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ABSTRACT
Training Deep Neural Networks (DNNs) with billions of parameters generally involves pipeline-parallel (PP)
execution. Unfortunately, PP model training can use GPUs inefficiently, especially at large scale, due to idle GPU
time caused by pipeline bubbles, which are often 15–30% and can exceed 60% of the training job’s GPU allocation.
To improve the GPU utilization of PP model training, this paper describes PIPEFILL, which fills pipeline bubbles
with execution of other pending jobs. By leveraging bubble GPU time, PIPEFILL reduces the GPU utilization
sacrifice associated with scaling-up of large-model training. To context-switch between fill jobs and the main
training job with minimal overhead to the main job, and maximize fill job efficiency, PIPEFILL carefully fits
fill job work to measured bubble durations and GPU memory availability, introduces explicit pipeline-bubble
instructions, and orchestrates placement and execution of fill jobs in pipeline bubbles. Experiments show that
PIPEFILL can increase overall utilization by up to 63% for GPUs used in large-scale LLM training, with <2%
slowdown of the training job, and 5–15% even for low-scale LLM training. For large-scale LLM training on 8K
GPUs, the 63% increase translates to up to 2.6K additional GPUs worth of work completed.

1 INTRODUCTION

DNN models with billions of parameters have exploded in
popularity with the emergence of generative AI applications.
For example, popular large-language models (LLMs), such
as GPT (3) and LLaMA (26; 27), are creating disruptive
change in many domains. But training such models can take
several weeks or months even using thousands of GPUs1.

A common approach (20; 33) of training on thousands of
GPUs is to employ a combination of parallelization tech-
niques. Pipeline-parallelism (PP) (19; 9) is used to parti-
tion the model across multiple nodes, creating a pipeline
of stages. The full pipeline is then replicated using data-
parallelism, allowing for parallel processing of multiple data
samples. Within each pipeline stage, tensor-parallelism is
applied to partition the model weights, enabling parallel
computation. Each minibatch of data is further divided
into smaller subsets called microbatches. The forward and
backward passes for each microbatch are then executed in a
pipelined manner across the stages.

Unfortunately, such highly-parallelized training can use
GPUs inefficiently especially at large scale, because too
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Figure 1. Scaling out training of a 40B-parameter LLM from
1K GPUs to 8K GPUs to reduce training time from 82 days to
26 days. Traditionally, the increasing pipeline bubbles when scal-
ing out leads to over 60% lower GPU utilization at 8K. PIPEFILL

is able to fill much of that bubble GPU time with useful work, with-
out slowing the LLM training. Section 4 details the experimental
setup.

much GPU time may be wasted on pipeline bubbles.
Pipeline bubbles occur because the pipeline must be fully
drained and then restarted for each minibatch, leading to
idle time on each of the GPUs. The greater the paral-
lelization is, whether from longer pipelines (taking longer
to fill and drain) or more pipeline replicas (reducing the
number of microbatches per replica as the global minibatch

1This paper uses “GPU” or “device” to refer to any computation
accelerator for deep learning jobs, such as GPUs, TPUs (12), or
AWS Trainium (1).



size needs to be fixed), the greater the inefficiency becomes
due to bubbles. For example, Figure 1 shows that a 40B-
parameter auto-regressive-transformer LLM, parallelized
over 8K GPUs achieves 60% lower TFLOPS-per-GPU than
using just 1K GPUs because of pipeline bubbles—but using
only 1K GPUs would make LLM training take over 3×
longer (26 days vs. 82 days; shown in Figure 5a). The over-
all consequence is a major tension between LLM training
time and GPU cluster efficiency.

PIPEFILL is a new GPU management system that mitigates
this tension by filling large training jobs’ pipeline bubbles
with other jobs, which we call fill jobs. The GPUs for any
given pipeline stage switch to a fill job at the start of a bub-
ble and switch back at the end of that bubble. By doing so,
PIPEFILL recaptures otherwise wasted GPU time to accom-
plish pending inference and training jobs, which can enable
scaling-up large-model training with much less sacrifice in
GPU utilization. Figure 1 shows how, with bubble filling,
PIPEFILL mitigates the GPU utilization penalty as LLM
training scales out. At 8K GPUs, for example, PIPEFILL
increases GPU utilization by over 45% with a mix of train-
ing and inference fill jobs. If using just less GPU memory
intensive batch inference jobs, the GPU utilization increase
grows to 63% (see Figure 5c).

Filling pipeline bubbles effectively requires overcoming a
number of challenges. First, fill job execution needs to be
configured to fit within bubble constraints, including bubble
length (to minimize inter-bubble context) and available GPU
memory. PIPEFILL introduces a Pipeline Bubble Instruc-
tion to collect bubble constraints, and a Fill Job Execution
Plan Algorithm to partition a fill job into chunks prior to
bubble filling as necessary. Second, the right fill jobs need
to be matched to the right GPUs, given that pipeline bubbles
exhibits heterogeneous characteristics and users may have
different optimization objectives. PIPEFILL uses a Fill Job
Scheduler, which accepts user-defined scheduling policies.
Our Fill Job Scheduler orchestrates the assignment of fill
jobs to GPUs by synergizing the user-defined policy with
the characterization of the main job’s pipeline bubbles.

Experiments (real system and simulation) confirm that
PIPEFILL can recapture significant GPU utilization lost
to pipeline bubbles, allowing huge DNNs (like LLMs) to
be scaled out without much lower GPU efficiency conse-
quences. At each scale, aggregated TFLOPS/GPU (fill jobs
plus LLM) is higher with PIPEFILL, from 5–15% at (slow)
low-scale LLM training to over 63% for scaled-out training,
with <2% slowdown of the LLM training. Detailed analysis
of different fill jobs options shows that, as expected, the
limited memory and intermittent time available for fill job
execution in bubbles reduces their efficiency differently–the
data in Figure 1 is for a fill job mix derived from an ML job
trace, but using just bubble-efficient batch inference jobs

increases the gains by ≈50%. Additional results confirm
that PIPEFILL’s benefits are realized for both GPipe (9)
and 1F1B (19) pipeline schedules, with moderate reduction
(17%) in benefits for 1F1B at low-scale and minimal dif-
ference (< 5%) at large-scale, and show fill job efficiency
sensitivity to changes in bubble durations, available memory
during bubbles, and fill-job scheduling policy.

Contributions. This paper makes four main contributions:
1) It introduces the concept of filling pipeline bubbles in
PP model training with execution of other ML jobs; 2) It
describes a system (PIPEFILL) that realizes this concept
and can recover idle GPU-time lost to pipeline bubbles; 3)
It introduces approaches for assigning fill jobs to pipeline
bubbles, and for configuring fill job execution within its
assigned bubble, to maximize efficiency of recovered GPU
time; 4) It experimentally shows that PIPEFILL can signifi-
cantly increase GPU utilization for scale-out LLM training
without significantly harming LLM training efficiency.

2 BACKGROUND AND MOTIVATION

DNN training involves running variants of stochastic gradi-
ent descent (SGD) to optimize parameters that minimize a
loss function. SGD takes a number of samples (a minibatch)
from a dataset on each iterations and calculates a gradient
on those samples to update the parameters. Training large
DNNs consumes significant GPU memory, often surpass-
ing the capacity of a single device, necessitating the use of
partitioning strategies like tensor and pipeline parallelism,
in addition to data parallelism, to distribute the workload
across multiple devices. For training large DNNs, such as
LLMs, it is common to combine all three parallelization
techniques.

Tensor parallelism (TP) spreads computation across de-
vices and resolves data dependencies through communica-
tion operations, which introduces overhead. This approach
is most effective within a single node with high-bandwidth
connections (e.g., NVLink) to reduce communication delays
but limits scalability to the GPU memory available within
that node (20; 33).

Pipeline parallelism (PP) divides the model by layers, al-
lowing multi-node scaling by processing microbatches (par-
titions of a minibatch) in a pipeline. However, data de-
pendencies and gradient synchronizations creates pipeline
bubbles which are periods of idle time when the GPUs do
not yet have work to do. For unidirectional, synchronous
pipeline schedules (such as GPipe and 1F1B), the fraction
of time spent in bubbles is (p− 1)/(m+ p− 1), where p
is the number of pipeline stages, and m is the number of
microbatches that splits from minibatch (20).

Data parallelism (DP) replicates model instances across de-
vices, each processing a distinct partition of each minibatch.
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Figure 2. PP combined with DP. Replicating the pipeline (double
the number of GPUs) with the overall minibatch size fixed (at
4 microbatches) leads to shorter per-minibatch execution time but
a larger fraction of GPU time is lost to pipeline bubbles.

Synchronization is maintained through collective all-reduce
operations at the end of each minibatch.

2.1 Pipeline Bubbles Lower GPU Utilization

In combined parallelism, training larger models requires
more pipeline stages. Since TP is limited by the number of
GPUs in a node, once this limit is reached, the only option
is to increase the number of pipeline stages to ensure each
partition fits within the available GPU memory (increasing
p in the pipeline bubble ratio). Additionally, the minibatch
size, or the number of samples on which each gradient up-
date is calculated, is usually set by machine learning experts
and remains constant when scaling up training. For exam-
ple, both LLaMA-1 (26) and LLaMA-2 (27) training use 4
million tokens for each model update. Experts are reluctant
to increase the minibatch size, as it can hurt model quality
at the end of training (17). With a fixed total computation
workload for each round of model updating, increasing DP
results in a smaller number of microbatches, or m in the
pipeline bubble ratio expression. Thus, inefficient GPU
utilization caused by pipeline bubbles is inevitable when
employing PP, and it becomes particularly noticeable when
scaling up the training of large models using DP. There are
also more advanced methods like automatically explore the
best possible sharding strategies (33) which may achieve
better training throughput than manual decisions. However,
all of them are inherently bounded by the total computation
workload per model updating, hence getting diminishing
return while increasing the compute resource.

2.2 Solution: Fill Bubbles w/ Independent Jobs

How can idle GPU time resulting from pipeline bubbles
be utilized to improve GPU utilization? Existing works
fill dependent jobs of the training job running with PP into
the pipeline bubbles. PipeFisher (21) accelerates conver-
gence by utilizing the pipeline bubbles to execute K-FAC, a
second-order optimization method. Similarly, Bamboo (25)

enhances training resilience at a minimal cost by filling re-
dundant computations into the pipeline bubbles. However,
the jobs filled into the pipeline bubbles by existing works
are dependent on the training job running with PP providing
extra work, making them only applicable to specific types
of training jobs (training jobs optimized using K-FAC in the
case of PipeFischer, jobs running on faulty/spot machines
in the case of Bamboo).

Fundamentally, pipeline bubbles exist due to data dependen-
cies within the computation of pipeline parallelism. Our key
insight is that, rather than directly addressing the data de-
pendency issue within a training job pattern or introducing
other dependencies by filling dependent jobs, we leverage
independent jobs, unrelated to the training job running with
pipeline parallelism, to fill the pipeline bubbles. Specifically,
we remove the constraint that the training job must execute
exclusively on the GPUs during the entirety of the job. One
can context-switch to a different job during the bubbles to
reduce the amount of idle time of GPUs, and context-switch
back to the main training job in time for the training job
to experience no overhead from sharing the GPU during
the pipeline bubbles. To fill independent jobs into pipeline
bubbles, we need to address the following challenges:

• Memory Management. How can one fill independent
jobs into the pipeline bubbles when the GPU memory is
primarily occupied by the main training job? Even during
pipeline bubbles, the main training job dominates the GPU
memory. Naively filling independent jobs into pipeline
bubbles without careful memory management may result
in GPU OOM errors or sub-optimal performance of fill
jobs. Effective memory management is crucial not only to
mitigate OOM risks but also to optimize available memory
for fill jobs.

• Context Switching. How can one ensure that filling inde-
pendent jobs into the pipeline bubbles does not incur per-
formance penalties for the main training job? To maintain
the performance of the main training job, only pipeline
bubbles can be utilized for running fill jobs. However, it’s
not guaranteed that a fill job can be completed within one
bubble. Therefore, filling independent jobs into pipeline
bubbles without carefully crafted context switching may
introduce performance penalties to the main training job.

• Fill Job Scheduling. When faced with numerous pipeline
bubbles exhibiting heterogeneous characteristics, how can
one effectively schedule the filling process to align with
user-specific objectives? Pipeline bubbles across various
pipeline stages exhibit distinct characteristics, such as
duration and HBM availability. Additionally, users may
harbor unique optimization goals; for instance, some pri-
oritize GPU utilization, while others emphasize meeting
job deadlines promptly. Naively scheduling the filling
process without accounting for bubble characteristics and
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users’ optimization objectives risks compromising the
performance of fill jobs and falling short of users’ expec-
tations.

Other works, such as Muri (32) and Antman (29), explore
interleaving multiple jobs on shared GPUs. However, these
works do not specifically address scheduling alongside a
main job running with PP, thus failing to leverage the unique
characteristics for optimization. Muri only considers job
duration of each job as a constraint and assumes all jobs
fit together in GPU memory. Thus, Muri lacks support for
guaranteeing the main job performance and also falls short
in memory management and fill job scheduling. Antman
utilizes device statistics to assign memory caps to jobs based
on priority and fills idle GPU cycles with opportunistic ker-
nels. However, when a main job is running with PP, pipeline
bubbles often appear as long-running communication ker-
nels, causing Antman to struggle in determining context
switches between the main job and fill jobs. Moreover, the
main job typically consumes the majority of the memory,
making simply setting memory caps insufficient for memory
management.

3 DESIGN AND IMPLEMENTATION

Shown in Figure 3, PIPEFILL consists of three major compo-
nents: Instrumented Pipeline Engine, Fill Job Executor, and
Fill Job Scheduler. The Instrumented Pipeline Engine uses
the pipeline bubble instruction to measure when a pipeline
bubble begins and ends, and the available memory during a
pipeline bubble. The Fill Job Executor then leverages those
information to decide the strategy of filling a job into bub-
bles, including whether and how to partition a filled job into
execution chunks and whether to offload the memory of the
main job to free up space for the filled job. The pipeline en-
gine signals the Executor using synchronization primitives
when a bubble begins and it can begin running the fill job.
The Fill Job Scheduler accepts user-defined scheduling poli-
cies and schedules filled jobs onto device pipeline-bubbles
to optimize the chosen policy and synergize the user-defined
policy with the characterization of the main job’s pipeline
bubbles.

Putting together. Fill jobs are initially received by the

Scheduler, which makes scheduling decisions about which
device’s pipeline bubbles to execute a fill-job on. Scheduling
policies can be defined to modify the behavior of the Sched-
uler. Each device has a fill-job Executor process. Once a
fill-job arrives at a device, the Executor uses profiling data
to construct an execution plan for the job. The plan max-
imizes the throughput of the job by choosing a batch size
and creating partitions of the job’s computational graph that
maximize the amount of work completed during the pipeline
bubbles without violating bubble duration or free-memory
constraints. The Executor uses synchronization primitives
to know when to begin execution of the next fill-job graph
partition. The pipeline engine runs on every device worker.
The pipeline engine uses the pipeline bubble instruction to
know when a pipeline bubble is beginning so it can signal
the Executor (using the aforementioned synchronization
primitives) to begin execution. Before the pipeline engine
signals the Executor, it tells the device memory allocator
to release all transient/unused memory buffers to increase
the free-memory available to the Executor and waits for any
main-job offloading operations to complete.

Fill Jobs. In this work, we use deep learning training and
batch-inference jobs as fill jobs. Deep learning jobs can
be classified as training or inference. Training is typically
not latency sensitive and is often long-running. Inference
can be broken down into real-time/online inference and
batch/offline inference; the former is latency sensitive, with
SLOs being on the order of milliseconds, while the later
is often not latency sensitive. Batch inference, which is
not latency-sensitive, is widely used in applications such
as content recommendation systems, data analytics, and
other back-end services. Due to the intermittent property of
pipeline bubbles, latency-sensitive jobs are not suitable for
use as fill-jobs. Therefore, PIPEFILL supports training and
batch-inference jobs as fill-jobs. PIPEFILL takes as input
the model used for the fill-job, as well as valid batch-sizes;
given the job configuration, it will attempt to execute the
fill-job with maximum throughput.

3.1 Pipeline Engine Instrumentation

To not impact the main job, we must keep the context switch-
ing and execution of fill jobs completely within the duration
of the pipeline bubbles. We must also know exactly how
much GPU memory the fill job can use during its execu-
tion so that the main job does not experience an OOM
error. In order to achieve this, PIPEFILL augments exist-
ing pipeline engines with a new pipeline bubble instruction.
Existing pipeline engines execute a sequence of pipeline
instructions, which include sending/receiving activations
and gradients, executing forward/backward computations
on specific microbatches, and synchronizing parameters.
Taken together as a periodically repeating sequence, these
instructions constitute a pipeline schedule, which can have



multiple pipeline bubbles appearing as instructions that wait
on some event (e.g. activation data to arrive from the pre-
vious stage). PIPEFILL’s bubble instruction is inserted into
the schedule to indicate where large bubbles are expected to
occur.

Bubble characterization. Before any bubble filling, the
pipeline engine must determine the duration of each pipeline
bubble in the pipeline schedule and how much memory is
available for the fill jobs to use. To this end, at the be-
ginning of the main training job the pipeline engine does
profiling. For each bubble instruction, the pipeline engine
will wait certain amount of time (e.g. 100 ms) before pro-
ceeding to execute the next instruction. It will then ob-
serve the main job’s throughput, if it is unaffected then
on the next minibatch iteration it will wait 2× amount
of time. This will continue until the pipeline engine ob-
serves a drop in the main job’s throughput, at which point
it will know the duration of the pipeline bubble. To pro-
file the amount of memory available for the engine to use
for the fill job during a pipeline bubble, the engine relies
on PyTorch’s torch.cuda.memory_allocated()
function to know how much memory is held by the main
training job during the bubble; the remaining device memory
is considered free, but to ensure there are no out-of-memory
errors PIPEFILL may opt only to allocate some fraction of
the free memory. Additionally, to ensure transient/tempo-
rary memory buffers are not counted as allocated by the
main job (and instead can be used by the fill-jobs), the en-
gine will tell the memory allocator to free all such buffers
(by calling torch.cuda.empty cache()). The bubble duration
and free-memory capacity is passed to the Executor so it
can avoid violating those constraints.
Bubble signaling. Once the engine has characterized the
pipeline bubbles they can be filled. The engine starts a new
Executor process (with a shared synchronization primitive)
and passes the bubble information to it. When a new fill-job
is sent by the Scheduler, the engine passes the job descrip-
tion (as well as the necessary profiles) to the Executor. Every
time the pipeline engine reaches a bubble instruction, it 1)
tells the memory allocator to free all unused memory 2)
waits for any main job offloading operations to complete 3)
signals the Executor to begin running its fill-job.
Main job offloading. In some cases, it may be beneficial to
increase the amount of free-memory available to the fill-jobs.
To achieve this, PIPEFILL enables offloading of main job
data from device to CPU memory. In order to do this in a
way that is transparent to the main job and does not sacrifice
its performance, which data is offloaded must be carefully
chosen and the data transfer operations must be coordinated
so the main job is never blocked on them. PIPEFILL enables
offloading of the main job optimizer states (e.g. moment es-
timates for Adam(13)) because this data is only required by
the main job during the optimizer updates. The offloading is

overlapped with forward-pass execution, and the onloading
is overlapped with gradient-synchronization; a significant
amount of data can be offloaded in this fashion with no
impact to the main job. The pipeline engine forward-pass
and gradient-synchronization instructions are augmented to
launch these operations on a separate CUDA stream.

3.2 Executor

The Executor is a process that executes a fill-job on a de-
vice’s pipeline bubbles with maximum throughput without
violating the bubble duration or free-memory constraints,
ensuring that the fill-job execution has no impact on the
main job performance. It does this by creating an execution
plan for the fill job that chooses a batch size and partitions
the job’s computational graph, and it relies on signals from
the pipeline engine to know when to execute the graph par-
titions.

Execution plan. When created, the Executor is passed
a sequence of bubble durations and free-memory capaci-
ties from the pipeline engine. This sequence describes the
pipeline bubbles, the resources and durations that they each
make available as well as their order. This sequence of
bubbles is a cycle of bubbles that repeats every minibatch
iteration of the main job. When a fill-job is passed to the Ex-
ecutor, it is accompanied with a set of profiles containing the
execution time and memory requirement of each node in the
computational graph under a specific configuration . Config-
urations can be different batch sizes and different execution
techniques (e.g. CPU-offloading or NVMe-offloading of
parameters/gradients/optimizer states, activation checkpoint-
ing/offloading). The Executor linearizes the computational
graph and its profiles, turning it into a sequence of nodes
with sequential dependency. For each configuration, the
Executor packs the computational graph into as few bub-
ble cycles as possible (without violating duration and free-
memory constraints). The Executor runs a greedy algorithm
(shown in Algorithm 1) that does the following: 1) replicate
the graph enough times (each replica represents an iteration)
that the total execution time is as high as possible without ex-
ceeding the total bubble time (lines 3-6), 2) iteratively packs
as many source nodes of the remainder of the computational
graph as possible into the next bubble (lines 7-14) without
exceeding its duration or memory limits. This sequence
of computational graph partitions represents the Executor’s
plan for the fill-job.

Bubble synchronization and memory capping. When
executing the fill-job plan, the Executor waits for
signals from the pipeline engine to know when the
main job has entered a pipeline bubble. When it re-
ceives a signal, it first sets a cap on the amount of
device memory that it can use (by using PyTorch’s
cuda.set_per_process_memory_fraction
function) to the amount of free-memory available in the



bubble; if the Executor somehow exceeds this memory
capacity, it will experience an OOM error, but this error
will be isolated to the Executor process and will not affect
the main job. The Executor will execute the current graph
partition on the current bubble, and then wait for the next
signal from the pipeline engine.

Algorithm 1 Partition fill job onto bubbles
1: Input: A list B of the bubble durations, a list M of bubble

free-memory capacities, a list F of the graph-node durations
and memory requirements

2: Output: List P of graph partitions where duration of
P [i] ≤ B[i mod len(B)] and memory of P [i] ≤ M [i
mod len(M)]

3: F ′ ← F
4: while dur(F ′) + dur(F ) <

∑
B do

5: F ′ ← F ′ + F
6: end while
7: F ← F ′; P ← []; i← 0
8: while len(F ) > 0 do
9: P ′ ← []

10: while len(F ) > 0 and dur(P ′) + dur(F [0]) < B[i] and
mem(F [0]) ≤M [i] do

11: P ′ ← P ′ + F [0]; F ← F [1 :]
12: end while
13: P ← P + P ′; i← (i+ 1) mod len(B)
14: end while
15: return P

3.3 Scheduler

The Scheduler is the interface between the pipeline bubbles
of the main job and outside higher-level cluster schedulers,
making the bubbles available as additional resources. The
Scheduler is also responsible for scheduling the fill-jobs
onto the pipeline bubbles. The Scheduler has access to the
fill-job profiles, partitioning algorithm, and bubble descrip-
tions of every device. Using this information, the Scheduler
is able to calculate any fill-job’s throughput/processing-time
on any device. The Scheduler exposes the scheduling policy
by defining a function that takes as input a job’s information
(arrival time, processing-time on every possible device, and
deadline) as well as the current state of all the Executors in
the system, and outputs a score. When a device completes
a fill-job, the Scheduler chooses which job to submit to
the device by choosing the job which maximizes the score.
This allows specifying a variety of different scheduling poli-
cies. For example, to specify a Shortest-Job-First policy the
function can be defined as: f(j, s, i) = 1

min(j.proc times)

where j.proc times is a list containing the job’s process-
ing times on all devices, s is the current state of all Ex-
ecutors, and i is the index of the Executor which is to
be filled. A more complex example is a policy that mini-
mizes the makespan, which can be specified with the func-
tion: f(j, s, i) = 1

max(j.proc times[i],s.rem times) where
s.rem times is a list containing the remaining amount of
time each Executor will be busy. This policy will minimize

the maximum busy time across all Executors, thereby min-
imizing makespan. By defining the policy using weighted
compositions of multiple functions, hierarchical policies can
be defined that behave differently under different circum-
stances. For example, policies can be defined that prioritize
proximity-to-deadline as a feature, but default to more stan-
dard policies (e.g. SJF, FIFO) when there are no jobs with
deadlines.

Since the Scheduler knows how long the currently executing
fill-jobs will take to complete, as well as the order in which
the queued fill-jobs will be executed, users can query the
Scheduler to know when a currently submitted fill-job is
expected to complete or whether a fill-job’s deadline can be
met under current conditions. This can be used by a higher-
level scheduler, which manages other resources in addition
to the pipeline bubbles, to make scheduling decisions about
which of its jobs can be submitted to the Scheduler.

3.4 Implementation

Our implementation is based on DeepSpeed (18) . Like
many distributed training frameworks, DeepSpeed creates
a process to manage each GPU and processes are grouped
by their membership in tensor, data, and pipeline parallel
communication groups. Each process uses a pipeline engine
to execute a pipeline schedule. We augment the DeepSpeed
pipeline engine and schedule with the instrumentation for
bubble filling and main job offloading. Figure 4 shows an
example of a pipeline schedule (implemented as a function)
which bubble filling inserted. PIPEFILL additional creates
a new Executor process for each GPU (which also uses
DeepSpeed to execute the fill jobs). The main job train-
ing process uses IPC to signal it’s corresponding Executor
process when bubbles occur and the GPU is free for the Ex-
ecutor to run fill jobs. To support large-model fill-jobs with
limited GPU free-memory, the Executor is enabled with
fill-job configurations that use CPU-offloading and activa-
tion checkpointing. In particular, the Executor will consider
using ZeRO-Offload(23) and ZeRO-Infinity(22) to offload
optimizer states, gradients, activations, and parameters of
the fill-job.

Main job pipeline schedule. We consider GPipe(9) and
1F1B(19) schedules for the main job. Both schedules ex-
hibit two-phase bubble behavior: one bubble occurs be-
tween the drain of the previous minibatch iteration and the
fill of the next iteration (fill-drain), and the other bubble
occurs between the forward-pass pipeline saturation and
the backward pass (fwd-bwd). The fill-drain bubble of
both schedules is the same, but the fwd-bwd bubbles can
be different. For GPipe, the fwd-bwd bubble duration is
(num stages− stage id− 1) ∗ (tfwd + tbwd) whereas for
1F1B its duration is (num stages− stage id− 1) ∗ tbwd+
max(0, num stages− stage id−m) ∗ tfwd. 1F1B addi-
tionally has some non-contiguous bubbles (which PIPEFILL



size model # parameters job type
S EfficientNet(24) 117M CV
S Bert-base(4) 109M NLP
M Bert-large(4) 334M NLP
M Swin-large(16) 779M CV
L XLM-Roberta-XL(6) 2.8B NLP

S: small M: medium L: large

Table 1. Fill job category.

does not fill), which makes the total bubble time the same
for both schedules.

1 def gpipe_steps(self):
2 total_steps = 2 * (self.micro_batches + self.

stages - 1)
3 for step_id in range(total_steps):
4 # Map steps to micro-batch id, fwd vs bwd
5 micro_batch_id, is_forward = self.

_step_to_micro_batch(step_id)
6
7 cmds = []
8 # Exchange activations
9 if is_forward:

10 SendRecvActivation()
11 else:
12 SendRecvGrad()
13
14 # Computation
15 if self._valid_micro_batch(micro_batch_id):
16 if is_forward:
17 ForwardPass()
18 else:
19 BackwardPass()
20
21 if micro_batch_id == self.micro_batches and

is_forward:
22 FillBubble()
23
24 # Model step at the end of the batch
25 if step_id == total_steps - 1:
26 ReduceGrads()
27 OptimizerStep()
28 FillBubble()
29
30 yield cmds

Figure 4. Example python code for GPipe schedule function, and
how pipeline bubble filling is inserted. FillBubble function uses
IPC to signal the Executor to start running fill jobs.

4 EXPERIMENTAL SETUP

Hardware and Simulator We use a cluster of 16 AWS EC2
p3.16xlarge instances to run small-scale experiments and to
collect traces for large-scale simulation experiments. Each
node contains 8 NVIDIA V100 GPUs, each equipped with
16GB HBM and 125 TFLOPS of peak compute. GPUs on
the same machine are connected with NVLink, and separate
machines are connected with 25 Gbps network bandwidth.

To evaluate our system on multiple large-scale settings, we
create an event-driven simulator. Deep learning jobs have
repetitive patterns, so an accurate simulator only needs to
profile a pattern once to simulate the time and resources it
takes to repeat that pattern. Our simulator relies on profiles

of the main training jobs’ pipeline instructions and the fill
jobs’ layers (under different configurations). The events in
our simulator are the arrivals and completions of fill-jobs
(since these are when the state of the system can change),
and we simulate the time between these events using the
profiled execution times and the job arrivals from the trace.

Main Jobs Our physical cluster experiments use a 5B pa-
rameter LLM training job as the main job, and are exe-
cuted on 16 GPUs on separate machines (16 pipeline-stages,
no tensor-parallelism). We also collect profiles of a 40B
parameter LLM training job executed using 8-way tensor-
parallelism (8 GPUs per machine) and 16-stage pipeline-
parallelism (16 machines). The simulator main job has
almost the same settings as the physical cluster job, only
scaled up using tensor-parallelism ; consequently the bubble
sizes are almost identical. We use the profiles of the 40B
model training job to seed our simulator, which we use for
sensitivity studies done in simulation.

Both main jobs use sequence length of 2048 tokens per
sample, 2 samples per microbatch, and 1024 samples per
minibatch (across all data-parallel replicas); both jobs use
the Adam(13) optimizer. We use the GPipe schedule by
default, unless otherwise specified. Data-parallel execution
has been shown to be predictable(14), so we run only one
data-parallel replica across all our experiments, varying the
number of microbatches according to different data-parallel
configurations.

Fill Jobs We create our fill-job traces in two steps. First, we
construct a fill-job model distribution. We extract all model
sizes and model types from the HuggingFace (HF) Model
Hub(10); we filter for models uploaded in the last year with
over 100K downloads. We find among these models, 71%
have less than 3B parameters, so we filter out all models with
greater than 3B parameters. Among the remaining models,
we find 10.4% are CNNs (the remainder being transformer
models). We choose a representative set of models shown
in Table 1, and set sampling probabilities to each model to
match the distribution of model sizes and types from the HF
Model Hub.

For sampling job arrivals, we use public traces from
Alibaba(28) collected on real GPU clusters. These traces
provide arrival times, GPUs requested, service times, and
quality-of-service for each job. We filter out jobs that have
”latency-sensitive” quality-of-service, and we convert GPUs
requested and service time to GPU-hours (by multiplying
the two). We filter out jobs greater than 9 GPU-minutes for
the physical cluster experiments (leaving 55% of all jobs)
and 1 GPU-hour for the simulation experiments (leaving
81.6% of all jobs), and we bucket the remaining GPU-hours
distribution according to the sampling probabilities of the
models from Table 1 so that every job arrival in the trace is
mapped to a specific model. For smaller models (<700M



parameters) we set the job to training or batch-inference
with equal probability; for larger models we always set the
job to batch-inference. To determine how many samples a
job should process, we divide the job-size (in GPU-hours)
by the max throughput the job-type can achieve when ex-
ecuted in isolation on one GPU. This yields a trace that
contains job arrivals, job models, job category (training vs
batch-inference), and job samples.

5 EVALUATION

We present the amount of GPU utilization recovered by
PIPEFILL at different scales (Section 5.1); we then vali-
date the accuracy of the simulator by comparing simulator
results against physical cluster results (Section 5.1); we
discuss how fill job characterization affects PIPEFILL’s per-
formance (Section 5.2); and we provide sensitive studies
of pipeline schedule algorithm, fill-job scheduling policy,
bubble duration and free memory (Section 5.3).

5.1 PIPEFILL Recovers GPU Utilization

Simulator Results To evaluate the GPU utilization recov-
ered by PIPEFILL, we scale the 40B parameter LLM train-
ing job trace using DP up to 8K GPUs in our simulation.
We measure the GPU utilization of filling inference jobs
only, and filling both training and inference jobs. We use
the GPU utilization without PIPEFILL as the baseline. To
calculate the additional GPU FLOPS utilization recovered
by PIPEFILL, we use the measured total FLOPs (floating-
point operations) executed to complete the fill-jobs (from
PyTorch profiling) and divide this by the simulated fill-job
completion times (wall-clock time); we average this value
across all GPUs across the duration of the main job.
Figure 5 shows the results of main job training time, pipeline
bubble ratio, and GPU utilization from using 1-8K GPUs.
Even at low-scales (1K-2K GPUs), PIPEFILL improves
GPU utilization by 5-10%. However, at higher scales
PIPEFILL’s potential is shown. Scaling the main job from
2K to 6K GPUs reduces training time from 50 days to 29
days; however, this results in a 40% drop in GPU utilization.
With PIPEFILL, we are able to limit the drop in GPU uti-
lization to <23%. At 4K GPUs (reducing main job training
time by 16 days compared to 2K GPUs), PIPEFILL is able
to get 89% of the GPU utilization of traditional PP at 2K
GPUs; at 8K GPUs (reducing main job training time by 9
days compared to 4K GPUs), PIPEFILL is able to get 92%
of the GPU utilization of traditional PP at 4K GPUs.
PIPEFILL’s performance is even higher with a more bubble-
friendly fill-job workload; in Figure 5 we also plot the GPU
utilization recovered when filling with only BERT infer-
ence jobs. With this workload, PIPEFILL improves GPU
utilization by 7.8-15.6% at low scales (1-2K GPUs). At 4K
GPUs, PIPEFILL gets’s 96.7% of the GPU utilization of tra-
ditional PP at 2K GPUs; and at 8K GPUs PIPEFILL exceeds

the GPU utilization of traditional PP at 4K GPUs by 6.5%.
These results show that PIPEFILL enables strong-scaling by
an additional 2× with virtually no loss in GPU utilization,
and at higher scales can even increase GPU utilization while
strong-scaling. Additionally, due to the high bubble ratios
and the relatively modest slowdowns experienced by the
fill-jobs, the amount of GPUs worth of work being done by
PIPEFILL using only the pipeline bubbles is notable. Gener-
ally, for a main job using C GPUs with a bubble ratio of B
and fill-job relative performance of P , we can approximate
the GPUs saved by filling as C ∗ B ∗ P . Depending on
the workload, PIPEFILL can run 200-300 GPUs worth of
fill-job when when the main job is using 2K GPUs, 600-900
GPUs worth of work when using 4K GPUs, and 1500-2600
GPUs when using 8K GPUs.

Physical cluster results. We confirm PIPEFILL’s effec-
tiveness and validate the fidelity of the simulator results by
evaluating a subset of the settings on a small physical clus-
ter with a 5B parameter LLM training job. We measure the
free-memory quantity in the bubbles to be 4.5GB without
main-job offloading; when we measured the free-memory
of the larger training job, it was also 4.5GB, so we use this
value in our simulator. We run the 5B parameter main job
using 8 microbatches per minibatch per DP replica; this
corresponds to using 64-way DP and results in a bubble
ratio of 65%, which is comparable to the 8K GPU setting in
Figure 5. We also use the full fill-job trace distribution for
the physical cluster experiments, unless specified otherwise.

First, we evaluate whether the recovered GPU utilization
and low overhead to the main job predicted by the simulator
is observed in a physical environment. In Figure 7c, we vary
the percentage of the bubble duration that PIPEFILL’s Ex-
ecutor’s attempt to fill. We find that the overhead to the main
job is <2% for up to 68% of the bubble duration filled by
the Executor; at higher fill percentages, the overhead to the
main job can be substantial (though the total GPU FLOPS
utilization continues to increase). We find the threshold
of bubble filling without main job overhead to be around
this value for all fill job types. Also at 68% we see that
the TFLOPS/GPU recovered is around 7.39; this is within
5% of the TFLOPS predicted by the simulator at the same
bubble ratio. This is because, in our simulator results, the
Fill Job Executors fill the same percentage of the bubble
duration by default.

Next, we evaluate whether the types of fill-job being run
affect the main job overhead. In Figure 6, we take two
very different job types from our trace: batch-inference with
XLM (the largest model) and training with EfficientNet (the
smallest model and the only CNN). We fix the percentage of
the bubble duration filled by the Executor at 68%, and vary
the fill-jobs from being all XLM to all EfficientNet; we find
that the overhead to the main job does not vary significantly.
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Figure 5. Simulator results of running a 40B LLM training job using 1-8K GPUs.

Figure 6. Simulator and physical cluster results of running a 5B
LLM with varying distributions of fill job types.

This shows that the overhead to the main job is independent
of the types of fill-jobs being executed; instead it is only
affected by the percentage of the bubble duration being
filled. Figure 6 also plots the fill-job recovered-FLOPS
predicted by the profile-based simulator and observed in
physical execution—the maximum error of the simulator is
<2%.

5.2 Fill job characterization

This subsection discusses how fill job characterization af-
fects PIPEFILL’s performance. This study helps understand
the tradeoffs in which workloads are used as fill jobs. In
the experiments, we evaluate training and inference of five
different models as fill jobs. We measure the GPU FLOPS
utilization they are able to achieve during their execution as
fill-jobs and compare to the GPU FLOPS utilization they
achieve when run in isolated resources. Here we divide the
FLOPs (floating-point operations) executed to complete the
fill-jobs by the total duration that they are executed (sum of
all bubble durations used to complete the fill-job). This is
in contrast to dividing by the wall-clock completion time,
which we did in section 5.1 in order to understand the perfor-
mance of the fill-jobs when they are executing (as opposed
to the FLOPS utilization they can recover).

GPU FLOPS. Different fill jobs are able to utilize the GPU
FLOPS to varying degrees; there are several reasons for this,
some related to the jobs’ fundamental characteristics and
some related to the bubble constraints. In Figure 7a we plot
the GPU FLOPS that each model and each job type (i.e.,
training vs. batch inference) is able to utilize on average

during its execution; for comparison, the main job is able
to utilize 60 TFLOPS when it is executing. Our first obser-
vation is that batch inference jobs are able to reach higher
FLOPS utilization than training jobs; this is because infer-
ence jobs have low memory requirements and thus can use
higher batch sizes under the free memory constraints of the
bubbles than training jobs can. Among training jobs, large-
model training jobs have particularly poor performance;
this is because the much larger activation footprint of these
models requires CPU-offloading of the activations. When
comparing models, we see that Swin and EfficientNet per-
form particularly poorly. The Swin model is a non-uniform
vision-transfomer model that uses a specialized attention
operator; the memory-overhead of the larger layers limit
the batch size, which further hurts the GPU utilization of
the smaller layers, and the specialized attention operator is
not well-optimized in our implementation. The EfficientNet
model is small compared to the other models, but since it
is a CNN it has particularly large activation sizes; the low
free-memory in the bubbles limits the batch size that we can
use, and since the model is small, the batch sizes that fit in
the free-memory are not large enough to reach high GPU
utilization.

Fill job slowdown. TFLOPS recovered lets us compare
the GPU utilization recovered across fill-job types, but we
would also like to know the slowdown experienced by the
fill jobs relative to their performance if they were run on
exclusive GPUs. This analysis lets us approximate how
many GPUs can be saved during the duration of the main
job by filling its bubbles with certain fill-job types. In Fig-
ure 7b, we again see that the slowdown varies substantially
across fill-job types. As expected, all fill-jobs experience
substantial slowdown due to several factors that put fill-job
execution at a disadvantage compared to exclusive execu-
tion: 1) the fill-jobs can only use a fraction of the GPU
memory (about 25%) which can necessitate CPU-offloading
and limit batch-sizes, 2) the fill-job execution is interrupted
every time a bubble ends, introducing unavoidable ineffi-
ciencies in the Executor’s plan, and 3) because the fill-job
execution can only run for a short period of time, each bub-
ble, it often can only run a single iteration of a subset of
the model, which is not enough to warmup the GPU caches.
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Figure 7. Fill job characterization and physical cluster results

However, we see that these factors affect different fill-job
types to varying degrees. In particular, we see that although
XLM inference recovers similar TFLOPS as BERT infer-
ence, it experiences more slowdown; this is because XLM
requires aggressive CPU-offloading, but because the model
is large it can still submit enough computation work to keep
the GPU busy. We hypothesize that on newer hardware-
systems that have higher bandwidth between CPU and GPU
memory (e.g., newer PCIe generations, NVLink-C2C), the
fill-job slowdown from offloading could be substantially
lower. Regardless, most of the fill-job workloads we evalu-
ate experience around 30% of exclusive execution.

5.3 Sensitivity studies

Main job pipeline schedule. We compare PIPEFILL with
the main job using a GPipe schedule to using a 1F1B sched-
ule, using the same main job as the simulator in section
5.1 and using the full fill-job trace. We vary the number of
GPUs from 2K (18.9% bubble ratio) to 16K (78.9% bubble
ratio). We find that the at smaller scales PIPEFILL recovers
20% more GPU utilization when the main job uses GPipe,
but at larger scales the gap closes to 5%. This is because
1F1B contains some non-contiguous bubbles that are not
within the fill-drain bubble or the fwd-bwd bubble, which
PIPEFILL does not fill; at larger scales these non-contiguous
bubbles become a smaller proportion of the total bubbles.
We also simulate 1F1B-interleave schedule (20), and find it
recovers 10-30% less TFLOPS than 1F1B; note that inter-
leaving increases PP communication and can reduce main
job efficiency if there is insufficient network bandwidth.

Fill-job scheduling policy. PIPEFILL allows the scheduling
policy to be configured by the user; this section evaluates
two possible policies. In Figures 8a and 8b, we implement a
Shortest-Job-First policy and a Makespan-Minimizing pol-
icy. We see that the SJF policy is able to achieve lower
average JCTs, especially at lower loads where completion
time is not as dominated by queueing time. Conversely, the
Makespan-Minimizing policy is able to reduce makespan,
especially at higher loads where maximizing fill-job effi-

ciency has a larger impact.

Bubble durations and free memory. Main job characteris-
tics affect the pipeline bubble durations and free-memory;
for example, a deeper pipeline or a wider main job model
(with longer forward and backward times) can increase the
bubble durations. Meanwhile, a larger main job model could
also reduce the bubble free-memory. Here we analyze the
effects of these factors on PIPEFILL’s effectiveness.
In Figure 9a, we scale the bubble size by equally scaling the
main job model width and depth. We scale the original main
job from section 5.1, from 50% to 200% of the original
model size; we fix the free memory at 4.5GB. We see little
difference in the recovered TFLOPS, though shrinking the
bubble duration by 50% reduced TFLOPS by 5.3%.
In Figure 9b, we fix the main job model size (and thus the
bubble duration) and vary the free-memory from 2GB to
8GB. We find free-memory to have larger impact on re-
covered TFLOPS, though with diminishing returns: 4GB
recovers 30% more TFLOPS than 2GB, but 8GB only re-
covers 12.2% more TFLOPS than 4GB.

(a) Average JCT (b) Makespan
Figure 8. Sensitivity study of fill job schedule policy.

(a) TFLOPS v.s. bubble sizes (b) TFLOPS v.s. free mem
Figure 9. Sensitivity study of bubble size and free memory.



6 RELATED WORK
Pipeline optimizations. There are many prior works on in-
creasing pipeline-parallel efficiency. Chimera (15) proposes
bidirectional pipelines to reduce pipeline bubbles at the cost
of increasing the memory overhead on each device. In prac-
tice, it is not possible due to limited GPU memory for large
LLM training jobs. Megatron-3D (20) proposes interleaved
pipelines, which requires the number of microbatches to be
a multiple of the number of pipeline stages. It has limited
applicability, since minibatch sizes are fixed, as large-model
training is scaled up using data parallelism the number of
microbatches per stage decreases quickly to be less than
the number of pipeline stages. Alpa (33), FlexFlow (11),
Dapple (5) aim to search for optimal pipeline partition con-
figuration for the training, which cannot eliminate bubbles.
As discussed, Bamboo (25) and Pipefischer (21) fill pipeline
bubbles with work that is dependant on the main job. Hy-
dro (8) fills bubbles with hyperparameter-tuning jobs (in
particular, trials which are not critical and can be early-
terminated) for small models which requrie very little mem-
ory and can complete training iterations within a single
bubble.

Resource sharing. Many prior works have identified and
addressed the data-center GPU under-utilization issue by
GPU-sharing. AntMan (29) provides the elasticity for DL
training jobs to scale up and down for better efficiency.
Salus (30) puts multiple DL jobs on the same device to im-
prove the utilization. PipeSwitch (2) allows time-sharing
of clusters for inference jobs with training jobs, when user
demands of inference job is at valley. REEF (7) enables
kernel-level preemption and concurrent execution for shar-
ing GPUs with multiple inference jobs. PilotFish (31) ex-
ploits the spare resources on Cloud gaming platform for DL
training. Muri (32) interleaves the usages of multiple hard-
ware resources (e.g., network, GPU, etc.) among multiple
DL jobs. These prior works do not address the pipeline bub-
bles of large model training like LLMs with tens-of-billions
parameters.

7 CONCLUSION

PIPEFILL fills the pipeline bubbles of huge DNN training
jobs with other jobs, significantly reducing the traditional
GPU utilization penalty associated with extreme scale-out
for such jobs. Experiments confirm that PIPEFILL can in-
crease GPU utilization by up to 63% when LLM training is
scaled-out, with <2% increase in LLM training time.
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