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Abstract

We present Platypus, a family of fine-tuned and merged Large Language Models
(LLMs) that achieved the strongest performance and stood at first place in Hugging-
Face’s Open LLM Leaderboard * at the time of writing. In this work we describe
(1) our curated dataset Open-Platypus, that is a subset of other open datasets and
which we release to the public (2) our process of fine-tuning and merging LoRA
modules in order to conserve the strong prior of pretrained LLMs, while bringing
specific domain knowledge to the surface (3) our efforts in checking for test data
leaks and contamination in the training data, which can inform future research.
Specifically, the Platypus family achieves strong performance in quantitative LLM
metrics across model sizes, topping the global Open LLM leaderboard while using
just a fraction of the fine-tuning data and overall compute that are required for
other state-of-the-art fine-tuned LLMs. In particular, a 13B Platypus model can be
trained on a single A100 GPU using 25k questions in 5 hours. This is a testament
of the quality of our Open-Platypus dataset, and opens opportunities for more
improvements in the field. Project page: https://platypus-llm.github.io

*Equal Contribution.
†NR is currently at Google and his contributions were done as work at BU prior to his tenure at the company.
*https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Workshop on Instruction Tuning and Instruction Following at NeurIPS 2023.
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1 Introduction

Our research centers around improving the performance of base Large Language Models (LLMs) by
fine-tuning models using parameter efficient tuning (PEFT) on a small, yet powerful, curated dataset
Open-Platypus. This work lives in the context of recent advancements in the domain of LLMs. The
rapid growth of these models was kick-started by the emergence of scaling laws [19]. Soon after,
100B+ parameter models like PaLM [6] and GPT-3 [3] were proposed. Task specific models came
next, such as Galactica for scientific tasks [38]. Chinchillia [16] was introduced along with a novel
scaling law approach that shifts the emphasis from model size to the number of processed tokens.

To challenge the dominance of closed source models like OpenAI’s GPT-3.5 and GPT-4, Meta
released the original LLaMa models [39], now known for their computational efficiency during
inference. Open-source initiatives such as BLOOM [33] and Falcon [2] have also been released to
challenge the hegemony of their closed-source counterparts. Recently, Meta AI released LLaMa-2
models [40]. Shortly after the initial release the 70B parameter model was fine-tuned by StabilityAI
to create StableBeluga2 [26] using an Orca-style dataset [28]. As the the scale of both network
architectures and training datasets have grown, the push towards employing LLMs as generalist tools
able to handle a wide array of tasks has intensified. For the largest models, their abilities as generalists
make them well-suited for many NLP tasks [29], with smaller models struggling to maintain the
same level of versatility.

A number of strategies have been employed to try and bridge this divide. A prominent method known
as knowledge distillation [17, 15, 46] aims to transfer knowledge from a large, more performant
teacher model to a smaller student model, preserving performance while reducing computational
overhead. Recently, the most popular method involves distilling the knowledge from a large train-
ing dataset into a small one, again making it less computationally expensive than traditional ap-
proaches [48]. These methods also tend to take advantage of instruction tuning [43], which has proven
an effective method for improving the general performance of LLMs. Projects like Stanford’s Al-
paca [37] and WizardLM [47] provide frameworks for generating high-quality, instruction formatted
data. Fine-tuning base models on these types of datasets and applying self-instruct methodology [42]
has led to marked improvements in both their quantitative and qualitative performance [7].

The Mixture of Experts approach [35, 34] employs conditional computation, activating network
sections based on individual examples. This technique boosts model capacity without a linear rise in
computation. Sparse variants, like the Switch Transformer [11], activate select experts per token or
example, introducing network sparsity. Such models excel in scalability across domains and retention
in continual learning, as seen with Expert Gate [1]. Yet, ineffective expert routing can result in
under-training and uneven specialization of experts.

Following the recent arrival of LoRA is QuantizedLoRA (QLoRA) [8], which has been recognized
as an efficient and cost-effective methodology. The authors of [8] concurrently released Guanaco,
a new model family. The best Guanaco models currently rank 7th and 12th on the Hugging Face
leaderboard as of the time of writing. Notwithstanding, our initial decision to employ LoRA occurred
before the release of QLoRA, and we stuck with it since it proved effective within our existing
workflow—namely being compatible and successful at model merging. Since our future goals include
reducing training time and cost, we would be excited to use quantized LoRA in our pipeline and
compare results.

Other approaches have centered on training LLMs in specific tasks such as coding [25], quantitative
reasoning [22], and biomedical knowledge [36]. This specialized training has its own merits. By
focusing on narrower domains, these models can achieve higher accuracy rates and more relevant
output in their respective fields.

One large limitation of this approach, especially for domain-specific models derived from large,
pre-trained ones, is that the fine-tuning process can be time-consuming and costly. Our work seeks
to address these issues by focusing on refining a training recipe aimed to maintain the benefits of
instruction tuning, namely generalized improvement, while also imparting specific domain knowledge.
We find that domain specific datasets increase performance on a selected category of tasks, which
when combined with merging significantly reduces training time. Our core contributions are as
follows:
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• Open-Platypus, a small-scale dataset that consists of a curated sub-selection of public text
datasets. The dataset is focused on improving LLMs’ STEM and logic knowledge, and is
made up of 11 open-source datasets. It is comprised mainly of human-designed questions,
with only ∼10% of questions generated by an LLM. The main advantage of Open-Platypus
is that, given its size and quality, it allows for very strong performance with short and cheap
fine-tuning time and cost. Specifically, one can train their own 13B model on a single A100
GPU using 25k questions in 5 hours.

• A description of our process of similarity exclusion in order to reduce the size of our dataset,
as well as reduce data redundancy.

• A detailed look into the ever-present phenomenon of contamination of open LLM training
sets with data contained in important LLM test sets, and a description of our training data
filtering process in order to avoid this pitfall.

• A description of our selection and merging process for our specialized fine-tuned LoRA
modules.

2 Methods

2.1 Curating Open-Platypus

Our decisions regarding data selection for fine-tuning the LLaMa-2 models were influenced by (1)
the Superficial Alignment Hypothesis presented by [50], which states that model knowledge is almost
entirely learned during pre-training, and that with minimal training data it is possible to achieve
excellent results aligning model outputs; (2) the LLaMa2 introductory paper in which [40] state that
the base models had not yet reached saturation; and (3) the work of [12], highlighting the importance
of high-quality input data for training effective models. Put into practice, and keeping in mind our
goal of optimizing training time and model performance, our approach to fine-tuning the LLaMa-2
models was a balanced blend of the three points above. By focusing on depth in specific areas,
diversity of input prompts, and keeping the size of the training set small, we aimed to maximize
the precision and relevance of our models’ outputs. To achieve this, we curated a content filtered,
instruction tuned dataset which draws from a variety of open-source datasets. In this context, ’content
filtered’ refers to our choice for the train set to almost exclusively include data which is related to our
domain of interest, namely STEM.

Open-Platypus is made up of 11 open-source datasets, detailed in Table 1. It is comprised mainly of
human-designed questions, with ∼10% of questions generated by an LLM. Given our focus on STEM
and logic, we primarily pulled from datasets geared towards those subjects, supplementing them
with keyword-filtered content from datasets with a broader subject coverage, namely Openassistant-
Guanaco [8] and airoboros [9]. The backbone of Open-Platypus is a modified version of MATH [14]
that has been supplemented with expanded step-by-step solutions from PRM800K [23].

We employed the Alpaca instruction-tuning format, wherein each question is structured with an
instruction, input, and output. In many cases the input is empty. However, for some datasets consisting
of multiple choice questions, specifically ARB [32] and ReClor [49], we integrated the formatting
context {Choose A, B, C, or D} as input for each question. For ScienceQA [24], we opted to
include long-form answers to the multiple choice questions, omitting an explicit statement of the
correct choice entirely.

2.2 Removing similar & duplicate questions

Having collected data from a number of sources, we then ran it through a de-duplication process
to minimize the chances of memorization [21]. First, we removed all instructions which were
word-for-word duplicates, followed by removal of instructions which had 80% cosine similarity with
the SentenceTransformers [30] embeddings of other instructions in our train set. In both cases, we
defaulted to keeping the question-answer pair which had the more verbose answer. Our motivation
behind this was that longer answers likely translate to more detailed explanations and/or step-by-step
solutions.
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Table 1: Datasets, Licenses, and Number of Leaked Questions. With respect to Open-Platypus,
after using keyword searches to filter for STEM and logic, we removed any training questions with
similarity > 80% to any test set question. *The datasets marked with asterisks were not added to
Open-Platypus but we include them because we ran contamination checks when considering which
models to merge.

Dataset Name License Type # Leaked Questions

PRM800K: A Process Supervision
Dataset [23]

MIT 77

Measuring Mathematical Problem
Solving With the MATH Dataset [14]

MIT 77

ScienceQA: Science Question
Answering [24]

Creative Commons Attribution-
NonCommercial-ShareAlike 4.0

0

SciBench: Evaluating College-Level
Scientific Problem-Solving Abilities
of Large Language Models [41]

MIT 0

ReClor: A Reading Comprehension
Dataset Requiring Logical
Reasoning[49]

Non-commercial 0

*SciQ: Crowdsourcing Multiple
Choice Science Questions [44]

Creative Commons
Attribution-NonCommercial 3.0

71

TheoremQA: A Theorem-driven
Question Answering Dataset [5]

MIT 0

leetcode-solutions-python
-testgen-gpt4 [20]

None listed 0

airoboros-gpt4-1.4.1 [9] other 13
tigerbot-kaggle
-leetcodesolutions-en-2k[31]

apache-2.0 0

ARB: Advanced Reasoning
Benchmark for Large Language
Models [32]

MIT 0

Openassistant-guanaco [8] apache-2.0 13
*ehartford/dolphin (first 25k
rows) [10]

apache-2.0 0

2.3 Contamination Check

A core component of our methodology revolves around ensuring that none of the benchmark test
questions inadvertently leak into the training set, which is a fairly common occurrence. We seek to try
and prevent memorization of test data skewing the benchmark results. With that in mind, we did allow
for some leniency in determining whether questions should be marked as duplicates and removed
from the training set. Allowing some flexibility in identifying suspect questions acknowledges that
there are multiple ways to phrase a query, and general domain knowledge might prevent a question
from being considered duplicate.

To that end, we developed the following heuristics to guide manual filtering of questions from
Open-Platypus that scored > 80% similarity to any benchmark questions. We categorize potential
leaks into three groups: duplicate, gray-area, and similar but different. For our purposes, we err on
the side of caution and remove all of them from our train set.

Duplicate Questions marked as duplicate contamination are essentially exact copies of questions
found in the test sets. This includes training questions with an extra word or minor rearrangement in
relation to a benchmark question. Duplicate contamination is the only category we count as "true"
contamination and corresponds to the number of leaked questions listed in Table 1. Specific examples
of this can be seen in Figure 1.

Gray-area The next group, termed gray-area, encompasses questions that are not exact duplicates
and fall within the realm of general knowledge. While we leave the final judgement of these questions
to the open-source community, we believe they often necessitate expert knowledge. Notably, this
category includes questions with identical instructions but answers that are synonymous (for instance,
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"skin" versus "epidermis" as illustrated in 2). It also covers questions that, though phrased differently,
have their precise or detailed answers present in the training output.

Similar but different The final category includes questions that, despite having high cosine
similarity scores, yield very different answers. This can often be attributed to subtle changes in the
question’s structure, resulting in completely distinct responses. A great example of this is the question
in Figure 3, where modifications to the rotation axis and quadrant definition significantly alter the
final answer.

Train Test

How many edges does a complete
graph with 10 vertices have?

A complete graph with n vertices has n*(n-
1)/2 edges. So, a complete graph with 10
vertices has 10*(10-1)/2 = 10*9/2 = 45
edges.

A discrete graph is complete if there
is an edge connecting any pair of ver-
tices. How many edges does a com-
plete graph with 10 vertices have?

D: 45

Figure 1: Comparison of train and test questions in the duplicate contamination group.

Train Test

What is the largest organ of the hu-
man body?:
A: kidneys
B: the heart
C: epidermis
D: liver

C: epidermis

What is the largest organ in the hu-
man body?
A: stomach
B: brain
C: skin
D: liver

C: skin

Figure 2: Comparison of train and test questions in the gray-area.

2.4 Fine-tuning & merging

After refining the dataset and triple checking for contamination, our methodology centers on two main
points: the effectiveness of Low Rank Approximation (LoRA) [18] training and the built-in model
merging capabilities of the State-of-the-art Parameter-Efficient Fine-Tuning (PEFT) library [27].
Different from full fine-tuning methods, LoRA freezes pre-trained model weights and adds rank
decomposition matrices into each layer of the transformer. This reduces the number of trainable
parameters for downstream tasks and by extension, the time and cost of training. For example, our
13B model was fine-tuned using 1 A100 80GB for 5 hours and our 70B model using 4 A100s 80GB
for 22 hours. As a benchmark for comparison, Stanford notes that their full fine-tune of Alpaca-7B
took 3 hours on 8 A100s 80GB. In addition to PEFT and LoRA, we fine-tuned our models using the
Hugging Face transformers library [45]. As previously mentioned, we utilized Stanford Alpaca’s
prompt formatting template [37], which can found in the Appendix.

Our initial attempts at fine-tuning the models focused on the attention modules v_proj, q_proj,
k_proj, and o_proj. We later moved onto the gate_proj, down_proj, and up_proj modules as
recommended by [13], due to their analysis showing superior performance compared to the attention
modules, with the exception being situations where the trainable parameters are a tiny fraction
(< 0.1%) of total parameters. For consistency, we adopted this strategy for both the 13 and 70 billion
parameter fine-tunes, which translated to 0.27% and 0.2% trainable parameters, respectively. Please
see the full list of hyperparameters in Table 8. The only difference between our 13B and 70B models
is the initial learning rate—we had to lower the initial learning rate for the 70B model from 4e-4 to
3e-4 because the loss went to zero after 15 steps. LoRA rank defines the dimensions of the low-rank
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Train Test

The region $\mathscr{R}$ enclosed
by the curves $y=x$ and $y=x^2$ is
rotated about the $x$-axis. Find the
volume of the resulting solid.

The curves $y=x$ and $y=x^2$ intersect
at the points $(0,0)$ and $(1,1)$.
The region between them, the solid of
rotation, and a cross-section perpendicular
to the $x$-axis are shown in Figure. A
cross-section in the plane $P_x$ has
the shape of a washer (an annular ring)
with inner radius $x^2$ and outer radius
$x$, so we find the cross-sectional area
by subtracting the area of the inner
circle from the area of the outer circle:
\r\n$$\r\nA(x)=\\pi x^2-\\pi
\\left(x^2\\right)^2= \\pi
\\left(x^2-x^4\\right)\r\n$$\r
\n Therefore we have \r\n$$
\r\n\\begin{aligned} \r\nV &
=\\int_0^1 A(x) d x=\\int_0^1
\\pi\\left(x^2-x^4\\right)
d x \\\\\r\n& =\\pi
\\left[\\frac{x^3}{3}
- \\frac{x^5}{5}
\\right]_0^1 = \\frac{2
\\pi}{15}\r\n\\end{aligned}\r\n$$

The region bounded by the curves y
= x and y = x^2 in the first quadrant
of the xy-plane is rotated about the
y-axis. The volume of the resulting
solid of revolution is

B: pi / 6

Figure 3: Comparison of train and test questions with high cosine similarity scores which are actually
quite different.

matrices, and LoRA alpha is the scaling factor for the weight matrices. The weight matrix is scaled
by lora_alpha

lora_rank , and a higher alpha value assigns more weight to the LoRA activations. We chose 16
since this was common practice in training scripts we reviewed and chose a 1:1 ratio so as not to
overpower the base model.

After reviewing the datasets in Table 1, we deliberately chose not to merge with any models trained
using contaminated datasets. For example, we merged with the new Dolphin-70B LLM after
confirming no test questions had leaked into the training set. We performed contamination checks on
datasets used to train models we merged with to the best of our abilities, but some datasets have not
been publicly released. While we cannot offer absolute assurances for any merged models with closed-
source datasets, we proceed giving the benefit of the doubt. Additional details regarding merging
considerations are included in the next section, as this is dependent on the fine-tune benchmark
results.

3 Results

In this section, we present a detailed analysis of our models’ performance, bench-marking them
against other state-of-the-art models. Our primary objective was to discern the effects of merging
both broad and niche models and to assess the advantages of fine-tuning on our dataset. Moving
forward, base model refers to the model on which the LoRA adapters are merged.

Per the Hugging Face Open LLM Leaderboard data from 8/10/23 (Table 2), our Platypus2-70B-
instruct variant has outperformed its competitors, securing the top position with an average score of
73.13. Notably, our Stable-Platypus2-13B model, as shown in Table 3, stands out as the premier 13
billion parameter model with an average score of 63.96.
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Table 2: Top 15 open-source models on 8/10/23, including GPT-4 and GPT-3.5, according to the
Hugging Face Open LLM leaderboard. Please note that GPT-4 and GPT-3.5 are not part of the official
leaderboard but we have added their benchmark results for a closed-source model comparison. Our
models are in 1st, 5th, 11th, and 15th. ARC-challenge is 25-shot, HellaSwag is 10-shot, MMLU is
5-shot, and TruthfulQA is 0-shot. *Note: Camel-Platypus2-70B is currently pending evaluation on
the leaderboard, so we have included our local benchmark results instead.

Model Avg. Scores (%)
ARC HellaSwag MMLU TruthfulQA

gpt-4 84.3 96.3 95.3 86.4 59

1. Platypus2-70B-instruct 73.13 71.84 87.94 70.48 62.26
2. upstage/Llama-2-70b-instruct-v2 72.95 71.08 87.89 70.58 62.25
3. psmathur/model_007 72.72 71.08 87.65 69.04 63.12
4. upstage/Llama-2-70b-instruct 72.29 70.9 87.48 69.8 60.97

gpt-3.5 71.9 85.2 85.5 70 47

5. *Camel-Platypus2-70B 71.60 71.16 87.66 69.80 57.77
6. stabilityai/StableBeluga2 71.42 71.08 86.37 68.79 59.44
7. quantumaikr/llama-2-70b-fb16
-guanaco-1k

71.41 70.48 87.33 70.25 57.56

8. augtoma/qCammel-70-x 70.97 68.34 87.87 70.18 57.47
9. jondurbin/airoboros-l2-70b-gpt4-1.4.1 70.93 70.39 87.82 70.31 55.2
10. dfurman/llama-2-70b-dolphin-peft 70.76 69.62 86.82 69.18 57.43
11. Dolphin-Platypus2-70B 70.69 70.39 86.7 69.04 56.65
12. TheBloke/llama-2-70b-Guanaco-
QLoRA-fp16

70.63 68.26 88.32 70.23 55.69

13. psmathur/model_420 70.55 70.14 87.73 70.35 54
14. psmathur/model_51 70.41 68.43 86.71 69.31 57.18
15. Platypus2-70B 70.06 70.65 87.15 70.08 52.37

The objective of our model merging strategy is to assess the synergistic effects of integrating
with broad models like Instruct and Beluga, or specialized models such as Camel. An interesting
observation was with the Dolphin merge, where instead of using the conventional Platypus adapters,
we opted for the exported Platypus merged with the base LLaMa-2. This decision was influenced
by our contamination check experiments of the Dolphin dataset. Dolphin-Platypus2-70-B is the
only merge that did not do better than both the base and adapter models. Additionally, there was
a smaller score discrepancy between the base Platypus and Dolphin models than the other models
being discussed. This led us back to Camel, which had previously shown promising results in our
initial tests using 13B.

Post fine-tuning, both the 13B and 70B models demonstrated marked improvements over the base
LLaMa-2 models, particularly in the ARC and TruthfulQA benchmarks. This prompted us to explore
the potential of merging with other fine-tuned variants. While the 70B merges showed marginal
variations from the baseline scores, the 13B merges, especially with Stable Beluga, displayed
significant enhancements. For instance, the merge with Stable Beluga outperformed its constituent
models by at least 0.5% across most benchmarks, with a notable 2.91% increase in TruthfulQA.
Additionally, Stable-Platypus2-13B also showed an overall increase of +1.05% jump over base model.

Given that TruthfulQA questions are primarily "knowledge" questions (as opposed to "reasoning"
questions), the consistent improvement in TruthfulQA scores across merges suggests that merging
models effectively broadens the knowledge base rather than enhancing reasoning capabilities. This
observation aligns with the nature of TruthfulQA questions, which are primarily knowledge-based.
The LLaMa-2 paper’s assertion that model saturation hasn’t been reached further supports the idea
that merging can introduce "new" information to the model [40].
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Table 3: Top 13b open-source models according to the Hugging Face leaderboard on 8/10/23. These
rankings are for 13b parameter models only. Our models are 1st, 7th, and 20th. ARC-challenge is
25-shot, HellaSwag is 10-shot, MMLU is 5-shot, and TruthfulQA is 0-shot.

Model Avg. Scores (%)
ARC HellaSwag MMLU TruthfulQA

1. Stable-Platypus2-13B 63.96 62.71 82.29 58.3 52.52
2. Open-Orca/OpenOrcaxOpenChat-
Preview2-13B

63.83 62.54 82.96 58.65 51.17

3. psmathur/orca_mini_v3_13b 63.45 63.14 82.35 56.52 51.81
4. Gryphe/MythoMix-L2-13b 63.11 61.09 83.86 55.42 52.08
5. stabilityai/StableBeluga-13B 62.91 62.03 82.27 57.71 49.61
6. The-Face-Of-Goonery/Huginn-13b
-FP16

62.82 60.58 82.53 53.71 54.46

7. Camel-Platypus2-13B 62.62 60.75 83.61 56.51 49.6
...

...
...

...
...

...

13. augtoma/qCammel-13B 62.19 60.84 83.66 56.73 47.54
...

...
...

...
...

...

20. Platypus2-13B 61.35 61.26 82.56 56.7 44.86

The results underscore the potential of model merging as a strategy to enhance performance. The
choice of models for merging, whether broad or focused, plays a pivotal role in determining the
outcome. Our experiments with Dolphin, for instance, underscore the importance of iterative testing
and model selection. The consistent performance of models like Camel-Platypus2-70B across
different benchmarks further emphasizes this point.

In the ARC-Challenge, Hellaswag, and TruthfulQA tests, the Camel-Platypus2-70B model exhibited
the most significant positive change with a +4.12% improvement in ARC-challenge. This suggests
that the Camel-Platypus2-70B model, when merged with the Platypus adapter, is potentially the most
effective combination for tasks related to the ARC-Challenge.

For the MMLU tests, the results were more varied. The Platypus2-70B-instruct model displayed
a remarkable +18.18% improvement in abstract_algebra, while the Camel-Platypus2-13B model
showed a decline of -15.62%. This indicates that the effectiveness of the merge varies depending
on the specific domain of the test. Notably, in machine_learning, the Camel-Platypus2-70B model
demonstrated a significant increase of +26.32%, reinforcing the potential of this model in specific
domains.

Drawing from the broader content of our paper, these results underscore the importance of selecting
the appropriate model for merging with the Platypus adapter. The performance enhancements or
declines are not uniform across all domains, emphasizing the need for domain-specific evaluations
before finalizing a merge.

3.1 Deep dive into the benchmark metric tasks

The Appendix contains a breakdown of each MMLU task by change in percent and percent change.
The rest of this discussion will be referencing percent change, but we include both for transparency.
A deeper dive into the performance metrics of the base models revealed that two models with very
similar scores do not necessarily merge into a superior model.

ARC-Challenge, Hellaswag, TruthfulQA-MC: Table 4
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• Most Notable Improvement: The Camel-Platypus2-70B model in the ARC-challenge test
exhibited the highest positive change with a +4.12% improvement. This indicates that for
tasks related to the ARC-Challenge, the Camel-Platypus2-70B model, when merged with
the Platypus adapter, is potentially the most effective.

• Consistent Performer: The Stable-Platypus2-13B model showed consistent positive changes
across all three tests compared to the base model, indicating its reliable performance when
merged with the Platypus adapter.

• Variability in Results: The results for TruthfulQA were particularly varied, with the Stable-
Platypus2-13B model showing a significant +5.87% improvement, while the Dolphin-
Platypus2-70B model showed a decline of -1.37%.

MMLU: Table 6)

• Standout Performance: In the machine_learning test, the Camel-Platypus2-70B model
displayed a remarkable +26.32% improvement, indicating its potential effectiveness in
machine learning domains when merged with the Platypus adapter.

• Diverse Results: The results for the formal_logic test were diverse, with the Stable-Platypus2-
13B model showing a significant +27.27% improvement, while the Camel-Platypus2-13B
model showed a decline of -2.13%.

• Consistent Domains: In domains like marketing, the changes across all models were minimal,
suggesting that the impact of merging with the Platypus adapter might be limited in certain
domains.

• Significant Declines: The college_physics test showed significant declines for the Platypus2-
70B-instruct, Dolphin-Platypus2-70B, and Camel-Platypus2-70B models, with changes of
-20.93%, -13.16%, and -18.42% respectively. This indicates potential compatibility issues
or inefficiencies when these models are merged with the Platypus adapter for tasks related
to college physics.

The tables provide a comprehensive view of how different models perform when merged with
the Platypus adapter across various domains. It’s evident that the effectiveness of the merge is
domain-specific, and there’s no one-size-fits-all solution. Researchers and practitioners should
carefully evaluate the performance enhancements or declines in their specific domain of interest
before finalizing a merge.

4 Broader Impacts & Future Work

Modern LLMs often require considerable computational resources, making their training and infer-
ence costs restrictive for those with limited budgets. While techniques like quantization and LoRA
provide some relief, a notable observation from the Hugging Face leaderboard is the success of
smaller models in specific tasks, such as role-playing and question answering. It may be strategic
to harness the efficiency of these compact models and merge them with the precision of individual
adapters. In that ecosystem, the similarity between inputs and training data is used as an a posteriori
factor, biasing the outputs to be informed by similar data. This method essentially exploits the corre-
lation between inputs and their similar training data to influence outputs. Mixture of Experts (MoEs)
presents a promising avenue for further enhancing accuracy, given the success of domain-specific
training. Future exploration could also involve integrating alpaca and orca-style datasets, as well as
examining the potential of QLoRA within our pipeline.

Building on this perspective, LIMA [50] suggests a future characterized by an array of small,
meticulously curated datasets for niche domains. The advantages of this approach are evident:
streamlined fine-tuning processes and rapid cosine similarity searches across average training inputs
of adapters.

An intriguing inquiry is the applicability of the LIMA strategy within the LoRA and PEFT landscapes.
This question warrants further investigation in subsequent studies. Future work might delve deeper
into understanding the nuances of model merging, especially in the context of models with similar
baseline scores. The potential of leveraging models like Lazarus, a successful LoRA merge of 6
models [4], could also be explored.
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5 Limitations

Platypus, being a fine-tuned variant of LLaMa-2, inherits many of the base model’s limitations while
introducing some unique challenges due to its specialized training. Like LLaMa-2, Platypus does
not receive continuous knowledge updates after its pretraining and fine-tuning phases. This static
knowledge base can lead to outdated or incomplete information over time. Furthermore, there remains
a risk of Platypus generating non-factual content or unqualified advice, especially when faced with
ambiguous or misleading prompts.

While Platypus has been fine-tuned to improve its proficiency in STEM and logic, its primary focus,
like LLaMa-2, has been on English-language data. Although it might exhibit some capability in
other languages, this proficiency is not guaranteed and can be inconsistent due to limited non-
English pretraining data. Additionally, like its predecessor, Platypus can generate potentially harmful,
offensive, or biased content, especially when trained on publicly available datasets. While efforts
have been made to address these issues through data cleaning, challenges persist, especially for
non-English languages where comprehensive datasets might be lacking.

The capabilities of Platypus, like other AI models, can be misused for malicious purposes, such as
spreading misinformation or probing sensitive topics. While our model is for non-commercial use
only due to the license of the training set, we have followed Meta’s Responsible Use Guide with
respect to fine-tuning. We have not done any adversarial attack testing or read teaming, so before
deploying any applications of Platypus, developers should perform safety testing and tuning tailored
to their specific applications of the model.

Due to its specialized training, particularly in STEM and logic questions, Platypus might exhibit
limitations when faced with topics outside its primary domain of expertise. Please exercise cau-
tion—it’s essential to adhere to guidelines for responsible use and consider additional fine-tuning and
deployment measures to ensure optimal and safe performance.

Any users of the Platypus family should ensure that there is no contamination between the Platypus
training data and any benchmark test sets not explicitly used in this paper. For example, the creators
of PRM800K combined the MATH train and test sets to increase training quality. We used both the
train and test sets of PRM800K during training, barring any questions that were too similar to the
benchmark datasets.

All aforementioned limitations pertain to our merged model variants. Again, we deliberately chose
not to merge with any models that used contaminated datasets during training. While we cannot offer
absolute assurances, we proceed giving the benefit of the doubt. We’d like to stress the importance of
due diligence when choosing to deploy any LLM or dataset.

Lastly, we note that keyword search and cosine similarity of sentence embeddings may not be
exhaustive filtering methods. While we are confident there is no contamination in our cleaned training
data, it is unlikely but not impossible that some questions slipped through the cracks.
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Appendix

Alpaca Formatting Example with Input

Below is an instruction that describes a task, paired with an input
that provides further context. Write a response that appropriately
completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:

Alpaca Formatting Example without Input

Below is an instruction that describes a task. Write a response that
appropriately completes the request.

### Instruction:
{instruction}

### Response:

Table 4: Percent change over "Base" Model - ARC-Challenge, Hellaswag, TruthfulQA-MC. In this
context, base model refers to the model on which the adapters are merged.

Test Name Camel-P2-13B Stable-P2-13B P2-70B-ins Dolphin-P2-70B Camel-P2-70B
arc_challenge -0.14 +1.10 +1.08 +1.10 +4.12
hellaswag -0.06 +0.02 +0.06 -0.14 -0.24
truthfulqa_mc +4.33 +5.87 +0.02 -1.37 +0.53

Table 5: Change in Percent over "Base" Model - ARC-Challenge, Hellaswag, TruthfulQA-MC. In
this context, base model refers to the model on which the adapters are merged.

Test Name Camel-P2-13B Stable-P2-13B P2-70B-ins Dolphin-P2-70B Camel-P2-70B

arc_challenge -0.09 +0.68 +0.77 +0.77 +2.82
hellaswag -0.05 +0.02 +0.05 -0.12 -0.21
truthfulqa_mc +2.06 +2.91 +0.01 -0.78 +0.31
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Table 6: Percent Change over "Base" Model - MMLU. In this context, base model refers to the model
on which the adapters are merged

Test Name C-P2-13 S-P2-13 P2-70-ins D-P2-70 C-P2-70

abstract_algebra -15.62 -6.06 +18.18 -11.11 +11.76
anatomy -6.67 +12.90 -9.09 +1.16 0.00
astronomy -3.23 +8.75 -7.81 -7.20 -6.25
business_ethics -3.51 +1.69 -4.05 +2.86 -2.67
clinical_knowledge -2.52 0.00 +2.06 +0.53 +1.05
college_biology +8.43 +8.99 +0.83 +2.59 -4.92
college_chemistry +2.56 -2.70 -6.12 0.00 0.00
college_computer_science 0.00 -2.17 -3.33 -7.02 -10.00
college_mathematics +6.67 +8.82 +4.76 +2.56 +5.13
college_medicine -5.38 +2.15 +4.39 +2.70 +0.86
college_physics +3.33 -2.94 -20.93 -13.16 -18.42
computer_security -1.43 -12.16 -1.30 -3.80 +1.32
conceptual_physics +3.13 +4.55 -4.82 -3.85 0.00
econometrics +10.26 +14.71 +3.77 +4.08 +5.77
electrical_engineering -15.79 -8.86 -7.45 -10.00 -9.28
elementary_mathematics +6.02 -3.10 -3.39 +4.22 +0.59
formal_logic -2.13 +27.27 +13.56 +12.07 +22.41
global_facts +21.21 +2.63 +4.26 -6.52 -5.66
hs_biology -4.19 -5.29 +2.39 +1.64 -0.40
hs_chemistry -3.41 -1.14 -3.51 +3.85 +5.66
hs_computer_science -8.20 0.00 -1.27 0.00 -3.75
hs_european_history +1.80 0.00 +4.32 +2.17 +0.72
hs_geography -2.70 -0.68 +0.58 -5.06 -1.74
hs_government_and_politics +8.33 +4.40 +1.66 -1.67 -1.10
hs_macroeconomics -4.37 +1.34 +1.81 +2.61 -1.42
hs_mathematics -7.69 +15.19 -5.81 -10.87 -21.51
hs_microeconomics -2.26 -2.11 +2.20 +1.12 +1.12
hs_physics -3.51 -4.00 +1.41 -2.67 -4.17
hs_psychology +1.42 +4.59 +0.41 -0.82 +0.61
hs_statistics +3.19 +7.37 +2.31 +4.96 +2.34
hs_us_history +5.23 +8.50 -2.12 +0.54 -3.21
hs_world_history +5.75 +3.37 +0.94 +1.44 +2.36
human_aging +1.40 -4.00 +2.26 -1.14 +1.15
human_sexuality -1.32 -3.37 -5.31 -1.83 -7.14
international_law +2.33 -2.15 +0.96 -2.80 +1.94
jurisprudence -5.19 -2.47 +1.12 -2.20 0.00
logical_fallacies -4.63 -1.74 +2.29 0.00 -5.11
machine_learning -15.38 -14.00 +22.81 +16.07 +26.32
management -2.63 -1.27 +2.35 0.00 +3.53
marketing +1.08 -2.58 +0.95 +0.94 +0.94
medical_genetics +13.21 -5.97 0.00 -1.39 -1.45
miscellaneous +1.86 +0.66 +0.15 -0.29 -0.59
moral_disputes +1.81 -0.45 -2.96 -1.15 -5.04
moral_scenarios +3.54 +19.74 +7.95 +17.71 +6.37
nutrition -5.43 0.00 -2.98 +2.23 -2.54
philosophy +1.00 +2.45 0.00 +1.25 +1.25
prehistory +1.46 +6.83 0.00 +3.01 -1.47
professional_accounting +10.00 +4.10 -1.23 +3.29 -1.90
professional_law +8.01 +10.05 +6.61 +5.31 +5.13
professional_medicine +4.29 +9.59 -1.49 -2.50 -3.40
professional_psychology +4.69 +3.64 -1.07 +0.22 +0.22
public_relations -5.33 +5.71 -4.88 -1.25 0.00
security_studies -2.03 -3.16 -5.47 -3.08 -0.52
sociology -5.92 -6.16 +1.14 +1.14 +0.58
us_foreign_policy -8.54 -4.82 -4.44 -4.40 -3.33
virology -5.41 -1.28 +1.14 -2.20 +4.60
world_religions +0.75 +0.75 -2.00 -2.03 -3.29

Note: C-P2-13 refers to Camel-Platypus2-13B, S-P2-13 refers to Stable-Platypus2-13B, D-P2-70 refers to
Dolphin-Platypus2-70B, and C-P2-70 refers to Camel-Platypus2-70B.
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Table 7: Change in Percent over "Base" Model - MMLU. In this context, base model refers to the
model on which the adapters are merged.

Test Name C-P2-13 S-P2-13 P2-70-ins D-P2-70 C-P2-70

abstract_algebra -5.00 -2.00 +6.00 -4.00 +4.00
anatomy -3.70 +5.93 -5.93 +0.74 0.00
astronomy -1.97 +4.61 -6.58 -5.92 -5.26
business_ethics -2.00 +1.00 -3.00 +2.00 -2.00
clinical_knowledge -1.51 0.00 +1.51 +0.38 +0.75
college_biology +4.86 +5.56 +0.69 +2.08 -4.17
college_chemistry +1.00 -1.00 -3.00 0.00 0.00
college_computer_science 0.00 -1.00 -2.00 -4.00 -6.00
college_mathematics +2.00 +3.00 +2.00 +1.00 +2.00
college_medicine -2.89 +1.16 +2.89 +1.73 +0.58
college_physics +0.98 -0.98 -8.82 -4.90 -6.86
computer_security -1.00 -9.00 -1.00 -3.00 +1.00
conceptual_physics +1.28 +2.13 -3.40 -2.55 0.00
econometrics +3.51 +4.39 +1.75 +1.75 +2.63
electrical_engineering -8.28 -4.83 -4.83 -6.21 -6.21
elementary_mathematics +2.12 -1.06 -1.59 +1.85 +0.26
formal_logic -0.79 +9.52 +6.35 +5.56 +10.32
global_facts +7.00 +1.00 +2.00 -3.00 -3.00
hs_biology -2.90 -3.55 +1.94 +1.29 -0.32
hs_chemistry -1.48 -0.49 -1.97 +1.97 +2.96
hs_computer_science -5.00 0.00 -1.00 0.00 -3.00
hs_european_history +1.21 0.00 +3.64 +1.82 +0.61
hs_geography -2.02 -0.51 +0.51 -4.55 -1.52
hs_government_and_politics +6.74 +3.63 +1.55 -1.55 -1.04
hs_macroeconomics -2.56 +0.77 +1.28 +1.79 -1.03
hs_mathematics -2.59 +4.44 -1.85 -3.70 -7.41
hs_microeconomics -1.26 -1.26 +1.68 +0.84 +0.84
hs_physics -1.32 -1.32 +0.66 -1.32 -1.99
hs_psychology +1.10 +3.49 +0.37 -0.73 +0.55
hs_statistics +1.39 +3.24 +1.39 +2.78 +1.39
hs_us_history +3.92 +6.37 -1.96 +0.49 -2.94
hs_world_history +4.22 +2.53 +0.84 +1.27 +2.11
human_aging +0.90 -2.69 +1.79 -0.90 +0.90
human_sexuality -0.76 -2.29 -4.58 -1.53 -6.11
international_law +1.65 -1.65 +0.83 -2.48 +1.65
jurisprudence -3.70 -1.85 +0.93 -1.85 0.00
logical_fallacies -3.07 -1.23 +1.84 0.00 -4.29
machine_learning -5.36 -6.25 +11.61 +8.04 +13.39
management -1.94 -0.97 +1.94 0.00 +2.91
marketing +0.85 -2.14 +0.85 +0.85 +0.85
medical_genetics +7.00 -4.00 0.00 -1.00 -1.00
miscellaneous +1.40 +0.51 +0.13 -0.26 -0.51
moral_disputes +1.16 -0.29 -2.31 -0.87 -4.05
moral_scenarios +1.56 +8.60 +4.80 +9.50 +3.58
nutrition -3.27 0.00 -2.29 +1.63 -1.96
philosophy +0.64 +1.61 0.00 +0.96 +0.96
prehistory +0.93 +4.32 0.00 +2.47 -1.23
professional_accounting +4.26 +1.77 -0.71 +1.77 -1.06
professional_law +3.46 +4.17 +3.65 +2.87 +2.87
professional_medicine +2.57 +5.15 -1.10 -1.84 -2.57
professional_psychology +2.61 +2.12 -0.82 +0.16 +0.16
public_relations -3.64 +3.64 -3.64 -0.91 0.00
security_studies -1.22 -2.04 -4.49 -2.45 -0.41
sociology -4.48 -4.48 +1.00 +1.00 +0.50
us_foreign_policy -7.00 -4.00 -4.00 -4.00 -3.00
virology -2.41 -0.60 +0.60 -1.20 +2.41
world_religions +0.58 +0.58 -1.75 -1.75 -2.92

Note: C-P2-13 refers to Camel-Platypus2-13B, S-P2-13 refers to Stable-Platypus2-13B, D-P2-70 refers to
Dolphin-Platypus2-70B, and C-P2-70 refers to Camel-Platypus2-70B.
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Table 8: Hyperparameters for 13B and 70B Models

Hyperparameter Platypus2-13B / 70B
batch size 16
micro batch size 1
num epochs 1
learning rate 4e-4 / 3e-4
cutoff len 4096
lora rank 16
lora alpha 16
lora dropout 0.05
lora target modules gate_proj, down_proj, up_proj
train on inputs False
add eos token False
group by length False
prompt template alpaca
lr scheduler cosine
warmup steps 100
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