/evco_a_00207
https://doi.org/10.1162/evco_a_00207
https://doi.org/10.1162/evco_a_00207
https://doi.org/10.18653/v1/2023.nllp-1.25
https://doi.org/10.18653/v1/2023.nllp-1.25
https://doi.org/10.18653/v1/2023.nllp-1.25
https://doi.org/10.18653/v1/2023.nllp-1.25
https://doi.org/10.18653/v1/2023.nllp-1.25
https://doi.org/10.1086/418447
https://doi.org/10.1086/418447
https://doi.org/10.1086/418447
https://doi.org/10.1086/418447
https://doi.org/10.1086/418447
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1257/rct.13495-1.0
https://doi.org/10.1257/rct.13495-1.0
https://doi.org/10.1257/rct.13495-1.0
https://doi.org/10.18653/v1/2024.acl-long.70
https://doi.org/10.18653/v1/2024.acl-long.70
https://doi.org/10.18653/v1/2024.acl-long.70
https://doi.org/10.1016/j.aiopen.2024.09.002
https://doi.org/10.1016/j.aiopen.2024.09.002
https://doi.org/10.1016/j.aiopen.2024.09.002
https://doi.org/10.1007/3-540-58483-8_7
https://doi.org/10.1007/3-540-58483-8_7
https://doi.org/10.1007/3-540-58483-8_7
https://doi.org/10.1007/3-540-58483-8_7
https://doi.org/10.1007/3-540-58483-8_7
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1016/s0267-3649(00)80047-3
https://doi.org/10.1016/s0267-3649(00)80047-3
https://doi.org/10.1016/s0267-3649(00)80047-3
https://doi.org/10.1109/mcas.2024.3476008
https://doi.org/10.1109/mcas.2024.3476008
https://doi.org/10.1109/mcas.2024.3476008
https://doi.org/10.1109/mcas.2024.3476008
https://doi.org/10.1109/mcas.2024.3476008

Ruotian Ma, Xiaolei Wang, Xin Zhou, Jian Li, Nan855
Du, Tao Gui, Qi Zhang, and Xuanjing Huang. 2024.856
Are large language models good prompt optimizers?857
Preprint, arXiv:2402.02101.858

Brad L Miller, David E Goldberg, et al. 1995. Genetic859
algorithms, tournament selection, and the effects of860
noise. Complex systems, 9(3):193–212.861

Mario Mina, Valle Ruiz-Fernández, Júlia Falcão, Luis862
Vasquez-Reina, and Aitor Gonzalez-Agirre. 2025.863
Cognitive biases, task complexity, and result in-864
tepretability in large language models. In Proceed-865
ings of the 31st International Conference on Compu-866
tational Linguistics, pages 1767–1784, Abu Dhabi,867
UAE. Association for Computational Linguistics.868

Jonathan A. Obar and Anne Oeldorf-Hirsch. 2020. The869
biggest lie on the internet: ignoring the privacy poli-870
cies and terms of service policies of social network-871
ing services. Information, Communication & Society,872
23(1):128–147.873

OpenAI. 2024. Gpt-4 technical report. Preprint,874
arXiv:2303.08774.875

Rui Pan, Shuo Xing, Shizhe Diao, Wenhe Sun, Xiang876
Liu, Kashun Shum, Renjie Pi, Jipeng Zhang, and877
Tong Zhang. 2024. Plum: Prompt learning using878
metaheuristic. Preprint, arXiv:2311.08364.879

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit880
Bansal. 2023. Grips: Gradient-free, edit-based in-881
struction search for prompting large language models.882
Preprint, arXiv:2203.07281.883

Alexandra M. Proca, Fernando E. Rosas, Andrea I.884
Luppi, Daniel Bor, Matthew Crosby, and Pedro A. M.885
Mediano. 2024. Synergistic information supports886
modality integration and flexible learning in neural887
networks solving multiple tasks.888

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-889
guang Zhu, and Michael Zeng. 2023. Automatic890
prompt optimization with "gradient descent" and891
beam search. Preprint, arXiv:2305.03495.892

Yarik Menchaca Resendiz and Roman Klinger. 2024.893
Mopo: Multi-objective prompt optimization for af-894
fective text generation. Preprint, arXiv:2412.12948.895

Laria Reynolds and Kyle McDonell. 2021. Prompt pro-896
gramming for large language models: Beyond the897
few-shot paradigm. In Extended Abstracts of the898
2021 CHI Conference on Human Factors in Com-899
puting Systems, CHI EA ’21, New York, NY, USA.900
Association for Computing Machinery.901

Alessandro Sordoni, Xingdi Yuan, Marc-Alexandre902
Côté, Matheus Pereira, Adam Trischler, Ziang Xiao,903
Arian Hosseini, Friederike Niedtner, and Nico-904
las Le Roux. 2023. Joint prompt optimization of905
stacked llms using variational inference. Preprint,906
arXiv:2306.12509.907

Hiroto Tanaka, Naoki Mori, and Makoto Okada. 2023. 908
Genetic algorithm for prompt engineering with novel 909
genetic operators. 910

Pittawat Taveekitworachai, Febri Abdullah, 911
Mustafa Can Gursesli, Antonio Lanata, An- 912
drea Guazzini, and Ruck Thawonmas. 2024. Prompt 913
evolution through examples for large language 914
models–a case study in game comment toxicity 915
classification. In 2024 IEEE International Workshop 916
on Metrology for Industry 4.0 IoT (MetroInd4.0 917
IoT), pages 22–27. 918

Mathurin Videau, Alessandro Leite, Marc Schoenauer, 919
and Olivier Teytaud. 2024. Evolutionary pre-prompt 920
optimization for mathematical reasoning. Preprint, 921
arXiv:2412.04291. 922

Kapioma Villarreal-Haro, Fernando Sánchez-Vega, Ale- 923
jandro Rosales-Pérez, and Adrián Pastor López- 924
Monroy. 2024. Stacked reflective reasoning in large 925
neural language models. 926

P.A. Whigham. 1995. A schema theorem for context- 927
free grammars. In Proceedings of 1995 IEEE Inter- 928
national Conference on Evolutionary Computation, 929
volume 1, pages 178–. 930

Peter A Whigham et al. 1995. Grammatically-based ge- 931
netic programming. In Proceedings of the workshop 932
on genetic programming: from theory to real-world 933
applications, volume 16, pages 33–41. Citeseer. 934

Aled Williams and Yilun Cai. 2024. Insights 935
into weighted sum sampling approaches for multi- 936
criteria decision making problems. Preprint, 937
arXiv:2410.03931. 938

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yang- 939
gang Wang, Haiyu Li, and Zhilin Yang. 2022. Gps: 940
Genetic prompt search for efficient few-shot learning. 941
Preprint, arXiv:2210.17041. 942

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, 943
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2024. 944
Large language models as optimizers. Preprint, 945
arXiv:2309.03409. 946

Johnathan Yerby and Ian Vaughn. 2022. Deliberately 947
confusing language in terms of service and privacy 948
policy agreements. 949

He Yu and Jing Liu. 2024. Deep insights into automated 950
optimization with large language models and evolu- 951
tionary algorithms. Preprint, arXiv:2410.20848. 952

Lechen Zhang, Tolga Ergen, Lajanugen Logeswaran, 953
Moontae Lee, and David Jurgens. 2024a. Sprig: 954
Improving large language model performance by 955
system prompt optimization. arXiv preprint 956
arXiv:2410.14826. 957

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng, 958
Zhen Bi, Chuanqi Tan, Fei Huang, and Huajun Chen. 959
2021a. Differentiable prompt makes pre-trained 960
language models better few-shot learners. arXiv 961
preprint arXiv:2108.13161. 962

11

https://doi.org/10.1609/aaai.v39i24.34713
https://aclanthology.org/2025.coling-main.120/
https://aclanthology.org/2025.coling-main.120/
https://aclanthology.org/2025.coling-main.120/
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1080/1369118X.2018.1486870
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2024.findings-acl.129
https://doi.org/10.18653/v1/2024.findings-acl.129
https://doi.org/10.18653/v1/2024.findings-acl.129
https://doi.org/10.18653/v1/2023.eacl-main.277
https://doi.org/10.18653/v1/2023.eacl-main.277
https://doi.org/10.18653/v1/2023.eacl-main.277
https://doi.org/10.1371/journal.pcbi.1012178
https://doi.org/10.1371/journal.pcbi.1012178
https://doi.org/10.1371/journal.pcbi.1012178
https://doi.org/10.1371/journal.pcbi.1012178
https://doi.org/10.1371/journal.pcbi.1012178
https://doi.org/10.18653/v1/2024.emnlp-main.1130
https://doi.org/10.18653/v1/2024.emnlp-main.1130
https://doi.org/10.18653/v1/2024.emnlp-main.1130
https://doi.org/10.18653/v1/2024.emnlp-main.1130
https://doi.org/10.18653/v1/2024.emnlp-main.1130
https://doi.org/10.1609/aaai.v39i22.34575
https://doi.org/10.1609/aaai.v39i22.34575
https://doi.org/10.1609/aaai.v39i22.34575
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1007/978-3-031-75623-8_28
https://doi.org/10.1007/978-3-031-75623-8_28
https://doi.org/10.1007/978-3-031-75623-8_28
https://doi.org/10.1109/IIAI-AAI-Winter61682.2023.00047
https://doi.org/10.1109/IIAI-AAI-Winter61682.2023.00047
https://doi.org/10.1109/IIAI-AAI-Winter61682.2023.00047
https://doi.org/10.1109/MetroInd4.0IoT61288.2024.10584130
https://doi.org/10.1109/MetroInd4.0IoT61288.2024.10584130
https://doi.org/10.1109/MetroInd4.0IoT61288.2024.10584130
https://doi.org/10.1109/MetroInd4.0IoT61288.2024.10584130
https://doi.org/10.1109/MetroInd4.0IoT61288.2024.10584130
https://doi.org/10.1109/MetroInd4.0IoT61288.2024.10584130
https://doi.org/10.1109/MetroInd4.0IoT61288.2024.10584130
https://doi.org/10.1007/3-540-48885-5_19
https://doi.org/10.1007/3-540-48885-5_19
https://doi.org/10.1007/3-540-48885-5_19
https://doi.org/10.36227/techrxiv.174352068.81462574/v1
https://doi.org/10.36227/techrxiv.174352068.81462574/v1
https://doi.org/10.36227/techrxiv.174352068.81462574/v1
https://doi.org/10.1109/ICEC.1995.489140
https://doi.org/10.1109/ICEC.1995.489140
https://doi.org/10.1109/ICEC.1995.489140
https://arxiv.org/abs/2410.03931
https://arxiv.org/abs/2410.03931
https://arxiv.org/abs/2410.03931
https://arxiv.org/abs/2410.03931
https://arxiv.org/abs/2410.03931
https://arxiv.org/abs/2210.17041
https://arxiv.org/abs/2210.17041
https://arxiv.org/abs/2210.17041
https://doi.org/10.1109/cec60901.2024.10611913
https://doi.org/10.48009/2_iis_2022_112
https://doi.org/10.48009/2_iis_2022_112
https://doi.org/10.48009/2_iis_2022_112
https://doi.org/10.48009/2_iis_2022_112
https://doi.org/10.48009/2_iis_2022_112
https://doi.org/10.1145/3638529.3654086
https://doi.org/10.1145/3638529.3654086
https://doi.org/10.1145/3638529.3654086
https://doi.org/10.1145/3638529.3654086
https://doi.org/10.1145/3638529.3654086
https://doi.org/10.18653/v1/2024.emnlp-main.226
https://doi.org/10.18653/v1/2024.emnlp-main.226
https://doi.org/10.18653/v1/2024.emnlp-main.226
https://doi.org/10.18653/v1/2024.emnlp-main.226
https://doi.org/10.18653/v1/2024.emnlp-main.226

Tuo Zhang, Jinyue Yuan, and Salman Avestimehr.963
2024b. Revisiting opro: The limitations of964
small-scale llms as optimizers. arXiv preprint965
arXiv:2405.10276.966

Yi Zhang, Sujay Kumar Jauhar, Julia Kiseleva, Ryen967
White, and Dan Roth. 2021b. Learning to decom-968
pose and organize complex tasks. In Proceedings of969
the 2021 Conference of the North American Chap-970
ter of the Association for Computational Linguistics:971
Human Language Technologies, pages 2726–2735,972
Online. Association for Computational Linguistics.973

Shuai Zhao, Meihuizi Jia, Zhongliang Guo, Leilei Gan,974
XIAOYU XU, Xiaobao Wu, Jie Fu, Feng Yichao,975
Fengjun Pan, and Anh Tuan Luu. 2024. A survey976
of recent backdoor attacks and defenses in large lan-977
guage models. Transactions on Machine Learning978
Research.979

A GenDLN: GA Characteristics980

GenDLN is a multi-objective, steady-state genetic981

algorithm (SSGA), whereby only a subset of the982

population is replaced in each generation, and983

parents evolve alongside their children (through984

rolling selection, crossover, and mutation) rather985

than generating an entirely new population. Also,986

elitism (keeping the best k solutions unchanged)987

is implemented as an optional parameter, ensuring988

that the best individual(s) survive to the next genera-989

tion. Due to employing LLMs in the population ini-990

tialization, and the mutation and crossover genetic991

operators, the framework can also be described as992

a hybrid genetic algorithm (HGA), where domain-993

specific methods are integrated into the evolution-994

ary process (El-Mihoub et al., 2006). In our do-995

main, textual prompt optimization, GenDLN uses996

LLM inference to indirectly optimize the initial997

population, or yield a “good” mutation or crossover998

product, as opposed to deterministic bit-wise or999

function-aided manipulations used in classical GAs.1000

Furthermore, in the fitness evaluation, employing1001

the deep-language network (DLN) to determine the1002

suitability of the solution (prompt pair) also makes1003

use of LLM inference and classification-based fit-1004

ness to guide the optimization process instead of1005

using a deterministic, mathematical function. Our1006

framework is also a multi-objective GA since we1007

use weighted summing of multiple objectives into a1008

single scalar fitness score (Williams and Cai, 2024).1009

B Population Initialization1010

This section provides an overview of the popula-1011

tion initialization process for the GA, incorporat-1012

ing structured prompt generation and augmentation1013

techniques.1014

Overview The population is initialized using pre- 1015

defined sets of prompts, which serve as the basis 1016

for generating diverse individuals. These prompts 1017

are loaded and paired to create an initial pool of 1018

candidates. These "prompt banks" as used in our 1019

experiments are shown in Tables 3 and 4. 1020

Handling Population Size If the predefined set 1021

of individuals is smaller than the required popu- 1022

lation size, additional individuals are generated 1023

through augmentation. This ensures a sufficient 1024

and varied population. 1025

Augmentation Process When augmentation is 1026

enabled, additional prompts are created by an LLM 1027

based on the existing prompt bank. The process 1028

ensures that newly created prompts maintain coher- 1029

ence and contribute to the diversity of the popula- 1030

tion. 1031

Prompt Generation Details The augmentation 1032

process is guided by a structured system role and 1033

user input specification. The following details out- 1034

line the LLM prompt construction. 1035

System Role 1036

You are an expert prompt generator. Based on 1037

a given task description and examples, your 1038

goal is to generate a specified number of new 1039

prompt pairs. 1040

Each prompt pair consists of two prompts: 1041

1042

Prompt 1: An initial instruction to an LLM, 1043

to which the LLM would provide a response. 1044

Prompt 2: A follow-up instruction, which 1045

will be fed to another LLM along with the 1046

prior response. This prompt should relate to 1047

the expected response from the first LLM. 1048

1049

The new prompt pairs must be unique but 1050

adhere to the task description. 1051

Each prompt pair must follow this JSON 1052

structure: 1053

{ 1054

"prompt_1": "The first instruction for an 1055

LLM, which it will respond to.", 1056

"prompt_2": "The second instruction for a 1057

different LLM, which will be given the 1058

response to prompt_1 as input and should 1059

be related to the expected response." 1060

} 1061

User Input 1062

12

https://doi.org/10.18653/v1/2024.findings-acl.29
https://doi.org/10.18653/v1/2024.findings-acl.29
https://doi.org/10.18653/v1/2024.findings-acl.29
https://doi.org/10.18653/v1/2021.naacl-main.217
https://doi.org/10.18653/v1/2021.naacl-main.217
https://doi.org/10.18653/v1/2021.naacl-main.217

Prompt 1 Prompt 2
Summarize the following text. Based on the description above, is the follow-

ing fair or unfair?
Analyze the following sentence for any poten-
tial ambiguities or unclear language.

Based on the analysis above, would a reason-
able person find this sentence to be fair or un-
fair?

Explain the meaning and implications of the
following sentence in a legal context.

Considering the explanation above, is this sen-
tence likely to be considered fair or unfair by
a court of law?

Identify any potential biases or assumptions
present in the following sentence.

Based on the identified biases and assump-
tions, do you think this sentence is fair or un-
fair?

Provide a paraphrased version of the following
sentence to ensure clarity and understanding.

Considering the paraphrased version above, is
this sentence fair or unfair in its original form?

Discuss the potential consequences of the fol-
lowing sentence in a legal or regulatory con-
text.

Based on the discussion above, do you think
this sentence is fair or unfair in its current
formulation?

Evaluate the following sentence for compli-
ance with relevant laws or regulations.

Considering the evaluation above, is this sen-
tence fair or unfair in terms of its compliance
with applicable laws?

Interpret the following sentence in the context
of a specific industry or sector.

Based on the interpretation above, is this sen-
tence fair or unfair in its application to this
industry or sector?

Highlight any potential areas of concern or
controversy surrounding the following sen-
tence.

Considering the highlighted areas of concern
above, do you think this sentence is fair or
unfair in its current form?

Consider the following sentence in light of
relevant case law or precedents.

Based on the consideration of case law above,
is this sentence fair or unfair in terms of its
alignment with established legal principles?

Table 3: CLAUDETTE - Manual binary prompt bank used to initialize every GenDLN binary run.

The task involves assessing the fairness or1063

unfairness of a given sentence using prompt1064

pairs.1065

The sentence will be taken from the Terms &1066

Conditions or similar documents of1067

businesses. In this context, fairness or1068

unfairness is meant in the strictly legal1069

sense.1070

This means determining whether the sentence,1071

in isolation, could be deemed unfair by a1072

lawyer or court of law.1073

We do not know in advance the nature of the1074

sentence or the area of law it relates to.1075

1076

For this reason, prompt_1 must be general1077

and not tied to any specific scenario,1078

law, or jurisdiction.1079

The sentence will be provided alongside1080

prompt_1 to an LLM. Prompt_1 will ask for1081

some insight, analysis, or interpretation 1082

of the given sentence. 1083

The response from the first LLM, along with 1084

prompt_2, will then be passed to a second 1085

LLM. 1086

1087

Prompt_2 acts as the final "classifier" and 1088

must induce a fair/unfair classification 1089

by the second LLM based on the response 1090

to prompt_1. 1091

1092

Here are some examples of prompt pairs for 1093

the mentioned task: 1094

1095

user_input += "- Prompt 1: " + 1096

individual["prompt_1"] + "\n Prompt 2: " 1097

+ individual["prompt_2"] + "\n" 1098

1099

user_input += "\nGenerate " + 1100

13

str(total_needed)1101

+ " additional pairs of prompts."1102

1103

user_input += "Ensure all new pairs1104

are distinct from the examples."1105

Finalization Once the population reaches the de-1106

sired size, unique identifiers are assigned to each1107

individual. Logging mechanisms help track the1108

composition of the population, distinguishing be-1109

tween original and augmented individuals.1110

This implementation supports prompt-based pop-1111

ulation initialization while maintaining flexibility1112

through structured augmentation and validation1113

mechanisms.1114

C Fitness Function1115

The fitness of a prompt pair is a weighted sum1116

of classification metrics using a multi-objective1117

weighted sum approach.1118

To compute fitness, the individual is evaluated1119

through the DLN (Fig. 1). The classification results1120

ŷ are compared to real labels y, and raw metrics1121

(accuracy, class precision, recall, F1-score, and ag-1122

gregate metrics like macro- and weighted-average1123

precision, recall, and F1-score) are output by the1124

DLN. Metric weights in the fitness function are1125

configurable per GA run, allowing adaptation to1126

different classification goals, such as prioritizing1127

class-balanced performance by emphasizing macro1128

and weighted metrics or optimizing for specific1129

classes. The sum of metric weights must equal 1,1130

and the resulting fitness score lies in the [0, 1] range.1131

Invalid individuals (where at least one prompt is1132

empty) are assigned a fitness score of -1 to prevent1133

their propagation, as per the fallback mechanism1134

outlined in the next section.1135

D Fallback Mechanism for Invalid LLM1136

responses1137

In GenDLN, LLMs are employed for mutation,1138

crossover and population initialization. The LLM1139

is instructed to generate responses in a valid JSON1140

format, which is necessary for the extraction of1141

prompts and subsequent processing and evalua-1142

tion of the individuals. However, there are sev-1143

eral reasons why the LLM might fail to produce a1144

valid JSON response, beyond ambiguity in prompt1145

instructions (Liu et al., 2023; Reynolds and Mc-1146

Donell, 2021), which is not the case in GenDLN:1147

1. Model Limitations and Hallucinations:1148

LLMs are known to potentially "hallucinate" 1149

or generate outputs that deviate from the ex- 1150

pected format, especially when the task in- 1151

volves complex constraints or novel combi- 1152

nations of concepts (Ji et al., 2023). JSON 1153

generation requires strict adherence to syntax 1154

rules, and any deviation (e.g., missing brack- 1155

ets, incorrect key-value pairs) results in an 1156

invalid response. 1157

2. Token Limitations and Truncation: 1158

LLMs have a finite context window, and if the 1159

generated response exceeds this limit, it may 1160

be truncated. Truncation can lead to incom- 1161

plete JSON structures, rendering the output 1162

invalid. This issue is exacerbated when the 1163

response includes nested or lengthy JSON ob- 1164

jects (OpenAI, 2024). 1165

3. Stochastic Nature of LLMs: 1166

LLMs are probabilistic models, and their out- 1167

puts can vary significantly even with identical 1168

inputs due to temperature settings and sam- 1169

pling strategies. This stochastic behavior in- 1170

creases the likelihood of generating invalid 1171

JSON, especially if the temperature param- 1172

eter is set too high, encouraging creativity 1173

at the expense of consistency (Brown et al., 1174

2020). Although our LLM temperature is 0.7 1175

for all experiments, this does not discount the 1176

stochastic effects. 1177

4. Crossing Over Identical Prompts: 1178

Some selection strategies naturally lead to 1179

the presence of the same individual more 1180

than once in the population. Moreover, it is 1181

possible to have individuals with one identi- 1182

cal prompt through the natural trajectory of 1183

evolution. Since individuals are paired up 1184

for crossover randomly, the Crossover LLM 1185

might be prompted to crossover two "identi- 1186

cal" sentences. In most of these cases, the 1187

LLM outputs an invalid response. This was 1188

a problem for all LLMs we tried, including 1189

Llama-3.1-8B, Llama-70B, Ministral 8B, and 1190

even Mistral Large. We chose not to mitigate 1191

this by explicitly including this case and how 1192

to deal with it in the prompt to the operator 1193

and instead detect this with the fallback mech- 1194

anism. 1195

14

D.1 Fallback Mechanism1196

To mitigate these issues, we implemented a fall-1197

back mechanism that retries the operation up to a1198

specified limit (3 in our experiments). If all retries1199

fail, an empty string is returned, which is detected1200

during fitness calculation. The assignment of a fit-1201

ness score of −1 to such individuals ensures that1202

they are not propagated further in the evolutionary1203

process, maintaining the integrity of the popula-1204

tion. This approach aligns with established prac-1205

tices in evolutionary computation, where invalid1206

or malformed individuals are penalized to prevent1207

their influence on future generations (Eiben and1208

Smith, 2015) and limit their downstream propaga-1209

tion. We observe that invalid responses occur quite1210

frequently, and can be visualizes as "X" on the y-1211

axis in the convergence plots 31, 32, 33, 35, 36,1212

37.1213

E System Prompts1214

E.0.1 System Prompts1215

GenDLN’s DLN implementation includes system1216

prompts in scoring. These specify the input/output1217

format (e.g., JSON), define the task, and may in-1218

clude few-shot examples.1219

Our approach utilizes four distinct system1220

prompts, corresponding to the two-layer binary and1221

multi-label classification approaches. Each prompt1222

defines the input format, specifies the expected out-1223

put structure, and ensures consistency in model1224

responses.1225

All prompts follow a common structure:1226

• The embedded prompt generated by our GA.1227

• A description of the input format, including1228

identifiers and sentence text.1229

• A specification of the expected output format,1230

ensuring valid JSON at the second layer.1231

• Example inputs and outputs to showcase the1232

expected input and output format.1233

Few-Shot Examples Each system prompt in-1234

cludes six few-shot examples to guide the model’s1235

responses. For binary classification, we randomly1236

select three fair and three unfair sentences from the1237

training set, ensuring they are distinct from those1238

used in the optimization task. For multi-label classi-1239

fication, we select six sentences, each representing1240

a unique class. Additionally, for Layer 2 prompts,1241

the examples include the feature-enriched output1242

from Layer 1 to provide a more contextualized in- 1243

put. 1244

This approach ensures a balanced representation 1245

of labels while maintaining consistency across both 1246

classification tasks. 1247

We present the full system prompts in the fol- 1248

lowing sections. 1249

E.1 Binary Classification 1250

E.1.1 System Prompt Layer 1 1251

<Prompt_01_Placeholder> 1252

1253

Input Data 1254

The input data is a dictionary containing 1255

sentences from the CLAUDETTE dataset, 1256

where each entry has: 1257

Key: An identifier 1258

(e.g., "sentence_1", "sentence_2") 1259

Value: The sentence text 1260

1261

Example Input 1262

{ 1263

"sentence_1": "This is the text 1264

representing sentence 1.", 1265

"sentence_2": "This is the text 1266

representing sentence 2." 1267

} 1268

E.1.2 System Prompt Layer 2 1269

<Prompt_02_Placeholder> 1270

1271

Input Data 1272

The input data is composed of two parts. 1273

The first part ("previous_outputs:") 1274

contains a feature-enriched version 1275

of the user input that has already been 1276

processed by a different LLM and 1277

system prompt. The second part 1278

("sentences_to_classify:") is 1279

a dictionary containing sentences 1280

to classify, where each entry has: 1281

1282

Key: An identifier 1283

(e.g., "sentence_1", "sentence_2") 1284

Value: The sentence text 1285

1286

Example Input 1287

"previous_outputs": "Feature enriched 1288

version of the 1289

sentences to classify" 1290

"sentences_to_classify": 1291

{ 1292

15

"sentence_1": "This is sentence 1.",1293

"sentence_2": "This is sentence 2."1294

}1295

1296

Output Requirements1297

For each sentence, add:1298

"classification": "fair" or "unfair".1299

"rationale": Explanation highlighting1300

influential words.1301

1302

Example Output1303

{1304

"sentence_1": {1305

"text": "This is sentence 1.",1306

"classification": "fair",1307

"rationale": "Explain the decision."1308

},1309

"sentence_2": {1310

"text": "This is sentence 2.",1311

"classification": "unfair",1312

"rationale": "Explain the decision."1313

}1314

}1315

1316

Ensure JSON format is valid!1317

E.2 Multi-Label Classification1318

E.2.1 System Prompt Layer 11319

<Prompt_01_Placeholder>1320

1321

CLAUDETTE Classes:1322

- PINC (Pins and Cookies)1323

- USE (Usage Restrictions)1324

- CR (Content Removal)1325

- TER (Termination)1326

- LTD (Liability Limitation)1327

- A (Arbitration)1328

- LAW (Applicable Law)1329

- J (Jurisdiction)1330

- CH (Changes)1331

1332

Input Data:1333

A dictionary of “unfair” sentences:1334

- Key: Sentence ID (e.g., "sentence_1").1335

- Value: The sentence text.1336

1337

Example Input:1338

{1339

"sentence_1": "We may terminate your1340

account at any time.",1341

"sentence_2": "By using Pinterest,1342

you agree to our 1343

policies." 1344

} 1345

E.2.2 System Prompt Layer 2 1346

<Prompt_02_Placeholder> 1347

1348

CLAUDETTE Classes: 1349

- PINC, USE, CR, TER, LTD, A, LAW, J, CH 1350

1351

Input Data: 1352

First Part: "previous_outputs" 1353

- Feature-enriched sentences. 1354

Second Part: "sentences_to_classify" 1355

- Dictionary of sentences. 1356

1357

Example Input: 1358

"previous_outputs": "Feature enriched 1359

version" 1360

"sentences_to_classify": 1361

{ 1362

"sentence_1": "We may terminate 1363

your Account at any time.", 1364

"sentence_2": "By using Pinterest, 1365

you agree to our policies." 1366

} 1367

1368

Example Output: 1369

{ 1370

"sentence_1": { 1371

"text": "We may terminate 1372

your account.", 1373

"classification": ["TER"] 1374

}, 1375

"sentence_2": { 1376

"text": "By using Pinterest, 1377

you agree.", 1378

"classification": 1379

["PINC", "USE"] 1380

} 1381

} 1382

1383

Each sentence is classified 1384

into one or more labels. 1385

Ensure JSON validity. 1386

F Efficiency Strategies 1387

F.1 Motivation and Setup 1388

Since we use commercial LLM APIs and GAs re- 1389

quire exploring a vast search space to converge, 1390

running our framework is both cost- and time- 1391

16

intensive, especially for fitness evaluation. Evalu-1392

ating a prompt pair through the DLN requires two1393

API calls per data point. For large datasets and1394

populations (essential for exploration), running the1395

framework for enough generations becomes too1396

expensive, not to mention the need to test various1397

parameter sets and the significant trial-and-error1398

phase inherent to evolutionary optimization. To1399

mitigate this, we implemented efficiency strategies1400

at different framework stages. We apply metric1401

caching, request rate limiters, and concurrency at1402

two DLN levels (Fig. 3).1403

F.1.1 Metric Caching1404

As mentioned, running an individual through the1405

DLN yields a set of classification metrics. In1406

GenDLN, these raw metrics are cached for every1407

prompt pair to avoid rerunning the evaluation of the1408

same prompt pair within the same run; we also ex-1409

tend it to avoid rerunning the evaluation of the same1410

prompt pair for the same LLM-dataset-task combi-1411

nation. The cost savings and speed-up provided by1412

caching comes at the risk of introducing some bias1413

(LLM-classification is inherently unstable, and the1414

same prompt can lead to different responses from1415

the same LLM). However, this is primarily used1416

to explore parameter sets, and for suitable, stable1417

parameter definitions, the GA should eventually be1418

rerun three times to discount noise.1419

F.1.2 Parallelization1420

Significant work has been done on parallelizing1421

the execution of GAs (Alba and Tomassini, 2002).1422

For GAs in general, evaluation of an individual1423

is independent, and for GenDLN (DLN classifica-1424

tion using prompts (p1, p2)), this allows popula-1425

tion evaluation to be parallelized. To accelerate1426

the prompt optimization process, our framework1427

employs a two-layer parallelization approach, ad-1428

dressing both the evaluation of individual prompt1429

pairs and the internal processing of data batches for1430

each individual.1431

Inter-Individual Parallelization In Fig. 3,1432

the top section (above the dashed line) shows1433

population-level parallelization, our first concur-1434

rency layer.1435

A workspace W is a compute node with an inde-1436

pendent API token handling requests. For a w-core1437

machine, w sets of individuals from population1438

P run in parallel across w workspaces, creating1439

w jobs J , each evaluating up to N/w individu-1440

als. Rather than processing individuals sequen-1441

tially, our framework concurrently evaluates sev- 1442

eral prompt pairs. This strategy exploits multi- 1443

core architectures to significantly reduce the over- 1444

all optimization time. By partitioning the popula- 1445

tion across multiple execution threads or processes, 1446

each prompt pair can be evaluated independently. 1447

Importantly, each individual maintains its own iso- 1448

lated “workspace,” meaning that the computational 1449

resources and rate-limiting mechanisms are man- 1450

aged on a per-individual basis. 1451

Intra-Individual Concurrency The bottom sec- 1452

tion (Fig. 3) details job J . Within the evaluation 1453

of a single prompt pair (job J), further efficiency 1454

is gained by concurrently processing the training 1455

dataset. We first partition the dataset into multi- 1456

ple batches, then evaluate the prompt pair on these 1457

batches concurrently, using 2 API calls (one per 1458

DLN layer/prompt) per batch rather than 2 per sen- 1459

tence. 1460

This fine-grained parallelism allows us to ag- 1461

gregate evaluation metrics faster, as each batch is 1462

processed in parallel rather than sequentially. The 1463

results across individuals and batches are aggre- 1464

gated to determine (p1, p2)’s overall performance, 1465

with metrics stored in the cache for future use. 1466

A notable constraint in our setup is the use of 1467

an external API that enforces a strict rate limit 1468

of one request per second (RPS). To adhere to 1469

this limit while still maintaining high throughput, 1470

we integrate a rate limiter into our concurrency 1471

model. For each prompt pair, the batch-level evalu- 1472

ations are regulated such that API calls are spaced 1473

appropriately. Since each individual has its own 1474

“workspace,” the rate limiting is applied indepen- 1475

dently per prompt pair. This design ensures that the 1476

API is not overwhelmed by simultaneous requests 1477

across the entire population while still exploiting 1478

concurrency within each evaluation task. 1479

Overall, the combination of inter-individual par- 1480

allelization and intra-individual concurrency leads 1481

to a significant speedup in our prompt optimiza- 1482

tion process, allowing us to efficiently explore the 1483

search space while managing the operational con- 1484

straints imposed by the external API. 1485

F.1.3 Individual Evaluation Throuphput 1486

To quantify the efficiency of our genetic algorithm 1487

runs, we define the individual evaluation through- 1488

put as the number of individuals evaluated per unit 1489

of time. Given a genetic algorithm run with G gen- 1490

erations, a population size of N , a crossover rate of 1491

17

Cr, and a total runtime of T hours, the number of1492

individuals evaluated per generation is computed1493

as:1494

N(1 + Cr) (1)1495

Thus, the total number of individual evaluations1496

across all generations is:1497

G ·N(1 + Cr) (2)1498

To determine the throughput in terms of individ-1499

uals evaluated per hour, we divide the total evalua-1500

tions by the runtime:1501

Throughput =
G ·N(1 + Cr)

T
(3)1502

This metric allows us to compare different ge-1503

netic algorithm configurations by normalizing their1504

efficiency in terms of evaluations processed per1505

hour, thereby accounting for variations in runtime1506

across different experimental settings.1507

G Selection Strategies1508

G.1 Random Selection1509

Random selection is the absence of a selection strat-1510

egy. It refers to selecting individuals uniformly1511

at random, irrespective of fitness values. We im-1512

plement it for use as a baseline for comparison1513

purposes.1514

G.2 Roulette Wheel Selection1515

Also known as fitness proportionate selection,1516

roulette wheel selection is one of the very first1517

explored GA selection strategies (Holland, 1975).1518

It simulates spinning a wheel where each individ-1519

ual occupies space proportional to its fitness, and1520

selections are made probabilistically (by “spinning”1521

a wheel and selecting the individual the “pointer”1522

lands on). It ensures that individuals with higher1523

fitness have a higher chance of selection, but any1524

individual could potentially be selected. However,1525

if relatively high-fitness individuals dominate early,1526

this may lead to premature convergence. Also,1527

when fitness values are very similar, low selection1528

pressure may lead to stagnation (Hancock, 1994).1529

Tournament Selection First introduced by1530

Miller et al. (1995), tournament selection is a sim-1531

ple and widely-used selection strategy. For a tour-1532

nament size t, it randomly picks t individuals from1533

the population, and selects the individual with high-1534

est fitness (the “tournament winner”) for the next1535

generation. For a population size N , N tourna- 1536

ments are held, with t participants each (if elitism 1537

k ̸= 0, N − k tournaments are held). Tournament 1538

selection aims to establish a balance between explo- 1539

ration and selection pressure, which can be tuned 1540

with tournament size t. Larger tournaments lead 1541

to stronger selection pressure and lower diversity 1542

(exploitation), while smaller tournament sizes favor 1543

exploration. 1544

Rank-Based Selection Conceptually similar to 1545

roulette wheel, rank-based selection assigns indi- 1546

viduals space on the wheel according to their rank 1547

rather than their fitness, where the total space on 1548

the wheel is equal to the sum of the ranks. Intro- 1549

duced by Baker (2014), to mitigate scaling issues 1550

where individuals in the population have fitness val- 1551

ues that are either too extreme (high-fitness outliers 1552

would be selected too often in classical roulette), 1553

or too similar (if fitness values are too close to- 1554

gether, each individual would have roughly the 1555

same chance of being selected in classical roulette). 1556

Rank selection ensures a linear selection probabil- 1557

ity distribution which prevents bias towards dispro- 1558

portionately high fitness individuals, while main- 1559

taining selection pressure. 1560

Stochastic Universal Sampling (SUS) SUS was 1561

introduced by Baker et al. (1987) as an improve- 1562

ment over roulette wheel selection. In this vari- 1563

ant, N evenly spaced pointers are assigned to the 1564

wheel, on which the individuals occupy space pro- 1565

portional to their fitness values, and N individuals 1566

are selected in one go when the wheel is “spun.” 1567

It ensures a more diverse selection and reduces 1568

stochastic noise, but will still suffer from prema- 1569

ture convergence in the presence of a high-fitness 1570

outlier (if an individual occupies a disproportion- 1571

ately large space on the wheel, several pointers will 1572

land on it). 1573

Steady-State Selection Our framework is inher- 1574

ently an SSGA due to the way our replacement step 1575

(discussed in a futher section) operates, however, 1576

we also implement an explicit steady-state selec- 1577

tion strategy for greater flexibility. Steady state 1578

selection requires elitism k ̸= 0 or else it will be- 1579

have like random selection. In this strategy, the 1580

top k fittest individuals are selected for the next 1581

generation, and N − k are randomly selected from 1582

the remaining individuals to complete the popula- 1583

tion. Steady-state selection ensures that only a few 1584

individuals are replaced at a time in each genera- 1585

18

tion. Always keeping many elites in the population1586

may accelerate convergence at the risk of reducing1587

diversity.1588

H Adapting Chromosomes to the Textual1589

Space - Considerations1590

Although we have encoded the chromosome as a1591

tuple, that does not mean the individual only has 21592

genes (p1 and p2). The “suitability” of the solution1593

depends on unstructured, hard-to-define compo-1594

nents or “tokens” within the two text prompts, as1595

well as hidden "genetic material" in the textual fea-1596

tures of each prompt string. In natural language,1597

different words, phrases, and clauses hold different1598

weights in conveying meaning, unlike in structured1599

encoding, where every component’s contribution1600

to the solution’s suitability is defined. If classical1601

strategies were to be applied (slicing the strings1602

at arbitrary points, editing the characters at arbi-1603

trary indices), this would risk yielding too many1604

syntactically invalid or semantically nonsensical1605

prompts. Additionally, words and phrases are in-1606

terdependent (much like real genes), and simple1607

positional swapping and randomized editing may1608

distort the meaning. In fact, textual meaning can1609

completely collapse if crossover/mutation is badly1610

applied, yielding individuals far inferior to their1611

progenitors, which defeats the purpose. Determin-1612

ing where and how to split/edit text dynamically1613

while ensuring coherence of results is an inherently1614

non-deterministic process, contrary to the estab-1615

lished concept of crossover and mutation in GAs.1616

I Crossover Strategies1617

We implemented the following strategies:1618

Single-Point Selects a single random point in1619

each sentence and swaps the latter halves to form1620

new sentences.1621

Two-Point Selects two random points in each1622

sentence, swapping alternating segments to form1623

new sentences.1624

Semantic Blending Blends the core meaning of1625

both parents into two complementary sentences.1626

Offspring are not simple recombinations but rather1627

semantically fused versions of the inputs.1628

Phrase Swapping Identifies key phrases in each1629

parent and swaps them while maintaining grammat-1630

ical integrity.1631

Token-Level Swaps individual words or tokens 1632

between sentences. 1633

I.1 Crossover System Prompt 1634

"You are an expert linguist and copywriter, act- 1635

ing similar to how genetic crossover works, but 1636

in a textual context. Generate two complementary 1637

sentences as children of the provided parent sen- 1638

tences. Here complementary means that the two 1639

child sentences must have complementary parts of 1640

the parents, as in genetic crossover. Make sure the 1641

children sentences are wrapped in a JSON-object 1642

as follows: 1643

{"child_1": "child sentence 1", 1644

"child_2": "child sentence 2"} 1645

The rest of your response can be plain text, but 1646

the new sentences must be in a JSON. Both sen- 1647

tences must be grammatically correct and reason- 1648

ably meaningful." 1649

I.2 Crossover Strategy Prompts 1650

Single-Point "Combine the following two sen- 1651

tences by splitting each at a single random point. 1652

The first child should take the first half of the first 1653

sentence and the second half of the second sen- 1654

tence. The second child should take the first half of 1655

the second sentence and the second half of the first 1656

sentence. Ensure both sentences remain coherent 1657

and meaningful." 1658

Two-Point "Combine the following two sen- 1659

tences by selecting two random points in each sen- 1660

tence. The first child should integrate the segments 1661

alternately, starting with the first part of the first 1662

sentence. The second child should integrate the 1663

remaining segments alternately. Ensure both sen- 1664

tences are coherent and meaningful." 1665

Semantic Blending "Blend the following two 1666

sentences to create two complementary sentences. 1667

Each child should focus on combining the core 1668

meaning of both sentences in a unique way. Ensure 1669

that both sentences are coherent, meaningful, and 1670

distinct from one another." 1671

Phrase Swapping "Swap one or more phrases 1672

between the following two sentences to create two 1673

new sentences. Each child should incorporate 1674

phrases from the other parent in a way that cre- 1675

ates a coherent and meaningful result." 1676

Token-Level "Swap individual words or tokens 1677

between the following two sentences to create two 1678

19

new sentences. Each child should incorporate1679

words from the other parent in a way that creates a1680

coherent and meaningful result."1681

I.3 Crossover Examples1682

Below are some selected illustrative crossover ex-1683

amples.1684

Single-Point1685

Parent 1: "Summarize the following text."1686

Parent 2: "Explain the meaning1687

and implications of the1688

following sentence in a legal context."1689

Child 1: "Summarize the following text1690

in a legal context."1691

Child 2: "Explain the meaning and1692

implications of the following text."1693

Two-Point1694

Parent 1: "Summarize the following text."1695

Parent 2: "Explain the meaning and1696

implications of the following sentence1697

in a legal context."1698

Child 1: "Summarize the meaning and1699

implications of the following sentence in1700

a legal context"1701

Child 2: "Explain the following text in1702

a concise manner and its potential impact1703

on the law"1704

Semantic Blending1705

Parent 1: "Based on the description above,1706

is the following fair or unfair?"1707

Parent 2: : "Considering the explanation1708

above, is this sentence likely to be1709

considered fair or unfair by a court1710

of law?"1711

Child 1: "Considering the description1712

above, is the treatment likely to be1713

considered fair or unfair by a court1714

of law?"1715

Child 2: "Based on the explanation1716

above, is the sentence likely to be1717

considered fair or unfair in a court1718

of law?"1719

Phrase Swapping1720

Parent 1: "Summarize the following text."1721

Parent 2: : "Explain the meaning and1722

implications of the following sentence1723

in a legal context."1724

Child 1: "Explain the meaning and1725

implications of the following summary in1726

a legal context." 1727

Child 2: "Summarize the following sentence 1728

to understand its core message and 1729

implications." 1730

Token-Level 1731

Parent 1: "Based on the description above, 1732

is the following fair or unfair?" 1733

Parent 2: "Considering the explanation 1734

above, is this sentence likely to be 1735

considered fair or unfair by a court 1736

of law?" 1737

Child 1: "Considering the description 1738

above, is the following sentence likely 1739

to be considered fair or unfair by a 1740

court of law?" 1741

Child 2: "Based on the explanation above, 1742

is the following sentence likely to be 1743

considered fair or unfair by a court of 1744

law?" 1745

J Mutation Strategies 1746

The following is a summary of the introduced 1747

strategies and their intended result. 1748

Random Changes a single word or phrase in the 1749

sentence to a synonym or a similar concept. 1750

Swap Swaps existing words or phrases in the 1751

sentence to introduce minor structural variation. 1752

Scramble Rearranges the order of words/phrases 1753

while maintaining the original meaning. 1754

Inversion Reverses the order of words or phrases 1755

in part or all of the sentence. 1756

Deletion Removes a word or phrase from the 1757

sentence to create a more concise variation. 1758

Insertion Adds new words or phrases to provide 1759

additional context while preserving meaning. 1760

Semantic Rephrases the sentence slightly while 1761

keeping the core meaning intact. 1762

Syntactic Alters the sentence structure while pre- 1763

serving the meaning. 1764

J.1 Mutation System Prompt 1765

"You are an expert linguist and copywriter. Make 1766

sure the sentence you return is wrapped in a JSON- 1767

object as follows: 1768

{"mutated_sentence": "new sentence 1769

you generate based on the instruction"}. 1770

20

The rest of your response can be plain text, but the1771

new sentence must be in a JSON. The new sentence1772

you suggest must be grammatically correct and1773

reasonably semantically similar to the original."1774

J.2 Mutation Strategy Prompts1775

Random "Change only one single word or phrase1776

in the sentence to a synonym or similar concept."1777

Swap "Swap two existing words or phrases in the1778

sentence."1779

Scramble "Rearrange the existing words and/or1780

phrases in the sentence with a minimal addition of1781

new words."1782

Inversion "Invert the order of the existing words1783

or phrases in all or part of the sentence."1784

Deletion "Delete a word or phrase in the sen-1785

tence."1786

Insertion "Insert words or phrases in the sen-1787

tence that could provide more context/clarity while1788

keeping the same base meaning."1789

Semantic "Slightly rephrase the sentence."1790

Syntactic "Modify the sentence structure of the1791

sentence while keeping the same base meaning."1792

J.3 Mutation Examples1793

Below are some selected illustrative mutation ex-1794

amples.1795

Semantic1796

Initial Prompt: "Produce a detailed output1797

for each sentence, outlining the reasoning1798

for its classification into the most likely1799

category."1800

Mutated Prompt: "Generate a comprehensive1801

output for each sentence, explaining the1802

rationale for its categorization into the1803

most probable group."1804

Insertion1805

Initial Prompt: "Interpret each sentence1806

and provide a comprehensive rationale for1807

its legal classification."1808

Mutated Prompt: "Carefully interpret each1809

individual sentence within the context of1810

the document and provide a comprehensive1811

rationale for its specific legal1812

classification."1813

Random 1814

Initial Prompt: "Summarize the following 1815

text." 1816

Mutated Prompt: "Condense the following 1817

text." 1818

Swap 1819

Initial Prompt: "Based on the description 1820

above, is the following fair or unfair?" 1821

Mutated Prompt: : "Based on the description 1822

above, is the following unfair or fair?" 1823

Deletion 1824

Initial Prompt: "Based on the description 1825

above, is the following fair or unfair?" 1826

Mutated Prompt: "Based on the description, 1827

is the following fair or unfair?" 1828

Scramble 1829

Initial Prompt: "Based on the description 1830

above, is the following fair or unfair?" 1831

Mutated Prompt: "Is the following fair or 1832

unfair, based on the description above?" 1833

K GenDLN Logging 1834

Every sub-component of GenDLN (fitness calcu- 1835

lation, selection, crossover, mutation, replacement, 1836

caching) has a dedicated logger and defined struc- 1837

ture, and a GA Log (which is the output of the 1838

framework), is a structured log of these compo- 1839

nents. Below we provide the expected output and 1840

logger functionality and examples. 1841

The logging system in the Genetic Algorithm 1842

(GA) serves as a comprehensive tracking and de- 1843

bugging framework, capturing detailed records of 1844

key evolutionary events at multiple levels. It en- 1845

sures traceability of the entirety of the GA run. The 1846

logging structure is hierarchical, with nested log- 1847

gers handling distinct operations, and a centralized 1848

GA logger aggregating all logs. 1849

Hierarchical Structure of Logging The logging 1850

framework consists of specialized loggers: 1851

• GA Logger – The central log for the en- 1852

tire evolutionary process, containing per- 1853

generation records of all key operations. 1854

• Population Initialization Logger – Tracks 1855

how the initial population is created, including 1856

augmentation details. 1857

• Selection Logger – Records selected individ- 1858

uals, strategy parameters, and elitism effects. 1859

21

• Crossover Logger – Captures the details1860

of crossover operations, including parent-1861

offspring relationships.1862

• Mutation Logger – Stores information on1863

how individuals are mutated, along with mu-1864

tation types.1865

• Fitness Logger – Logs individual fitness1866

scores and overall generation-level fitness1867

statistics.1868

• Fitness Cache Logger – Tracks cache hits1869

and misses.1870

• Replacement Logger – Logs how individuals1871

are retained or replaced in the next generation.1872

• Run-Specific Details – Runtime, system1873

specs, configs, and hyperparameters of the1874

GA run are appended to the end of the log.1875

GA Logger: Centralized Evolution Tracking1876

Each generation’s log entry contains the following:1877

{1878

"generations": [1879

1880

{"generation_id" : i,1881

"initial_population": [...],1882

"selection_data": [...],1883

"population_after_selection": [...],1884

"crossover_data": [...],1885

"population_after_crossover": [...],1886

"mutation_data": [...],1887

"population_after_mutation": [...],1888

"fitness_data": {...},1889

"replacement_data": [...]1890

},1891

{...}, ...],1892

"early_stopping":1893

{"status": false, "reason": ""},1894

"runtime": "3.25 minutes",1895

"system_info": {...},1896

"config": {...},1897

"hyperparameters": {...},1898

"ga_log_filename":1899

{"ga_log_date-timestamp.log"}1900

}1901

This hierarchical logging system ensures that all1902

operations are transparently recorded, aiding both1903

debugging and performance analysis of the genetic1904

algorithm.1905

L Reproducibility 1906

We provide a set of R Scripts that allow the repro- 1907

duction of our results, plots, and analyses. The 1908

scripts are structured to ensure transparency and 1909

ease of replication, and enforce a file path structure 1910

for inputs and outputs. 1911

L.1 Environment Setup 1912

All necessary dependencies are installed and loaded 1913

at the start of the execution. The required R 1914

libraries include tidyverse, jsonlite, here, 1915

purrr, data.table, dplyr, ggplot2, tidyr, 1916

readr, and stringdist. The script automatically 1917

installs missing dependencies. 1918

L.2 Data and Directory Structure 1919

The project assumes a structured directory for data 1920

storage and result output: 1921

• Root Directory: Automatically set to the lo- 1922

cation of the script. 1923

• Log Directory: Stores raw Genetic Algorithm 1924

(GA) log files (output of GenDLN). 1925

• Summary Directory: Contains extracted 1926

metadata and performance summaries. 1927

• Test Directory: Stores test results. 1928

• Output Directory: Stores processed results 1929

and plots. 1930

• Plot Directory: Contains visualization out- 1931

puts. 1932

All necessary directories are created if they do 1933

not exist. 1934

L.3 Processing and Normalization 1935

Log File Normalization GA log files are pro- 1936

cessed into structured formats. Key extracted ele- 1937

ments include: 1938

• Initial generation data (fitness scores, raw met- 1939

rics, attributes). 1940

• Subsequent generation data with performance 1941

metrics. 1942

• Total number of completed generations. 1943

• Metadata including runtime, system configu- 1944

ration, hyperparameters, and early stopping 1945

conditions. 1946

22

Metadata Extraction Log files are further pro-1947

cessed to extract structured information on:1948

• GA parameters (population size, mutation1949

rate, selection strategy, fitness function).1950

• Run performance (best fitness scores, accu-1951

racy, raw evaluation metrics).1952

• Execution environment (system specifications,1953

runtime details).1954

L.4 Batch Processing and Summary1955

Generation1956

Aggregating Run Summaries A batch process-1957

ing script collects metadata from all runs and pro-1958

duces a consolidated summary. The summary in-1959

cludes:1960

• Number of runs per batch.1961

• Associated test results.1962

• Log files used in the batch.1963

This process ensures that interrupted runs are1964

accounted for and test data is linked correctly.1965

Appending Notes to Summaries Notes can be1966

appended to individual summaries to document1967

special conditions or anomalies in the runs.1968

L.5 Analysis and Visualization1969

GA Performance Report Each log file is pro-1970

cessed to produce a detailed report that includes:1971

• Performance metrics across generations (fit-1972

ness scores, accuracy, F1 scores...).1973

• Statistical summaries (mean, variance, min,1974

max values of key metrics).1975

• Evolutionary trends of best and worst individ-1976

uals.1977

Metric Extraction and Visualization Metrics1978

such as fitness score, accuracy, and F1 scores are ex-1979

tracted for each generation and visualized to track1980

GA progression.1981

GA Convergence Analysis The convergence of1982

the GA is visualized by plotting best and worst1983

fitness scores across generations.1984

Diversity and Similarity of Best Individuals 1985

The script computes diversity across generations, 1986

tracking: 1987

• Unique individuals per generation. 1988

• Similarity of best individuals across genera- 1989

tions. 1990

• Levenshtein and Jaccard similarity scores for 1991

best individuals. 1992

Comprehensive Run Summary A final com- 1993

bined summary consolidates all extracted informa- 1994

tion, test results, and log metadata into a structured 1995

CSV file. 1996

M Detailed Results 1997

M.1 CLAUDETTE 1998

The best prompts from the top 4 selected binary 1999

runs in Table 8 are shown in Table 11 2000

As for multi-label, results are in Table 9, and 2001

prompts are in Table 12. 2002

M.2 MRPC 2003

The best prompts from the top 4 selected runs in 2004

Table 10 are shown in Table 13 2005

N Detailed Plots 2006

N.1 Metrics Over Generations 2007

The metrics over generations plot tracks key per- 2008

formance metrics across generations, such as accu- 2009

racy, fitness score, average fitness, and F1 scores. 2010

It is a multi-line plot where each line represents a 2011

metric and its trend over generations. The x-axis 2012

represents the generation number, while the y-axis 2013

represents the value of the metric. Different colors 2014

indicate different metrics. 2015

Higher values generally indicate better perfor- 2016

mance. Fluctuations in fitness and accuracy reflect 2017

instability or exploration by the genetic algorithm 2018

(GA), while a converging trend suggests stabiliza- 2019

tion around optimal solutions. A steadily increas- 2020

ing or stable fitness score implies progress and con- 2021

vergence, whereas a volatile or fluctuating fitness 2022

score suggests ongoing evolution. 2023

CLAUDETTE Plots for the top multi-label runs 2024

are on the left side of Fig. 7, 9 and 11, 13. For the 2025

binary runs, they are on the left of Fig. 15, 17 and 2026

19, 21. 2027

23

Figure 7: CLAUDETTE - Left: plot of metrics and average fitness for best run A in Table 9. Right: Diversity
plotting for best multi-label run A in Table 9

Figure 8: CLAUDETTE - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best
multi-label run A in Table 9.

MRPC Plots for the top runs are on the left side2028

of Fig. 23, 25 and 27, 29.2029

N.2 Convergence Plot2030

The convergence plot visualizes how the best and2031

worst individuals change across generations, pro-2032

viding insight into GA optimization progress. This2033

line plot features a dashed blue line representing2034

the best fitness and a dotted red line representing2035

the worst fitness. A shaded region between these2036

lines indicates population fitness spread. The x-2037

axis represents the generation number, and the y-2038

axis represents the fitness score. The best fitness2039

line tracks the top-performing individual in each2040

generation, while the worst fitness line tracks the2041

least-performing individual. A narrowing gap be-2042

tween the two lines indicates that the population2043

is converging toward similar solutions. If the best2044

fitness stagnates early, the algorithm may have pre-2045

maturely converged to a suboptimal solution. Con-2046

vergence occurs when the best and worst scores2047

stabilize and remain close together. A wide gap be-2048

tween best and worst scores suggests high diversity2049

in the population. If the worst score is constantly2050

low, it may indicate poor-quality individuals or un- 2051

fit solutions. The X on the Y-axis represents a 2052

worst individual with an empty prompt, which was 2053

detected by the fallback mechanism described in D 2054

and assigned a fitness score of −1, not represented 2055

in the y-axis scale in order not to skew the graph. 2056

CLAUDETTE The convergence plot for the top 2057

multi-label runs are in Fig. 31, 32, 33, and 34. For 2058

binary, they can be found in in Fig. 35, 36, 37, and 2059

38. 2060

MRPC The convergence plot for the top runs are 2061

in Fig. 39, 40, 41, and 42. 2062

N.3 Diversity Plot 2063

The diversity plot tracks the number of unique in- 2064

dividuals and prompts across generations to assess 2065

genetic diversity. This multi-line plot shows the 2066

unique count of prompt 1, prompt 2, and unique 2067

individuals. The x-axis represents the generation 2068

number, while the y-axis represents the count of 2069

unique individuals. A high count indicates high 2070

diversity, suggesting that the GA is still exploring 2071

solutions, whereas a sharp drop in diversity sug- 2072

24

Figure 9: CLAUDETTE - Left: plot of metrics and average fitness for best multi-label run B in 9. Right: Diversity
plotting for best multi-label run B in Table 9

Figure 10: CLAUDETTE - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best
multi-label run B in 9.

gests exploitation, whereby the same individual is2073

being selected for the next generation several times2074

due to high selection pressure. Diversity is crucial2075

for exploration in early generations. The GA may2076

get stuck in a local optimum if diversity drops too2077

early. If diversity remains high for too long, the2078

GA may struggle to converge.2079

CLAUDETTE Diversity plots for the top multi-2080

label runs are on the right side of Fig. 7, 9 and 11,2081

13. For the binary runs, diversity plots are on the2082

right of Fig. 15, 17 and 19, 21.2083

MRPC Diversity plots for the top runs are on the2084

right side of Fig. 23, 25 and 27, 29.2085

N.4 Similarity Heatmaps2086

The similarity heatmap compares the similarity2087

of best individuals across generations using Lev-2088

enshtein distance. These plots take the form of2089

heatmaps where the x-axis and y-axis represent2090

generations, and the color intensity represents the2091

distance. The darker the color, the more simi-2092

lar (smaller distance) the prompts are. The Lev-2093

enshtein distance measures character-level differ-2094

ences between best individuals. If distances are 2095

high between adjacent generations, it suggests sig- 2096

nificant mutation and exploration. If distances are 2097

low, it suggests convergence and exploitation. Each 2098

cell compares the similarity of the best individu- 2099

als from one generation to another. Diagonal cells 2100

should always be darkest since they compare iden- 2101

tical generations. Clusters of dark squares sug- 2102

gest stable solution phases in the GA. Although we 2103

also plotted the tokenized version of this (where 2104

token distance rather than character distance is com- 2105

pared), the plots differ very slightly and globally 2106

communicate the same information. 2107

CLAUDETTE Prompt similarity plots for the 2108

top 4 multi-label runs are in Fig, 8, 10, 12, and 14. 2109

For the binary they are in Fig. 16, 18, 20, and 22. 2110

MRPC Prompt similarity plots for the top 4 runs 2111

are in Fig, 24, 26, 28, and 30. 2112

N.5 Summary of Plot Interpretations 2113

The combination of these plots provides a com- 2114

prehensive view of how the genetic algorithm pro- 2115

gresses over time. The metrics over generations 2116

25

Figure 11: CLAUDETTE - Left: plot of metrics and average fitness for best multi-label run C in 9. Right: Diversity
plotting for best multi-label run C in 9

Figure 12: CLAUDETTE - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best
multi-label run C in 9.

plot tracks performance trends, the convergence2117

plot highlights stability and volatility, the diversity2118

plot indicates exploration versus exploitation, and2119

the similarity heatmaps reveal how best individuals2120

evolve.2121

O Ablation Study2122

Comparing the pre and post-ablation metric plots2123

(Fig. 43), we observe that the post-ablation plot2124

flatlines for all metrics, including average fitness2125

(and looks similarly flat for the binary case). In2126

contrast, the pre-ablation plot shows a clear trend2127

of exploration and improvement, demonstrating2128

the role of selection in guiding the search toward2129

optimal solutions. By removing it, the evolutionary2130

process collapses into a random stagnating search.2131

P LLM-Safe MRPC2132

We performed a thorough preprocessing of the2133

Microsoft Research Paraphrase Corpus (MRPC)2134

(Dolan and Brockett, 2005) to ensure its suitability2135

for modern large language model (LLM) pipelines.2136

MRPC consists of sentence pairs extracted from2137

news sources, labeled as semantically equivalent2138

or not. Our preprocessing was carried out with the 2139

intent to sanitize potentially problematic content 2140

and eliminate parsing issues during downstream 2141

processing, which we faced in practice, when we 2142

attempted to run our framework on the unprocessed 2143

dataset. 2144

P.1 Trigger Keyword Removal 2145

We defined a list of content-sensitive trigger key- 2146

words that might introduce bias or lead to mal- 2147

formed LLM output due to content flagging. 2148

This list included terms such as: ["murder", 2149

"terrorist", "rape", "suicide", "nazi", 2150

"porn", "overdose", "deep state", ...] 2151

Using a compiled regex, we flagged and removed 2152

any sentence pair where either sentence contained 2153

one of these keywords. This was applied separately 2154

to the training and test sets. We flagged and re- 2155

moved 124 rows from the training set and 53 rows 2156

from the test set. 2157

P.2 Quote Normalization 2158

Many sentences contained unbalanced or mal- 2159

formed quote characters (e.g., unmatched ", im- 2160

proper smart quotes like “ and ”, or terminal es- 2161

26

Figure 13: CLAUDETTE - Left: plot of metrics and average fitness for best multi-label run D in 9. Right: Diversity
plotting for best multi-label run D in 9

Figure 14: CLAUDETTE - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best
multi-label run D in 9.

caped quotes like ¨). These were identified using a2162

custom detection function that counted quote occur-2163

rences per sentence and flagged anomalies where2164

the quote count was odd. We manually corrected2165

374 such cases across both sentence columns. All2166

forms of quotation marks were then normalized2167

to a single safe, non-standard Unicode character2168

(U+2033 Double Prime), visually identical to a2169

double quote, and interpreted the same by an LLM,2170

but would not interfere with JSON parsing.2171

P.3 Final Output2172

The final version of the dataset:2173

• Contains only rows free of trigger words.2174

• Has quote balance issues corrected across all2175

sentence pairs.2176

• Is JSON-safe and fully parsable by LLMs and2177

downstream systems.2178

We refer to this cleaned version as the LLM-2179

Safe MRPC Dataset and use it consistently2180

throughout our experiments.2181

27

Figure 15: CLAUDETTE - Left: plot of metrics and average fitness for best binary run A in 8. Right: Diversity
plotting for best binary run A in Table 8.

Figure 16: CLAUDETTE - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best
binary run A in Table 8.

Figure 17: CLAUDETTE - Left: plot of metrics and average fitness for best run B in 8. Right: Diversity plotting
for best binary run B in Table 8.

Figure 18: CLAUDETTE - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best
binary run B in Table 8.

28

Prompt 1 Prompt 2
Create a feature-enriched output that provides
a reasoning for each sentence’s most likely
classification.

For each sentence contained within the input
data, evaluate and accurately classify it into
one or more of the following categories: ((cat-
egory listing ...)) Carefully analyze the content
and implications within each sentence to de-
termine the comprehensive set of categories it
belongs to.

Generate an explanation-rich classification for
each sentence, including the reasoning behind
the classification decision.

Analyze each sentence in the input data and
classify it into one or more relevant categories
based on their content and implications, ensur-
ing precision in multi-label classification.

Provide a detailed analysis for each sentence,
outlining the reasoning for its classification
into the most likely category.

Perform a comprehensive classification of
each input sentence into appropriate cate-
gories, ensuring all applicable labels are cap-
tured.

Construct a comprehensive output that ex-
plains the rationale for each sentence’s classi-
fication.

Evaluate each sentence thoroughly, assigning
it to relevant categories and providing precise
multi-label classifications.

Develop an enriched response that details the
reasoning for each sentence’s assigned classi-
fication.

Classify the input sentences, ensuring a rigor-
ous multi-label classification for relevant as-
pects such as: ((category listing ...))

Offer a feature-oriented output that justifies
the classification of each sentence with clear
reasoning.

For every sentence in the dataset, determine
the applicable categories and provide an accu-
rate multi-label classification for these: ((cate-
gory listing ...))

Generate a detailed report justifying each sen-
tence’s classification with specific reasoning.

Thoroughly analyze each sentence to classify
it into one or more relevant categories, captur-
ing all dimensions of the classification.

Create a classification output enriched with
reasoning for every sentence in the input.

Assign appropriate classifications to each input
sentence, reflecting its content and intent while
addressing these categories: ((category listing
...))

Produce an output that pairs each sentence
with an explanation for its classification.

Evaluate and classify each sentence in the
dataset into all relevant categories, focusing
on ((category listing ...)).

Develop a thorough output that provides rea-
soning for the classification of each input sen-
tence.

Analyze the input data sentence by sentence
to identify the most applicable categories for
each, ensuring completeness in multi-label
classification.

Deliver a reasoning-augmented classification
output for each provided sentence.

Classify the content of each sentence with a
focus on accurate multi-label categorization,
rigorously addressing ((category listing ...)).

Table 4: CLAUDETTE - Manual multi-label prompt bank used to initialize every GenDLN multi-label run.

29

Prompt 1 Prompt 2
You are a linguistic analysis model special-
ized in paraphrase tasks. For each input pair,
extract key semantic and syntactic features rel-
evant for paraphrase classification.

You are an expert in paraphrase detection. In
the following your task is to analyze if sen-
tence 2 is a paraphrased version of sentence
1. Thus, you shall classify each sentence pair
into 0 (’not equivalent’) or 1 (’equivalent’)
depending on whether sentence 1 and 2 are
semantically equivalent.

Analyze each sentence pair to identify mean-
ingful features that help determine if the two
sentences are paraphrases.

Given each sentence pair, determine if the sec-
ond sentence is a paraphrase of the first. Out-
put 1 if they are semantically equivalent, 0 if
they are not.

Given a list of sentence pairs, extract discrimi-
native features for each pair that can support
downstream paraphrase detection.

Your job is to judge whether the meaning of
sentence 1 is preserved in sentence 2. Clas-
sify the pair as 1 for paraphrase or 0 for non-
paraphrase.

You are tasked with analyzing sentence pairs.
For each pair, return a compact description of
important features that would help in classify-
ing paraphrase relationships.

Classify each sentence pair by checking if sen-
tence 2 can be considered a paraphrase of sen-
tence 1. Use 1 for equivalent, 0 for not equiva-
lent.

Analyze the input sentence pairs and extract
useful features that would support a classifier
in detecting semantic equivalence.

You are a paraphrase classification assistant.
For each sentence pair, assign a binary label:
1 if sentence 2 is a paraphrase of sentence 1,
else 0.

You are a feature extraction system for para-
phrase detection. For each sentence pair, out-
put key comparison features in the specified
format.

You are to detect paraphrases. For each sen-
tence pair, determine if both express the same
meaning. Label with 1 if equivalent, otherwise
0.

Given sentence pairs, identify and summarize
linguistic or semantic cues that are relevant for
determining paraphrasing.

For each given pair of sentences, assess
whether sentence 2 paraphrases sentence 1.
Output 1 for equivalent meaning, 0 for dif-
ferent meaning.

For each pair of sentences, write a brief set
of features that capture their semantic, lexical,
and structural alignment.

You are evaluating sentence-level semantic
similarity. Classify each pair with 1 if both
sentences are paraphrases, and 0 if they are
not.

Table 5: MRPC - Manual binary prompt bank (Part 1/3) used to initialize GenDLN binary runs.

Figure 19: CLAUDETTE - Left: plot of metrics and average fitness for best run C in 8. Right: Diversity plotting
for best binary run C in Table 8.

30

Prompt 1 Prompt 2
Inspect each input sentence pair and generate
a meaningful feature description that reflects
their similarity or difference in meaning.

You are an NLP expert assessing paraphrase
relationships. Label each sentence pair as 1 if
semantically equivalent, else 0.

You are a natural language understanding
model. For each sentence pair, extract features
that reveal differences or overlaps in meaning
and expression.

You are a binary classifier for sentence equiv-
alence. Judge whether sentence 2 retains the
meaning of sentence 1. Output 1 or 0 accord-
ingly.

Identify semantic relationships and stylistic
variations in each sentence pair. Output con-
cise features that explain their alignment or
divergence.

Your goal is to assess if sentence 2 can be con-
sidered a reasonable paraphrase of sentence 1.
Output 1 if so, otherwise 0.

For every input pair, generate a feature-based
comparison that highlights differences in struc-
ture, meaning, or terminology.

Examine the semantic content of each sentence
pair and decide if they convey the same core
meaning. Return 1 for paraphrase, 0 for other-
wise.

You are helping a classifier understand sen-
tence similarity. Extract key features that
could guide a model in deciding paraphrase
equivalence.

Determine whether sentence 2 is interchange-
able with sentence 1, i.e. a suitable paraphrase.
Output 1 if they are interchangeable, else 0.

Assess each sentence pair for shared mean-
ings, nuanced differences, or structural shifts.
Provide these insights as short, structured fea-
tures.

You are assessing paraphrase validity. Classify
each pair as 1 if the second sentence accurately
reflects the meaning of the first, or 0 if not.

Your goal is to support a paraphrase detec-
tion system by extracting features that capture
lexical, syntactic, and semantic properties of
sentence pairs.

For every pair, identify whether sentence 2 ex-
presses the same meaning as sentence 1 using
a binary label: 1 (yes), 0 (no).

Review each sentence pair and write a concise
summary of alignment cues and linguistic dif-
ferences that may affect paraphrase detection.

Your task is to judge if sentence 2 carries the
same intent and meaning as sentence 1. Output
1 for equivalence, 0 otherwise.

Table 6: MRPC - Manual binary prompt bank (Part 2/3) used to initialize GenDLN binary runs.

Figure 20: CLAUDETTE - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best
binary run C in Table 8.

31

Prompt 1 Prompt 2
As a sentence-level feature extractor, outline
the textual signals that could be used to deter-
mine if two statements express the same idea.

Determine semantic equivalence at the sen-
tence level. For each pair, output 1 if meaning
is preserved between the two sentences, 0 if it
is lost or altered.

Examine each sentence pair and extract dis-
tinguishing features that would help a down-
stream model judge paraphrase likelihood.

Review each sentence pair and determine
whether sentence 2 retains the essential mean-
ing of sentence 1. Respond with 1 for equiva-
lence, 0 otherwise.

Your job is to find patterns in sentence pairs
that indicate whether they express similar or
different meanings. Output a compact list of
relevant features.

Your job is to classify whether sentence 2 can
logically be interpreted as expressing the same
idea as sentence 1. Output 1 for yes, 0 for no.

You are a linguistic alignment engine. Identify
whether key predicates, named entities, and
relationships are preserved across the sentence
pair.

Assess whether sentence 2 paraphrases sen-
tence 1 without introducing or omitting criti-
cal information. Output 1 for paraphrase, 0 if
meaning changes.

Highlight phrasing shifts, information asym-
metry, or reordering patterns that could influ-
ence whether the sentence pair is semantically
aligned.

For each pair of statements, decide whether
sentence 2 communicates the same content as
sentence 1. Respond with 1 for equivalent, 0
for not equivalent.

For each input pair, extract lexical and struc-
tural markers - including synonym usage,
clause structure, and entity alignment - that
contribute to paraphrase detection.

Analyze the sentence pair and determine if
their meanings align well enough to be consid-
ered paraphrases. Output 1 if they do, 0 if not.

Extract the central premise of each of the two
sentences, what information does each con-
vey?

Are they paraphrases of each other? Output 1
for yes, 0 for no.

As an expert writer, would you say the two
sentences convey the same main idea? What
would you say is the point of each sentence?

Would it be reasonable to replace one sentence
with the other in a text without changing the
overall meaning? In other words, are the sen-
tences paraphrases of each other? Output 1 if
yes and 0 if no.

Could the two sentence reasonably be ex-
changed within a text without changing the
general meaning of the text? Why or why not?

Given that assessment, can the sentences be
classified as paraphrases of each other? An-
swer with 1 if they are paraphrases, and 0 if
not.

Table 7: MRPC - Manual binary prompt bank (Part 3/3) used to initialize GenDLN binary runs.

Figure 21: CLAUDETTE - Left: plot of metrics and average fitness for best run D in 8. Right: Diversity plotting
for best binary run D in Table 8.

32

Metric Run A Run B Run C Run D
Runtime (mins) 58.565 160.9097 100.8069 53.262
Best Fitness 0.8785 0.8785 0.8687 0.8380
Best Accuracy 0.8788 0.8788 0.8687 0.8384
Test. Accuracy 0.7897 0.7706 0.7646 0.7404
Best Macro F1 0.8785 0.8785 0.8686 0.8380
Test. Macro F1 0.6523 0.6364 0.6338 0.6172
Best Weighted F1 0.8784 0.8784 0.8687 0.8379
Test. Weighted F1 0.8256 0.8115 0.8073 0.7894
Selection Strategy Rank SUS SUS Rank
Crossover Type Semantic Blending Token Level Semantic Blending Semantic Blending
Crossover Rate 0.800 0.800 0.800 0.800
Mutation Type Semantic Syntactic Semantic Semantic
Mutation Rate 0.200 0.200 0.200 0.200
Population Size 10 30 30 10
Completed Generations 16 16 9 16
Stopped Early Yes Yes Yes Yes
Stopped Early Reason 5 stag. gens. 5 stag. gens. 5 stag. gens. 5 stag. gens.

Table 8: CLAUDETTE - Selected runs for binary (fair/unfair) classification.

Metric Run A Run B Run C Run D
Runtime (mins) 469.689 439.694 373.876 155.367
Best Fitness 0.938 0.925 0.922 0.921
Best Accuracy 0.910 0.890 0.880 0.900
Test. Accuracy 0.825 0.769 0.809 0.802
Best Macro F1 0.947 0.936 0.935 0.929
Test. Macro F1 0.862 0.799 0.844 0.855
Best Weighted F1 0.944 0.933 0.929 0.923
Test. Weighted F1 0.856 0.808 0.842 0.851
Selection Strategy Rank Steady-State SUS Steady-State
Crossover Type Phrase Swap Phrase Swap Token Level Semantic Blending
Crossover Rate 0.850 0.850 0.850 0.800
Mutation Type Insertion Insertion Syntactic Semantic
Mutation Rate 0.300 0.300 0.300 0.200
Population Size 30 30 30 30
Completed Generations 30 30 30 12
Stopped Early No No No Yes
Stopped Early Reason - - - 5 stag. gens.

Table 9: CLAUDETTE - Selected best runs for multi-label classification.

33

Metric Run A Run B Run C Run D
Runtime (mins) 137.681 167.228 67.070 127.262
Best Fitness 0.850 0.840 0.850 0.840
Best Accuracy 0.850 0.840 0.850 0.840
Test. Accuracy 0.813 0.807 0.798 0.799
Best Macro F1 0.850 0.840 0.850 0.840
Test. Macro F1 0.796 0.787 0.782 0.781
Best Weighted F1 0.850 0.840 0.850 0.840
Test. Weighted F1 0.816 0.809 0.802 0.802
Selection Strategy Steady-State Roulette Tournament SUS
Crossover Type Single Point Semantic Blending Token Level Two Point
Crossover Rate 0.85 0.85 0.85 0.80
Mutation Type Semantic Insertion Insertion Deletion
Mutation Rate 0.20 0.20 0.20 0.20
Population Size 30 30 30 30
Completed Generations 16 23 12 15
Stopped Early Yes Yes Yes Yes
Stopped Early Reason 10 stag. gens. 10 stag. gens. 10 stag. gens. 10 stag. gens.

Table 10: MRPC - Selected best runs for binary paraphrase classification.

Run Prompt Text
A Prompt 1: Assess the potential legal consequences and issues of the following sentence.

Prompt 2: Based on the previous discussion, would you consider this sentence to be fair or
unfair as it stands?

B Prompt 1: Interpret the following sentence in any hidden clauses or implications.
Prompt 2: Will the described potential impact be considered fair or unfair?

C Prompt 1: Assess the possible legal ramifications and effect on consumer rights of the
following sentence.
Prompt 2: Considering the impact of the ethical implications discussed, is this sentence fair
or unfair in its current phrasing?

D Prompt 1: Identify any potential legal issues when analyzing the meaning of the following
sentence in a legal context.
Prompt 2: Given the emphasized issues, is this sentence fair or unfair in its current state?

Table 11: CLAUDETTE - Prompt 1 and 2 of the best individuals for the runs as reported in Table 8 for the binary
classification task.

Figure 22: CLAUDETTE - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best
binary run D in Table 8.

34

Run Prompt Text
A Prompt 1: To enhance transparency for the end user, who may not be familiar with the

internal mechanics of our system, we should annotate each individual sentence contained
within the given customer review that is specifically about our recently introduced product,
including a clear, concise, and straightforward explanation that meticulously details the
reasoning, justification, and rationale behind its specific classification, ensuring that the user
comprehends why we classified the sentence as such.
Prompt 2: To thoroughly organize and accurately assign a precise data monitoring technique
or pertinent cookie policies that are explicitly outlined in a legal privacy policy document, a
team of legal experts should meticulously review the entire policy document, starting from
the introduction to the conclusion, and systematically classify each individual clause from the
contract with high precision during the detailed multi-label classification process, ensuring
that the resulting labels are not only relevant to the contractual obligations clearly outlined in
the legal documents but also precise in their legal definition.

B Prompt 1: To ensure thorough documentation and transparency in our contractual legal anal-
ysis efforts within the jurisdiction of the relevant state legal system, produce a comprehensive
legal classification of the content within each individual clause that is clearly outlined in the
case files pertaining to the ongoing corporate lawsuit.
Prompt 2: When examining corporate legal documents, such as those related to IT service
agreements, systematically classify each individual sentence from various types of contrac-
tual clauses, including confidentiality, liability, and termination clauses, into relevant and
predefined labels for better organization and analysis.

C Prompt 1: Present a detailed report on the categorization of every sentence, accompanied by
relevant evidence.
Prompt 2: Every sentence, in the multi-label classification process, will be assigned to its
fitting categories to maintain it thoroughly, emphasizing suitable labels that range from PINC
for cookie and tracking to LAW for legal frameworks.

D Prompt 1: Generate a feature-focused output that matches each sentence with a reason for
its categorization.
Prompt 2: Sort and classify each sentence in the dataset, taking into account these categories:
PINC (Cookies or data collection), USE (Rules on user activities), CR (Removal rights),
TER (Service terminations), LTD (Limitation of liability), A (Arbitration resolutions), LAW
(Governing legal codes), J (Jurisdiction clauses), CH (Agreement changes).

Table 12: CLAUDETTE - Prompt 1 and 2 of the best individuals for the runs as reported in Table 9 for the multi-label
task.

Figure 23: MRPC - Left: plot of metrics and average fitness for best run A in Table 10. Right: Diversity plotting
for best multi-label run A in Table 10

35

Run Prompt Text
A Prompt 1: Assess each pair of sentences and generate a feature-based comparison that

highlights differences in structure, meaning, or terminology.
Prompt 2: You are evaluating each pair of sentences to determine if they express the same
central meaning; return 1 if they are paraphrases, and 0 otherwise.

B Prompt 1: For each individual pair of sentences that you evaluate within a comparative text
analysis study, output a meaningful feature description that accurately captures their shared
meanings, specific word choices, sentence structure, and stylistic differences.
Prompt 2: After carefully examining each individual pair of sentences for their meaning
and content, determine if they are paraphrases and convey the same meaning; label with a 1
if they are semantically equivalent, otherwise label them with a 0.

C Prompt 1: For each sentence pair, extract semantic relationships and output concise features
that reveal differences or overlaps in meaning and expression.
Prompt 2: Your goal is to assess whether or not sentence 2 retains the meaning of sentence
1, taking into account all aspects of semantics and context. Judge whether sentence 2 can
be considered a reasonable paraphrase of sentence 1, with an equivalent core interpretation.
Output 1 for yes or 0 for no accordingly.

D Prompt 1: Compare each sentence pairs that reveal distinguishing features in meaning.
Prompt 2: Judge whether they are expressing the same intent of each other in a text.

Table 13: MRPC - Prompt 1 and 2 of the best individuals for the runs as reported in Table 10 for the paraphrase
classification task.

Figure 24: MRPC - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best multi-label
run A in Table 10.

Figure 25: MRPC - Left: plot of metrics and average fitness for best run A in Table 10. Right: Diversity plotting
for best multi-label run B in Table 10

36

Figure 26: MRPC - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best multi-label
run B in Table 10.

Figure 27: MRPC - Left: plot of metrics and average fitness for best run C in Table 10. Right: Diversity plotting
for best multi-label run C in Table 10

Figure 28: MRPC - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best multi-label
run C in Table 10.

Figure 29: MRPC - Left: plot of metrics and average fitness for best run D in Table 10. Right: Diversity plotting
for best multi-label run D in Table 10

37

Figure 30: MRPC - Best Prompt 1 and Prompt 2 Levenshtein distance matrix across generations for best multi-label
run D in Table 10.

38

Figure 31: CLAUDETTE - Convergence plot for best
multi-label run A in Table 9. X on the x-axis indicates
an illegal individual as per the fallback mechanism in
Appendix D.

Figure 32: CLAUDETTE - Convergence plot for best
multi-label run B in Table 9. X on the x-axis indicates
an illegal individual as per the fallback mechanism in
Appendix D.

Figure 33: CLAUDETTE - Convergence plot for best
multi-label run C in Table 9. X on the x-axis indicates
an illegal individual as per the fallback mechanism in
Appendix D.

Figure 34: CLAUDETTE - Convergence plot for best
multi-label run D in Table 9. X on the x-axis indicates
an illegal individual as per the fallback mechanism in
Appendix D.

Figure 35: CLAUDETTE - Convergence plot for best
binary run A in Table 8.

Figure 36: CLAUDETTE - Convergence plot for best
binary run B in Table 8.

39

Figure 37: CLAUDETTE - Convergence plot for best
binary run C in Table 8. X on the x-axis indicates
an illegal individual as per the fallback mechanism in
Appendix D.

Figure 38: CLAUDETTE - Convergence plot for best
binary run D in Table 8.

Figure 39: MRPC - Convergence plot for best binary
run A in Table 10. X on the x-axis indicates an illegal
individual as per the fallback mechanism in Appendix
D.

Figure 40: MRPC - Convergence plot for best binary
run B in Table 10. X on the x-axis indicates an illegal
individual as per the fallback mechanism in Appendix
D.

Figure 41: MRPC - Convergence plot for best binary
run C in Table 10.

Figure 42: MRPC - Convergence plot for best binary
run D in Table 10.

40

Figure 43: CLAUDETTE - Left: plot of metrics and average fitness for best multi-label run in Table 1. Right:
Ablation of selection pressure for the same run.

41

	Introduction
	Background
	Prompt Optimization
	The Stacked LLM
	Genetic Algorithms

	Methodology
	Population Initialization
	Fitness Function / Scoring
	Selection
	Genetic Operators in the Textual Space
	Crossover
	Mutation

	Replacement and Termination
	Logging and Post-Processing

	Datasets
	CLAUDETTE
	Microsoft Research Paraphrase Corpus

	Baselines
	Results and Discussion
	Conclusion
	Limitations
	GenDLN: GA Characteristics
	Population Initialization
	Fitness Function
	Fallback Mechanism for Invalid LLM responses
	Fallback Mechanism

	System Prompts
	System Prompts
	Binary Classification
	System Prompt Layer 1
	System Prompt Layer 2

	Multi-Label Classification
	System Prompt Layer 1
	System Prompt Layer 2

	Efficiency Strategies
	Motivation and Setup
	Metric Caching
	Parallelization
	Individual Evaluation Throuphput

	Selection Strategies
	Random Selection
	Roulette Wheel Selection

	Adapting Chromosomes to the Textual Space - Considerations
	Crossover Strategies
	Crossover System Prompt
	Crossover Strategy Prompts
	Crossover Examples

	Mutation Strategies
	Mutation System Prompt
	Mutation Strategy Prompts
	Mutation Examples

	GenDLN Logging
	Reproducibility
	Environment Setup
	Data and Directory Structure
	Processing and Normalization
	Batch Processing and Summary Generation
	Analysis and Visualization

	Detailed Results
	CLAUDETTE
	MRPC

	Detailed Plots
	Metrics Over Generations
	Convergence Plot
	Diversity Plot
	Similarity Heatmaps
	Summary of Plot Interpretations

	Ablation Study
	LLM-Safe MRPC
	Trigger Keyword Removal
	Quote Normalization
	Final Output

