
Factorio Learning Environment

Jack Hopkins1† Mart Bakler1† Akbir Khan2

1Independent 2Anthropic †Equal contribution

Abstract

Large Language Models (LLMs) are rapidly saturating existing benchmarks, ne-
cessitating new open-ended evaluations. We introduce the Factorio Learning
Environment (FLE), based on the game of Factorio, that tests agents in long-term
planning, spatial reasoning, program synthesis, and resource optimization. FLE
provides exponentially scaling challenges – from basic automation to complex
factories processing millions of resource units per second. We provide two set-
tings: (1) open-play with the open-ended task of building the largest factory on an
procedurally generated map and (2) lab-play consisting of 33 bounded tasks ac-
cross three settings with fixed resources. We demonstrate across both settings that
models still lack strong spatial reasoning. In lab-play, we find that LLMs exhibit
promising short-horizon skills, yet are unable to operate effectively in constrained
environments, reflecting limitations in error analysis. In open-play, while LLMs
discover automation strategies that improve growth (e.g electric-powered drilling),
they fail to achieve complex automation (e.g electronic-circuit manufacturing). We
have released FLE as an open-source platform1.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities at solving complex
question-answer (QA) problems, saturating benchmarks in factual recollection (Hendrycks et al.,
2021), reasoning (Cobbe et al., 2021) and code prediction (Chen et al., 2021).

The strong performance across these diverse tasks suggests that LLMs have developed sophisticated
reasoning capabilities, leading researchers to explore whether models can act as autonomous agents
(Yang et al., 2023). This has motivated a number of new agentic benchmarks focusing on long-term
planning (Liu et al., 2023; Ruan et al., 2023), learning in complex environments (Paglieri et al., 2024;
Jimenez et al., 2023) and reliably learning from mistakes (Xing et al., 2024; Yamada et al., 2023;
Kambhampati et al., 2024). However, similar to QA settings, these agentic benchmarks are likely to
face saturation due to their natural completion states; which impose an upper bound on performance
and limit our ability to differentiate superhuman models.

We introduce the Factorio Learning Environment (FLE): a novel evaluation framework built upon
the game of Factorio that uniquely addresses this limitation by enabling unbounded agent evaluation
with no natural completion state. In this environment, agents must navigate rapidly scaling challenges
from basic resource gathering to complex automation while managing an exponentially scaling
technology tree - creating natural curricula for evaluating increasingly capable agents.

Agents are tasked with producing factories, whose performance is measured through production
throughput, which ranges from early-game rates of ∼30 resources/minute to advanced systems
processing millions of resources/second. This enables us to meaningfully differentiate agents by

1https://github.com/JackHopkins/factorio-learning-environment

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://github.com/JackHopkins/factorio-learning-environment

Figure 1: Illustration of the Factorio Learning Environment (FLE). FLE is based on the popular
construction and management simulation game Factorio. Left: The open-ended goal of the game is
to create the largest factory possible. The game enables agents to invest in technological advances to
unlock more efficient items and produce more resources per second. Middle: Agents interact with the
game by using an interactive Python Interpreter, where they take actions and print their observations
in a Read-Eval-Print loop. By using the Python namespace, agents may store variables and define
functions for later use. We provide a Python API to Factorio which allows direct interaction with
the environment. Right: The agent may issue commands to the game server in order to interact with
the environment (with associated time penalities), and receive a response as feedback. If the agents
chooses, it may view its own production statistics.

measuring the order of magnitude of resources that they can produce, avoiding saturation by agents
even as models become dramatically more capable.

Existing resource management environments such as Minecraft (Guss et al., 2019) or Nethack (Küttler
et al., 2020) do not demand the precise industrial optimization present in Factorio. For resource
processing chains, producing basic electronic circuits (an early-game staple) requires coordinating
10+ machines processing approximately 15 items per minute. For example, a single rocket component
requires orchestrating 60+ interlinked machines manufacturing 1000+ items per minute. The precision
required, where a single misaligned machine can cause a factory-wide gridlock, creates a natural
curriculum, testing both basic automation and advanced system optimization.

Agents interact with the FLE by synthesizing Python programs to alter and observe the game state,
using the tools included in the environment in a Read–Eval–Print Loop (REPL). This feedback loop
mirrors the day-to-day workflow of human programmers, who write provisional code to probe how
systems behave, interpret the results, then refine their mental model of the system.

We evaluate six frontier LLM models in this environment in an agentic setting. In our qualitative
analysis, we study the agents capabilities for spatial reasoning, long-term planning, and error cor-
rection. Our results show that even the most advanced models struggle to coordinate more than 10
machines when automatically producing items with over three ingredients.

We summarise our contribution as follows:

• The introduction of the Factorio Learning Environment, an agentic evaluation of long-term
planning and resource management.

• Evaluation of frontier models in the unbounded FLE open-play setting in a full Factorio
game map. We find more capable agents set and follow longer horizon objectives and
achieve quantitatively different production gradients on a log-reward, log-step graph.

• Evaluations of frontier models in FLE lab-play setting, including a set of 24 bounded tasks
requiring agents to build factories with increasing complexity and scale. Claude 3.5-Sonnet
(the best model) only completes 7/24 tasks and shows limitations in spatial planning in more
complex objectives; demonstrating large head-room for performance.

• A qualitative analysis of the results across capabilities such as error-correction and long-
term planning. We identify a gap in models’ ability to perform intelligent error correction,
conduct spatial analysis and set long time-horizon objectives.

2

1 # 1. Get iron patch and place mining drill
2 drill = place_entity(entity=Prototype.MiningDrill, position=nearest(Resource.IronOre)),

direction=Direction.NORTH
3)
4 # 2. Add output storage
5 chest = place_entity_next_to(entity=Prototype.IronChest, reference_position=drill.drop_position,

direction=Direction.SOUTH
6)
7 # 3. Verify automation chain and observe entities
8 assert drill.status == EntityStatus.WORKING
9 print(get_entities())

Figure 2: Example of an FLE program used to create a simple automated iron-ore miner. In step
1 the agent uses a query to find the nearest resources and place a mine. In step 3 the agent uses an
assert statement to verify that its action was successful.

2 Factorio Learning Environment

Our main contribution is the release of an open-source framework, which includes i) a high-level
Python API and client to Factorio, ii) a persistent coding environment for LLM agents to interact
with the game through iterative program synthesis, and iii) a Python object model of game entities.
The environment is procedurally generated, deterministic at runtime (set by a random seed) and is
4 × 1012 square tiles in size. We provide a laboratory environment with accessible resources for
benchmarking agents in a controlled setting.

2.1 Environment Dynamics

Factorio is a resource management and automation game in which players spawn on a world con-
taining raw resources such as water, iron ore, and coal, and must orchestrate increasingly complex
production and logistic chains to ultimately produce a rocket and (optionally) escape. The game
contains 212 entity types, with a technology tree that unlocks more efficient buildings, resource
production chains and multiplicative throughput bonuses. Research enforces a steep resource progres-
sion, with late-game technologies such as the rocket-silo demanding 300 times more resources
than early automation research2. Player strategy and factory architecture evolves dramatically as
technology progresses from early-game manual crafting and basic automation to late-game, massively
parallelized, distributed and high-throughput designs.

2.2 Environment Interface

Agents interact with FLE through a REPL (Read-Eval-Print-Loop) pattern, observing the current
game state via previous program output streams, then generating and executing Python code to
implement their intended actions, and finally returning useful feedback for the next iteration.

Agents are provided with the Python standard library, and an API comprising methods designed to
balance expressiveness with tractability (see Appendix E.1). These initially comprise 10 observation
methods and 13 action methods. Observation methods (e.g nearest, get_entities) retrieve
information about the environment, and action methods (e.g move_to, craft_entity) modify the
environment. Each method returns a typed object (e.g an Inventory) which can be stored as a
variable in the Python namespace and referenced later in the episode. The namespace acts as an
episodic symbolic memory system, and saved objects represent part of the environment at the moment
of query. This design enables agents to maintain complex state representations and build hierarchical
abstractions as the factories scale.

Agents observe stdout and stderr - the output streams of their program. Thus, agents may intention-
ally print relevant objects and computations to the output stream to construct observations. Mistakes
in the code or invalid operations raise typed exceptions with detailed context that is written to stderr.
This enables agents to reactively debug their programs after execution, and proactively use runtime

2This progression approximately follows an unbounded geometric relationship between resource cost C and
research tier N – C[N] = 1000× 2(N−1)

3

Figure 3: Models are differentiated by score in Open-Play. Agents are given the instruction to
build the biggest possible factory. Left: We find that by evaluating PS against steps (server calls)
we can clearly differentiate stronger models from weaker ones in a log/log projection. We overlay
milestones, showing the first time the median agent was able to create a new type of entity. Right:
We plot the final reward and elapsed game time after 5k steps. We find that while weaker models
show promise early-game, they struggle to progress when automation and logistics are required. We
report median and standard error over the independent runs.

assertions during execution to self-verify their actions. Programs that take too long to execute are
terminated, to prevent runaway control flows (e.g while True).

An environment “step” is a single submission to the Factorio server, which returns the stdout, stderr,
rewards and in-game wall-clock time (see Figure 1). Agents are able to enhance their internal
representation of the game state in 2 ways: (i) they can define utility functions for reuse throughout
an episode, to encapsulate successful logic; and (ii) they can define classes in the namespace to better
organize the data retrieved from the game.

The Python API provides complete access to positional data, entity relationships, and geometric
constraints, enabling precise spatial reasoning through coordinate systems. For complex factory
planning, coordinate-based reasoning offers distinct advantages: exact positioning, systematic layout
algorithms, and explicit geometric relationships. For example, diagnosing why a mining drill at (10,
5) fails to output ore requires querying the belt at drop position (10, 4), recognizing its directional
misalignment, and inferring the geometric constraint violation - the same reasoning engineers apply
to circuit layouts and network topologies. Our troubleshooting experiments (Appendix B.2) support
this: visual input provided no performance improvement, confirming that reasoning capability, not
information format, determines success.

2.3 Reward Structure

We use Factorio’s built-in production tracking system, which enables us to define two complementary
reward signals:

Production Score (PS): A continuous measure of economic activity based on the value of all items
produced. This metric increases as agents refine raw ores into manufactured goods and create
automatic factories. As factory throughput scales exponentially, PS can vary by multiple orders
of magnitude (a rocket launch requires ≈ 107 raw resources). PS provides a naturally unbounded
measure of performance, which is sensitive to increasing automation. The game’s price calculation
system assigns higher value to items with more complex production chains, creating a reward structure
that encourages sophisticated factory designs. For the full pricing system, see Appendix A.

Milestones: A discrete set of achievements for producing novel item types (e.g. building an inserter
for the first time, assembling electronic-circuits, etc.) and researching technologies. This
captures both the diversity of an agent’s exploration across Factorio’s tech tree, and what level of
item complexity they were able to achieve. As Factorio supports unlimited technology research with
multiplicative bonuses, milestones can be used to measure performance at all levels of capability.

4

2.4 Implementation Details

The FLE comprises a Python client and Lua server communicating synchronously via RCON over
TCP3. The client provides the stateful environment interface and APIs, while the server manages game
state execution in the official Factorio multiplayer server. The server can be run in headless mode
for efficient parallelization. The object model represents most early to late-game entities (detailed
in Appendix E.1). FLE is compatible with v1.110 of Factorio, and requires a single purchased
game license, as each server must be “activated” by any official client at startup. Fixing the game
version also offers a deterministic stable environment, crucial for a reproducible benchmark. FLE is
also easily extensible by the community. Designing new tools requires implementing a client-side
controller (Python) and a server-side action (Lua) which will automatically load and update the API
schema for subsequent agent runs.

3 Experiments

To evaluate agent capabilities in FLE, we introduce two settings and a simple agent scaffolding.
Open-play comprises of an open-ended sandbox with an unbounded objective and lab-play creates a
set of tasks with predefined objectives. All experiments are run in a single-agent setting.

3.1 Open Play

In open-play, we evaluate each agent in a purely open-ended, unbounded setting. The agents spawn
into a procedurally generated world with unlimited space and resources, allowing the agents to
decide how best to advance in the game. To progress long-term, agents must show proficient long-
term goal-setting, entity and resource planning and spatial reasoning capabilities when creating
automated structures. Agents must be capable of using the API, querying the environment for
unknown information and reasoning over observations to plan successfully.

We use two metrics to evaluate progress in the game: Production Score (PS) and Milestones. While
the PS acts as the reward and is affected by exploitation, milestones give an overview of how much of
the game and technology tree the agent has explored. Each agent plays until the maximum trajectory
length of 5000 is reached. This allows us to assess competency within a bounded timeframe as 5000
steps correspond to multiple in-game hours and balances computational cost with sufficient temporal
horizon for meaningful agent behavior to emerge. After every agent step, the production throughput is
tracked and reward computed. We execute 8 independent runs for each agent, and report the median.

3.2 Lab-Play

In lab-play, we test agents in planning and spatial reasoning over an environment with abundant
resource availability, a full inventory and a completed technology tree. We evaluate two task types
with clear completion states:

Planning Tasks require the agent to create a factory with a specific production throughput in the
constrained lab environment. These tasks are designed to evaluate planning and foresight in designing
systems that operate sustainably beyond the duration of an episode.

The objective is to build fully automatic production lines of 24 increasingly-complex distinct target
entities, starting from a single resource mine requiring at most 2 machines (making iron-ore) to
a late game entity requiring the coordination of close to 100 machines of various types (making
utility-science-pack). The task difficulty increases geometrically with the scaling resource
requirements of harder target entities. This makes completing the last task approximately 30× harder
than the first. Additional information on task throughputs and complexity can be found in Appendix
H.

Each task runs a trajectory of 128 interactions. After every agent step, the throughput of the created
structure is evaluated throughout a 60 second holdout period in-game, and the task is deemed
completed if the throughput of the structure is above the target throughput at any step i. The target
throughput is 16 for solid items (for instance electronic circuit, military science pack, plastic bar) and
250 for fluids (for instance petroleum gas, lubricant, heavy oil) during the holdout period. We report

3Roughly 80k LoC in total

5

Figure 4: Agents struggle to build and maintain complex and integrated factories in Lab-Play.
Top: We measure the mean and standard deviation of task success rates across the first 8 complexity
levels. We observe a clear decrease in average task success rates as the crafting complexity of
the target entity increases. Bottom: We show the mean and std of task progress (percentage of
target ingredients and its sub-ingredients agents factories produce at each time-step) in three tasks
of increasing difficulty across 8 runs per task. In harder tasks, agents show trends of initial rapid
progress followed by stagnation or decrease. This is due to agents being unable to scale up initial
production or add new sections to factories required to successfully reach the target production levels
and often breaking existing structures during the process. The lack of consistent progress is also
observed through the large variance in task progress across runs.

the mean and std of success rates across 8 runs per task. We also report the human baseline, which
one of the authors managed to achieve with a reasonable time-frame (32 steps).

Troubleshooting Tasks test agents’ ability to reason about spatial relationships and factory configu-
rations through two modalities - text and vision. For LLM agents using the API, we evaluate their
troubleshooting abilities - inspect human-built factories (15-40 entities) and identify spatial errors
that render them inoperable: removal, duplication, rotation, and offset errors. Each task runs for 16
interactions, during which agents can inspect and analyse the factory before submitting discovered
errors (e.g., (0,5)=ROTATION).

Visual Spatial Reasoning For VLM agents, we also evaluate four visual reasoning tasks on rendered
game images, where each task uses multiple-choice questions with distractors designed to be plausible
but incorrect. We report classification accuracy for API-based agents (F1 score), accuracy scores for
VLM agents, and human baselines across all tasks.

3.3 Agent Scaffolding

We consider a simple step-by-step prompting approach as a baseline implementation for agents to
interact with the environment. The input prompt of the agent consists of the API schema A, a guide G
describing how to use the API tools with code examples and the memory M of the agent consisting
of past policies with environment observations. A detailed description for the guide, API schema and
an example memory state is exhibited in Appendix K. Given the inputs, the agent is tasked to identify
the most useful next step and generate the Python policy P that carries out actions in the environment
to achieve the step. The policy is executed in the environment and added to the memory M with the
environment observations (stdout) and error messages (stderr). The updated memory M is used as
input to generate the next policy and enables the agent to gather information from the environment
and use observations to guide future step generation.

Long context memory. While Lab-Play tasks are short (128 steps) and do not require memory
management to succeed, open-play trajectories can span hundreds of hours and require memory
access over thousands of steps. To limit the memory token count and avoid long-context performance
degradation, past observations and policies older than 16 steps are summarised by the agent into a

6

report of 1024 tokens. The report captures errors, solutions and learned best practices from agent
interactions with the environment. This allows execution of arbitrarily long traces in the environment
without intractable input token requirements. The report also includes the function signatures (name,
input/output types and description) of any agent-defined functions, for future composability and code
reuse. This allows the agent to develop abstractions to encapsulate and reuse common operations
and routines (e.g., factory area placement, raw resource gathering, environment exploration). The
agent can also store state in the Python namespace (e.g., entities, coordinates, inventories) and cache
intermediate results. These measures are taken to mitigate pressure on the context window and avoid
U-shaped performance degradation over long-contextsLiu et al. (2024b). The agent is informed of
this summarisation procedure and its own capability to handle memory.

Language Models - We evaluate frontier closed source models including Claude 3.5-Sonnet An-
thropic (2024), GPT-4o and GPT-4o-Mini OpenAI et al. (2024), Deepseek-v3 DeepSeek-AI et al.
(2025) and Gemini-2-Flash Team et al. (2024). We also evaluate Llama-3.3-70B-Instruct MetaAI
(2024). Each model is sampled at temperature 0.5. Model timestamps are in Appendix F.

4 Results

We analyse agent performance during open-play and lab-play, and observe common patterns amongst
trajectories from both settings. We report experimental costs in Table 6.

Open-play: In open-play, Claude 3.5-Sonnet outperforms other models in both median PS (293
206) and milestone count (28), surpassing the early-game resource extraction phase and partially
investing in technology research (see Figure 3). In comparison, GPT-4o and Gemini-2 Flash made
initial progress but did not develop production lines of > 5 entities, and struggled with both creating
complex structures and scaling up existing production. Llama 3.3, GPT-4o-Mini and Deepseek-v3
created only trivial structures and mostly preferred manual crafting. In terms of game progression,
all factories created were at the early-game range (3 × 104 ≤ PS ≤ 2 × 105), compared to the
requirement for a end-game rocket launch of PS ≈ 1.2 × 108, or the Factorio human record of
PS ≈ 3× 1012 (ExEvolution, 2024).

Lab Play: For lab-play planning tasks, Claude 3.5-Sonnet performed the best, solving 7/24 tasks
and managing to create automatic structures typically seen in Factorio’s early game; specifically,
compact drilling lines coordinating 10+ machines across up to four factory sections (see Table 1).
GPT-4o (5/24 tasks solved), Deepseek-v3 (5/24) and Gemini-2-Flash (4/24) managed to consistently
create simpler factories but struggled with higher complexity tasks (See Figure 4). Llama-3.3-70B
and GPT-4o-Mini (both 2/24 tasks solved) were only able to create single machine factories.

In general, agents were only able to solve low-complexity tasks (see Figure 4). The hardest solved task
(plastic bar) has a complexity measurement of 9.4, whereas the hardest overall lab-play through-
put task (utility-science-pack) has complexity measurement of 374.8, i.e ∼39 times more
complex than the hardest solved task (for full complexity measures, see Appendix H). In comparison,
a human baseline was able to solve 20/24 tasks within 128 steps (See Appendix H.7), demonstrating
a significant capability gap. For lab-play LLM troubleshooting tasks, Claude 3.5-Sonnet performed
best (0.26 F1), followed by GPT-4o (0.10 F1) and Deepseek-v3 (0.09 F1), with no improvement
when using the vision modality. For VLM spatial reasoning tasks, models achieve between 50-80%
of the human baseline, demonstrating a significant capability gap (see Appendix B.2).

4.1 Analysis

Insight 1: Agents who carry out long-term planning do better in open-play. In open-play, agents
are given an open-ended directive to create the biggest factory possible, and need to set instrumental
objectives themselves to make long-term progress. We observe a clear trend that agents who showed
higher long-horizon planning capabilities combined with ambitious objective-setting achieve a higher
PS in open-play (See analysis at Appendix B.1). This is highlighted by a discrepancy between
lab-play and open-play results, where Deepseek-v3 succeeds in lab-play with early-automation (see
Figure 4) but rarely attempts to create factories in open-play without a set objective, resulting in weak
entity crafting statistics (See Figure 5) and poor production scores. This shows that the ability to set
useful long-horizon objectives is independent from the ability to successfully use and interact with
novel APIs in simulated environments.

7

Figure 5: Open-ended challenges highlight differences in objective setting and general capability.
We illustrate the rates at which various models produce items with multiple antecedent ingredients in
the open-play setting accross number of distinct antecedent ingredients required to craft an entity
(top) and accross steps (bottom). Claude 3.5-Sonnet immediately begins complex crafting and invests
in research, ultimately unlocking electric-mining-drills at step 3000, the deployment of which
boosts production of iron-plate thereafter. Weaker models like GPT-4o-Mini produce insignificant
quantities of multi-ingredient items.

Table 1: Model performance and coding characteristics in bounded Lab-Play: This table
combines task performance with code analysis for different models. Planning task success rate
measures completion percentage across 24 structured tasks. Spatial task accuracy measures the
best performing VLM*/LLM agent. Code characteristics include average lines per program (L),
percentage of lines that were print statements (P%), percentage of lines that were assertions (A%),
and percentage of programs that failed (F%). For failed programs, we track the error types: assertion
fails (AF%), code errors (C%), and environment errors (En%).

Model Planning task Spatial task Code Characteristics Error Types (%)
success (%) accuracy (F1) L P% A% F% AF% C% En%

Claude 3.5* 21.9± 1.3 0.24 65 43.3 2.0 50.6 0 3 97
GPT-4o* 16.6± 1.4 0.10 81 10.3 12.8 10.2 2 12 86
DeepSeek-v3 15.1± 1.7 0.09 37 25.4 13.9 25.3 0 2 98
Gemini-2 13.0± 1.3 0.08 133 16.2 0.0 16.6 1 46 53
Llama-3.3-70B 5.2± 1.0 0 38 23.9 12.9 23.7 0 24 76
GPT-4o-Mini* 4.2± 0.6 0.04 77 36.0 0.0 31.6 15 6 79

Insight 2: Agents lack spatial reasoning to iteratively increase factory complexity. A key
characteristic for success in Factorio involves iteratively combining multiple factory sections to create
complex production lines. In the lab-play throughput tasks, we show in Figure 4 that success rate
is inversely proportional to target-entity crafting recipe complexity (and thus proportional to the
complexity of the required factory). Frequent source of failures when constructing complex factories
include trying to place entities too close or on-top of each other, not leaving room for connections and
incorrect placement of inserters. This is also illustrated by the results for lab-play spatial reasoning
tasks, in which frontier models both overlook clear spatial errors in their factory, and hallucinate
structural issues where none exist. Interestingly, we note that there is no improvement in a VLM
setting, where the agent is given direct images of the factory (See Appendix B.2). We conclude that
weak spatial reasoning presents a major bottleneck for agents in FLE.

Insight 3: Agents display limited error-correction abilities and fall into degenerate debug loops.
A critical component for successful runs was an agents’ ability to interact to previous error logs

8

Table 2: Unbounded Game Environments
Environment Crafting Action Observation Agent Open

Depth Type Ended

Factorio (FLE) 19 Code (Py) Symbolic/Visual LLM !

Voyager 6-7 Code (JS) Symbolic LLM !

MineDojo 6-7 Discrete (300+) Multimodal RL/LLM #

NetHack (NLE) 2-3 Discrete (93) Symbolic RL #

Crafter 2-3 Discrete (17) Visual RL #

and carry out error correction. In lab-play, in successful task completions, 56% of steps resulted in
program execution errors (from which agents recovered), and in open-play this ranges from 29.7%
to 76.4%. Claude 3.5-Sonnet, GPT-4o and Deepseek were capable of simpler error correction but
lacked the ability to debug complex environments containing subtle defects, as side-effects introduced
during debugging destabilise the environment. In lab-play, this limitation is illustrated by the frequent
decrease of task performance across steps in Figure 4 where the agents broke existing working
structures due to incorrectly identifying the root-cause of problems. In open-play this results in the
flat-line behaviour seen in Figure 3 with no PS progression. This was often due to agents falling into
a loop of greedily repeating the same fix rather than exploring additional potential sources of the
problem. For instance, in one run GPT-4o used the same API method incorrectly for 78 contiguous
steps (from Step 120), receiving identical error message each time 4.

Insight 4: Agents exhibit different coding styles while interacting with the environment. We
evaluate trajectories with automatic checkers to evaluate how successful models are at using the
FLE API. We find that models exhibit different coding styles, with GPT-4o using more assert checks
(defensive programming) in within their code than Claude 3.5-Sonnet, which favors a REPL approach
with high print usage. Notably, Gemini-2 produces the longest programs but makes the most code
errors, while GPT-4o-Mini has the highest rate of assertion failures. These suggest models use very
different approaches to explore and engage with the environment in FLE. Using prints suggests
being uncertain of state, and exploring new areas, whereas assert statements are likely used to clarify
existing knowledge (see Table 1).

5 Related Work

Games have served as fundamental benchmarks for AI research, providing standardized environ-
ments with clear metrics and natural difficulty gradients (Campbell et al., 2002; Silver et al., 2016;
Berner et al., 2019). Recent advances have increasingly focused on using LLMs within game-like
environments, exploring their interactive and agentic capabilities.

Game Environments. MineRL (Guss et al., 2019), MineDojo (Fan et al., 2022) and Voyager (Wang
et al., 2023) provide agent interfaces to Minecraft, an unbounded and open-ended crafting game.
ALFWorld (Shridhar et al., 2020) combines language understanding with embodied closed-ended
tasks in bounded household environments. NetHack Learning Environment(NLE) (Küttler et al.,
2020) offers an unbounded, highly complex, long-term planning and resource management (5,976
distinct entities) environment based on NetHack, which was adapted for LLM usage by (Jeurissen
et al., 2024). Finally, BALROG (Paglieri et al., 2024) provides a framework to benchmark LLMs on
six RL-environments spanning visual puzzles to real-time strategy, focusing on evaluating navigation,
exploration, resource management and long-term planning.

Resource Automation. While several environments test manual resource management by an agent:
Crafter (Hafner, 2021), NetHack, MineDojo, and Voyager; only FLE challenges agents to maintain
automated systems of resource production as a primary emphasis. Moreover, the exponential scaling
requirements of resource automation provides an evaluation signal that avoids saturation by models
even as their capabilities scale by orders of magnitude (See Appendix J for example derivation of
complexity comparison between FLE and modded Minecraft).

4On two occasions, GPT-4o-Mini simply gave up and repeatedly asked to be reset - see Appendix G

9

Factorio for AI Research. Prior work has explored Factorio as a platform for AI research (Kant,
2025), and for closed-domain settings (Reid et al., 2021), focusing on integer programming models
and meta-heuristics. We build on this foundation to offer a standardized text-based interface for agents
to solve open-ended challenges in long-term planning, spatial reasoning, and factory optimization.

6 Limitations, Future Work & Conclusion

A major concern for any environment benchmark is reward hacking (Clark & Amodei, 2016; Skalse
et al., 2022). In our setting, this could involve two main attack surfaces: Python API (as seen within
Denison et al. (2024)) or within the Factorio game-engine itself via malicious Lua code submission.
During our evaluations, the agent was able to occasionally trigger resetting the Factorio gamestate
but we observed no direct examples of reward hacking.

While our Python API sidesteps visual processing, a promising direction for future work is developing
a GUI-based interaction track. Such a track would enable comparison of agent performance across
different interaction modalities and could reveal whether certain spatial tasks benefit from visual-
motor interfaces.

Whilst the authors were, in shorter game time, able to outperform frontier agents, it is unclear if
achieving end-game goals (e.g. escape the world) is achievable to humans using only an API in a
reasonable time-frame. We did however prove that each step in the chain to launch a rocket was
achievable, and that all tasks in lab-play can be completed. Moreover our lab-play error detection
experiments showed limited or no improvement when including vision as an additional modality.
Additional improvements to observation space could include more sophisticated error correction and
debugging support, inspired by code refinement techniques from Liu et al. (2024a).

While our work currently focuses on single-agent interactions, FLE also supports multi-agent sce-
narios. A promising extension includes cooperative and competitive multi-agent scenarios, inspired
by frameworks like Camel Li et al. (2023), Project Sid AL et al. (2024), and Generative Agents
Park et al. (2023). This would enable exploration of emergent cooperation, competition (for finite
resources), and multi-objective optimization.

Finally, FLE was intentionally designed to support sophisticated agent scaffolding. We have made it
simple for researchers to plug in their own more advanced memory systems, multi-agent protocols,
tool-use, planning abstractions, and have exposed a Gym-style interface to the environment. Never-
theless, all of our insights and findings are centered around reasoning behaviour and not affected by
agentic scaffoldings. We fully encourage alternative agent implementations and leave that for future
work.

Conclusion: In this work, we introduce the Factorio Learning Environment (FLE), a novel framework
for evaluating the capabilities of agents in an unbounded, open-ended environment. The unbounded
nature of FLE provides a benchmark that will resist saturation as progress in LLMs continues to
advance. FLE’s exponentially scaling reward system and requirement for capabilities across multiple
areas create natural curricula that can meaningfully differentiate between increasingly strong models.
Through our evaluation, we demonstrate that current state-of-the-art agents struggle with coordination
and optimization challenges inherent in simple automation and logistical tasks. The limitations we
observed in spatial reasoning, long-term planning, and intelligent error correction highlight gaps in
capabilities of foundation language models in novel environments.

References
AL, A., Ahn, A., Becker, N., Carroll, S., Christie, N., Cortes, M., Demirci, A., Du, M., Li, F., Luo, S.,

Wang, P. Y., Willows, M., Yang, F., and Yang, G. R. Project sid: Many-agent simulations toward ai
civilization, 2024. URL https://arxiv.org/abs/2411.00114.

Anthropic. Claude 3.5 sonnet: Enhanced intelligence and versatility, 2024. URL https://www.
anthropic.com/news/claude-3-5-sonnet. 20241022-v2:0 version.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi, D., Fischer, Q.,
Hashme, S., Hesse, C., et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019.

10

https://arxiv.org/abs/2411.00114
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet

Campbell, M., Hoane, A. J., and Hsu, F.-h. Deep Blue. Artificial Intelligence, 134(1–2):57–83, 2002.
doi: 10.1016/S0004-3702(01)00129-1.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., Edwards, H., Burda, Y.,
Joseph, N., Brockman, G., et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

Clark, J. and Amodei, D. Faulty reward functions in the wild. Internet: https://blog. openai.
com/faulty-reward-functions, 2016.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J.,
Hilton, J., Nakano, R., et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

DeepSeek-AI, Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C., Zhang, C.,
Ruan, C., Dai, D., Guo, D., Yang, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., Luo, F., Hao, G.,
Chen, G., Li, G., Zhang, H., Bao, H., Xu, H., Wang, H., Zhang, H., Ding, H., Xin, H., Gao, H., Li,
H., Qu, H., Cai, J. L., Liang, J., Guo, J., Ni, J., Li, J., Wang, J., Chen, J., Chen, J., Yuan, J., Qiu, J.,
Li, J., Song, J., Dong, K., Hu, K., Gao, K., Guan, K., Huang, K., Yu, K., Wang, L., Zhang, L., Xu,
L., Xia, L., Zhao, L., Wang, L., Zhang, L., Li, M., Wang, M., Zhang, M., Zhang, M., Tang, M., Li,
M., Tian, N., Huang, P., Wang, P., Zhang, P., Wang, Q., Zhu, Q., Chen, Q., Du, Q., Chen, R. J., Jin,
R. L., Ge, R., Zhang, R., Pan, R., Wang, R., Xu, R., Zhang, R., Chen, R., Li, S. S., Lu, S., Zhou,
S., Chen, S., Wu, S., Ye, S., Ye, S., Ma, S., Wang, S., Zhou, S., Yu, S., Zhou, S., Pan, S., Wang,
T., Yun, T., Pei, T., Sun, T., Xiao, W. L., Zeng, W., Zhao, W., An, W., Liu, W., Liang, W., Gao,
W., Yu, W., Zhang, W., Li, X. Q., Jin, X., Wang, X., Bi, X., Liu, X., Wang, X., Shen, X., Chen,
X., Zhang, X., Chen, X., Nie, X., Sun, X., Wang, X., Cheng, X., Liu, X., Xie, X., Liu, X., Yu, X.,
Song, X., Shan, X., Zhou, X., Yang, X., Li, X., Su, X., Lin, X., Li, Y. K., Wang, Y. Q., Wei, Y. X.,
Zhu, Y. X., Zhang, Y., Xu, Y., Xu, Y., Huang, Y., Li, Y., Zhao, Y., Sun, Y., Li, Y., Wang, Y., Yu, Y.,
Zheng, Y., Zhang, Y., Shi, Y., Xiong, Y., He, Y., Tang, Y., Piao, Y., Wang, Y., Tan, Y., Ma, Y., Liu,
Y., Guo, Y., Wu, Y., Ou, Y., Zhu, Y., Wang, Y., Gong, Y., Zou, Y., He, Y., Zha, Y., Xiong, Y., Ma,
Y., Yan, Y., Luo, Y., You, Y., Liu, Y., Zhou, Y., Wu, Z. F., Ren, Z. Z., Ren, Z., Sha, Z., Fu, Z., Xu,
Z., Huang, Z., Zhang, Z., Xie, Z., Zhang, Z., Hao, Z., Gou, Z., Ma, Z., Yan, Z., Shao, Z., Xu, Z.,
Wu, Z., Zhang, Z., Li, Z., Gu, Z., Zhu, Z., Liu, Z., Li, Z., Xie, Z., Song, Z., Gao, Z., and Pan, Z.
Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/2412.19437.

Denison, C., MacDiarmid, M., Barez, F., Duvenaud, D., Kravec, S., Marks, S., Schiefer, N., Soklaski,
R., Tamkin, A., Kaplan, J., et al. Sycophancy to subterfuge: Investigating reward-tampering in
large language models. arXiv preprint arXiv:2406.10162, 2024.

ExEvolution. Eternity cluster: 1 million science per minute. Reddit, March
2024. URL https://www.reddit.com/r/factorio/comments/1b4s3eb/eternity_
cluster_1_million_science_per_minute/. r/factorio subreddit post.

Fan, L., Xie, A., Shi, W., Sadat, A., Tan, X., Gong, W., Liang, J., and Huang, D.-A. MineDojo:
Building Open-Ended Embodied Agents with Internet-Scale Knowledge. In Advances in Neural
Information Processing Systems (NeurIPS), 2022. URL https://arxiv.org/abs/2210.14168.

Guss, W. H., Houghton, B., Topin, N., Wang, P., Codel, C., Veloso, M., and Salakhutdinov, R. Minerl:
A large-scale dataset of minecraft demonstrations. arXiv preprint arXiv:1907.13440, 2019.

Hafner, D. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780, 2021.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and Steinhardt, J.
Measuring mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874,
2021.

Jeurissen, D., Perez-Liebana, D., Gow, J., Çakmak, D., and Kwan, J. Playing NetHack with LLMs:
Potential & Limitations as Zero-Shot Agents. arXiv preprint arXiv:2403.00690, 2024. URL
https://arxiv.org/abs/2403.00690.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press, O., and Narasimhan, K. Swe-bench: Can
language models resolve real-world github issues? arXiv preprint arXiv:2310.06770, 2023.

11

https://arxiv.org/abs/2412.19437
https://www.reddit.com/r/factorio/comments/1b4s3eb/eternity_cluster_1_million_science_per_minute/
https://www.reddit.com/r/factorio/comments/1b4s3eb/eternity_cluster_1_million_science_per_minute/
https://arxiv.org/abs/2210.14168
https://arxiv.org/abs/2403.00690

Kambhampati, S., Valmeekam, K., Guan, L., Stechly, K., Verma, M., Bhambri, S., Saldyt, L., and
Murthy, A. Llms can’t plan, but can help planning in llm-modulo frameworks. arXiv preprint
arXiv:2402.01817, 2024.

Kant, N. Develop ai agents for system engineering in factorio, 2025. URL https://arxiv.org/
abs/2502.01492.

Küttler, H., Nardelli, N., Miller, A., Raileanu, R., Selvatici, M., Grefenstette, E., and Rocktäschel,
T. The nethack learning environment. Advances in Neural Information Processing Systems, 33:
7671–7684, 2020.

Li, G., Hammoud, H. A. A. K., Itani, H., Khizbullin, D., and Ghanem, B. Camel: Communicative
agents for "mind" exploration of large language model society, 2023. URL https://arxiv.org/
abs/2303.17760.

Liu, A. Z., Wang, X., Sansom, J., Fu, Y., Choi, J., Sohn, S., Kim, J., and Lee, H. Interactive
and expressive code-augmented planning with large language models, 2024a. URL https:
//arxiv.org/abs/2411.13826.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua, M., Petroni, F., and Liang, P. Lost
in the middle: How language models use long contexts. Transactions of the Association for
Computational Linguistics, 12:157–173, 2024b. doi: 10.1162/tacl_a_00638.

Liu, X., Yu, H., Zhang, H., Xu, Y., Lei, X., Lai, H., Gu, Y., Ding, H., Men, K., Yang, K., et al.
Agentbench: Evaluating llms as agents. arXiv preprint arXiv:2308.03688, 2023.

MetaAI. Llama 3.3, 2024. URL https://www.llama.com/docs/
model-cards-and-prompt-formats/llama3_3/. Accessed: 2025-01-25.

Naur, P. Programming as theory building. Microprocessing and Microprogramming, 15(5):253–
261, 1985. ISSN 0165-6074. doi: https://doi.org/10.1016/0165-6074(85)90032-8. URL https:
//www.sciencedirect.com/science/article/pii/0165607485900328.

OpenAI. Gpt-5 system card. Technical report, OpenAI, 2025. URL https://cdn.openai.com/
gpt-5-system-card.pdf.

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D.,
Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Balaji, S., Balcom, V.,
Baltescu, P., Bao, H., Bavarian, M., Belgum, J., Bello, I., Berdine, J., Bernadett-Shapiro, G.,
Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman, A.-L., Brockman, G., Brooks, T.,
Brundage, M., Button, K., Cai, T., Campbell, R., Cann, A., Carey, B., Carlson, C., Carmichael,
R., Chan, B., Chang, C., Chantzis, F., Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess,
B., Cho, C., Chu, C., Chung, H. W., Cummings, D., Currier, J., Dai, Y., Decareaux, C., Degry, T.,
Deutsch, N., Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning, S., Ecoffet, A., Eleti, A.,
Eloundou, T., Farhi, D., Fedus, L., Felix, N., Fishman, S. P., Forte, J., Fulford, I., Gao, L., Georges,
E., Gibson, C., Goel, V., Gogineni, T., Goh, G., Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray,
S., Greene, R., Gross, J., Gu, S. S., Guo, Y., Hallacy, C., Han, J., Harris, J., He, Y., Heaton, M.,
Heidecke, J., Hesse, C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B., Hsu, K., Hu, S.,
Hu, X., Huizinga, J., Jain, S., Jain, S., Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S.,
Jonn, B., Jun, H., Kaftan, T., Łukasz Kaiser, Kamali, A., Kanitscheider, I., Keskar, N. S., Khan, T.,
Kilpatrick, L., Kim, J. W., Kim, C., Kim, Y., Kirchner, J. H., Kiros, J., Knight, M., Kokotajlo, D.,
Łukasz Kondraciuk, Kondrich, A., Konstantinidis, A., Kosic, K., Krueger, G., Kuo, V., Lampe,
M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D., Li, C. M., Lim, R., Lin, M., Lin, S., Litwin, M.,
Lopez, T., Lowe, R., Lue, P., Makanju, A., Malfacini, K., Manning, S., Markov, T., Markovski, Y.,
Martin, B., Mayer, K., Mayne, A., McGrew, B., McKinney, S. M., McLeavey, C., McMillan, P.,
McNeil, J., Medina, D., Mehta, A., Menick, J., Metz, L., Mishchenko, A., Mishkin, P., Monaco,
V., Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O., Mély, D., Nair, A., Nakano, R.,
Nayak, R., Neelakantan, A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki, J., Paino, A.,
Palermo, J., Pantuliano, A., Parascandolo, G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M., de Oliveira Pinto, H. P., Michael, Pokorny,
Pokrass, M., Pong, V. H., Powell, T., Power, A., Power, B., Proehl, E., Puri, R., Radford, A., Rae,
J., Ramesh, A., Raymond, C., Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez, H., Ryder,

12

https://arxiv.org/abs/2502.01492
https://arxiv.org/abs/2502.01492
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2411.13826
https://arxiv.org/abs/2411.13826
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.sciencedirect.com/science/article/pii/0165607485900328
https://www.sciencedirect.com/science/article/pii/0165607485900328
https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf

N., Saltarelli, M., Sanders, T., Santurkar, S., Sastry, G., Schmidt, H., Schnurr, D., Schulman, J.,
Selsam, D., Sheppard, K., Sherbakov, T., Shieh, J., Shoker, S., Shyam, P., Sidor, S., Sigler, E.,
Simens, M., Sitkin, J., Slama, K., Sohl, I., Sokolowsky, B., Song, Y., Staudacher, N., Such, F. P.,
Summers, N., Sutskever, I., Tang, J., Tezak, N., Thompson, M. B., Tillet, P., Tootoonchian, A.,
Tseng, E., Tuggle, P., Turley, N., Tworek, J., Uribe, J. F. C., Vallone, A., Vijayvergiya, A., Voss,
C., Wainwright, C., Wang, J. J., Wang, A., Wang, B., Ward, J., Wei, J., Weinmann, C., Welihinda,
A., Welinder, P., Weng, J., Weng, L., Wiethoff, M., Willner, D., Winter, C., Wolrich, S., Wong, H.,
Workman, L., Wu, S., Wu, J., Wu, M., Xiao, K., Xu, T., Yoo, S., Yu, K., Yuan, Q., Zaremba, W.,
Zellers, R., Zhang, C., Zhang, M., Zhao, S., Zheng, T., Zhuang, J., Zhuk, W., and Zoph, B. Gpt-4
technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Paglieri, D., Cupiał, B., Coward, S., Piterbarg, U., Wolczyk, M., Khan, A., Pignatelli, E., Kuciński,
Ł., Pinto, L., Fergus, R., et al. Balrog: Benchmarking agentic llm and vlm reasoning on games.
arXiv preprint arXiv:2411.13543, 2024.

Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R., Liang, P., and Bernstein, M. S. Generative agents:
Interactive simulacra of human behavior, 2023. URL https://arxiv.org/abs/2304.03442.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Reid, K. N., Miralavy, I., Kelly, S., Banzhaf, W., and Gondro, C. The factory must grow: Automation
in factorio, 2021. URL https://arxiv.org/abs/2102.04871.

Ruan, J., Chen, Y., Zhang, B., Xu, Z., Bao, T., Mao, H., Li, Z., Zeng, X., Zhao, R., et al. Tptu: Task
planning and tool usage of large language model-based ai agents. In NeurIPS 2023 Foundation
Models for Decision Making Workshop, 2023.

Shridhar, M., Mottaghi, R., Kolve, E., and Gupta, A. ALFWorld: Aligning Text and Embodied
Environments for Interactive Learning. https://github.com/alfworld/alfworld, 2020.
Accessed: 2025-01-07.

Silver, D., Huang, A., Maddison, C. J., and et al. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, 2016. doi: 10.1038/nature16961.

Skalse, J., Howe, N., Krasheninnikov, D., and Krueger, D. Defining and characterizing reward
gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth,
A., Millican, K., Silver, D., Johnson, M., Antonoglou, I., Schrittwieser, J., Glaese, A., Chen, J.,
Pitler, E., Lillicrap, T., Lazaridou, A., Firat, O., Molloy, J., Isard, M., Barham, P. R., Hennigan,
T., Lee, B., Viola, F., Reynolds, M., Xu, Y., Doherty, R., Collins, E., Meyer, C., Rutherford, E.,
Moreira, E., Ayoub, K., Goel, M., Krawczyk, J., Du, C., Chi, E., Cheng, H.-T., Ni, E., Shah, P.,
Kane, P., Chan, B., Faruqui, M., Severyn, A., Lin, H., Li, Y., Cheng, Y., Ittycheriah, A., Mahdieh,
M., Chen, M., Sun, P., Tran, D., Bagri, S., Lakshminarayanan, B., Liu, J., Orban, A., Güra, F.,
Zhou, H., Song, X., Boffy, A., Ganapathy, H., Zheng, S., Choe, H., Ágoston Weisz, Zhu, T., Lu, Y.,
Gopal, S., Kahn, J., Kula, M., Pitman, J., Shah, R., Taropa, E., Merey, M. A., Baeuml, M., Chen,
Z., Shafey, L. E., Zhang, Y., Sercinoglu, O., Tucker, G., Piqueras, E., Krikun, M., Barr, I., Savinov,
N., Danihelka, I., Roelofs, B., White, A., Andreassen, A., von Glehn, T., Yagati, L., Kazemi, M.,
Gonzalez, L., Khalman, M., Sygnowski, J., Frechette, A., Smith, C., Culp, L., Proleev, L., Luan,
Y., Chen, X., Lottes, J., Schucher, N., Lebron, F., Rrustemi, A., Clay, N., Crone, P., Kocisky, T.,
Zhao, J., Perz, B., Yu, D., Howard, H., Bloniarz, A., Rae, J. W., Lu, H., Sifre, L., Maggioni, M.,
Alcober, F., Garrette, D., Barnes, M., Thakoor, S., Austin, J., Barth-Maron, G., Wong, W., Joshi,
R., Chaabouni, R., Fatiha, D., Ahuja, A., Tomar, G. S., Senter, E., Chadwick, M., Kornakov, I.,
Attaluri, N., Iturrate, I., Liu, R., Li, Y., Cogan, S., Chen, J., Jia, C., Gu, C., Zhang, Q., Grimstad,
J., Hartman, A. J., Garcia, X., Pillai, T. S., Devlin, J., Laskin, M., de Las Casas, D., Valter, D.,
Tao, C., Blanco, L., Badia, A. P., Reitter, D., Chen, M., Brennan, J., Rivera, C., Brin, S., Iqbal, S.,
Surita, G., Labanowski, J., Rao, A., Winkler, S., Parisotto, E., Gu, Y., Olszewska, K., Addanki,
R., Miech, A., Louis, A., Teplyashin, D., Brown, G., Catt, E., Balaguer, J., Xiang, J., Wang, P.,
Ashwood, Z., Briukhov, A., Webson, A., Ganapathy, S., Sanghavi, S., Kannan, A., Chang, M.-W.,
Stjerngren, A., Djolonga, J., Sun, Y., Bapna, A., Aitchison, M., Pejman, P., Michalewski, H., Yu,
T., Wang, C., Love, J., Ahn, J., Bloxwich, D., Han, K., Humphreys, P., Sellam, T., Bradbury, J.,
Godbole, V., Samangooei, S., Damoc, B., Kaskasoli, A., Arnold, S. M. R., Vasudevan, V., Agrawal,

13

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2102.04871
https://github.com/alfworld/alfworld

S., Riesa, J., Lepikhin, D., Tanburn, R., Srinivasan, S., Lim, H., Hodkinson, S., Shyam, P., Ferret,
J., Hand, S., Garg, A., Paine, T. L., Li, J., Li, Y., Giang, M., Neitz, A., Abbas, Z., York, S., Reid,
M., Cole, E., Chowdhery, A., Das, D., Rogozińska, D., Nikolaev, V., Sprechmann, P., Nado, Z.,
Zilka, L., Prost, F., He, L., Monteiro, M., Mishra, G., Welty, C., Newlan, J., Jia, D., Allamanis,
M., Hu, C. H., de Liedekerke, R., Gilmer, J., Saroufim, C., Rijhwani, S., Hou, S., Shrivastava, D.,
Baddepudi, A., Goldin, A., Ozturel, A., Cassirer, A., Xu, Y., Sohn, D., Sachan, D., Amplayo, R. K.,
Swanson, C., Petrova, D., Narayan, S., Guez, A., Brahma, S., Landon, J., Patel, M., Zhao, R.,
Villela, K., Wang, L., Jia, W., Rahtz, M., Giménez, M., Yeung, L., Keeling, J., Georgiev, P., Mincu,
D., Wu, B., Haykal, S., Saputro, R., Vodrahalli, K., Qin, J., Cankara, Z., Sharma, A., Fernando, N.,
Hawkins, W., Neyshabur, B., Kim, S., Hutter, A., Agrawal, P., Castro-Ros, A., van den Driessche,
G., Wang, T., Yang, F., yiin Chang, S., Komarek, P., McIlroy, R., Lučić, M., Zhang, G., Farhan,
W., Sharman, M., Natsev, P., Michel, P., Bansal, Y., Qiao, S., Cao, K., Shakeri, S., Butterfield, C.,
Chung, J., Rubenstein, P. K., Agrawal, S., Mensch, A., Soparkar, K., Lenc, K., Chung, T., Pope,
A., Maggiore, L., Kay, J., Jhakra, P., Wang, S., Maynez, J., Phuong, M., Tobin, T., Tacchetti, A.,
Trebacz, M., Robinson, K., Katariya, Y., Riedel, S., Bailey, P., Xiao, K., Ghelani, N., Aroyo, L.,
Slone, A., Houlsby, N., Xiong, X., Yang, Z., Gribovskaya, E., Adler, J., Wirth, M., Lee, L., Li, M.,
Kagohara, T., Pavagadhi, J., Bridgers, S., Bortsova, A., Ghemawat, S., Ahmed, Z., Liu, T., Powell,
R., Bolina, V., Iinuma, M., Zablotskaia, P., Besley, J., Chung, D.-W., Dozat, T., Comanescu, R., Si,
X., Greer, J., Su, G., Polacek, M., Kaufman, R. L., Tokumine, S., Hu, H., Buchatskaya, E., Miao,
Y., Elhawaty, M., Siddhant, A., Tomasev, N., Xing, J., Greer, C., Miller, H., Ashraf, S., Roy, A.,
Zhang, Z., Ma, A., Filos, A., Besta, M., Blevins, R., Klimenko, T., Yeh, C.-K., Changpinyo, S.,
Mu, J., Chang, O., Pajarskas, M., Muir, C., Cohen, V., Lan, C. L., Haridasan, K., Marathe, A.,
Hansen, S., Douglas, S., Samuel, R., Wang, M., Austin, S., Lan, C., Jiang, J., Chiu, J., Lorenzo,
J. A., Sjösund, L. L., Cevey, S., Gleicher, Z., Avrahami, T., Boral, A., Srinivasan, H., Selo, V.,
May, R., Aisopos, K., Hussenot, L., Soares, L. B., Baumli, K., Chang, M. B., Recasens, A., Caine,
B., Pritzel, A., Pavetic, F., Pardo, F., Gergely, A., Frye, J., Ramasesh, V., Horgan, D., Badola, K.,
Kassner, N., Roy, S., Dyer, E., Campos, V. C., Tomala, A., Tang, Y., Badawy, D. E., White, E.,
Mustafa, B., Lang, O., Jindal, A., Vikram, S., Gong, Z., Caelles, S., Hemsley, R., Thornton, G.,
Feng, F., Stokowiec, W., Zheng, C., Thacker, P., Çağlar Ünlü, Zhang, Z., Saleh, M., Svensson,
J., Bileschi, M., Patil, P., Anand, A., Ring, R., Tsihlas, K., Vezer, A., Selvi, M., Shevlane, T.,
Rodriguez, M., Kwiatkowski, T., Daruki, S., Rong, K., Dafoe, A., FitzGerald, N., Gu-Lemberg,
K., Khan, M., Hendricks, L. A., Pellat, M., Feinberg, V., Cobon-Kerr, J., Sainath, T., Rauh, M.,
Hashemi, S. H., Ives, R., Hasson, Y., Noland, E., Cao, Y., Byrd, N., Hou, L., Wang, Q., Sottiaux,
T., Paganini, M., Lespiau, J.-B., Moufarek, A., Hassan, S., Shivakumar, K., van Amersfoort, J.,
Mandhane, A., Joshi, P., Goyal, A., Tung, M., Brock, A., Sheahan, H., Misra, V., Li, C., Rakićević,
N., Dehghani, M., Liu, F., Mittal, S., Oh, J., Noury, S., Sezener, E., Huot, F., Lamm, M., Cao,
N. D., Chen, C., Mudgal, S., Stella, R., Brooks, K., Vasudevan, G., Liu, C., Chain, M., Melinkeri,
N., Cohen, A., Wang, V., Seymore, K., Zubkov, S., Goel, R., Yue, S., Krishnakumaran, S., Albert,
B., Hurley, N., Sano, M., Mohananey, A., Joughin, J., Filonov, E., Kepa, T., Eldawy, Y., Lim, J.,
Rishi, R., Badiezadegan, S., Bos, T., Chang, J., Jain, S., Padmanabhan, S. G. S., Puttagunta, S.,
Krishna, K., Baker, L., Kalb, N., Bedapudi, V., Kurzrok, A., Lei, S., Yu, A., Litvin, O., Zhou, X.,
Wu, Z., Sobell, S., Siciliano, A., Papir, A., Neale, R., Bragagnolo, J., Toor, T., Chen, T., Anklin,
V., Wang, F., Feng, R., Gholami, M., Ling, K., Liu, L., Walter, J., Moghaddam, H., Kishore, A.,
Adamek, J., Mercado, T., Mallinson, J., Wandekar, S., Cagle, S., Ofek, E., Garrido, G., Lombriser,
C., Mukha, M., Sun, B., Mohammad, H. R., Matak, J., Qian, Y., Peswani, V., Janus, P., Yuan, Q.,
Schelin, L., David, O., Garg, A., He, Y., Duzhyi, O., Älgmyr, A., Lottaz, T., Li, Q., Yadav, V.,
Xu, L., Chinien, A., Shivanna, R., Chuklin, A., Li, J., Spadine, C., Wolfe, T., Mohamed, K., Das,
S., Dai, Z., He, K., von Dincklage, D., Upadhyay, S., Maurya, A., Chi, L., Krause, S., Salama,
K., Rabinovitch, P. G., M, P. K. R., Selvan, A., Dektiarev, M., Ghiasi, G., Guven, E., Gupta, H.,
Liu, B., Sharma, D., Shtacher, I. H., Paul, S., Akerlund, O., Aubet, F.-X., Huang, T., Zhu, C.,
Zhu, E., Teixeira, E., Fritze, M., Bertolini, F., Marinescu, L.-E., Bölle, M., Paulus, D., Gupta, K.,
Latkar, T., Chang, M., Sanders, J., Wilson, R., Wu, X., Tan, Y.-X., Thiet, L. N., Doshi, T., Lall,
S., Mishra, S., Chen, W., Luong, T., Benjamin, S., Lee, J., Andrejczuk, E., Rabiej, D., Ranjan,
V., Styrc, K., Yin, P., Simon, J., Harriott, M. R., Bansal, M., Robsky, A., Bacon, G., Greene, D.,
Mirylenka, D., Zhou, C., Sarvana, O., Goyal, A., Andermatt, S., Siegler, P., Horn, B., Israel, A.,
Pongetti, F., Chen, C.-W. L., Selvatici, M., Silva, P., Wang, K., Tolins, J., Guu, K., Yogev, R.,
Cai, X., Agostini, A., Shah, M., Nguyen, H., Donnaile, N. O., Pereira, S., Friso, L., Stambler, A.,
Kurzrok, A., Kuang, C., Romanikhin, Y., Geller, M., Yan, Z., Jang, K., Lee, C.-C., Fica, W., Malmi,
E., Tan, Q., Banica, D., Balle, D., Pham, R., Huang, Y., Avram, D., Shi, H., Singh, J., Hidey, C.,

14

Ahuja, N., Saxena, P., Dooley, D., Potharaju, S. P., O’Neill, E., Gokulchandran, A., Foley, R.,
Zhao, K., Dusenberry, M., Liu, Y., Mehta, P., Kotikalapudi, R., Safranek-Shrader, C., Goodman,
A., Kessinger, J., Globen, E., Kolhar, P., Gorgolewski, C., Ibrahim, A., Song, Y., Eichenbaum,
A., Brovelli, T., Potluri, S., Lahoti, P., Baetu, C., Ghorbani, A., Chen, C., Crawford, A., Pal, S.,
Sridhar, M., Gurita, P., Mujika, A., Petrovski, I., Cedoz, P.-L., Li, C., Chen, S., Santo, N. D.,
Goyal, S., Punjabi, J., Kappaganthu, K., Kwak, C., LV, P., Velury, S., Choudhury, H., Hall, J.,
Shah, P., Figueira, R., Thomas, M., Lu, M., Zhou, T., Kumar, C., Jurdi, T., Chikkerur, S., Ma,
Y., Yu, A., Kwak, S., Ähdel, V., Rajayogam, S., Choma, T., Liu, F., Barua, A., Ji, C., Park, J. H.,
Hellendoorn, V., Bailey, A., Bilal, T., Zhou, H., Khatir, M., Sutton, C., Rzadkowski, W., Macintosh,
F., Shagin, K., Medina, P., Liang, C., Zhou, J., Shah, P., Bi, Y., Dankovics, A., Banga, S., Lehmann,
S., Bredesen, M., Lin, Z., Hoffmann, J. E., Lai, J., Chung, R., Yang, K., Balani, N., Bražinskas, A.,
Sozanschi, A., Hayes, M., Alcalde, H. F., Makarov, P., Chen, W., Stella, A., Snijders, L., Mandl,
M., Kärrman, A., Nowak, P., Wu, X., Dyck, A., Vaidyanathan, K., R, R., Mallet, J., Rudominer, M.,
Johnston, E., Mittal, S., Udathu, A., Christensen, J., Verma, V., Irving, Z., Santucci, A., Elsayed,
G., Davoodi, E., Georgiev, M., Tenney, I., Hua, N., Cideron, G., Leurent, E., Alnahlawi, M.,
Georgescu, I., Wei, N., Zheng, I., Scandinaro, D., Jiang, H., Snoek, J., Sundararajan, M., Wang, X.,
Ontiveros, Z., Karo, I., Cole, J., Rajashekhar, V., Tumeh, L., Ben-David, E., Jain, R., Uesato, J.,
Datta, R., Bunyan, O., Wu, S., Zhang, J., Stanczyk, P., Zhang, Y., Steiner, D., Naskar, S., Azzam,
M., Johnson, M., Paszke, A., Chiu, C.-C., Elias, J. S., Mohiuddin, A., Muhammad, F., Miao, J.,
Lee, A., Vieillard, N., Park, J., Zhang, J., Stanway, J., Garmon, D., Karmarkar, A., Dong, Z., Lee,
J., Kumar, A., Zhou, L., Evens, J., Isaac, W., Irving, G., Loper, E., Fink, M., Arkatkar, I., Chen, N.,
Shafran, I., Petrychenko, I., Chen, Z., Jia, J., Levskaya, A., Zhu, Z., Grabowski, P., Mao, Y., Magni,
A., Yao, K., Snaider, J., Casagrande, N., Palmer, E., Suganthan, P., Castaño, A., Giannoumis, I.,
Kim, W., Rybiński, M., Sreevatsa, A., Prendki, J., Soergel, D., Goedeckemeyer, A., Gierke, W.,
Jafari, M., Gaba, M., Wiesner, J., Wright, D. G., Wei, Y., Vashisht, H., Kulizhskaya, Y., Hoover,
J., Le, M., Li, L., Iwuanyanwu, C., Liu, L., Ramirez, K., Khorlin, A., Cui, A., LIN, T., Wu, M.,
Aguilar, R., Pallo, K., Chakladar, A., Perng, G., Abellan, E. A., Zhang, M., Dasgupta, I., Kushman,
N., Penchev, I., Repina, A., Wu, X., van der Weide, T., Ponnapalli, P., Kaplan, C., Simsa, J., Li,
S., Dousse, O., Yang, F., Piper, J., Ie, N., Pasumarthi, R., Lintz, N., Vijayakumar, A., Andor, D.,
Valenzuela, P., Lui, M., Paduraru, C., Peng, D., Lee, K., Zhang, S., Greene, S., Nguyen, D. D.,
Kurylowicz, P., Hardin, C., Dixon, L., Janzer, L., Choo, K., Feng, Z., Zhang, B., Singhal, A., Du,
D., McKinnon, D., Antropova, N., Bolukbasi, T., Keller, O., Reid, D., Finchelstein, D., Raad,
M. A., Crocker, R., Hawkins, P., Dadashi, R., Gaffney, C., Franko, K., Bulanova, A., Leblond,
R., Chung, S., Askham, H., Cobo, L. C., Xu, K., Fischer, F., Xu, J., Sorokin, C., Alberti, C., Lin,
C.-C., Evans, C., Dimitriev, A., Forbes, H., Banarse, D., Tung, Z., Omernick, M., Bishop, C.,
Sterneck, R., Jain, R., Xia, J., Amid, E., Piccinno, F., Wang, X., Banzal, P., Mankowitz, D. J.,
Polozov, A., Krakovna, V., Brown, S., Bateni, M., Duan, D., Firoiu, V., Thotakuri, M., Natan, T.,
Geist, M., tan Girgin, S., Li, H., Ye, J., Roval, O., Tojo, R., Kwong, M., Lee-Thorp, J., Yew, C.,
Sinopalnikov, D., Ramos, S., Mellor, J., Sharma, A., Wu, K., Miller, D., Sonnerat, N., Vnukov, D.,
Greig, R., Beattie, J., Caveness, E., Bai, L., Eisenschlos, J., Korchemniy, A., Tsai, T., Jasarevic, M.,
Kong, W., Dao, P., Zheng, Z., Liu, F., Yang, F., Zhu, R., Teh, T. H., Sanmiya, J., Gladchenko, E.,
Trdin, N., Toyama, D., Rosen, E., Tavakkol, S., Xue, L., Elkind, C., Woodman, O., Carpenter, J.,
Papamakarios, G., Kemp, R., Kafle, S., Grunina, T., Sinha, R., Talbert, A., Wu, D., Owusu-Afriyie,
D., Du, C., Thornton, C., Pont-Tuset, J., Narayana, P., Li, J., Fatehi, S., Wieting, J., Ajmeri, O.,
Uria, B., Ko, Y., Knight, L., Héliou, A., Niu, N., Gu, S., Pang, C., Li, Y., Levine, N., Stolovich, A.,
Santamaria-Fernandez, R., Goenka, S., Yustalim, W., Strudel, R., Elqursh, A., Deck, C., Lee, H.,
Li, Z., Levin, K., Hoffmann, R., Holtmann-Rice, D., Bachem, O., Arora, S., Koh, C., Yeganeh,
S. H., Põder, S., Tariq, M., Sun, Y., Ionita, L., Seyedhosseini, M., Tafti, P., Liu, Z., Gulati, A.,
Liu, J., Ye, X., Chrzaszcz, B., Wang, L., Sethi, N., Li, T., Brown, B., Singh, S., Fan, W., Parisi,
A., Stanton, J., Koverkathu, V., Choquette-Choo, C. A., Li, Y., Lu, T., Ittycheriah, A., Shroff, P.,
Varadarajan, M., Bahargam, S., Willoughby, R., Gaddy, D., Desjardins, G., Cornero, M., Robenek,
B., Mittal, B., Albrecht, B., Shenoy, A., Moiseev, F., Jacobsson, H., Ghaffarkhah, A., Rivière, M.,
Walton, A., Crepy, C., Parrish, A., Zhou, Z., Farabet, C., Radebaugh, C., Srinivasan, P., van der
Salm, C., Fidjeland, A., Scellato, S., Latorre-Chimoto, E., Klimczak-Plucińska, H., Bridson, D.,
de Cesare, D., Hudson, T., Mendolicchio, P., Walker, L., Morris, A., Mauger, M., Guseynov, A.,
Reid, A., Odoom, S., Loher, L., Cotruta, V., Yenugula, M., Grewe, D., Petrushkina, A., Duerig, T.,
Sanchez, A., Yadlowsky, S., Shen, A., Globerson, A., Webb, L., Dua, S., Li, D., Bhupatiraju, S.,
Hurt, D., Qureshi, H., Agarwal, A., Shani, T., Eyal, M., Khare, A., Belle, S. R., Wang, L., Tekur,
C., Kale, M. S., Wei, J., Sang, R., Saeta, B., Liechty, T., Sun, Y., Zhao, Y., Lee, S., Nayak, P., Fritz,

15

D., Vuyyuru, M. R., Aslanides, J., Vyas, N., Wicke, M., Ma, X., Eltyshev, E., Martin, N., Cate,
H., Manyika, J., Amiri, K., Kim, Y., Xiong, X., Kang, K., Luisier, F., Tripuraneni, N., Madras, D.,
Guo, M., Waters, A., Wang, O., Ainslie, J., Baldridge, J., Zhang, H., Pruthi, G., Bauer, J., Yang,
F., Mansour, R., Gelman, J., Xu, Y., Polovets, G., Liu, J., Cai, H., Chen, W., Sheng, X., Xue, E.,
Ozair, S., Angermueller, C., Li, X., Sinha, A., Wang, W., Wiesinger, J., Koukoumidis, E., Tian, Y.,
Iyer, A., Gurumurthy, M., Goldenson, M., Shah, P., Blake, M., Yu, H., Urbanowicz, A., Palomaki,
J., Fernando, C., Durden, K., Mehta, H., Momchev, N., Rahimtoroghi, E., Georgaki, M., Raul,
A., Ruder, S., Redshaw, M., Lee, J., Zhou, D., Jalan, K., Li, D., Hechtman, B., Schuh, P., Nasr,
M., Milan, K., Mikulik, V., Franco, J., Green, T., Nguyen, N., Kelley, J., Mahendru, A., Hu, A.,
Howland, J., Vargas, B., Hui, J., Bansal, K., Rao, V., Ghiya, R., Wang, E., Ye, K., Sarr, J. M.,
Preston, M. M., Elish, M., Li, S., Kaku, A., Gupta, J., Pasupat, I., Juan, D.-C., Someswar, M., M.,
T., Chen, X., Amini, A., Fabrikant, A., Chu, E., Dong, X., Muthal, A., Buthpitiya, S., Jauhari,
S., Hua, N., Khandelwal, U., Hitron, A., Ren, J., Rinaldi, L., Drath, S., Dabush, A., Jiang, N.-J.,
Godhia, H., Sachs, U., Chen, A., Fan, Y., Taitelbaum, H., Noga, H., Dai, Z., Wang, J., Liang, C.,
Hamer, J., Ferng, C.-S., Elkind, C., Atias, A., Lee, P., Listík, V., Carlen, M., van de Kerkhof, J.,
Pikus, M., Zaher, K., Müller, P., Zykova, S., Stefanec, R., Gatsko, V., Hirnschall, C., Sethi, A.,
Xu, X. F., Ahuja, C., Tsai, B., Stefanoiu, A., Feng, B., Dhandhania, K., Katyal, M., Gupta, A.,
Parulekar, A., Pitta, D., Zhao, J., Bhatia, V., Bhavnani, Y., Alhadlaq, O., Li, X., Danenberg, P., Tu,
D., Pine, A., Filippova, V., Ghosh, A., Limonchik, B., Urala, B., Lanka, C. K., Clive, D., Sun, Y.,
Li, E., Wu, H., Hongtongsak, K., Li, I., Thakkar, K., Omarov, K., Majmundar, K., Alverson, M.,
Kucharski, M., Patel, M., Jain, M., Zabelin, M., Pelagatti, P., Kohli, R., Kumar, S., Kim, J., Sankar,
S., Shah, V., Ramachandruni, L., Zeng, X., Bariach, B., Weidinger, L., Vu, T., Andreev, A., He, A.,
Hui, K., Kashem, S., Subramanya, A., Hsiao, S., Hassabis, D., Kavukcuoglu, K., Sadovsky, A., Le,
Q., Strohman, T., Wu, Y., Petrov, S., Dean, J., and Vinyals, O. Gemini: A family of highly capable
multimodal models, 2024. URL https://arxiv.org/abs/2312.11805.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., Fan, L., and Anandkumar, A. Voyager:
An open-ended embodied agent with large language models. arXiv preprint arXiv:2305.16291,
2023.

Xing, M., Zhang, R., Xue, H., Chen, Q., Yang, F., and Xiao, Z. Understanding the weakness of large
language model agents within a complex android environment. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 6061–6072, 2024.

Yamada, Y., Bao, Y., Lampinen, A. K., Kasai, J., and Yildirim, I. Evaluating spatial understanding of
large language models. arXiv preprint arXiv:2310.14540, 2023.

Yang, H., Yue, S., and He, Y. Auto-gpt for online decision making: Benchmarks and additional
opinions. arXiv preprint arXiv:2306.02224, 2023.

16

https://arxiv.org/abs/2312.11805

A Factorio Economic System

For each item i in the game, its production score V (i) is computed as:

V (i) = min
r∈Ri

((∑
j∈Ir

V (j)cj,r

)
α(|Ir|) + E(r, Cr)

)
(1)

Where:

Ri is the set of recipes that can produce item i
Ir is the set of ingredients for recipe r
cj,r is the amount of ingredient j needed in recipe r
α(n) is the complexity multiplier: α(n) = βn−2 where β ≈ 1.025 is the ingredient exponent
E(r, Cr) is the energy cost function: E(r, Cr) = ln(er + 1)

√
Cr where:

er is the energy required for recipe r
Cr is the base cost of ingredients

The system is initialized with seed prices for raw resources:

• Iron ore: 3.1
• Copper ore: 3.6
• Coal: 3.0
• Stone: 2.4
• Uranium ore: 8.2
• Crude oil: 0.2

The complexity multiplier α(n) grows exponentially with the number of ingredients, incentivizing
the creation of more sophisticated items which require geometrically increasing raw resources to
manufacture. The energy cost term E(r, Cr) scales sub-linearly through the square root, preventing
energy from dominating at high scales.

The final PS for a force (player or team) at time t is:

PS(t) =
∑

i∈Items

V (i)(Pi(t)− Ci(t)) (2)

Where:

Pi(t) is the total production of item i up to time t
Ci(t) is the total consumption of item i up to time t
Items is the set of all possible items and fluids

Note: While the energy cost scaling in Factorio’s economic system is designed for gameplay
progression rather than physical realism, it effectively serves our purpose of rewarding increasingly
sophisticated automation.

17

B Further analysis

B.1 Long term objective-setting

We conducted a qualitative and quantitative analysis on agent traces and actions in open-play to
explore what types of objectives did agents follow, what actions did they take and what type of
structures did various agents create. Quantitatively we looked at how much did agents use early-game
higher complexity machines in their factories (assembling machines and electric mining drills), and
how much did they invest into research (PS of all science packs created). Creating more complex
automation in an open-ended setting is a direct result of long-horizon planning as these structures
require multiple steps to build and can incur initial cost for future higher gains (research). To confirm
the results of our quantitative analysis, we also analysed agents reasoning chains when creating
programs in FLE to gauge the thought process and time-horizon of their set plans. Although the
faithfulness of COT has been argued, we believe it to still offer valuable insights into the time-horizon
of agents planning.

Factory complexity. We observed that Claude 3.5-Sonnet attempts to create more multi-section
automatic factories using more complex machines. Claude uses significantly more advanced machines
(assembling machines, electric mining drills) compared to other agents (table 3). This results in
factories not only extracting resources but also automatically creating crafting higher-value items
(iron gear wheels, automation science packs, copper cables). GPT-4o and Gemini-2-Flash follow
simpler objectives like creating individual low-complexity resource extraction factories as opposed to
expanding existing production as seen by the low number of advanced machine usage. LLama-3.3-
70B, GPT-4o-Mini and Deepseek-v3 all prefer manual crafting over creating automation.

Time horizon of planning. We observed that agents exhibit different time-horizons for open-play
planning and objective setting. Anecdotally, Claude 3.5-Sonnet tends to set long-horizon objectives
requiring multiple time-steps to achieve. This was observed through qualitative analysis of COTs
(Chain-Of-Thoughts) and by the fact that Claude significantly invests into research to unlock more
efficient machines that are later used to make the factories more efficient. Example of a multi-step
plan, where Claude first created a checklist of objectives and then chose an objective in that list
to work on first can be found below. Through research the agent was able to use higher efficiency
machines like electric-inserter and electric-mining drill and the result can be seen from step 3000 in
Figure 3, where Claude 3.5-Sonnet starts deploying electric-mining-drills and PS grows by a factor
of 1.5x (from 200 000 to 300 000). All other agents showed very little multi-step planning behaviour
and almost always preferred single-step plans and objectives.

Research provides a strategic advantage

Model Research investment (PS) Electric Machines
Claude 3.5-Sonnet 729 24
DeepSeek-v3 50 0
Gemini-2.0-Flash 285 1
GPT-4o 146 1
GPT-4o-Mini 62 0
Llama-3.3-70B-Instruct-Turbo 0 0

Table 3: Research provides a lagging payoff, requiring sustained investment over a long-horizon.
New technologies, allow for increasingly productive factories - illustrated here by the deployment of
research-locked electric machines.

Multi-step COT example

1 Let\’s start building our first automated mining setup. We need to:
2 1. Create a coal mining system that self-fuels
3 2. Create an iron ore mining system that feeds into furnaces
4 3. Connect these with transport belts and inserters
5
6 The most useful next step is to set up an automated coal mining system. This is crucial because coal is

needed for all burner-type entities and having it automated will free us from manual coal mining.
7
8 This step is valuable because:
9 - Coal is needed for all burner entities (furnaces, burner inserters, burner mining drills)

18

Figure 6: A pertubation introduced to a working factory to evaluate spatial reasoning. The burner-
inserter is misplaced one tile to the right.

Figure 7

10 - Automated coal production ensures continuous operation
11 - Self-fueling system means it runs without manual intervention
12 - Having automated coal allows us to focus on expanding other parts of the factory

Table 4: Troubleshooting: Precision, recall and F1 for LLM vs. VLM agents on the error-detection
task of identifying pertubations in a Factory.

Model Input Precision Recall F1

Claude 3.5 Sonnet Symbolic 0.2523 0.2195 0.2348
Symbolic + Vision 0.2553 0.2727 0.2637

GPT-4o Symbolic 0.0806 0.1250 0.0980
Symbolic + Vision 0.0823 0.0942 0.0878

GPT-4o-mini Symbolic 0.0594 0.0714 0.0649
Symbolic + Vision 0.1212 0.1000 0.1096

B.2 VLMs in Spatial Reasoning Tasks

To analyse whether supplying images as an additional modality to VLMs improved the spatial
reasoning tasks, we ran experiments with Claude-3.5-Sonnet, GPT-4o, GPT-4o and Gemini-2-Flash
on spatial reasoning tasks over images of in-game factories. The results between LLMs and VLMs
can be found in table . Unintuitively, the inclusion of images did not improve the spatial reasoning
performance, signaling that current VLMs do not possess the granularity required to effectively
reason over high-detail, information-dense images. The average human baseline f1 score for the 5
reasoning tasks is 0.764, which means there are still clear gaps between the best performing model
(Claude 3.5 Sonnet - 0.24) and human performance on our visual domain.

Additionally we evaluated the pure visual-reasoning capabilities of VLMs on multiple spatial tasks.
The tasks comprised of four visual reasoning tasks on rendered game images: (1) Entity Recognition
requires identifying which entity type (e.g., transport-belt, inserter, assembly-machine) exists at a
specified position from four options; (2) Spatial Reasoning requires counting entities of specific

19

types, directions, or regions within blueprints, selecting from four numerical options with plausible
distractors; (3) Logistics Reasoning provides an entity name and requires identifying its coordinate
position from four options; and (4) Factory Inspection requires identifying the nearest entity of a
queried type and determining operational status (e.g., working, no power, no fuel) in procedurally
generated factories with 5-15 entities. Each task uses multiple-choice questions with distractors
designed to be plausible but incorrect. We report classification accuracy for API-based agents (F1
score) and accuracy scores for VLM agents across all tasks. Results can be found in Table 5 and
show that even state-of-the-art VLMs struggle with spatial reasoning tasks, with the best-performing
model in each category only achieving between 70-80% of the human baseline in each case.

Table 5: Vision-Language Model Performance on Spatial Reasoning Tasks. We evaluate recent
vision-capable models across four visual reasoning tasks in Factorio. All models receive rendered
game images and must perform entity recognition, spatial reasoning, logistics analysis, and factory
inspection. Metrics represent accuracy scores.

Model Entity Spatial Logistics Factory
Recognition Reasoning Reasoning Inspection

Claude Sonnet 3.5 0.43 0.40 0.80 0.44
Gemini 2.0 Flash 0.50 0.39 0.71 0.41
GPT-4o 0.30 0.23 0.71 0.52
GPT-4o-mini 0.28 0.36 0.76 0.42

Human Baseline 0.80 0.95 1.00 0.65

B.3 Reasoning Model Performance

To evaluate the performance of recent generation reasoning-specialized models, we ran an experiment
in a limited lab-play setting (pass@8) with GPT-5-Mini OpenAI (2025) and Qwen-3-Next-Think
Qwen Team (2025), which employ extended chain-of-thought processes to handle multi-step planning
and dependency resolution. We evaluate GPT-5-Mini and Qwen-3-Next-80B in medium-reasoning
and no-reasoning modes. GPT-5-Mini medium achieved lab-play performance of 45% and no-
reasoning 33% while Qwen-3-80B reasoning model had a 17% success rate compared to 13% for the
instruct mode. These results show that while reasoning mode does result in improvements on FLE
lab-play, performance is still considerably below the human baseline and suggests that reasoning
alone is insufficient to solve the majority of tasks, indicating that information retrieval through
programmatic queries is equally as important as reasoning over that information

C Experimental Setup

All our experiments were run on consumer-grade CPUs (12th Gen Intel(R) Core(TM) i7-12700H and
Macbook Pro M4) and used only APIs (OpenAI API, Anthropic API and TogetherAI API) for model
sampling. Around 95 % of time during experiments was spent on API sampling and tables 6 and 7
show the input and output tokens for our experiments

Model Input Tokens Output Tokens Total Tokens Cost (USD)
Claude 3.5-Sonnet 1,413,403,475 23,340,352 1,436,743,827 4,590.32
DeepSeek-v3 762,901,100 10,399,299 773,300,399 927.96
Gemini-2.0-Flash 1,686,890,489 87,278,090 1,774,168,579 203.60
GPT-4o 1,061,860,012 19,739,272 1,081,599,284 2,852.04
GPT-4o-Mini 1,404,986,049 28,087,751 1,433,073,800 227.60
Llama-3.3-70B-Instruct-Turbo 447,307,196 4,945,831 452,253,027 55.16
Total 6,777,348,321 173,790,595 6,951,138,916 8,856.68

Table 6: Token Usage and Cost Comparison across Models in Open-play. The total cost was 8,856.68
USD.

20

Model Input Tokens Output Tokens Total Tokens Cost (USD)
Claude 3.5-Sonnet 293,433,245 5,763,345 299,196,590 966.75
DeepSeek-Chat 199,291,079 4,117,889 203,408,968 244.09
Gemini-2.0-Flash 220,466,926 7,170,513 227,637,439 24.91
GPT-4o 231,389,195 3,921,987 235,311,182 617.69
GPT-4o-Mini 145,113,122 3286602 148,399,912 23.74
Llama-3.3-70B-Instruct-Turbo 124,239,159 1,749,449 125,988,608 15.43
Total 1,213,932,726 26,009,785 1,239,942,699 1,892.61

Table 7: Token Usage and Cost Comparison across Models in Lab-play. The total cost was 1,892.61
USD.

D Benchmark Latency Results

We benchmark the Factorio Learning Environment on a MacBook Pro M4 with 128GB RAM. The
headless server achieved the highest throughput, processing an average of 218 operations per second
across core API functions, with peak performance of 603 ops/sec for basic operations like crafting.
The Python interpreter introduces approximately 3x overhead, reducing average throughput to 68
ops/sec. Complex spatial operations (connect_entities) are consistently the slowest at 25-48
ops/sec due to pathfinding requirements. Basic inventory operations (craft_item, extract_item)
achieve highest throughput at 276-545 ops/sec. The headless configuration provides a 1.75x speed-up
over the game client (see Figure 12).

Operation Ops/Min Ops/Sec Duration

place_entity_next_to 2,578 43 0.42
place_entity 12,058 201 0.50
move_to 8,650 144 0.69
harvest_resource 16,599 277 0.36
craft_item 16,875 281 0.36
connect_entities 1,665 28 3.21
rotate_entity 12,281 205 0.49
insert_item 13,044 217 0.46
extract_item 17,167 286 0.35
inspect_inventory 17,036 284 0.35
get_resource_patch 7,004 117 0.86

Aggregate 7,513 125 8.04

Figure 8: Factorio Client + Factorio Server + FLE
API

Operation Ops/Min Ops/Sec Duration

place_entity_next_to 4,857 81 0.22
place_entity 22,333 372 0.27
move_to 16,006 267 0.37
harvest_resource 32,727 545 0.18
craft_item 36,224 604 0.17
connect_entities 2,926 49 1.83
rotate_entity 23,467 391 0.26
insert_item 25,154 419 0.24
extract_item 32,997 550 0.18
inspect_inventory 28,402 473 0.21
get_resource_patch 8,736 146 0.69

Aggregate 13,095 218 4.61

Figure 9: Factorio Server + FLE API

Operation Ops/Min Ops/Sec Duration

place_entity_next_to 5,070 84 1.18
place_entity 5,239 87 1.15
move_to 4,980 83 1.20
harvest_resource 3,247 54 1.85
craft_item 5,854 98 1.02
connect_entities 2,150 36 2.79
rotate_entity 5,370 90 1.12
insert_item 5,066 84 1.18
extract_item 5,449 91 1.10
inspect_inventory 5,639 94 1.06
get_resource_patch 2,479 41 2.42

Aggregate 4,104 68 16.08

Figure 10: Interpreter + Factorio Server + FLE
API

Operation Ops/Min Ops/Sec Duration

place_entity_next_to 4,715 79 1.27
place_entity 4,774 80 1.26
move_to 4,006 67 1.50
harvest_resource 3,595 60 1.67
craft_item 4,985 83 1.20
connect_entities 1,497 25 4.01
rotate_entity 4,915 82 1.22
insert_item 5,047 84 1.19
extract_item 4,743 79 1.26
inspect_inventory 4,838 81 1.24
get_resource_patch 2,593 43 2.31

Aggregate 3,639 61 18.14

Figure 11: Interpreter + Factorio Client + Factorio
Server + FLE API

Figure 12: Performance Comparison of Different FLE Configurations. We show the mean for
Ops/Min and Ops/Sec and the total Duration for the benchmarking run.

21

E API Design

The environment’s design prioritizes clarity and robustness over mechanical execution speed, reflect-
ing Factorio’s emphasis on planning and design rather than rapid action sequences. This aligns well
with language models’ strengths in systematic reasoning and program synthesis while providing rich
opportunities for learning increasingly sophisticated automation strategies.

E.1 Action and Observation

We designed the environment’s action space as a typed Python programming interface aligned with
LLMs’ capabilities for symbolic reasoning and program synthesis. Rather than requiring agents to
learn low-level motor controls or pixel-level manipulation, our environment enables them to generate,
reason about, and debug code while handling the complex requirements of factory automation. Unlike
traditional reinforcement learning environments where agents must map state observations to discrete
actions, our approach allows composition of rich programs that both gather information and modify
game state, mirroring how LLMs naturally process and generate code.

From a theoretical perspective, we draw on Naur’s view of programming as a continual process of
“theory building” (Naur, 1985). In this view, the generated code represents an explicit, evolving model
of how the agent believes the environment behaves. Each new function, variable, or data structure
encodes the agent’s current hypotheses about causal relationships (e.g., how ore is processed, or how
machines are connected) and constraints (e.g., resource limitations or layout restrictions). When the
agent executes its code and observes the resulting changes in the game state, it obtains evidence that
either affirms or contradicts these hypotheses. Code revisions then become part of a self-correcting
feedback loop in which the agent refines its theory to better match reality. This iterative process of
writing, executing, and revising code reflects the core idea of treating programming as theory-building
in a dynamic environment.

More formally, let us define the action space as a context-sensitive program synthesis task. Let Σ
be the set of all valid Python programs, where each program p ∈ Σ is a sequence of statements
⟨s1, s2, ..., sn⟩. Each statement s is either a method invocation or a variable declaration:

s := m | (v := m) where: (3)

• m = (f, args, ret) is a method invocation
• f ∈ F is a function identifier from our API method set F
• args = (a1, a2, ..., ak) is a sequence of typed arguments where ai ∈ Ti

• ret ∈ T ∪ {⊥} is the return type (possibly undefined)
• v is a variable identifier that enters the namespace context C

The type system T is defined by the algebraic data types:

T := Prototype | Entity | Direction | Recipe | ...
Entity := AssemblingMachine | Inserter | Chest | ...

Position := (x : R, y : R)

Method execution transforms only the game state:

exec : M ×G → (G′ × T) (4)

While namespace context C is modified only through variable declarations:

declare : V × T × C → C ′ (5)

where M is the set of all valid method invocations, G is the set of all possible game states, V is the
set of valid variable identifiers, T is the set of possible return types, and C is the set of all possible
namespace contexts.

The action space consists of 23 core API methods that form a domain-specific language for factory
automation, roughly categorised as follows:

22

Pure Queries (Q : G → T)
• get_entities: Find entities matching a prototype
• production_stats: Get factory output metrics
• nearest: Find the nearest named entity to the player
• inspect_inventory: Retrieve the inventory of an entity

State Modifications (M : G → G′ × T):
• place_entity: Create buildings and machines
• rotate_entity: Change entity orientation
• craft_item: Manually create an item from ingredients
• set_recipe: Configure production recipes
• connect_entities: Connect two entities or positions with belts, pipes or power

Resource Management (R : G → G′ × T):
• insert_item: Add items to containers
• harvest_resource: Gather raw materials
• extract_item: Move an item from an entity into the inventory

The namespace context C maintains references to entities, positions, and other values through variable
declarations, enabling agents to track and reuse factory components. This separation between method
execution and namespace modification supports compositional factory design while maintaining clear
semantics about state changes.

A distinctive feature of our action space is the ability for agents to make runtime assertions about
their beliefs regarding the game state. These assertions provide piece-meal feedback about the game
state, allowing agents to debug discrepancies between their intended actions and actual outcomes.
When assertions fail, agents can gather additional information through observation actions to update
their beliefs and modify their approach. This creates a natural debugging loop that mirrors human
programming practices.

Not all actions are available in every game state. For instance, insert_item requires both a valid
item prototype and a target entity with sufficient inventory space. To help agents reason about action
validity, tools like can_place_entity provide explicit validation capabilities. Most tools return
boolean success indicators or meaningful result values, allowing agents to adapt their strategies based
on action outcomes. Semantic errors (such as trying to insert a position into an inventory) result in
exception containing a specific failure message and stack trace being thrown.

We impose no artificial rate limiting on API calls, as the emphasis is on the logical correctness of the
generated programs rather than mechanical execution speed. This reflects the nature of Factorio as a
game of planning and design. However, the sleep method allows agents to implement deliberate
timing when necessary for complex automation sequences, such as waiting for ore to be smelted into
plate for downstream steps.

An API-based action space supports natural composition of atomic actions into complex factory
designs through its strongly-typed interface. Information-gathering actions enable deliberate planning
and strategic decision-making, while the action space maps cleanly to natural language descriptions
of factory building steps. The persistent namespace and type system enable compositional reasoning
about factory designs over a long horizon, with rich type information helping language models
understand entity relationships and constraints.

This cycle creates a natural debugging loop that mirrors human programming practices, allowing
agents to iteratively develop and test their automation strategies.

Partial Observability System Unlike many reinforcement learning environments that provide
complete state observations, FLE implements true partial observability through a snapshot-based
system:

• State References: When an agent queries the environment (e.g., searching for nearby
resources or machines), it receives a snapshot of the current state rather than a live reference.

• Temporal Validity: These snapshots represent the environment at the moment of query and
may become stale as the game state evolves.

23

Table 8: Available Basic Resource Types
Resource Category
Coal Basic Energy Resource
Iron Ore Primary Metal Resource
Copper Ore Primary Metal Resource
Stone Basic Building Resource
Water Fluid Resource
Crude Oil Advanced Fluid Resource
Uranium Ore Advanced Energy Resource
Wood Basic Building Resource

• Explicit Updates: Agents must explicitly re-query the environment to refresh their under-
standing of changed areas.

For example, consider this interaction:

1 # Initial query returns a snapshot
2 drill = get_entity(Prototype.BurnerMiningDrill, position=Position(x=10, y=10))
3 drill.status # Status at time of query
4
5 # After some time/actions, must re-query for current state
6 updated_drill = get_entity(Prototype.BurnerMiningDrill)

Each function operates within a rich type system that enables precise reasoning about game entities:

1 # Type hierarchy example
2 class Entity:
3 position: Position
4 direction: Direction
5 status: EntityStatus
6 # ... common properties
7
8 class AssemblingMachine(Entity):
9 recipe: Optional[Recipe]

10 input_inventory: Inventory
11 output_inventory: Inventory
12 # ... assembler-specific properties

This type system helps prevent common errors while providing clear semantics for factory construc-
tion.

24

1 # Pure query - affects neither G nor C
2 recipe = get_prototype_recipe(Prototype.IronGearWheel)
3 # Effects on game state G only (G -> G’ x T)
4 success = set_entity_recipe(assembler, recipe)
5 # Namespace context C is modified only through assignments
6 assembler = place_entity_next_to(# Method: G -> G’ x T_Entity
7 entity=Prototype.AssemblingMachine2, # Variable declaration: C -> C’
8 reference_position=inserter.position, # Reference from C
9 direction=Direction.RIGHT,

10 spacing=1
11)
12 # Runtime assertions can verify both game state and namespace
13 assert isinstance(assembler, AssemblingMachine)
14 assert get_entity(
15 Prototype.AssemblingMachine2,
16 assembler.position
17) is not None

Figure 13: Example code showing state transitions.

Method Input Return Description
set_entity_recipe Entity, Prototype Entity Sets recipe for given entity
place_entity_next_to Prototype, Position, Direc-

tion, int
Entity Places entity adjacent to reference position

with optional spacing
pickup_entity Entity/Prototype/EntityGroup,

Position?
bool Picks up entity at given position

craft_item Prototype, int int Crafts items if ingredients are in inventory
can_place_entity Prototype, Direction, Posi-

tion
bool Tests if entity can be placed at position

get_entity Prototype, Position Entity Retrieves entity object at specified position
get_entities Set[Prototype], Position,

float
List[Entity] Gets entities within radius of position

set_research Technology List[Ingredient] Sets current research technology
inspect_inventory Entity? Inventory Returns inventory of specified entity or

player
place_entity Prototype, Direction, Posi-

tion, bool
Entity Places entity at specified position if in in-

ventory
get_research_progress Technology? List[Ingredient] Gets remaining ingredients for research

completion
move_to Position Position Moves to specified position
nearest_buildable Prototype, BuildingBox, Po-

sition
BoundingBox Finds nearest area where entity can be built

connect_entities Position/Entity/EntityGroup
(×2), Prototype

List[Entity] Connects two entities or positions

get_resource_patch Resource, Position, int ResourcePatch? Finds resource patch within radius
harvest_resource Position, int, int int Harvests resource at position
sleep int bool Pauses execution for specified seconds
insert_item Prototype, Entity/Entity-

Group, int
Entity Inserts items into target entity’s inventory

get_connection_amount Position/Entity/EntityGroup
(×2), Prototype

int Calculates number of entities needed for
connection

extract_item Prototype, Position/Entity,
int

int Extracts items from entity’s inventory

get_prototype_recipe Prototype/str Recipe Gets recipe requirements for prototype
rotate_entity Entity, Direction Entity Rotates entity to specified direction
nearest Prototype/Resource Position Finds nearest entity/resource to player

Table 9: API Methods Summary

25

Technology Description
Automation Enables basic automatic assembly of items using Assembly

Machine 1
Automation 2 Unlocks Assembly Machine 2 with increased crafting speed
Automation 3 Provides Assembly Machine 3 for fastest automatic crafting
Logistics Enables basic yellow belts and inserters for item transport
Logistics 2 Unlocks red transport belts and fast inserters with doubled

throughput
Logistics 3 Provides blue express belts and stack inserters with maxi-

mum speed
Electronics Enables production of electronic circuits and advanced com-

ponents
Electric Energy Improves power pole coverage and electricity distribution
Electric Energy 2 Enables substations for wide-area power distribution
Solar Energy Unlocks solar panels for renewable power generation
Electric Engineering Enables electric engine production for advanced machinery
Battery Technology Enables battery production for energy storage and modules
Steel Processing Allows creation of steel plates from iron
Advanced Material Processing Unlocks steel furnaces with improved smelting speed
Advanced Material Processing
2

Enables electric furnaces for automated, fuel-free smelting

Military Science Unlocks basic military research and weapon improvements
Modular Armor Provides basic modular armor with equipment grid
Power Armor Unlocks advanced armor with larger equipment grid
Power Armor 2 Provides elite armor with maximum equipment grid slots
Night Vision Enables night vision equipment for darkness operations
Energy Shield Provides basic energy shield protection modules
Energy Shield 2 Unlocks advanced shield modules with improved protection
Oil Processing Enables basic oil refining into petroleum products
Advanced Oil Processing Improves oil refining efficiency with heavy/light oil cracking
Sulfur Processing Enables sulfur production for ammunition and processing
Plastics Enables plastic production from petroleum gas
Lubricant Enables lubricant production for advanced machines and

modules
Logistics Science Pack Unlocks green science pack production
Military Science Pack Enables gray military science pack production
Chemical Science Pack Unlocks blue science pack production
Production Science Pack Enables purple science pack production
Fast Inserter Unlocks faster inserters for improved item handling
Stack Inserter Enables inserters capable of moving multiple items
Stack Inserter Capacity 1 Increases stack inserter capacity by 1
Stack Inserter Capacity 2 Further increases stack inserter capacity by 2
Storage Tanks Enables fluid storage and advanced liquid handling
Barrel Filling Allows fluids to be stored and transported in barrels
Landfill Enables terrain creation over water tiles
Character Inventory Slots Increases player inventory storage capacity
Research Speed Improves laboratory research speed

Table 10: Available Technologies in FLE. Note: This is the subset of technologies that we expose to
the agent, so as not to overwhelm the context. Support for the remaining technologies can added by
un-commenting them in in the code-base.

26

Table 11: Entity Status States
Status Description
WORKING Entity actively performing its function
NO_POWER Insufficient power supply
LOW_POWER Suboptimal power supply
NO_FUEL Depleted fuel supply
NO_RECIPE No manufacturing recipe selected
NO_INGREDIENTS Missing required input materials
FULL_OUTPUT Output storage at capacity
ITEM_INGREDIENT_SHORTAGE Insufficient input materials
WAITING_FOR_SPACE Output blocked by full destination

Table 12: Position and Direction System
Component Implementation
Position 2D coordinate system with x,y floating-point values
Direction Enumerated values: NORTH (0), EAST (2), SOUTH (4), WEST (6)
BoundingBox Defines entity area with left_top and right_bottom positions
Dimensions Specifies width and height of entities

F Model Access Datetimes

We last accessed the models used in this work at the following date-times:

• Claude 3.5-Sonnet - 2025-02-21 12:37:23.765905
• GPT4o - 2025-02-22 00:23:52.121478
• Llama-3.3-70B - 2025-02-21 15:48:26.132900
• GPT4o-Mini - 2025-02-20 15:20:42.093809
• Gemini-2 - 2025-02-23 03:31:31.225761
• Deepseek-v3 - 2025-02-23 03:31:07.948026

27

G Example Open-Play GPT4o-Mini Failure

On this occasion, GPT4o-Mini made unsuccessful attempts to find resources, before giving up
entirely.

1 # It appears we still cannot find any coal resources, and none of my attempts have uncovered any
resources throughout the environment.

2 # Since we have been unable to locate any gatherable resources through inspections, it may be worth
attempting to validate the surrounding resources from the beginning and gauge what could be nearby.

3
4 # To proceed, it is important to start from the basics. Let’s attempt to explore the environment more

comprehensively, trying to find what other resources we have missed.
5
6 # I will attempt to inspect a much broader area by invoking a more generalized search for resources. This

time, let’s check for any resource type in a significant area without respecting the typical
boundaries.

7
8 print(get_resource_patch(Resource.Stone, Position(x=100, y=100))) # Searching for stone in the further

part of the environment.
9 >>> Error: 0: (’Error occurred in the following lines: Line 8: print(get_resource_patch(Resource.Stone,

Position(x=100, y=100)))
10 Exception: "Could not get stone at x=100.0 y=100.0. No resource of type stone at the specified

location."’)
11
12 # It seems that I have exhausted all attempts to locate any resources or entities with repeated efforts

yielding no results in the environment.
13 # Since all resource checks at various coordinates have returned errors suggesting that no necessary

resources are present, this hints at a fundamental issue with the resource generation or
initialization.

14
15 # Without any resources, crafting items or building any infrastructure is impossible. Therefore, we

should consider taking a step back and looking at restarting the environment or regaining access to
a scenario where resource generation is possible.

16
17 # As all methods seem to lead to no resources, let’s output a final message summarizing the current state

and proposing to reset or adjust the environment scenario for more fruitful exploration.
18
19 print("No resources or entities found in the environment. Consider resetting the environment or starting

a new scenario to enable resource generation.")
20 >>> 0: (’No resources or entities found in the environment. Consider resetting the environment or

starting a new scenario to enable resource generation.’,)
21
22 # The ongoing lack of updates or results indicates that we remain in an unresponsive state within the

environment.
23 # Given the absence of resources and entities, our options for progressing in FactoryEnv remain severely

limited.
24
25 # The optimal step forward would be to reset the environment to allow resource generation and

subsequently enable crafting and automation processes.
26
27 # I am here and ready to undertake any new operations, adjustments, or tasks once further instructions

are given. Please let me know how you’d like to proceed!

This was followed by 234 more appeals to reset before the run terminated.

H Lab Play Throughput Tasks Detailed Description

H.1 Task quotas

The target entities cover items from early to late game and the agent must use a wide variety of
machines present in Factorio (drills, furnaces, assembling machines, oil refineries, chemical plants).
The list of tasks and their target entities with their quotas are shown in table 13. To get the equivalent
quota for fluids and solids, we used the price comparison of oil and iron ore. The value of crude-oil is
0.2 and for iron ore is 3.1. Using the default quota of 16 for solids, the equivalent quota for crude-oil
is 16 ∗ 3.1/0.2 = 248, which we have rounded up to 250.

H.2 Task Complexity

To assess the difficulty of lab-play tasks, we can evaluate the graph complexity of their associated
resource flows. In the context of Factorio recipes, ingredient flows can be represented as directed
graphs, where nodes correspond to distinct ingredients and edges represent input relationships

28

Target entity Quota Graph Complexity
Iron ore 16 1
Iron plate 16 3
Iron gear wheel 16 7
Wall 16 18
Steel plate 16 13
Electronic circuit 16 14
Automation science pack 16 13
Inserter 16 28
Logistic science pack 16 40.5
Military science pack 16 60.5
Plastic Bar 16 7.1
Sulfur 16 9.4
Battery 16 32.4
Piercing rounds magazine 16 42
Engine unit 16 32
Advanced circuit 16 47.3
Processing unit 16 281.8
Low density structure 16 88.6
Chemical science pack 16 107.1
Production science pack 16 287.8
Utility science pack 16 374.8
Crude oil 250 1
Petroleum Gas 250 4.5
Sulfuric Acid 250 19.5

Table 13: lab-play target entities with complexities

between crafting processes. Under this formulation, the size of the graph can be computed as M=E+N
where E denotes the number of edges and N the number of nodes scaled by the size of the node
(resource requirement for the recipe). Using this approach, the complexities of all lab-play tasks are
presented in table 13.

H.3 Laboratory map

Figure 14 shows the laboratory map designed for constrained evaluation of agents

Figure 14: Overview of the laboratory map, where agents are tasked to carry out lab-play tasks

29

H.4 Inventory

In Lab-Play, agents start with the following inventory:

coal: 500, burner-mining-drill: 50, wooden-chest: 10, burner-inserter: 50,inserter: 50, transport-belt:
500, stone-furnace: 10, boiler: 2, offshore-pump: 2, steam-engine: 2, electric-mining-drill: 50,
small-electric-pole: 500, pipe: 500, assembling-machine-2: 10, electric-furnace: 10, pipe-to-ground:
100, underground-belt: 100, pumpjack: 10, oil-refinery: 5, chemical-plant: 5, storage-tank: 10,

H.5 Reward hacking

All successful production lines were manually examined to guard against reward hacking (for
instance, agent manually inputting ingredients into an assembler as opposed to creating an automatic
connection).

H.6 Prompt

Below is the core system prompt used for the lab play tasks. This is without the guide and API
schema which are brought out and described in Appendix K

1 # Factorio LLM Agent Instructions
2
3 ## Overview
4 You are an AI agent designed to play Factorio, specializing in:
5 - Long-horizon planning
6 - Spatial reasoning
7 - Systematic automation
8
9 ## Environment Structure

10 - Operates like an interactive Python shell
11 - Agent messages = Python programs to execute
12 - User responses = STDOUT/STDERR from REPL
13 - Interacts through 27 core API methods (to be specified)
14
15 ## Response Format
16
17 ### 1. PLANNING Stage
18 Think through each step extensively in natural language, addressing:
19 1. Error Analysis
20 - Was there an error in the previous execution?
21 - If yes, what was the problem?
22 2. Next Step Planning
23 - What is the most useful next step of reasonable size?
24 - Why is this step valuable?
25 3. Action Planning
26 - What specific actions are needed?
27 - What resources are required?
28
29 ### 2. POLICY Stage
30 Write Python code to execute the planned actions:
31 ‘‘‘python
32 # Code must be enclosed in Python tags
33 your_code_here
34 ‘‘‘
35
36 ## Best Practices
37
38 ### Modularity
39 - Create small, modular policies
40 - Each policy should have a single clear purpose
41 - Keep policies easy to debug and modify
42 - Avoid breaking existing automated structures
43 - Encapsulate working logic into functions if needed
44
45 ### Debugging & Verification
46 - Use print statements to monitor important state
47 - Implement assert statements for self-verification
48 - Use specific, parameterized assertion messages
49 - Example: ‘assert condition, f"Expected {expected}, got {actual}"‘
50
51 ### State Management
52 - Consider entities needed for each step
53 - Track entities across different inventories
54 - Monitor missing requirements

30

55 - Preserve working automated structures
56
57 ### Error Handling
58 - Fix errors as they occur
59 - Don’t repeat previous steps
60 - Continue from last successful execution
61 - Avoid unnecessary state changes
62
63 ### Code Structure
64 - Write code as direct Python interpreter commands
65 - Only encapsulate reusable utility code into functions
66 - Use appropriate spacing and formatting
67
68 ## Understanding Output
69
70 ### Error Messages
71 ‘‘‘stderr
72 Error: 1: ("Initial Inventory: {...}")
73 10: ("Error occurred in following lines...")
74 ‘‘‘
75 - Numbers indicate line of execution
76 - Previous lines executed successfully
77 - Fix errors at indicated line
78
79 ### Status Updates
80 ‘‘‘stdout
81 23: (’Resource collection completed...’)
82 78: (’Entities on map: [...]’)
83 ‘‘‘
84 - Shows execution progress
85 - Provides entity status
86 - Lists warnings and conditions
87
88 ### Entity Status Checking
89 - Monitor entity ‘warnings‘ field
90 - Check entity ‘status‘ field
91 - Verify resource levels
92 - Track production states
93
94 ## Game Progression
95 - Think about long term objectives, and break them down into smaller, manageable steps.
96 - Advance toward more complex automation
97 - Build on previous successes
98 - Maintain efficient resource usage
99

100 ## Utility Functions
101 - Create functions to encapsulate proven, reusable logic
102 - Place function definitions before their first use
103 - Document function purpose, parameters, and return values
104 - Test functions thoroughly before relying on them
105 - Example:
106 ‘‘‘python
107 def find_idle_furnaces(entities):
108 \"\"\"Find all furnaces that are not currently working.
109
110 Args:
111 entities (list): List of entities from get_entities()
112
113 Returns:
114 list: Furnaces with ’no_ingredients’ status
115 \"\"\"
116 return [e for e in entities if (
117 e.name == ’stone-furnace’ and
118 e.status == EntityStatus.NO_INGREDIENTS
119)]
120 ‘‘‘
121
122 ## Data Structures
123 - Use Python’s built-in data structures to organize entities
124 - Sets for unique entity collections:
125 ‘‘‘python
126 working_furnaces = {e for e in get_entities()
127 if e.status == EntityStatus.WORKING}
128 ‘‘‘
129 - Dictionaries for entity mapping:
130 ‘‘‘python
131 furnace_by_position = {
132 (e.position.x, e.position.y): e
133 for e in get_entities()
134 if isinstance(e, Furnace)
135 }

31

136 ‘‘‘
137 - Lists for ordered operations:
138 ‘‘‘python
139 sorted_furnaces = sorted(
140 get_entities(),
141 key=lambda e: (e.position.x, e.position.y)
142)
143 ‘‘‘
144
145 ## Important Notes
146 - Always inspect game state before making changes
147 - Consider long-term implications of actions
148 - Maintain working systems
149 - Build incrementally and verify each step
150 - DON’T REPEAT YOUR PREVIOUS STEPS - just continue from where you left off. Take into account what was

the last action that was executed and continue from there. If there was a error previously, do not
repeat your last lines - as this will alter the game state unnecessarily.

151 Do not encapsulate your code in a function - just write it as if you were typing directly into the Python
interpreter.

H.7 Human baseline for lab-play

To evaluate human performance in FLE, lab-play was run by authors using the API for a single
trajectory of 128 steps. Table 14 shows the number of steps required for a human to complete each
task. Using the FLE API, the human operator solved 20/24 lab-play tasks; substantially outperforming
all evaluated agents in FLE. We recorded (a) the number of programmatic errors and (b) the number
of incorrect programs-defined as programs that executed without errors but failed to produce the
intended outcome-across the task trajectories. During the 128 steps, the human operator made 87
errors (67%) with 57 (44%) were programmatic errors (for instance wrong variables referenced
and incorrect API function usage) and 30 (23%) were attributed to incorrect programs. Errors from
incorrect programs primarily arose from mistakes in factory composition due to incorrect recipe
lookup, scaling inaccuracies, and miscalculations of production throughput. Interestingly, when
querying the base LLMs evaluated in FLE lab-play about areas where the human-operator made errors,
the LLMs demonstrated superior encyclopedic knowledge of Factorio mechanics (e.g., optimal ratios,
automation steps, and resource chains). However as shown by the lab-play results, all agents achieved
substantially poorer lab-play performance, suggesting that, despite possessing relevant knowledge for
FLE lab-play, current LLMs struggle to translate this knowledge into effective procedural execution.
This observation aligns with the "knowing–doing gap" reported in prior agentic benchmarks (Paglieri
et al., 2024), wherein LLMs exhibit strong latent understanding but limited capability for grounded
action planning.

I Rocket Silo Resource Requirements

Figure 15 shows the complexity and dependencies requires to achieve one of the end-game items, a
Rocket Silo.

J Comparison to modded Minecraft

State-of-the-art human Factorio factories scale to 1 M science/min, which corresponds to 2.4 × 106

raw items per second flowing through production chains. By contrast, even the most over-engineered
IndustrialCraft² megabases top out at 2 × 102 – 1 × 103 items per second (104–105 items per minute)
of combined input + output. Anything beyond that chokes on the 20-tick-per-second game loop and
IC²’s hard “one operation per tick” cap

K Agent scaffolding details

K.1 Guide

The guide is organized as separate markdown files, each explaining how to use a specific tool.
Each file contains a detailed description of the tool and its use cases, along with essential Factorio
knowledge needed to successfully use the API. The markdown files can be found in the supplementary

32

Target entity Quota
Iron ore 5
Iron plate 5
Iron gear wheel 9
Automation science pack 14
Electronic circuit 18
Inserter 20
Logistic science pack 30
Crude oil 32
Petroleum Gas 35
Sulfur 36
Plastic Bar 37
Sulfuric Acid 41
Battery 47
Wall 50
Steel plate 52
Piercing rounds magazine 59
Engine unit 65
Military science pack 76
Advanced circuit 92
Low density structure 118
Processing unit N/A
Chemical science pack N/A
Production science pack N/A
Utility science pack N/A

Table 14: lab-play achieved tasks during human-baseline

Figure 15

33

open-source repository within their respective tool folders. For example, the guide for connecting
entities is located at env/src/tools/agent/connect_entities/agent.md.

K.2 API Schema prompt

Below is the API schema given to the agent

1 ’‘‘‘types
2 class RecipeName(enum.Enum):
3 """
4 Recipe names that can be used in the game for fluids
5 """
6 NuclearFuelReprocessing = "nuclear-fuel-reprocessing"
7 UraniumProcessing = "uranium-processing"
8 SulfuricAcid = "sulfuric-acid" # Recipe for producing sulfuric acid with a chemical plant
9 BasicOilProcessing = "basic-oil-processing" # Recipe for producing petroleum gas with a oil refinery

10 AdvancedOilProcessing = "advanced-oil-processing" # Recipe for producing petroleum gas, heavy oil and
light oil with a oil refinery

11 CoalLiquefaction = "coal-liquefaction" # Recipe for producing petroleum gas in a oil refinery
12 HeavyOilCracking = "heavy-oil-cracking" # Recipe for producing light oil in a chemical plant
13 LightOilCracking = "light-oil-cracking" # Recipe for producing petroleum gas in a chemical plant
14 SolidFuelFromHeavyOil = "solid-fuel-from-heavy-oil" # Recipe for producing solid fuel in a chemical

plant
15 SolidFuelFromLightOil = "solid-fuel-from-light-oil" # Recipe for producing solid fuel in a chemical

plant
16 SolidFuelFromPetroleumGas = "solid-fuel-from-petroleum-gas" # Recipe for producing solid fuel in a

chemical plant
17 FillCrudeOilBarrel = "fill-crude-oil-barrel"
18 FillHeavyOilBarrel = "fill-heavy-oil-barrel"
19 FillLightOilBarrel = "fill-light-oil-barrel"
20 FillLubricantBarrel = "fill-lubricant-barrel"
21 FillPetroleumGasBarrel = "fill-petroleum-gas-barrel"
22 FillSulfuricAcidBarrel = "fill-sulfuric-acid-barrel"
23 FillWaterBarrel = "fill-water-barrel"
24 EmptyCrudeOilBarrel = "empty-crude-oil-barrel"
25 EmptyHeavyOilBarrel = "empty-heavy-oil-barrel"
26 EmptyLightOilBarrel = "empty-light-oil-barrel"
27 EmptyLubricantBarrel = "empty-lubricant-barrel"
28 EmptyPetroleumGasBarrel = "empty-petroleum-gas-barrel"
29 EmptySulfuricAcidBarrel = "empty-sulfuric-acid-barrel"
30 EmptyWaterBarrel = "empty-water-barrel"
31 class Prototype(enum.Enum, metaclass=PrototypeMetaclass):
32 AssemblingMachine1 = "assembling-machine-1", AssemblingMachine
33 AssemblingMachine2 = "assembling-machine-2", AdvancedAssemblingMachine
34 AssemblingMachine3 = "assembling-machine-3", AdvancedAssemblingMachine
35 Centrifuge = "centrifuge", AssemblingMachine
36 BurnerInserter = "burner-inserter", BurnerInserter
37 FastInserter = "fast-inserter", Inserter
38 ExpressInserter = "express-inserter", Inserter
39 LongHandedInserter = "long-handed-inserter", Inserter
40 StackInserter = "stack-inserter", Inserter
41 StackFilterInserter = "stack-filter-inserter", FilterInserter
42 FilterInserter = "filter-inserter", FilterInserter
43 Inserter = "inserter", Inserter
44 BurnerMiningDrill = "burner-mining-drill", BurnerMiningDrill
45 ElectricMiningDrill = "electric-mining-drill", ElectricMiningDrill
46 StoneFurnace = "stone-furnace", Furnace
47 SteelFurnace = "steel-furnace", Furnace
48 ElectricFurnace = "electric-furnace", ElectricFurnace
49 Splitter = "splitter", Splitter
50 FastSplitter = "fast-splitter", Splitter
51 ExpressSplitter = "express-splitter", Splitter
52 Rail = "rail", Rail
53 TransportBelt = "transport-belt", TransportBelt
54 FastTransportBelt = "fast-transport-belt", TransportBelt
55 ExpressTransportBelt = "express-transport-belt", TransportBelt
56 ExpressUndergroundBelt = "express-underground-belt", UndergroundBelt
57 FastUndergroundBelt = "fast-underground-belt", UndergroundBelt
58 UndergroundBelt = "underground-belt", UndergroundBelt
59 OffshorePump = "offshore-pump", OffshorePump
60 PumpJack = "pumpjack", PumpJack
61 Pump = "pump", Pump
62 Boiler = "boiler", Boiler
63 OilRefinery = "oil-refinery", OilRefinery
64 ChemicalPlant = "chemical-plant", ChemicalPlant
65 SteamEngine = "steam-engine", Generator
66 SolarPanel = "solar-panel", SolarPanel
67 UndergroundPipe = "pipe-to-ground", Pipe

34

68 HeatPipe = \’heat-pipe\’, Pipe
69 Pipe = "pipe", Pipe
70 SteelChest = "steel-chest", Chest
71 IronChest = "iron-chest", Chest
72 WoodenChest = "wooden-chest", Chest
73 IronGearWheel = "iron-gear-wheel", Entity
74 StorageTank = "storage-tank", StorageTank
75 SmallElectricPole = "small-electric-pole", ElectricityPole
76 MediumElectricPole = "medium-electric-pole", ElectricityPole
77 BigElectricPole = "big-electric-pole", ElectricityPole
78 Coal = "coal", None
79 Wood = "wood", None
80 Sulfur = "sulfur", None
81 IronOre = "iron-ore", None
82 CopperOre = "copper-ore", None
83 Stone = "stone", None
84 Concrete = "concrete", None
85 UraniumOre = "uranium-ore", None
86 IronPlate = "iron-plate", None # Crafting requires smelting 1 iron ore
87 IronStick = "iron-stick", None
88 SteelPlate = "steel-plate", None # Crafting requires smelting 5 iron plates
89 CopperPlate = "copper-plate", None # Crafting requires smelting 1 copper ore
90 StoneBrick = "stone-brick", None # Crafting requires smelting 2 stone
91 CopperCable = "copper-cable", None
92 PlasticBar = "plastic-bar", None
93 EmptyBarrel = "empty-barrel", None
94 Battery = "battery", None
95 SulfuricAcid = "sulfuric-acid", None
96 Uranium235 = "uranium-235", None
97 Uranium238 = "uranium-238", None
98 Lubricant = "lubricant", None
99 PetroleumGas = "petroleum-gas", None

100 AdvancedOilProcessing = "advanced-oil-processing", None # These are recipes, not prototypes.
101 CoalLiquifaction = "coal-liquifaction", None # These are recipes, not prototypes.
102 SolidFuel = "solid-fuel", None # These are recipes, not prototypes.
103 LightOil = "light-oil", None
104 HeavyOil = "heavy-oil", None
105 ElectronicCircuit = "electronic-circuit", None
106 AdvancedCircuit = "advanced-circuit", None
107 ProcessingUnit = "processing-unit", None
108 EngineUnit = "engine-unit", None
109 ElectricEngineUnit = "electric-engine-unit", None
110 Lab = "lab", Lab
111 Accumulator = "accumulator", Accumulator
112 GunTurret = "gun-turret", GunTurret
113 PiercingRoundsMagazine = "piercing-rounds-magazine", Ammo
114 FirearmMagazine = "firearm-magazine", Ammo
115 Grenade = "grenade", None
116 Radar = "radar", Entity
117 StoneWall = "stone-wall", Entity
118 Gate = "gate", Entity
119 SmallLamp = "small-lamp", Entity
120 NuclearReactor = "nuclear-reactor", Reactor
121 UraniumFuelCell = "uranium-fuel-cell", None
122 HeatExchanger = \’heat-exchanger\’, HeatExchanger
123 AutomationSciencePack = "automation-science-pack", None
124 MilitarySciencePack = "military-science-pack", None
125 LogisticsSciencePack = "logistic-science-pack", None
126 ProductionSciencePack = "production-science-pack", None
127 UtilitySciencePack = "utility-science-pack", None
128 ChemicalSciencePack = "chemical-science-pack", None
129
130 ProductivityModule = "productivity-module", None
131 ProductivityModule2 = "productivity-module-2", None
132 ProductivityModule3 = "productivity-module-3", None
133 FlyingRobotFrame = "flying-robot-frame", None
134 RocketSilo = "rocket-silo", RocketSilo
135 Rocket = "rocket", Rocket
136 Satellite = "satellite", None
137 RocketPart = "rocket-part", None
138 RocketControlUnit = "rocket-control-unit", None
139 LowDensityStructure = "low-density-structure", None
140 RocketFuel = "rocket-fuel", None
141 SpaceSciencePack = "space-science-pack", None
142 BeltGroup = "belt-group", BeltGroup
143 PipeGroup = "pipe-group", PipeGroup
144 ElectricityGroup = "electricity-group", ElectricityGroup
145 def __init__(self, prototype_name, entity_class_name):
146 self.prototype_name = prototype_name
147 self.entity_class = entity_class_name
148 @property

35

149 def WIDTH(self):
150 return self.entity_class._width # Access the class attribute directly
151
152 @property
153 def HEIGHT(self):
154 return self.entity_class._height
155 prototype_by_name = {prototype.value[0]: prototype for prototype in Prototype}
156 prototype_by_title = {str(prototype): prototype for prototype in Prototype}
157 class Technology(enum.Enum):
158 Automation = "automation" # Unlocks assembling machine 1
159 Automation2 = "automation-2" # Unlocks assembling machine 2
160 Automation3 = "automation-3" # Unlocks assembling machine 3
161 Logistics = "logistics" # Unlocks basic belts and inserters
162 Logistics2 = "logistics-2" # Unlocks fast belts and inserters
163 Logistics3 = "logistics-3" # Unlocks express belts and inserters
164 AdvancedElectronics = "advanced-electronics"
165 AdvancedElectronics2 = "advanced-electronics-2"
166 Electronics = "electronics"
167 ElectricEnergy = "electric-energy-distribution-1"
168 ElectricEnergy2 = "electric-energy-distribution-2"
169 SolarEnergy = "solar-energy"
170 ElectricEngineering = "electric-engine"
171 BatteryTechnology = "battery"
172 NuclearPower = "nuclear-power"
173 SteelProcessing = "steel-processing"
174 AdvancedMaterialProcessing = "advanced-material-processing"
175 AdvancedMaterialProcessing2 = "advanced-material-processing-2"
176 MilitaryScience = "military"
177 ModularArmor = "modular-armor"
178 PowerArmor = "power-armor"
179 PowerArmor2 = "power-armor-mk2"
180 NightVision = "night-vision-equipment"
181 EnergyShield = "energy-shields"
182 EnergyShield2 = "energy-shields-mk2-equipment"
183 RailwayTransportation = "railway"
184 OilProcessing = "oil-processing"
185 AdvancedOilProcessing = "advanced-oil-processing"
186 SulfurProcessing = "sulfur-processing"
187 Plastics = "plastics"
188 Lubricant = "lubricant"
189 ProductivityModule = "productivity-module"
190 ProductivityModule2 = "productivity-module-2"
191 ProductivityModule3 = "productivity-module-3"
192 Robotics = "robotics"
193 LogisticsSciencePack = "logistic-science-pack"
194 MilitarySciencePack = "military-science-pack"
195 ChemicalSciencePack = "chemical-science-pack"
196 ProductionSciencePack = "production-science-pack"
197 FastInserter = "fast-inserter"
198 StackInserter = "stack-inserter"
199 StackInserterCapacity1 = "stack-inserter-capacity-bonus-1"
200 StackInserterCapacity2 = "stack-inserter-capacity-bonus-2"
201 StorageTanks = "fluid-handling"
202 BarrelFilling = "barrel-filling"
203 Grenades = "grenades"
204 Landfill = "landfill"
205 CharacterInventorySlots = "character-inventory-slots"
206 ResearchSpeed = "research-speed"
207 SpaceScience = "space-science-pack"
208 RocketFuel = "rocket-fuel"
209 RocketControl = "rocket-control-unit"
210 LowDensityStructure = "low-density-structure"
211 RocketSiloTechnology = "rocket-silo"
212 technology_by_name = {tech.value: tech for tech in Technology}
213 class Resource:
214 Coal = "coal", ResourcePatch
215 IronOre = "iron-ore", ResourcePatch
216 CopperOre = "copper-ore", ResourcePatch
217 Stone = "stone", ResourcePatch
218 Water = "water", ResourcePatch
219 CrudeOil = "crude-oil", ResourcePatch
220 UraniumOre = "uranium-ore", ResourcePatch
221 Wood = "wood", ResourcePatch
222 class EntityStatus(Enum):
223 WORKING = \’working\’
224 NORMAL = \’normal\’
225 NO_POWER = \’no_power\’
226 LOW_POWER = \’low_power\’
227 NO_FUEL = \’no_fuel\’
228 EMPTY = \’empty\’
229 NOT_PLUGGED_IN_ELECTRIC_NETWORK = \’not_plugged_in_electric_network\’

36

230 CHARGING = \’charging\’
231 DISCHARGING = \’discharging\’
232 FULLY_CHARGED = \’fully_charged\’
233 NO_RECIPE = \’no_recipe\’
234 NO_INGREDIENTS = \’no_ingredients\’
235 NOT_CONNECTED = \’not_connected\’
236 NO_INPUT_FLUID = \’no_input_fluid\’
237 NO_RESEARCH_IN_PROGRESS = \’no_research_in_progress\’
238 NO_MINABLE_RESOURCES = \’no_minable_resources\’
239 LOW_INPUT_FLUID = \’low_input_fluid\’
240 FLUID_INGREDIENT_SHORTAGE = \’fluid_ingredient_shortage\’
241 FULL_OUTPUT = \’full_output\’
242 FULL_BURNT_RESULT_OUTPUT = \’full_burnt_result_output\’
243 ITEM_INGREDIENT_SHORTAGE = \’item_ingredient_shortage\’
244 MISSING_REQUIRED_FLUID = \’missing_required_fluid\’
245 MISSING_SCIENCE_PACKS = \’missing_science_packs\’
246 WAITING_FOR_SOURCE_ITEMS = \’waiting_for_source_items\’
247 WAITING_FOR_SPACE_IN_DESTINATION = \’waiting_for_space_in_destination\’
248 PREPARING_ROCKET_FOR_LAUNCH = \’preparing_rocket_for_launch\’
249 WAITING_TO_LAUNCH_ROCKET = \’waiting_to_launch_rocket\’
250 LAUNCHING_ROCKET = \’launching_rocket\’
251 NO_AMMO = \’no_ammo\’
252 LOW_TEMPERATURE = \’low_temperature\’
253 NOT_CONNECTED_TO_RAIL = \’not_connected_to_rail\’
254 def __repr__(self):
255 def from_string(cls, status_string):
256 def from_int(cls, status_int):
257 class Inventory(BaseModel):
258 class Config:
259 populate_by_name = True
260 arbitrary_types_allowed = True
261 def __init__(self):
262 def __getitem__(self, key: \’Prototype\’, default) -> int:
263 def get(self, key: \’Prototype\’, default) -> int:
264 def __setitem__(self, key: \’Prototype\’, value: int) -> None:
265 def items(self):
266 def __repr__(self) -> str:
267 def __str__(self) -> str:
268 def __len__(self) -> int:
269 def keys(self):
270 def values(self):
271 class Direction(Enum):
272 UP = 0
273 NORTH = 0
274 RIGHT = 2
275 EAST = 2
276 DOWN = 4
277 SOUTH = 4
278 LEFT = 6
279 WEST = 6
280 def __repr__(self):
281 def from_string(cls, direction_string):
282 class Position(BaseModel):
283 x: float
284 y: float
285 def _parse_positional_args(cls, v):
286 def __init__(self):
287 def parse_args(cls, values):
288 def __hash__(self):
289 def __add__(self, other) -> \’Position\’:
290 def __sub__(self, other) -> \’Position\’:
291 def is_close(self, a: \’Position\’, tolerance: float) -> bool:
292 def distance(self, a: \’Position\’) -> float:
293 def _modifier(self, args):
294 def above(self) -> \’Position\’:
295 def up(self) -> \’Position\’:
296 def below(self) -> \’Position\’:
297 def down(self) -> \’Position\’:
298 def left(self) -> \’Position\’:
299 def right(self) -> \’Position\’:
300 def to_bounding_box(self, other: \’Position\’) -> \’BoundingBox\’:
301 def __eq__(self, other) -> bool:
302 class IndexedPosition(Position):
303 type: str
304 def __new__(cls):
305 def __init__(self):
306 def __hash__(self):
307 class EntityInfo(BaseModel):
308 name: str
309 direction: int
310 position: Position

37

311 start_position: Optional[Position]
312 end_position: Optional[Position]
313 quantity: Optional[int]
314 warning: Optional[str]
315 contents: Dict[str, int]
316 status: EntityStatus
317 class InspectionResults(BaseModel):
318 entities: List[EntityInfo]
319 player_position: Tuple[float, float]
320 radius: float
321 time_elapsed: float
322 def get_entity(self, prototype: \’Prototype\’) -> Optional[EntityInfo]:
323 def get_entities(self, prototype: \’Prototype\’) -> List[EntityInfo]:
324 class BoundingBox(BaseModel):
325 left_top: Position
326 right_bottom: Position
327 left_bottom: Position
328 right_top: Position
329 def center(self) -> Position:
330 def width(self) -> float:
331 def height(self) -> float:
332 class BuildingBox(BaseModel):
333 height: int
334 width: int
335 class ResourcePatch(BaseModel):
336 name: str
337 size: int
338 bounding_box: BoundingBox
339 class Dimensions(BaseModel):
340 width: float
341 height: float
342 class TileDimensions(BaseModel):
343 tile_width: float
344 tile_height: float
345 class Ingredient(BaseModel):
346 name: str
347 count: Optional[int]
348 type: Optional[Literal[\’fluid\’, \’item\’]]
349 class Product(Ingredient):
350 probability: Optional[float]
351 class Recipe(BaseModel):
352 name: Optional[str]
353 ingredients: Optional[List[Ingredient]]
354 products: Optional[List[Product]]
355 energy: Optional[float]
356 category: Optional[str]
357 enabled: bool
358 class BurnerType(BaseModel):
359 """
360 Type of entity that burns fuel
361 """
362 class Config:
363 arbitrary_types_allowed = True
364 fuel: Inventory
365 class EntityCore(BaseModel):
366 name: str
367 direction: Direction
368 position: Position
369 def __repr__(self):
370 class Entity(EntityCore):
371 """
372 Base class for all entities in the game.
373 """
374 id: Optional[int]
375 energy: float
376 type: Optional[str]
377 dimensions: Dimensions
378 tile_dimensions: TileDimensions
379 prototype: Any
380 health: float
381 warnings: List[str]
382 status: EntityStatus
383 def __repr__(self) -> str:
384 def _get_prototype(self):
385 def width(cls):
386 def height(cls):
387 class StaticEntity(Entity):
388 """
389 A static (non-moving) entity in the game.
390 """
391 neighbours: Optional[Union[Dict, List[EntityCore]]]

38

392 class Rail(Entity):
393 """
394 Railway track for trains.
395 """
396 _height: float
397 _width: float
398 class Splitter(Entity):
399 """
400 A belt splitter that divides item flow between outputs.
401 """
402 input_positions: List[Position]
403 output_positions: List[Position]
404 inventory: List[Inventory]
405 _height: float
406 _width: float
407 class TransportBelt(Entity):
408 """
409 A conveyor belt for moving items.
410 """
411 input_position: Position
412 output_position: Position
413 inventory: Inventory
414 is_terminus: bool
415 is_source: bool
416 _height: float
417 _width: float
418 def __repr__(self):
419 def __hash__(self):
420 def __eq__(self, other):
421 class Electric(BaseModel):
422 """
423 Base class for entities that interact with the power grid.
424 """
425 electrical_id: Optional[int]
426 class ElectricalProducer(Electric, Entity):
427 """
428 An entity that generates electrical power.
429 """
430 production: Optional[Any]
431 energy_source: Optional[Any]
432 electric_output_flow_limit: Optional[float]
433 class EnergySource(BaseModel):
434 buffer_capacity: str
435 input_flow_limit: str
436 output_flow_limit: str
437 drain: str
438 class Accumulator(StaticEntity, Electric):
439 """
440 Represents an energy storage device
441 """
442 energy_source: Optional[EnergySource]
443 _height: float
444 _width: float
445 class Inserter(StaticEntity, Electric):
446 """
447 Represents an inserter that moves items between entities.
448 Requires electricity to power
449 """
450 pickup_position: Optional[Position]
451 drop_position: Position
452 _width: float
453 _height: float
454 class Filtered(BaseModel):
455 filter: Optional[Any]
456 class UndergroundBelt(TransportBelt):
457 """
458 An underground section of transport belt.
459 """
460 is_input: bool
461 connected_to: Optional[int]
462 _height: float
463 _width: float
464 class MiningDrill(StaticEntity):
465 """
466 Base class for mining drills that extract resources.
467 The direction of the drill is where the drop_position is oriented towards
468 """
469 drop_position: Position
470 resources: List[Ingredient]
471 class ElectricMiningDrill(MiningDrill, Electric):
472 """

39

473 An electrically-powered mining drill.
474 """
475 _height: float
476 _width: float
477 class BurnerInserter(Inserter, BurnerType):
478 """
479 An inserter powered by burnable fuel.
480 """
481 _height: float
482 _width: float
483 class BurnerMiningDrill(MiningDrill, BurnerType):
484 """
485 A mining drill powered by burnable fuel.
486 """
487 _width = 2
488 _height = 2
489 class Ammo(BaseModel):
490 name: str
491 magazine_size: Optional[int]
492 reload_time: Optional[float]
493 class GunTurret(StaticEntity):
494 turret_ammo: Inventory
495 _height: float
496 _width: float
497 kills: Optional[int]
498 class AssemblingMachine(StaticEntity, Electric):
499 """
500 A machine that crafts items from ingredients.
501 Requires power to operate
502 """
503 recipe: Optional[Recipe]
504 assembling_machine_input: Inventory
505 assembling_machine_output: Inventory
506 assembling_machine_modules: Inventory
507 _height: float
508 _width: float
509 class FluidHandler(StaticEntity):
510 """
511 Base class for entities that handle fluids
512 """
513 connection_points: List[Position]
514 fluid_box: Optional[Union[dict, list]]
515 fluid_systems: Optional[Union[dict, list]]
516 class AdvancedAssemblingMachine(FluidHandler, AssemblingMachine):
517 """
518 A second and third tier assembling machine that can handle fluids.
519 Requires power to operate
520 A recipe first needs to be set and then the input fluid source can be connected with pipes
521 """
522 _height: float
523 _width: float
524 class MultiFluidHandler(StaticEntity):
525 """
526 Base class for entities that handle multiple fluid types.
527 """
528 input_fluids: List[str]
529 output_fluids: List[str]
530 input_connection_points: List[IndexedPosition]
531 output_connection_points: List[IndexedPosition]
532 fluid_box: Optional[Union[dict, list]]
533 fluid_systems: Optional[Union[dict, list]]
534 class FilterInserter(Inserter, Filtered):
535 """
536 A inserter that only moves specific items
537 """
538 _height: float
539 _width: float
540 class ChemicalPlant(MultiFluidHandler, AssemblingMachine):
541 """
542 Represents a chemical plant that processes fluid recipes.
543 Requires powering and accepts input fluids (from storage tanks etc) and solids (with inserters)
544 Outputs either:
545 solids (battery, plastic) that need to be extracted with inserters
546 fluids (sulfuric acid, oil) that need to be extracted with pipes
547 IMPORTANT: First a recipe needs to be set and then the fluid sources can be connected to the plant
548 """
549 _height: float
550 _width: float
551 class OilRefinery(MultiFluidHandler, AssemblingMachine):
552 """
553 An oil refinery for processing crude oil into products.

40

554 Requires powering and accepts input fluids (from pumpjacks, storage tanks etc) and solids
555 First a recipe needs to be set and then the fluid sources can be connected to the refinery
556 """
557 _height: float
558 _width: float
559 class PumpJack(MiningDrill, FluidHandler, Electric):
560 """
561 A pump jack for extracting crude oil. Requires electricity
562 This needs to be placed on crude oil and oil needs to be extracted with pipes
563 Oil can be sent to a storage tank, oil refinery or a chemical plant
564 Oil can also be sent to assmbling machine to be made into oil barrels
565 Important: The PumpJack needs to be placed on exact crude oil tiles
566
567 """
568 _height: float
569 _width: float
570 class SolarPanel(ElectricalProducer):
571 """
572 A solar panel for generating power from sunlight.
573 This entity generated power during the day
574 Thus it can be directly connected to a entity to power it
575 """
576 _height: float
577 _width: float
578 class Boiler(FluidHandler, BurnerType):
579 """
580 A boiler that heats water into steam.
581 """
582 steam_output_point: Optional[Position]
583 _height: float
584 _width: float
585 class HeatExchanger(Boiler):
586 """
587 A nuclear heat exchanger that converts water to steam.
588 """
589 class Generator(FluidHandler, StaticEntity):
590 """
591 A steam generator that produces electricity.
592 """
593 _height: float
594 _width: float
595 class Pump(FluidHandler, Electric):
596 """
597 An electrically-powered fluid pump.
598 """
599 _height: float
600 _width: float
601 class OffshorePump(FluidHandler):
602 """
603 A pump that extracts water from water tiles.
604 Can be used in power generation setups and to supply water to chemical plants and oil refineries.
605 """
606 _height: float
607 _width: float
608 class ElectricityPole(Entity, Electric):
609 """
610 A power pole for electricity distribution.
611 """
612 flow_rate: float
613 _height: float
614 _width: float
615 def __hash__(self):
616 class Furnace(Entity, BurnerType):
617 """
618 A furnace for smelting items
619 """
620 furnace_source: Inventory
621 furnace_result: Inventory
622 _height: float
623 _width: float
624 class ElectricFurnace(Entity, Electric):
625 """
626 An electrically-powered furnace.
627 """
628 furnace_source: Inventory
629 furnace_result: Inventory
630 _height: float
631 _width: float
632 class Chest(Entity):
633 """
634 A storage chest.

41

635 """
636 inventory: Inventory
637 _height: float
638 _width: float
639 class StorageTank(FluidHandler):
640 """
641 A tank for storing fluids.
642 Can be used for inputs and outputs of chemical plants and refineries.
643 Also can store water from offshore pumps.
644 """
645 _height: float
646 _width: float
647 class RocketSilo(StaticEntity, Electric):
648 """
649 A rocket silo that can build and launch rockets.
650 """
651 rocket_parts: int
652 rocket_inventory: Inventory
653 rocket_progress: float
654 launch_count: int
655 _width: float
656 _height: float
657 def __repr__(self) -> str:
658 class Rocket(Entity):
659 """
660 A rocket that can be launched from a silo.
661 """
662 payload: Optional[Inventory]
663 launch_progress: float
664 def __repr__(self) -> str:
665 class Lab(Entity, Electric):
666 """
667 A research laboratory.
668 """
669 lab_input: Inventory
670 lab_modules: Inventory
671 research: Optional[Any]
672 _height: float
673 _width: float
674 def __repr__(self) -> str:
675 class Pipe(Entity):
676 """
677 A pipe for fluid transport
678 """
679 fluidbox_id: int
680 flow_rate: float
681 contents: float
682 fluid: Optional[str]
683 _height: float
684 _width: float
685 class Reactor(StaticEntity):
686 """
687 A nuclear reactor
688 """
689 _height: float
690 _width: float
691 class EntityGroup(BaseModel):
692 id: int
693 status: EntityStatus
694 position: Position
695 name: str
696 class WallGroup(EntityGroup):
697 """
698 A wall
699 """
700 name: str
701 entities: List[Entity]
702 class BeltGroup(EntityGroup):
703 """
704 A connected group of transport belts.
705 """
706 belts: List[TransportBelt]
707 inputs: List[Entity]
708 outputs: List[Entity]
709 inventory: Inventory
710 name: str
711 def __repr__(self) -> str:
712 def __str__(self):
713 class PipeGroup(EntityGroup):
714 """
715 A connected group of pipes.

42

716 """
717 pipes: List[Pipe]
718 name: str
719 def __repr__(self) -> str:
720 def __str__(self):
721 class ElectricityGroup(EntityGroup):
722 """
723 Represents a connected power network.
724 """
725 name: str
726 poles: List[ElectricityPole]
727 def __repr__(self) -> str:
728 def __hash__(self):
729 def __str__(self):
730 ‘‘‘
731 ‘‘‘methods
732 can_place_entity(entity: Prototype, direction: Direction = <Direction.UP: 0>, position: Position =

Position(x=0.0, y=0.0)) -> bool
733 """
734 Tests to see if an entity can be placed at a given position
735 :param entity: Entity to place from inventory
736 :param direction: Cardinal direction to place entity
737 :param position: Position to place entity
738 :return: True if entity can be placed at position, else False
739 """
740
741 craft_item(entity: Prototype, quantity: int = 1) -> int
742 """
743 Craft an item from a Prototype if the ingredients exist in your inventory.
744 :param entity: Entity to craft
745 :param quantity: Quantity to craft
746 :return: Number of items crafted
747 """
748
749 extract_item(entity: Prototype, source: Union[Position, Entity], quantity=5) -> int
750 """
751 Extract an item from an entity\’s inventory at position (x, y) if it exists on the world.
752 :param entity: Entity prototype to extract, e.g Prototype.IronPlate
753 :param source: Entity or position to extract from
754 :param quantity: Quantity to extract
755 :example extract_item(Prototype.IronPlate, stone_furnace.position, 5)
756 :example extract_item(Prototype.CopperWire, stone_furnace, 5)
757 :return The number of items extracted.
758 """
759
760 get_connection_amount(source: Union[Position, Entity, EntityGroup], target: Union[Position, Entity,

EntityGroup], connection_type: Prototype = <Prototype.Pipe: (\’pipe\’, <class \’Pipe\’>)>) -> int
761 """
762 Calculate the number of connecting entities needed to connect two entities, positions or groups.
763 :param source: First entity or position
764 :param target: Second entity or position
765 :param connection_type: a Pipe, TransportBelt or ElectricPole
766 :return: A integer representing how many entities are required to connect the source and target entities
767 """
768
769 get_entities(entities: Union[Set[Prototype], Prototype] = set(), position: Position = None, radius: float

= 1000) -> List[Entity]
770 """
771 Get entities within a radius of a given position.
772 :param entities: Set of entity prototypes to filter by. If empty, all entities are returned.
773 :param position: Position to search around. Can be a Position object or "player" for player\’s position.
774 :param radius: Radius to search within.
775 :return: Found entities
776 """
777
778 get_entity(entity: Prototype, position: Position) -> Entity
779 """
780 Retrieve a given entity object at position (x, y) if it exists on the world.
781 :param entity: Entity prototype to get, e.g Prototype.StoneFurnace
782 :param position: Position where to look
783 :return: Entity object
784 """
785
786 get_prototype_recipe(prototype: Union[Prototype, RecipeName, str]) -> Recipe
787 """
788 Get the recipe (cost to make) of the given entity prototype.
789 :param prototype: Prototype to get recipe from
790 :return: Recipe of the given prototype
791 """
792
793 get_research_progress(technology: Optional[Technology] = None) -> List[Ingredient]

43

794 """
795 Get the progress of research for a specific technology or the current research.
796 :param technology: Optional technology to check. If None, checks current research.
797 :return The remaining ingredients to complete the research
798 """
799
800 get_resource_patch(resource: Resource, position: Position, radius: int = 10) -> Optional[ResourcePatch]
801 """
802 Get the resource patch at position (x, y) if it exists in the radius.
803 if radius is set to 0, it will only check the exact position for this resource patch.
804 :param resource: Resource to get, e.g Resource.Coal
805 :param position: Position to get resource patch
806 :param radius: Radius to search for resource patch
807 :example coal_patch_at_origin = get_resource_patch(Resource.Coal, Position(x=0, y=0))
808 :return: ResourcePatch if found, else None
809 """
810
811 harvest_resource(position: Position, quantity=1, radius=10) -> int
812 """
813 Harvest a resource at position (x, y) if it exists on the world.
814 :param position: Position to harvest resource
815 :param quantity: Quantity to harvest
816 :example harvest_resource(nearest(Resource.Coal), 5)
817 :example harvest_resource(nearest(Resource.Stone), 5)
818 :return: The quantity of the resource harvested
819 """
820
821 insert_item(entity: Prototype, target: Union[Entity, EntityGroup], quantity=5) -> Entity
822 """
823 Insert an item into a target entity\’s inventory
824 :param entity: Type to insert from inventory
825 :param target: Entity to insert into
826 :param quantity: Quantity to insert
827 :return: The target entity inserted into
828 """
829
830 inspect_inventory(entity=None) -> Inventory
831 """
832 Inspects the inventory of the given entity. If no entity is given, inspect your own inventory.
833 :param entity: Entity to inspect
834 :return: Inventory of the given entity
835 """
836
837 launch_rocket(silo: Union[Position, RocketSilo]) -> RocketSilo
838 """
839 Launch a rocket.
840 :param silo: Rocket silo
841 :return: Your final position
842 """
843
844 move_to(position: Position, laying: Prototype = None, leading: Prototype = None) -> Position
845 """
846 Move to a position.
847 :param position: Position to move to.
848 :return: Your final position
849 """
850
851 nearest(type: Union[Prototype, Resource]) -> Position
852 """
853 Find the nearest entity or resource to your position.
854 :param type: Entity or resource type to find
855 :return: Position of nearest entity or resource
856 """
857
858 nearest_buildable(entity: Prototype, building_box: BuildingBox, center_position: Position, **kwargs) ->

BoundingBox
859 """
860 Find the nearest buildable area for an entity.
861
862 :param entity: Prototype of the entity to build.
863 :param building_box: The building box denoting the area of location that must be placeable.
864 :param center_position: The position to find the nearest area where building box fits
865 :return: BoundingBox of the nearest buildable area or None if no such area exists.
866 """
867
868 pickup_entity(entity: Union[Entity, Prototype, EntityGroup], position: Optional[Position] = None) -> bool
869 """
870 Pick up an entity if it exists on the world at a given position.
871 :param entity: Entity prototype to pickup, e.g Prototype.IronPlate
872 :param position: Position to pickup entity
873 :return: True if the entity was picked up successfully, False otherwise.

44

874 """
875
876 place_entity(entity: Prototype, direction: Direction = <Direction.UP: 0>, position: Position =

Position(x=0.0, y=0.0), exact: bool = True) -> Entity
877 """
878 Places an entity e at local position (x, y) if you have it in inventory.
879 :param entity: Entity to place
880 :param direction: Cardinal direction to place
881 :param position: Position to place entity
882 :param exact: If True, place entity at exact position, else place entity at nearest possible position
883 :return: Entity object
884 """
885
886 place_entity_next_to(entity: Prototype, reference_position: Position = Position(x=0.0, y=0.0), direction:

Direction = <Direction.RIGHT: 2>, spacing: int = 0) -> Entity
887 """
888 Places an entity next to an existing entity, with an optional space in-between (0 space means adjacent).
889 In order to place something with a gap, you must increase the spacing parameter.
890 :param entity: Entity to place
891 :param reference_position: Position of existing entity or position to place entity next to
892 :param direction: Direction to place entity from reference_position
893 :param spacing: Space between entity and reference_position
894 :example: place_entity_next_to(Prototype.WoodenChest, Position(x=0, y=0), direction=Direction.UP,

spacing=1)
895 :return: Entity placed
896 """
897
898 print(*args)
899 """
900 Adds a string to stdout
901 :param args:
902 :return:
903 """
904
905 rotate_entity(entity: Entity, direction: Direction = <Direction.UP: 0>) -> Entity
906 """
907 Rotate an entity to a specified direction
908 :param entity: Entity to rotate
909 :param direction: Direction to rotate
910 :example rotate_entity(iron_chest, Direction.UP)
911 :return: Returns the rotated entity
912 """
913
914 set_entity_recipe(entity: Entity, prototype: Union[Prototype, RecipeName]) -> Entity
915 """
916 Sets the recipe of an given entity.
917 :param entity: Entity to set recipe
918 :param prototype: The prototype to create, or a recipe name for more complex processes
919 :return: Entity that had its recipe set
920 """
921
922 set_research(*args, **kwargs)
923 """
924 Call self as a function.
925 """
926
927 set_research(technology: Technology) -> List[Ingredient]
928 """
929 Set the current research technology for the player\’s force.
930 :param technology: Technology to research
931 :return: Required ingredients to research the technology.
932 """
933
934 shift_entity(entity: Entity, direction: Union[Direction, Direction], distance: int = 1) -> Entity
935 """
936 Calculate the number of connecting entities needed to connect two entities, positions or groups.
937 :param source: First entity or position
938 :param target: Second entity or position
939 :param connection_type: a Pipe, TransportBelt or ElectricPole
940 :return: A integer representing how many entities are required to connect the source and target entities
941 """
942
943 sleep(seconds: int) -> bool
944 """
945 Sleep for up to 15 seconds before continuing. Useful for waiting for actions to complete.
946 :param seconds: Number of seconds to sleep.
947 :return: True if sleep was successful.
948 """
949 ‘‘‘

45

Example Memory

Below is an example of 2 step memory that is input to the agent. The past policies P and O are
formatted like user-assistant messages for chat models, where policies are assistant and observation
is user messages. To improve the informativeness of logs, we mask out the overall game setup prints
of past policies except for the last step. This makes sure the agent doesnt rely on past game states to
make decisions

1 Assstant message
2 ‘‘‘python
3 water_pos = nearest(Resource.Water)
4 print(f"Found water source at {water_pos}")
5
6 # Place offshore pump
7 move_to(water_pos)
8 offshore_pump = place_entity(Prototype.OffshorePump, position=water_pos)
9 print(f"Placed offshore pump at {offshore_pump.position}")

10
11 boiler = place_entity_next_to(Prototype.Boiler, reference_position=offshore_pump.position, spacing = 4,

direction = Direction.RIGHT)
12 print(f"Placed boiler at {boiler.position}")
13 steam_engine = place_entity_next_to(Prototype.SteamEngine, reference_position=boiler.position, spacing =

5, direction = Direction.RIGHT)
14 print(f"Placed steam engine at {steam_engine.position}")
15 # Connect offshore pump to boiler with pipes
16 pump_to_boiler = connect_entities(offshore_pump.position, boiler.position, Prototype.Pipe)
17 print(f"Connected offshore pump to boiler with pipes: {pump_to_boiler}")
18
19 # Connect boiler to steam engine with pipes
20 boiler_to_engine = connect_entities(boiler.position, steam_engine.position, Prototype.Pipe)
21 print(f"Connected boiler to steam engine with pipes: {boiler_to_engine}")
22 print(f"Current inventory {inspect_inventory()}")
23 print(f"Updated entities on the map: {get_entities()}")
24 ‘‘‘
25
26 User message
27 27015: (’Found water source at x=-12.0 y=0.0’,)
28 27015: (’Placed offshore pump at x=-10.5 y=-0.5’,)
29 27015: (’Placed boiler at x=-5.0 y=-0.5’,)
30 27015: (’Placed steam engine at x=3.5 y=-0.5’,)
31 27015: (’Connected offshore pump to boiler with pipes: [
32 PipeGroup(fluid_system=1, position=x=-6.5 y=-2.5, status=EntityStatus.WORKING, pipes=[7 pipes],

fluid=water)]’,)
33 27015: (’Connected boiler to steam engine with pipes: [PipeGroup(fluid_system=3, position=x=-2.5 y=-0.5,

status=EntityStatus.EMPTY, pipes=[5 pipes])]’,)
34 27015: ("Current inventory {’wooden-chest’: 10, ’transport-belt’: 200, ’burner-inserter’: 10,

’small-electric-pole’: 200, ’pipe’: 88, ’boiler’: 3, ’steam-engine’: 1, ’burner-mining-drill’: 10,
’electric-mining-drill’: 10, ’offshore-pump’: 2, ’stone-furnace’: 5, ’assembling-machine-1’: 5,
’coal’: 200, ’stone’: 50, ’iron-ore’: 62, ’iron-plate’: 19, ’copper-plate’: 52, ’iron-gear-wheel’:
22, ’electronic-circuit’: 99}",)

35 27015: ("Updated entities on the map: <STALE_ENTITY_DATA_OMITTED>)
36
37 Assstant message
38 ‘‘‘python
39 # move to iron position
40 iron_pos = nearest(Resource.IronOre)
41 move_to(iron_pos)
42 # place a lectric mining drill
43 drill = place_entity(Prototype.ElectricMiningDrill, position = iron_pos)
44 print(f"Put a drill to mine iron at {drill.position}")
45
46 # power the drill
47 steam_engine = get_entity(Prototype.SteamEngine, position = Position(x = 3.5, y=-0.5))
48 poles = connect_entities(steam_engine,drill,Prototype.SmallElectricPole)
49 print(f"Used poles {poles} to power drill at {drill.position}")
50
51 print(f"Current inventory {inspect_inventory()}")
52 print(f"Updated entities on the map: {get_entities()}")
53 ‘‘‘
54
55 User Message
56 27015: (’Put a drill to mine iron at x=-11.5 y=19.5’,)
57 27015: (’Used poles [ElectricityGroup(id=18,

poles=[(x=-1.5,y=4.5),(x=-3.5,y=6.5),(x=3.5,y=1.5),...,(x=-9.5,y=12.5),(x=-11.5,y=14.5)],
voltage=0)] to power drill at x=-11.5 y=19.5’,)

58 27015: ("Current inventory {’wooden-chest’: 10, ’transport-belt’: 200, ’burner-inserter’: 10,
’small-electric-pole’: 191, ’pipe’: 88, ’boiler’: 3, ’steam-engine’: 1, ’burner-mining-drill’: 10,
’electric-mining-drill’: 9, ’offshore-pump’: 2, ’stone-furnace’: 5, ’assembling-machine-1’: 5,

46

’coal’: 200, ’stone’: 50, ’iron-ore’: 62, ’iron-plate’: 19, ’copper-plate’: 52, ’iron-gear-wheel’:
22, ’electronic-circuit’: 99}",)

59 27015: ("Updated entities on the map: [
60 OffshorePump(name=’offshore-pump’, position=Position(x=-10.5, y=-0.5), direction=Direction.RIGHT,

energy=0.0, tile_dimensions=TileDimensions(tile_width=1.0, tile_height=1.0),
status=EntityStatus.WORKING, connection_points=[Position(x=-9.5, y=-0.5)], fluid_box=[{’name’:
’water’, ’amount’: 100, ’temperature’: 15}], fluid_systems=[49]),

61 Boiler(fuel={}, name=’boiler’, position=Position(x=-5.0, y=-0.5), direction=Direction.RIGHT, energy=0.0,
tile_dimensions=TileDimensions(tile_width=3.0, tile_height=2.0), warnings=[’out of fuel’],
status=EntityStatus.NO_FUEL, connection_points=[Position(x=-5.5, y=-2.5), Position(x=-5.5, y=1.5)],
fluid_box=[{’name’: ’water’, ’amount’: 200, ’temperature’: 15}], fluid_systems=[49],
steam_output_point=Position(x=-3.0, y=-0.5)),

62 Generator(electrical_id=18, name=’steam-engine’, position=Position(x=3.5, y=-0.5),
direction=Direction.RIGHT, energy=0.0, tile_dimensions=TileDimensions(tile_width=3.0,
tile_height=5.0), warnings=[’not receiving electricity’, ’no input liquid’, ’No fluid present in
connections’], status=EntityStatus.NOT_CONNECTED, connection_points=[Position(x=6.0, y=-0.5),
Position(x=1.0, y=-0.5)], fluid_box=[], fluid_systems=[]),

63 ElectricMiningDrill(electrical_id=18, name=’electric-mining-drill’, position=Position(x=-11.5, y=19.5),
direction=Direction.UP, energy=0.0, tile_dimensions=TileDimensions(tile_width=3.0, tile_height=3.0),
warnings=[’not receiving electricity’], status=EntityStatus.NO_POWER,
drop_position=Position(x=-11.5, y=17.5)),

64 PipeGroup(fluid_system=49, position=x=-6.5 y=-2.5, status=EntityStatus.FULL_OUTPUT, pipes=[7 pipes],
fluid=water),

65 PipeGroup(fluid_system=51, position=x=-2.5 y=-0.5, status=EntityStatus.EMPTY, pipes=[5 pipes]),
66 ElectricityGroup(id=18,

poles=[(x=-1.5,y=4.5),(x=-3.5,y=6.5),(x=3.5,y=1.5),...,(x=-9.5,y=12.5),(x=-11.5,y=14.5)],
voltage=0)]",)

47

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims made in abstract and introduction are expanded sections 2 and 4
with qualitative and quantitative analysis.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

48

Justification: We did not make any theoretical claims in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In section 3 we clearly describe the experiment settings and how our experiment
tasks were run.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

49

Answer: [Yes]
Justification: We have included the repository for the environment with a Readme describing
how to run the tasks as supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, the experiment settings and environment descriptions can be found in
sections 2 and 3
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All relevant experiments have error bars reported as part of the results where
appropriate.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

50

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have included the experiment setup in section C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors guarantee that our environment and experiments in the paper
conform with NeurIPS Code of Ethics in every aspect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work evaluates language agents in a simulated game-environment. Thus
there are no societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

51

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work evaluates language agents in a simulated game-environment. Thus
there are no data or models with a high risk of misuse

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have credited the creator of Factorio and have discussed this work with
them.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

52

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have included extended documentation to the open-source library of FLE.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not include any crowdsourcing or experiments with humans
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not include any crowdsourcing or experiments with humans.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

53

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methods (environment and experiments) did not involve LLMs as
important, original or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

54

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Factorio Learning Environment
	Environment Dynamics
	Environment Interface
	Reward Structure
	Implementation Details

	Experiments
	Open Play
	Lab-Play
	Agent Scaffolding

	Results
	Analysis

	Related Work
	Limitations, Future Work & Conclusion
	Factorio Economic System
	Further analysis
	Long term objective-setting
	VLMs in Spatial Reasoning Tasks
	Reasoning Model Performance

	Experimental Setup
	Benchmark Latency Results
	API Design
	Action and Observation

	Model Access Datetimes
	Example Open-Play GPT4o-Mini Failure
	Lab Play Throughput Tasks Detailed Description
	Task quotas
	Task Complexity
	Laboratory map
	Inventory
	Reward hacking
	Prompt
	Human baseline for lab-play

	Rocket Silo Resource Requirements
	Comparison to modded Minecraft
	Agent scaffolding details
	Guide
	API Schema prompt

