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ABSTRACT

Most existing Graph Neural Networks (GNNs) frequently suffer from two limita-
tions: (i) they can only process graphs whose vertices are represented by vectors
or single values; and (ii) they assume each input graph is independent from others
during the propagation. In this paper, we propose the first GNN model (called
Graph in Graph Neural Network (GIG)) that can process graphs whose ver-
tices are also represented by graphs. Considering that the relationship between
different graphs may contain crucial task-related cues, we further propose a GIG
graph relationship modelling (GRM) strategy that integrates multiple target graph
samples as a global graph, each of whose vertex describes a target graph sample.
We then applies the GIG model to jointly process the combined graph samples
(i.e., the global graph), where additional task-specific relationship cues among
graph samples can be extracted in an end-to-end manner. The experimental re-
sults show that the proposed GIG model and the GRM strategy generalize well on
various graph analysis tasks, providing new state-of-the-art results on five out of
seven benchmark graph datasets. Importantly, not only its vertex/edge updating
functions are flexible to be customized from different existing GNNs but also it is
robust to different settings. Our anonymous code and model settings are provided
in the supplementary material and appendix for reproducibly purpose.

1 INTRODUCTION

Recent advances in Graph Neural Networks (GNNs) allow task-specific features to be effectively
extracted from non-Euclidean graph samples for various graph analysis tasks. While most early
GNNs (Perona & Malikl [1990; |Battaglia et al.,|2016; |[Marcheggiani & Titov, 2017;|Velickovic et al.}
2017)) were built upon anisotropic operations and can only update vertex features based on their first-
order neighbours, other approaches (Scarselli et al., 2008}; Bruna et al., 2013; Deftferrard et al., 2016;
Sukhbaatar et al.| 2016} Kipf & Welling, [2016} Velickovic et al.,|2018]) extended Convolution Neural
Networks (CNNis) to the graph domain, allowing information to be exchanged between vertices and
their higher-order neighbours. In the past three years, more advanced GNNs have been proposed
to allow them to be able to not only process graphs that have different typologies (heterogeneous
graphs) (e.g., Heterogeneous Graph Neural Network (Zhang et al.| [2019a), Heterogeneous Graph
Attention Network (Wang et al., 2019b), etc.) but also graphs whose edges are represented by
multi-dimensional vectors (e.g., EGNNs (Gong & Cheng, 2019), ME-GCN |Wang et al.| (2022), and
MDE-GNN (Xiong et al., [2021), etc.). Moreover, a recent graph benchmark study (Dwivedi et al.,
2020) utilized the advantages of such advanced GNNs by integrating both heterogeneous graph
and multi-dimensional edge feature processing mechanisms into multiple widely-used GNNs (e.g.,
Graph Attention Network (GAT) (Velickovi¢ et al., 2017), Gated Graph ConvNets (GatedGCN)
(Bresson & Laurent, 2017), etc.).

Despite such developments, all existing GNNSs still suffer from two generic limitations: (i) they can
only process graphs where each vertex is represented by a single value or a vector that has the same
dimension as the other vertices; and (ii) they assume that each input graph is independent from others
during the propagation process. However, an object represented by a vertex in the graph may not
be well described by a single vector with fixed dimensionality, i.e., it may be better described by a
graph or matrix (e.g., human face (Luo et al.,|2022) and skeleton (Shi et al.,|2019)). Previous studies
frequently show that the relationship among graph samples provides informative cues for different
graph analysis tasks. Such relationship cues can be represented by their correlations (Li et al.,|2018),
similarities (Zhong et al., [2021)), and combination coefficients (Pan & Kang, 2021), etc. The main
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Figure 1: The pipeline of our GIG network and the GRM strategy. Given a set of input graph sam-
ples, we first combine them as a global graph, where each graph sample represented by a vertex/sub-
graph and each pair of sub-graphs are connected by a global-edge (Sec. [3.2). We feed the global
graph to the proposed GIG layer. Its sub-graph updating (SGU) module first individually updates
each sub-graph, i.e., its sub-edges and sub-vertices (Sec. [3.1.1). Then, the global-graph updating
(GGU) module further updates global-edges and representative vertices of each sub-graph to gener-

ate an updated global graph (Sec. 3.1.2).

shortcoming of these approaches is that they only extract the manually-defined relationships, which
may ignore crucial task-specific cues that are not considered by their rules. In other words, it is
worth investigating how to properly deep learn underlying task-specific relationship cues among
target graph samples.

In this paper, we propose a novel Graph in Graph (GIG) Neural Network that aims to address the
two limitations of existing GNNs discussed above, while retaining their advantages, i.e., the GIG can
process heterogeneous graphs and graphs containing multi-dimensional edge features.Specifically,
the proposed GIG can process graphs, each of whose vertices is also represented by a graph
(called sub-graph in this paper). It consists of two main modules: sub-graph updating module
(SGU) and global-graph updating (GGU) module. The SGU first individually updates edges and ver-
tices of each sub-graph, extracting its internal task-related information. Then, the GGU exchanges
messages among all sub-graphs by learning global-edges between each pair of sub-graphs. This
way, the task-specific relationship cues between sub-graphs can be learned in an end-to-end manner.
Building on our GIG, we further propose an GIG graph relationship modelling (GRM) strategy for
general graph analysis tasks. It combines multiple input graph samples as a global graph, where
each graph sample is treated as a vertex (sub-graph) in the global graph, and each pair of sub-graphs
are connected by global-edges. Then, the GIG is utilized to make predictions from the obtained
global graph. As a result, additional task-specific relationship cues among different graph samples
would be modelled through global-edges during the GIG propagation process. The full pipeline of
our GIG and GRM strategy are illustrated in Figure. |I} The main contributions and novelties of this
paper are summarized as follows:

* We propose an Graph in Graph (GIG) Neural Network which can process graphs whose vertices
can be represented by a set of heterogeneous graphs while each edge can be represented by a
multi-dimensional vector. The vertex and edge feature updating mechanisms of the GIG are
flexible to be customized by any existing vertex and edge updating algorithms. To the best of
our knowledge, while existing GNNs can only process graphs whose vertices are single values
or vectors, the GIG is the first GNN model that can process graphs, each of whose vertices
is also represented by a graph.

* We propose an GIG graph relationship modelling (GRM) strategy that applies the GIG to model
the task-specific relationship cues between multiple graph samples in an end-to-end manner, for
generic graph analysis tasks.
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* We show that the proposed GIG network and GIG relational learning strategy can be applied
to various graph analysis tasks, where the standardised pre-processing and training strategy
allows our approach to provide new state-of-the-art results on five out of seven evaluated graph
benchmark datasets.

Different from GNNs designed for hypernode graph analysis (Yadati et al.,|2019; Dong et al.} 2020),
whose edges can connect more than two vertices, the proposed GIG is desgined to process standard
graphs, each of whose edges only connects a pair of vertices. The GIG also differs from the recently
proposed subgraph GNNss (Alsentzer et al., [2020; Sun et al.| 2021} Meng et al.| 2018} [Zhang et al.|
2019b) which split a graph into multiple sub-graphs. Our GIG model does not split input graphs but
directly processes input graphs, where these graph vertices can be represented by other graphs.

2 PRELIMINARIES

In this section, we formulate the general propagation mechanism of existing GNNs. Given a graph
sample G (V, E), where V is the set of vertices and F is the set of edges, existing GNNs update as:

G(V.E) =f(G(V.E), A), ()
where A denotes the topology of the input graph sample. Let v, € V to denote a vertex and

€n,m = (U, vy,) € E to denote an edge pointing from v,, to v,,,. The general function for updating
edge feature e, ,, is formulated as:

. fe(€n.m,Vn, ) Updating edge
en,m:{ (en, ) Updating edg )

€n.m Otherwise

where f, is a differentiable edge feature updating function fed with the initial edge feature e,, ,,, and
its connecting vertex features v,, and v,,. Then, each vertex feature v,, is updated as:

'ﬁn = fv (vna mﬂ('vn))? where mﬂ(vn) = Agg(gu(vnu én,m)|'v7n € n(vn))- (3)

where f, is a differentiable vertex updating function inputted with v,, and its adjacent vertices
N(v,); Agg denotes an aggregation operation, where each adjacent vertex v,,, impacts v,, through
the corresponding edge e, ,,, using the function g,,. In particular, the detailed formats of functions
f,, fe g, and Agg are individually specified by the employed GNN.

3 THE PROPOSED APPROACH

This section presents the theoretical details of our GIG network including vertex and edge updating
strategies within and among sub-graphs as well as its differentiable analysis, in Sec. Then, we
propose an novel GIG graph relationship modelling (GRM) strategy that applies the GIG to extract
task-specific relationship cues among graph samples (Sec. for generic graph analysis tasks.

Specifically, we define a new graph structure, called “Graph in Graph”, as ¢(Vg, Eg). Un-
like conventional graph structures, each of whose vertices is represented by a single value
or a vector, each vertex in G(Vg, Eg) is represented by a graph §*(VE, EY) (e, Vo =
{SY(VE, EL),82(V2, E%),--- ,ST(VZ, EL)}). In this paper, we call G(Vg, E¢) the global graph
and each 8*(V¢, EL) a sub-graph. Here, we define the sub-graph & has N; sub-vertices Vi =
{v},v5, -, v}y }, where each sub-vertex feature is a 1 x D dimensional vector and each sub-edge
el, ., € E% connects a pair of sub-vertices in §*. Meanwhile, each global-edge e}/, is defined to
connect a pair of sub-graphs &* and S 7. In particular, each sub-graph & ¥ is represented by one or
multiple representative sub-vertices r;, = v;, € Vg, and each global-edge e;;7,,, connects a pair of
representative sub-vertices 7, and ), = vJ € Vg . As aresult, the input graph can be also defined
as G(Va(Vs, Es, Rs), Eg), where Vg = {V& V2,--- V&Y, Es = {EL, E%,--- | EL} and Rg is
a subset of Vs (i.e., R € V). We additionally provide the GIG pseudocode in the appendix

3.1 THE GIG LAYER

Given a global graph G (Ve (Vs, Es, Rs), Ec), the GIG conducts two-stage edge and vertex updat-
ing. The first stage (i.e., sub-graph level updating (SGU), Figure [2)) only updates each sub-graph
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individually, which can be formulated as follows:
G(Va(Vs, Es, Rs), Eg) = SGU(G(Va(Vs, Es, Rs), Ec)) “4)

where VS and ES denote the updated sub-vertex features and sub-edge features (i.e., since Rg €
Vs, they will also be updated within each sub-graph). Then, the second stage (global-graph level
updating (GGU), Figure [3) not only updates global-edges but also further updates representative
sub-vertices as:

(‘Q/G(Vs, Es, és),EG) = GGU(G (Ve(Vs, Es, Rs), Ec)) 5)

LR

where E¢ is the updated global edge features; Rys denotes representative sub-vertices which are
connected by global-edges, and thus have been further updated in the GGU.

3.1.1 SUB-GRAPH LEVEL VERTEX AND EDGE UPDATING

Sub-edge updating
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Figure 2: Illustration of the SGU module, which updates each sub-graph individually. For each
sub-graph, the SGU first updates all of its sub-edges, and then updates all sub-vertices.

Let the input to the SGU module be a global graph G{S$!, 82, ... 81 Eg}, where I is the number
of vertices (sub-graphs) contained in G. The SGU individually updates each sub-graph &*, including
its sub-vertex and sub-edge features. Specifically, it updates the sub-edge features e, ,,, as the €;, ,,

by considering: (i) the input sub-edge feature efl’m; and (ii) the corresponding sub-vertex features
v?, and v , which can be formulated as:

é;,m = fés(eiz,mavivvfn) (6)
where f represents the edge feature updating strategy, which can be customized based on the edge
updating algorithm used in any existing GNNs (e.g., GatedGCN and GAT).

Then, the GIG layer updates each sub-vertex feature (including representative sub-vertices) vﬁl as
the ¥;, by considering: (i) the input sub-vertex feature v;,; (ii) v,,’s adjacent sub-vertex features

vl € Ny (v?) in the corresponding sub-graph G*; and (iii) all updated sub-edge features éfl,m that
connect the v?, and its adjacent sub-vertices. This process can be formulated as:

IA):L = ff(U;aAgg(gv(é;,m’v;z”Um € nsub(v'fL)) (7)

where f7 is the differentiable vertex feature updating function; g, is a differentiable message pass-
ing function that passes the impact of each vertex feature to its neighbours; and Agg denotes the
aggregation operation. These functions can also be customized from any existing GNNs.

3.1.2 GLOBAL-GRAPH LEVEL VERTEX AND EDGE UPDATING

After updating each sub-graph individually, the GIG then performs global-level updating for all sub-
graphs and global-edges, which models the global-level relationships among all sub-graphs. Given
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Figure 3: The GGU module first updates each global-edge, and then updates each sub-graphs (i.e.,
updating related sub-vertices in both sub-graphs, which are connected by global-edges).

a global-edge e}/, € Eg that connects a pair of sub-graphs 8% and $7 that have been updated by
SGU, the GGU first updates it as the éf;,jm using a differentiable global-edge updating function f&,
which can be formulated as: N N o

€l = S (€ s ). ®)

where 7}, € §* and 7, € §7 (i # j) are corresponding representative sub-vertices updated in SGU
which are connected by the global-edge e;,7,,.

After updating all global-edges, the GGU then updates sub-graphs by updating each representative
sub-vertex feature ¥, as the {)ﬁb, using a differentiable global vertex updating function f& based
on: (i) the representative sub-vertex feature ¥’ that has been updated at the sub-graph level; (ii)
the corresponding representative sub-vertex features of its global-level neighbours Mgjobal (7 ); and
(iii) the corresponding updated global-edge features éi;’jm which connect 7 with its global-level
neighbour sub-vertices. This procedure can be represented as:

P = 1 (7 AgE(90(€57 74 75, € Myoba(77,)) ©)
Since all edge and vertex updating functions in the proposed GIG are flexible, we leverage the edge
and vertex updating strategies of widely-sued GAT and GatedGCN provided in (Dwivedi et al.,
2020) in this paper, which allow the GIG to process heterogeneous graphs and graphs whose edges
are represented by multi-dimensional vectors.

In summary, the SGU and GGU iteratively update sub-graphs and the global graph, which facilitate
the messages exchanged among isolated sub-graphs, allowing their relationship cues to be utilized
for the analysis.

3.1.3 DIFFERENTIATION ANALYSIS OF THE GIG LAYER

In this section, we provide the back-propagation analysis of the proposed GIG layer. Supposing

that the loss value £ is computed by the objective function (; the graph G (Ve (Vs, Es, Rs), Eg)
is the output of the GIG layer, the gradient of the proposed GIG w.rt. the input graph
G(Va(Vs, Es, Rs), E¢) (Rs € Eg) can be defined as:

oL _%4_ oL L oL . oL (10)
0G(Va(Vs,Es,Rs), Eg) 0Vs 0Es 0Rs OEg
Specifically, the a%fs, 5’7“[3 and QBTIG can be computed as:

0L 0L Vs dEs 0L ORg0Rg0Es 0L ORs 0E ORs 0Es

— = ——— — o (11)
8ES 8VS 3E5 aES aRS 835 aEs 6ES aRS 8EG 8RS 3Es aES
0L 9L Vs 0L Vs 0Bs 0L ORsORs 0L ORs ORs OFs
aVS 8‘75 6VS 8VS 8Es aVS 3]%5 8Rs 6VS 81535 8]:25 aEs aVS (12)

0L ORs 0Eq Rs 0L ORs 0FEg ORs 0B

aés 8EG 8RS Vs aﬁs 8EG 3RS 3ES Vs
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oL 0L OEg L oL 9Eq ORs 13)
0Eg 8EG e 8EG 8RS Vs

where VS, f%g S VS, RS, E’s and EG are produced by differentiable vertex and edge updating
functions (f2, £, f& and f&) from pre-defined inputs Vs, Eg and Eg, while oL is produced by

the differentiable loss function £ whose input is g}. As a result, the proposed GIG layer is a fully
differentiable GNN layer, and can be stacked as a deep GNN model.

3.2 GIG GRAPH RELATIONSHIP MODELLING FOR GENERIC GRAPH ANALYSIS TASKS

In this section, we show how to apply the proposed GIG to general graph analysis tasks. The GRM
strategy aims at extracting additional task-specific relationship cues among a batch of input graph
samples to improve graph analysis performances.

Global graph definition: Given a set of graph samples §', 82, --- | 87, we first combine them as
a global graph G (Vi E) that has I vertices, where each vertex (sub-graph) V(i represents a graph
sample $*(V&, EY). Since our GIG can process heterogeneous graphs, these graph samples can have
different typologies. We then define the topology of the global graph by: (i) keeping the original
internal typologies for each graph sample and (ii) additionally adding one/multiple global-edges to
connect each pair of sub-graphs. In particular, for each pair of graph samples &* and §7, we first
define one/multiple representative vertices v, € Vi and r’ , € V{ as their representations. Then,
we define each global-edge ew , by connecting a pair of representative sub-vertices, whose initial

feature is defined as their dot product (ie., e = (ri,, 7’ ,)). The experiments (Sec. E) show

nm’_ n’s m/

that our GIG is robust to various representative vertex and global-edge definition strategies.

GIG-based graph relationship modelling and analysis: We then feed the produced global graph to
the GIG to model the relatronshlp between graph samples. Subsequently, the sub-graph 8t produced
from each graph sample &* contains task-specific cues extracted from not only the & ? itself but also
its relationship with other graph samples. Specifically, each sub-edge feature e}, ,, contained in the
graph sample &* as well as each global-edge feature r;? . connecting graph samples $% and $7 in
the global graph would be updated as: 7

éitm:fes(eitm7v:ﬂv7in) & é?n’]m’_fG( n’ m"rn7r77n) (14)

In comparison to the f. of Eqa. [2] which represents the general edge updating mechanism of existing
GNNgs, a set of global-edges are additionally learned by our fe in order to exchange messages
among different graph samples. In addition to updating vertices contained in each graph sample
using £, the GIG further updates each representative vertex v', as:

i _ Gt Py TN )
rn - f’U (T'I’U mns.,b("‘:,’) ﬂg]obql('l‘l ))7 Where

m7lmh(’r"") = Agg(gv( Tns n m)'r € nSUb( )) (15)

uloh.xl("'L) - Agg(g?’( '/m” n m’ )|rm/ € ngk’bﬂl( ))

In comparison to the vertex feature extracted by existing GNNs (Eqa. [3), our GIG updates each rep-
resentative vertex feature by additionally considering its relationship with global-level neighbours
that belong to other graph samples. In other words, as an end-to-end model, the output generated by
our GIG contains additional task-specific cues extracted from my,, (). Thus, it would theoret-
ically improve the graph analysis performances achieved by existing GNNs that only consider the
internal cues contained in each graph sample.

4 EXPERIMENT

Datasets: We evaluate the proposed approach on a set of widely-used medium-size graph analysis
benchmark datasets (Dwivedi et al., [2020), which are: (i) MNIST (LeCun et al.,|1998)) and CIFAR10
(Krizhevsky et al., 2009) datasets for graph classification task; (ii) ZINC (Irwin et al., 2012)) and
AQSOL (Sorkun et al.| [2019) datasets for graph regression task; (iii) PATTERN (Dwivedi et al.,
2020) and CLUSTER (Dwived: et al., [2020) datasets for node classification task; and (iv) TSP
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(Joshi et al.| [2022) dataset for link prediction task. Since our proposed GIG targets at improving
performance by promoting information messaging among independent single graphs, we did not
evaluate on OGBL-COLLAB (Hu et al., 2020) and WikiCS (Mernyei & Cangea, |2007)) with only
one single graph, and Cycles (Loukas, 2019) and CSL (Murphy et al. 2019) for evaluating Graph
Positional Encoding.

Implementation details: To facilitate fair comparative evaluation, we follow the same data split,
optimizer and loss functions suggested by (Dwivedi et al., |2020) for all experiments. To show the
generalization ability of the GIG, we instantiate it based on vertex and edge updating mechanisms
of two widely-used GNN models implemented in (Dwivedi et al., 2020): GatedGCN (the default
setting) and GAT, where SGU and GGU modules share the same vertex and edge updating functions.
Specially, we build a batch of input graphs as a global graph by setting each graph sample as a sub-
graph. We additionally provide: (i) detailed description of datasets; (ii) more training details; and
(iii) runtime analysis of the GIG, in the appendix.

Metrics: We follow the same metrics settings as|Dwivedi et al.|(2020) to evaluate: (i) the graph-level
classification accuracy on MNIST and CIFAR10; (ii) the Mean Absolute Error (MAE) on ZINC and
AQSOL; (iii) the average vertex-level classification accuracy on PATTERN and CLUSTER; and (iv)
the F1 score of the binary link classification on TSP.

4.1 COMPARATIVE RESULTS

Following (Dwivedi et al., 2020), we evaluate the performance of our GIG on four types of graph
analysis tasks: graph classification and regression, vertex classification, and link prediction, which
cover all typical graph analysis tasks (graph-level, vertex-level and edge-level analysis).

Table 1: Experimental results on 7 benchmark datasets from (Dwivedi et al.,2020). Highlighted are the top 1st, and 3rd results.

Task | Graph classification Graph regression Node classification Edge classification
Dataset MNIST CIFARIO | ZINC AQSOL | PATTERN CLUSTER | TSP
Model Test Acc(%) T Test MAE | Test Acc(%) T Test F17
GCN 90.12+0.15  54.14 £ 0.39 0.278 £0.003  1.333 £0.013 | 85.61 +£0.03  69.03 £ 1.37 0.643 +0.001
GIN 96.49+0.25  55.26 £+ 1.53 0.387 4+ 0.015 1.894 £0.024 | 85.59 +0.01 64.72 +1.55 0.656 & 0.003
GAT 95.54 +0.21 64.22 + 0.46 0.384 4+ 0.007 1.403 £ 0.008 7827+0.19  70.59 +0.45 0.671 + 0.002
GatedGCN | 97.34+0.14  67.31 £0.31 0.214 +0.013 86.51+0.09  76.08 £0.20 0.838 + 0.002
PNA 97.94+0.12  70.86+0.27 | 0.188 £0.004 - 86.57 + 0.08 - -
DGN - 72.84 +£0.42 0.168 £ 0.003 - 86.68 +0.03 - -
EGT 68.70+0.41 | 0.108 +0.009 - 86.82+0.02 79.23+0.35 0.853 £ 0.001
ARGNP - - - 77.35 £ 0.05
GNAS-MP | 98.01 £0.10  70.104+0.44 | 0.242 - | 62.21+0.20 | -
GIG(Ours) | 98.724+0.01 75.66+0.06 | 0.157 + 0.001 0.975+0.011 | 86.82 +0.01 0.860 + 0.001
0.55 1 1.76 1 0.21 | 0.05 1

Competitors: We first compare our GIG with widely-used/recently proposed GNNs on seven
benchmark graph datasets in Table[] including (i) GCN (Kipf & Welling| 2016) and GIN(Xu et all
2018) that only consider binary adjacency relationship among internal sub-vertices in each graph
sample without using multi-dimensional edge features; (i) GAT(Velickovic et al.,|2017), GatedGCN
(Bresson & Laurent, 2017), PNA(Corso et al.,2020), DGN (Beaini et al.,[2021), EGT (Hussain et al.,
2022) and ARGNP(Cai et al.,|2022) that can process multi-dimensional edge features contained in
each graph samples; and (iii)) GNAS-MP (Cai et al., [2021)) that applies Neural Architecture Search
(NAS) to explore an optimal GNN architecture for each dataset.

Results: According to comparison results, we make the following observations: (i) GIG achieved
clear performance gains in 4/7 datasets, and superior performances in the rest. This suggests that
the advantage of GIG is scalable to different tasks. Although GIG ranks the 3rd in ZINC, it still
improves its baseline GatedGCN from 0.214 to 0.157. A plausible reason of not outperforming EGT
and ARGNP could be the operation that averages all single-value vertex features on ZINC adopted
by (Dwivedi et al.|[2020), which limits capability to carry the learned relationship cues among graph
samples. (ii) Comparing GIG with its baseline GatedGCN, we found that the GIG obtained clear
improvements on all datasets, with absolute 3.3% average improvements. This directly confirms the
effectiveness of sub-graph communication in the proposed GIG, which also maintains superiority
of GatedGCN that uses multi-dimensional edge features. (iii) GIG outperforms GNAS-MP which
applies NAS to explore task-specific weights and optimal architecture. This indicates great potential



Under review as a conference paper at ICLR 2023

of proposed GIG to push the state-of-the-art performance on this benchmark further with other more
advanced architectures or vertex/edge updating strategies.

4.2 ABLATION STUDIES AND GOOD PROPERTIES

We further conduct a series of ablation studies on all graph-level, vertex-level and edge-level anal-
ysis tasks (i.e., one dataset is employed for each task) to investigate the influences of two main
variables of our approach: (i) the number of employed GIG layers; and (ii) the number of sub-
graphs/graph samples that are used to construct the global graph in our GRM strategy. Moreover,
we also show that our approach is not only robust to various representative vertex and global-edge
definition strategies but also flexible to be customized by different edge/vertex updating algorithms
while achieving clear enhanced performances.

The number of graph samples contained in a global-graph: We demonstrate the influence of the
number of graph samples used to construct the global graph in Figure {i] It can be observed that
the optimal number is depending on the employed task and dataset. However, the performances
achieved by GIG are relatively robust to the number of sub-graphs contained in the input global
graphs. This validates that GIG can effectively extract task-specific relationship cues among multiple
input graph samples as well as extracting their internal task-specific cues, regardless of their number.

Figure 4: Results achieved from global graphs that have different numbers of vertices (sub-graphs/graph samples), where each bracket
denotes (the number of vertices in each global graph, the prediction result).
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Table 2: Experimental results achieved for different numbers of Table 3: Experimental results achieved for different edge and ver-

stacked GIG layers. tex updating algorithms.
Dataset MNIST PATTERN | TSP Dataset ‘ MNIST PATTERN | TSP
Number of layers Test Acc(%) T Test F} 1 Model Test Ace(%) T Test Fy 1
1 | 98.72+0.01 86.66+0.01 | 0.839+0.000 GAT 95544045  78.27+0.19 | 0.671+0.002
GIG(GAT) 97.91+0.02 78.98+0.01 | 0.819 =0.001
2 | 98.45+0.03 86.82+0.01 | 0.851 4 0.000

GatedGCN 97.34£0.20  86.51 £0.09

- 0.838 % 0.002
3 | 9852£0.02  86.75%0.01 | 0.860 = 0.001 GIG(GatedGCN) | 98.72=0.01  86.82 = 0.01

0.860 +0.001

The number of employed GIG layers (Model depth): It can be observed from Table |2] that al-
though the best settings for different tasks are not the same (i.e., the optimal number of GIG layers
should be employed for MNIST, PATTERN and TSP datasets are one, two and three, respectively),
the graph analysis performances did not changed dramatically when changing the number of the
stacked GIG layers. In particular, when stacking three different numbers (1, 2 and 3) of GIG layers,
the results achieved for graph classification and vertex classification tasks are only varied less than
0.3%, indicating that our GIG model is relatively robust to the number of the stacked GIG layers.

Flexible to be customized by different edge and vertex updating algorithms: As displayed in
Table [3] our GIG’s edge and vertex features’ updating mechanisms can be customized by differ-
ent algorithms used in existing GNNs (e.g., GatedGCN and GAT). More importantly, based on the
same edge and vertex mechanisms, the GIG show clear advantages over the original GatedGCN
and GAT networks on all three types of graph analysis tasks, providing average 1.47% and 8.48%
improvements, respectively. Figure 5| compares the latent representations extracted by GIG which
employed different vertex/edge updating strategies, where GIG jointly processes a batch of graph
samples by combine them as a global graph and Gated GCN/GAT individually processes them with-
out considering their relationships. It is clear that the latent representations learned by GIG are more
discrminative. These results again suggest that the proposed GIG can additionally encode task-
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specific cues from the relationships between sub-graphs to enhance graph analysis performances,
when using different edge/vertex updating algorithms.

Figure 5: TSNE visualisation of features learned on CLUSTER dataset (a six classes vertex classification dataset), where each dot
represents a vertex and each colour represents a category label. Each pair of GNNs share the same vertex/edge updating functions.

GatedGCN GIG(GatedGCN) ¢ o GAT GIG(GAT)

Robust to different representative vertex and global-edge definition settings: We evaluate four
types of representative vertex and global-edge definition strategies: (i) each vertex in a graph sample
is connected with the top-K most similar vertices in all graph samples; (ii) for each pair of graph
samples $* and §7, each vertex v, € S$* connects to its most similar vertex in $7; (iii) only using
a pair of most similar vertices in two graph samples to define one global-edge between each pair of
graph samples; (iv) randomly selecting a pair of vertex in two graph samples to define one global-
edge between them. Consequently, all vertices in a graph sample are selected as the representative
vertices and a pair of graph samples are connected by multiple global-edges in setting (i) and (ii),
while only one vertex in each graph sample is selected as the representative vertex and a pair of graph
samples are connected by one global-edge in setting (iii) and (iv). As displayed in Tabledand Table
[] all settings produced similar results which are clearly better than the baseline that only processes
each graph sample individually. Particularly, using one representative vertex to describe each graph
sample not only reduces the complexity (i.e., the number of global-edges) of the global graph, but
also achieved the best results on all datasets. This suggests that the underlying relationship among
graph samples contain crucial task-specific cues for different graph analysis tasks, which can be ef-
fectively extracted by the proposed GRM strategy and GIG network in an end-to-end manner. More
importantly, the GIG is robust to various representative vertex generation and global-edge definition
strategies, which further indicates that the SGU and GGU can iteratively pass the crucial messages
to sub-vertices of all sub-graphs regardless of the employed representative vertex generation and
global connection strategies.

Table 4: Experimental results achieved for various representative Table 5: Average number of global-edges in each global graph for

vertex and global-edge definition settings. various representative vertex and global-edge definition settings.

Dataset MNIST PATTERN | TSP Dataset MNIST PATTERN Tsp
Setting Test Acc(%) 1 Test Fy 1 Setting | 150 sub-graphs 128 sub-graphs 27 sub-graphs
Baseline | 97.344+0.20  86.51+0.09 | 0.838 £ 0.002 Baseline | 0 0 0

(1) 98.47+0.02  86.19+0.01 - (i) ~ 6757693 ~ 19330648 ~ 3296097

(ii) 98.714+0.03  86.70 £0.01 0.846 4 0.001 (ii) ~ 1585276 ~ 1924012 ~ 200318

(iii) 98.72£0.01 86.82+0.01 | 0.860 - 0.001 (i) ~ 22466 ~ 16180 ~ 727

(iv) 98.63 = 0.02 86.79 +0.01 0.856 & 0.000 (iv) ~ 22466 ~ 16180 ~ 727

5 CONCLUSION

This paper proposes the first GNN model that can process graphs whose vertices are also represented
by graphs, and additionally applies it to enhance general graph analysis performances by exploring
task-specific relationship cues among input graph samples. The results show that our approach not
only provided new state-of-art-results for various graph analysis tasks, but it is also robust to dif-
ferent global graph sizes (sub-graph numbers), model depths and global-edge/representative vertex
definition strategies. Additionally, its vertex/edge updating function is customizable from existing
GNNs. One limitation of this work is that we did not evaluate our GIG for multiple object data-
based analysis, where each object in a data sample can be further represented as a graph rather than
a vector. This will be addressed by our future work.
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REPRODUCIBILITY STATEMENT

To allow the proposed GIG and related experiments to be easily reproduced or extended by fu-
ture researchers, we provide: (i) all models’ settings; (ii) all training hyper-parameter settings and
training loss curves; and (iii) the software and hardware details employed in our experiments in the
appendix, where the coding platform and dependencies are coming from standard deep learning and
graph analysis python libraries. In addition, we provide our training, validation, testing codes and
the weights of our best models in the supplementary material, with a detailed README file to guide
users to run experiments and re-produce the results.
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A APPENDIX

A.1 COMPARISON BETWEEN EXISTING GNNSs AND GIG

We first illustrate the main novelty of the proposed GIG compared with existing GNNs in Figure
[l where existing GNNs can only process graphs, each of whose vertices is represented by a vec-
tor/single value, while our GIG can process graphs whose vertices further contain heterogeneous
graphs.

Figure 6: Comparison between GIG and existing GNNs
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A.2 FORMULATIONS OF THE GIG(GAT) AND GIG(GATEDGCN)

In our experiments, the vertex and edge feature updating functions of the proposed GIG are defined
according to the GAT (Veli¢kovic et al.| 2017) and GatedGCN (Bresson & Laurent, 2017). Thus,
we provide the detailed formulations of the GIG(GatedGCN) and GIG(GAT) as follows.

A.2.1 GIG(GATEDGCN)

For GIG models whose vertex/edge updating functions are customized from GatedGCN, its sub-
edge and global-edge updating functions (i.e., the ff in Eqa. |§| and feG in Eqa. are defined
as:

fe(X,Y, Z) = X + LeakyReLU(BatchNorm(W1 X + W5 Z + W3Y)) (16)

where Wy, Wy, W3 € RP*P are learnable weight parameters. Meanwhile, both of its sub-graph
level and global-graph level vertex updating functions (i.e., the ff in Eqa. and fUG in Eqa. |9) can
be formulated as:

fo(X,Y) = X + LeakyReLU(BatchNorm(W, X +Y) (17)

where W, € RP*P is a learnable weight matrix; and Y is the impact of adjacent vertices on the
target vertex v,,, which can be computed as:

Y=Y (enm®Wsvm) (18)
Umen(vn)

e _ exp(€n,m)
S exp(en) €

19)

13



Under review as a conference paper at ICLR 2023

where W5 € RP*P ig also a learnable weight matrix; ©® is the hadamard product; and € is used to
avoid a zero denominator. Here, the e,, ,,, denotes the soft attention representation computed from
sub-edge feature e;’m connecting the target vertex v!, with its sub-vertex neighbours v’ within each
sub-graph during the the SGU processing. During the GGU module processing, e, ,, denotes the
soft attention representation obtained from global-edge features e;]m connecting the target vertex

v!, with its global-vertex neighbours v/, . Please check Dwivedi et al|(2020); Bresson & Laurent
(2017) for more detailed explanations.

A.2.2 GIG(GAT)

For GIG models whose vertex updating functions are customized from GAT, both of its sub-graph
level and global-graph level vertex updating functions are defined as:

fo(X,Y) = Concaty_, (ELU(Y W5 X)) (20)

where Wy € R# * is a learnable weight matrix; Y is defined as the attention coefficients for each
head:

Y == Z e(k)n,m (21)

vnzen(vn)

where e(k, [)p,m can be computed as:

exp(é(k)n,m)
k)nm = ; 2
e( ) , zjm’eﬂvz;l exp(e(k)n,m’) ( )
é(k)n,m = LeakyReLU(V (k)Concat(U (k)vy,, U(k)vy,)) (23)

where the V (k) denotes the K linear projection heads, and e(k), ; denotes the attention coefficients

obtained from the adjacent vertices from each head. In particular, the e(k),, », denotes the attention
coefficients computed from vertex neighbours within the sub-graph in the SGU module (i.e., v}, €
Ny (v?)), while it denotes attention coefficients computed from vertex neighbours among sub-
graphs in the GGU module (i.e., vJ, € Ngiopa (V5 )). Please check Dwivedi et al.[(2020); Velickovic

et al.|(2017) for more detailed explanations.

14
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A.3 PSEUDOCODE FOR THE GIG LAYER

Algorithm 1 GIG

Input: A global graph ¢ that consists of a set of sub-graphs Viz(Vs, Es, Rs) (Rs € Vs) and a
set of global-edges Fg, whose topology is defined by the adjacency matrix ﬂ

Output: A latent global- graph Q consisting of a set of updated sub-graphs Vg(Vg, ES, RS) and
a set of updated global-edges Eq.
Definition: f° is the sub-edge updating function, f? is the sub-vertex updating function, f& is
the global-edge updating function; f< is the global-vertex updating function; | - | represents the
number of elements in the indicated set. 71(-) represents the neighbors of the indicated vertex.
SGU:
fori = 1to |Vs| do
for n = 1to |V¢| and m # nand A}, ,, = 1to |VE| do
€ m — f3Wi, vl €l m)> Where v, € V&, v}, € Véande}, ,, € Ej
end for ,
Ef = {8, | A} = 1}
forn =1 to |VE| do
AZ — f’( (v'mAgg(gU( n m? 'm)|vm € nSUb((v;))
end for
Vi={oiln=1,2,--- ,N;}
endfor A
Eg = {Eé’Eg'v t ’Eé}
RS eVs = {VS%,‘A/:S?, ,VS{}

GGU:
Whlle vl € R and v), € R} and A3, = 1do
= v} and ’rJ = 'uj _
A:;Jm — fS(rn, Ty €nly,), where 7, € V&, rl € Vi and e} € Eg
end while
EG = {e i, |ﬂ = 1}

whlle rh c R and A, = 1 do

fv (rwmAgg(gU( n m? T‘gn)|'f'£n S nglobal(ﬁl))
epd whlle

Rs = {7i|ri, € Rs}
Return: Q(Vg(Vs,Es,ES),Ec)

A.4 RUNTIME ANALYSIS

We provide the runtime analysis of our GIG(GatedGCN) on seven evaluated datasets in Table[6] in
terms of: (i) average running duration for each training iteration (the number of graph samples are
trained in each iterntation is listed in Table[2); (ii) average running duration for each training epoch;
and (iii) running duration for the model’s convergence.

Table 6: Runtime analysis for experiment on seven benchmark datasets. Detailed information about two types of configurations is
explained in Sec. E]

Task | Graph classification ~Graph regression Vertex classification Edge classification
Dataset MNIST CIFARIO | ZINC AQSOL | PATTERN CLUSTER | TSP
Type Configuration 1 Configuration 2 Configuration 2 Configuration 1
Each iteration | 0.41s 0.34s 0.68s 0.66s 1.32s 1.02s 0.45s
Each epoch 192s 160s 64.08s  51.30s 142s 585s 202s
Convergence | 6.32hr 6.98hr 13.1hr 1.21hr 1.82hr 6.98hr 5.98hr
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A.5 DATASET DETAILS AND STATISTICS

We provide the details of seven benchmark graph datasets that have been used in this paper in Table

Table 7: Statistics of the seven employed graph datasets.

Task Dataset Graphs Avg. Nodes Avg. Edges
Graoh classificati MNIST 70K 70.57 564.53
raphiclassiicaion  cjpaAR10 60K 117.63 941.07
Graoh ZINC 12K 23.16 49.83
raph regression AQSOL  ~10K 17.57 35.76
Vertex classificati PATTERN 14K 117.47 4749.15
eriex classiication o ySTER 12K 117.20 4301.72
Edge classification TSP 12K 275.76 6894.04

A.6 MODEL AND TRAINING DETAILS

Model settings: We first provide detailed model settings in Table [§] which represents the settings
for our best GIG(GatedGCN) models whose results are reported in Table[I] where N.O.G represents
the number of vertices (graph samples) used for constructing each global graph; N.O.L represents
the number of stacked GIG layers. In addtion, we also provide some model internal details as:
Dim(PE) represents the dimension of positional encodings; Dim(H) represents the kernel number
of each hidden layer; Dim(O) represents the dimension of output layer; Dim(EO) represents the
dimension of embedding layer; Dim(R) represents the dimension of readout. Please check the code
of Dwivedi et al.| (2020) for the definition of Dim(PE), Dim(H), Dim(EO) and Dim(R).

Table 8: Settings of our best GIG models for seven benchmark datasets.

Dataset N.O.G N.O.L Dropout Dim(PE) Dim(H) Dim(O) Dim(EO) Dim(R)

MNIST 150 1 0.15 - 85 85 - 3
CIFAR10 128 1 0.12 - 85 85 - 2
CLUSTER 21 3 0.03 10-20 85 85 9 3
PATTERN 128 2 0.00 2 85 85 9 3
ZINC 128 1 0.00 4 85 85 9 3
AQSOL 128 1 0.00 4 85 85 9 3
TSP 27 3 0.01 - 85 85 - 3

Training details: We then provide the training details for achieving our best models on seven
datasets in Table [0 where all models are trained with the AdamW (Loshchilov & Hutter, [2017)
optimizer. In addition, we provide the training and validation loss curves of our best models in

Figure[7]and 8]

Table 9: Training details for 7 benchmark datasets.

Dataset Learning rate Loss Decay strategy Optimizer
MNIST 0.0025 Cross entropy ~ CosineAnnealingWarmRestarts AdamW
CIFAR10 0.0023 Cross entropy ~ CosineAnnealingWarmRestarts AdamW
CLUSTER 0.0036 Cross entropy ~ CosineAnnealingLR+ConstantLR ~~ AdamW
PATTERN 0.0030 Cross entropy CosineAnnealingL.R AdamW
ZINC 0.0027 L1 CosineAnnealingWarmRestarts AdamW
AQSOL 0.0023 L1 CosineAnnealingWarmRestarts AdamW
TSP 0.0036 Cross entropy ReduceLROnPlateau AdamW
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Figure 7: Training and validation losses achieved for MNIST, CIFAR10, CLUSTER and PATTERN datasets,
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Figure 8: Training and validation losses achieved for ZINC, AQSOL, and TSP datasets.
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A.7 SOFTWARE AND HARDWARE SETTINGS

All experiments were implemented using the Deep Graph Library (DGL) (Wang et al., |2019a)) and
PyTorch (Paszke et al., [2019) numerical library. Two sets of hardware configurations were used
for training. The first set contained 1 NVIDIA A100 GPU with 80GB RAM/GPU, 2 15-core In-
tel(R) Xeon(R) Platinum 8358P CPUs @ 2.60GHz and 240GB RAM, which was utilized to train
MNIST, CIFAR10 and TSP datasets, and the second set contained 1 NVIDIA A100 GPU with 80GB
RAM/GPU, 1 16-core Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz and 120GB RAM, which
was utilized to train CLUSTER, PATTERN, ZINC and AQSOL datasets.
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