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ABSTRACT

Selective prediction aims to learn a reliable model that abstains from making pre-
dictions when uncertain. These predictions can then be deferred to a humans for
further evaluation. As an everlasting challenge for machine learning, in many real-
world scenarios, the distribution of test data is different from the training data.
This results in more inaccurate predictions, and often increased dependence on
humans, which can be difficult and expensive. Active learning aims to lower the
overall labeling effort, and hence human dependence, by querying the most infor-
mative examples. Selective prediction and active learning have been approached
from different angles, with the connection between them missing. In this work,
we introduce a new learning paradigm, active selective prediction, which aims to
query more informative samples from the shifted target domain while increasing
accuracy and coverage. For this new paradigm, we propose a simple yet effective
approach, ASPEST, that utilizes ensembles of model snapshots with self-training
with their aggregated outputs as pseudo labels. Extensive experiments on numer-
ous image, text and structured datasets, which suffer from domain shifts, demon-
strate that ASPEST can significantly outperform prior work on selective predic-
tion and active learning (e.g. on the MNIST→SVHN benchmark with the labeling
budget of 100, ASPEST improves the AUACC metric from 79.36% to 88.84%)
and achieves more optimal utilization of humans in the loop.

1 INTRODUCTION
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Figure 1: Illustration of active selective predic-
tion, where active learning is used to improve se-
lective prediction under distribution shift. In this
setting, active learning selects a small subset of
data for labeling which are used to improve se-
lective prediction on the remaining unlabeled test
data. This yields more reliable predictions and
more optimized use of humans in the loop.

Deep Neural Networks (DNNs) have shown no-
table success in many applications that require
complex understanding of input data (He et al.,
2016a; Devlin et al., 2018; Hannun et al., 2014),
including the ones that involve high-stakes deci-
sion making (Yang, 2020). For safe deployment
of DNNs in high-stakes applications, it is typi-
cally required to allow them to abstain from their
predictions that are likely to be wrong, and ask
humans for assistance (a task known as selec-
tive prediction) (El-Yaniv et al., 2010; Geifman
& El-Yaniv, 2017). Although selective predic-
tion can render the predictions more reliable, it
does so at the cost of human interventions. For
example, if a model achieves 80% accuracy on
the test data, an ideal selective prediction algo-
rithm should reject those 20% misclassified sam-
ples and send them to a human for review.

Distribution shift can significantly exacerbate
the need for such human intervention. The suc-
cess of DNNs often relies on the assumption that
both training and test data are sampled indepen-
dently and identically from the same distribu-
tion. In practice, this assumption may not hold
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Machine Learning Paradigm Accuracy Coverage Acquisition Function Selectivity Adapt f Adapt g Target Metric

Selective Prediction High Low None If g(x) ≥ τ , output f(x);
otherwise, output ⊥ 7 7

cov|acc ≥ ta,
acc|cov ≥ tc or AUACC

Active Learning Medium 100% a(B, f) Always output f(x) 3 7 acc

Active Selective Prediction High High a(B, f, g)
If g(x) ≥ τ , output f(x);
otherwise, output ⊥ 3 3

cov|acc ≥ ta,
acc|cov ≥ tc or AUACC

Table 1: Comparing different machine learning paradigms. With distribution shift and a small la-
beling budget, active learning can achieve 100% coverage (predictions on all test data), but it fails
to achieve the target accuracy. Selective prediction can achieve the target accuracy, but the coverage
is low, which results in significant human intervention. Active selective prediction achieves the tar-
get accuracy with much higher coverage, significantly reducing human labeling effort. B: selected
batch for labeling. f : classifier and g: selection scoring function. acc: accuracy and cov: coverage.

and can degrade the performance on the test domain (Barbu et al., 2019; Koh et al., 2021). For
example, for satellite imaging applications, images taken in different years can vary drastically due
to weather, light, and climate conditions (Koh et al., 2021). Existing selective prediction methods
usually rely on model confidence to reject inputs (Geifman & El-Yaniv, 2017). However, it has been
observed that model confidence can be poorly calibrated, especially with distribution shifts (Ovadia
et al., 2019). The selective classifier might end up accepting many mis-classified test inputs, mak-
ing the predictions unreliable. Thus, selective prediction might yield an accuracy below the desired
target performance, or obtain a low coverage, necessitating significant human intervention.

To improve the performance of selective prediction, one idea is to rely on active learning and to
have humans label a small subset of selected test data. The correct labels provided by humans can
then be used to improve the accuracy and coverage (see Sec. 3.2) of selective prediction on the
remaining unlabeled test data, thus reducing the need for subsequent human labeling efforts. In
separate forms, selective prediction (Geifman & El-Yaniv, 2017; 2019) and active learning (Settles,
2009) have been studied extensively, however, to the best of our knowledge, this paper is first to
propose performing active learning to improve selective prediction jointly, with the focus on the
major real-world challenge of distribution shifts. Active domain adaptation (Su et al., 2020; Fu et al.,
2021; Prabhu et al., 2021) is one area close to this setting, however, it does not consider selective
prediction. In selective prediction, not only does a classifier need to be learned, but a selection
scoring function also needs to be constructed for rejecting misclassified inputs. Thus, going beyond
conventional active learning methods that focus on selecting examples for labeling to improve the
accuracy, we propose to also use those selected labeled examples to improve the selection scoring
function. The optimal acquisition function (used to select examples for labeling) for this new setting
is different compared to those in traditional active learning – e.g. if a confidence-based selection
scoring function is employed, the selected labeled samples should have the goal of improving the
estimation of that confidence score.

In this paper, we introduce a new machine learning paradigm: active selective prediction under
distribution shift (see Fig. 1), which combines selective prediction and active learning to improve
accuracy and coverage, and hence use human labeling in a more efficient way. Table 1 shows
the differences among selective prediction, active learning and active selective prediction. Active
selective prediction is highly important for most real-world deployment scenarios (e.g., the batch
prediction scenario where users give a batch of test inputs potentially with distribution shifts, and
request predictions from a deployed pre-trained model). To the best of our knowledge, we are the
first to formulate and investigate this problem, along with the judiciously chosen evaluation metrics
for it (Sec. 3). We also introduce a novel and simple yet effective method, ASPEST, for this active
selective prediction problem (Sec. 4). The key components of ASPEST, checkpoint ensembling and
self-training, are designed to address the key challenge (i.e., the overconfidence issue) in the active
selective prediction problem. On numerous real-world datasets, we show that ASPEST consistently
outperforms other baselines proposed for active learning and selective prediction (Sec. 5).

2 RELATED WORK

Selective prediction (also known as prediction with rejection/deferral options) constitutes a common
deployment scenario for DNNs, especially in high-stakes decision making scenarios. In selective
prediction, models abstain from yielding outputs if their confidence on the likelihood of correctness
is not sufficiently high. Such abstinence usually incurs deferrals to humans and results in additional
cost (Mozannar & Sontag, 2020). Increasing the coverage – the ratio of the samples for which
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the DNN outputs can be reliable – is the fundamental goal (El-Yaniv et al., 2010; Fumera & Roli,
2002; Hellman, 1970; Geifman & El-Yaniv, 2019). (Geifman & El-Yaniv, 2017) considers selec-
tive prediction for DNNs with the ‘Softmax Response’ method, which applies a carefully selected
threshold on the maximal response of the softmax layer to construct the selective classifier. (Lak-
shminarayanan et al., 2017) shows that using deep ensembles can improve predictive uncertainty
estimates and thus improve selective prediction. (Rabanser et al., 2022) proposes a novel method,
NNTD, for selective prediction that utilizes DNN training dynamics by using checkpoints during
training. Our proposed method ASPEST also uses checkpoints to construct ensembles for selective
prediction. In contrast to NNTD and other aforementioned methods, we combine selective predic-
tion with active learning to improve its data efficiency while considering a holistic perspective of
having humans in the loop. This new active selective prediction setup warrants new methods for
selective prediction along with active learning.

Active learning employs acquisition functions to select unlabeled examples for labeling, and uses
these labeled examples to train models to utilize the human labeling budget more effectively while
training DNNs (Settles, 2009; Dasgupta, 2011). Commonly-used active learning methods employ
acquisition functions by considering uncertainty (Gal et al., 2017; Ducoffe & Precioso, 2018; Beluch
et al., 2018) or diversity (Sener & Savarese, 2017; Sinha et al., 2019), or their combination (Ash
et al., 2019; Huang et al., 2010). One core challenge for active learning is the “cold start” problem:
often the improved obtained from active learning is less significant when the amount of labeled data
is significantly smaller (Yuan et al., 2020; Hacohen et al., 2022). Moreover, active learning can be
particularly challenging under distribution shift (Kirsch et al., 2021; Zhao et al., 2021). Recently,
active domain adaptation has been studied, where domain adaptation is combined with active learn-
ing (Su et al., 2020; Fu et al., 2021; Prabhu et al., 2021). Different from traditional active learning,
active domain adaptation typically adapts a model pre-trained on the labeled source domain to the
unlabeled target domain. In our work, we also try to adapt a source trained model to the unlabeled
target test set using active learning, while focusing on building a selective classification model and
reducing the human labeling effort. More related work are discussed in Appendix B.

3 ACTIVE SELECTIVE PREDICTION

In this section, we first formulate the active selective prediction problem and then present the pro-
posed evaluation metrics to quantify the efficacy of the methods.

3.1 PROBLEM SETUP

Let X be the input space and Y = {1, 2, . . . ,K} the label space.1 The training data distribution is
given as PX,Y and the test data distribution is QX,Y (both are defined in the space X × Y). There
might exist distribution shifts such as covariate shifts (i.e., QX,Y might be different from PX,Y ).
Suppose for each input x, an oracle (e.g., the human annotator) can assign a ground-truth class
label yx to it. Given a classifier f̄ : X → Y trained on a source training dataset Dtr ∼ PX,Y
(∼ means “sampled from”), and an unlabeled target test dataset UX = {x1, . . . ,xn} ∼ QX , our
goal is to employ f̄ to yield reliable predictions on UX in human-in-the-loop scenario. Holistically,
we consider the two approaches to involve humans via the predictions they provide on the data:
(i) selective prediction where uncertain predictions are deferred to humans to maintain a certain
accuracy target; and (ii) active learning where a subset of UX unlabeled samples are selected for
humans to improve the model with the extra labeled data to be used at the subsequent iterations.
These two approaches to involve humans have different objectives and thus, their joint optimization
to best use the human labeling resources is not straightforward.

As an extension of the classifier f (initialized by f̄ ), we propose to employ a selective classifier
fs including a selection scoring function g : X → R to yield reliable predictions on UX . We
define the predicted probability of the model f on the k-th class as f(x | k). Then, the classifier
is f(x) = arg maxk∈Y f(x | k). g can be based on statistical operations on the outputs of f (e.g.,

1In this paper, we focus on the classification problem, although it can be extended to the regression problem.
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g(x) = maxk∈Y f(x | k)). With f and g, the selective prediction model fs is defined as:

fs(x; τ) =

{
f(x) if g(x) ≥ τ,
⊥ if g(x) < τ

, (1)

where τ is a threshold. If fs(x) = ⊥, then the DNN system would defer the predictions to a human
in the loop. To improve the overall accuracy to reach the target, such deferrals require manual
labeling. To reduce the human labeling cost and improve the accuracy of the selective classifier, we
consider labeling a small subset of UX and adapt the selective classifier fs on the labeled subset
via active learning. The goal is to significantly improve the accuracy and coverage of the selective
classifier fs and thus reduce the total human labeling effort.

Suppose the labeling budget for active learning is M (i.e., M examples from UX are selected to
be labeled by humans). We assume that humans in the loop can provide correct labels. For active
learning, we consider the transductive learning paradigm (Vapnik, 1998), which assumes all training
and test data are observed beforehand and we can make use of the unlabeled test data for learning.
Specifically, the active learning is performed on UX to build the selective classifier fs, with perfor-
mance evaluation of fs only on UX . We adapt the source-trained classifier f̄ to obtain fs instead of
training fs from scratch to maintain feasibly-low computational cost.

Let’s first consider the single-round setting. Suppose the acquisition function is a : Xm × F ×
G → R, where m ∈ N+, F is the classifier space and G is the selection scoring function space.
This acquisition function is different from the one used in traditional active learning (Gal et al.,
2017) since traditional active learning doesn’t have the goal of improving g. In the beginning, f is
initialized by f̄ . We then select a batch B∗ for labeling by solving the following objective:

B∗ = arg max
B⊂UX ,|B|=M

a(B, f, g), (2)

for which the labels are obtained to get B̃∗. Then, we use B̃∗ to update f and g (e.g., via fine-tuning).

The above can be extended to a multi-round setting. Suppose we have T rounds and the labeling
budget for each round is m = [MT ]. In the beginning, f0 is initialized by f̄ . At the t-th round, we
first select a batch B∗t for labeling by solving the following objective:

B∗t = arg max
B⊂UX\(∪t−1

l=1B
∗
l ),|B|=m

a(B, ft−1, gt−1), (3)

for which the labels are obtained to get B̃∗t . Then we use B̃∗t to update ft−1 and gt−1 to get ft and
gt (e.g., via fine-tuning the model on B̃∗t ). With multiple-rounds setting, we define B∗ = ∪Ti=1B

∗
i .

3.2 EVALUATION METRICS

To quantify the efficacy of the methods that optimize human-in-the-loop adaptation and decision
making performance, appropriate metrics are needed. The performance of the selective classifier fs
(defined in Eq. (1)) on UX is evaluated by the accuracy and coverage metrics, which are defined as:

acc(fs, τ) =
Ex∼UX

I[f(x) = yx ∧ g(x) ≥ τ ∧ x /∈ B∗]
Ex∼UX

I[g(x) ≥ τ ∧ x /∈ B∗]
(4)

cov(fs, τ) =
Ex∼UX

I[g(x) ≥ τ ∧ x /∈ B∗]
Ex∼UX

I[x /∈ B∗]
(5)

We can tune the threshold τ to achieve a certain coverage. There could be an accuracy-coverage
trade-off – as we increase coverage, the accuracy could be lower. We consider the following metrics
that are agnostic to the threshold τ : (1) maximum accuracy at a target coverage denoted as acc|cov ≥
tc; (2) maximum coverage at a target accuracy denoted as cov|acc ≥ ta; (3) Area Under Accuracy-
Coverage Curve denoted as AUACC. The definitions of these metrics are given in Appendix C.

3.3 CHALLENGES

For active selective prediction, we want to utilize active learning to improve the coverage and ac-
curacy of the selective classifier fs, that consists of a classifier f and a selection scoring function
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Figure 2: Illustration of the challenges in active selective prediction using a linear model to maximize
the margin (distance to the decision boundary) for binary classification. The model confidence is
considered to be proportional to the margin (when the margin is larger, the confidence is higher and
vice versa). Fig. (a) shows if the samples close to the current decision boundary are selected for
labeling, then the adapted model suffers from the overconfidence issue (mis-classification with high
confidence), which results in acceptance of some mis-classified points. Fig. (b) shows if diverse
samples are selected for labeling, then the adapted model suffers from low accuracy. This leads to
rejection of many points, necessitating significant human intervention.

g. In contrast to conventional active learning, which only aims to improve the accuracy of f , active
selective prediction also aims to improve g so that it can accept those examples where f predicts
correctly and reject those where f predicts incorrectly. Especially with distribution shift and a small
labeling budget M , it can be challenging to train f for high accuracy. Therefore, g is critical in
achieving high coverage and accuracy of fs, for which we consider the confidence of f (i.e., the
maximum softmax score of f ) and train f such that its confidence can be used to distinguish cor-
rect and incorrect predictions. This might not be achieved easily since it has been observed that f
can have overconfident predictions especially under distribution shift (Goodfellow et al., 2014; Hein
et al., 2019). Besides, for active learning, typically we select samples for labeling based on uncer-
tainty or diversity. However, in active selective prediction, sample selection based on uncertainty
may lead to overconfidence and sample selection based on diversity may lead to low accuracy of
f , as illustrated in Fig. 2. Our experiments in Appendix G.2 show that these issues indeed exist –
the methods based on uncertainty sampling (e.g., SR+Margin) achieve relatively high accuracy, but
suffer from the overconfidence issue, while the methods based on diversity sampling (e.g. SR+kCG)
don’t have the overconfidence issue, but suffer from low accuracy of f . Moreover, the hybrid meth-
ods based on uncertainty and diversity sampling (SR+CLUE and SR+BADGE) still suffer from the
overconfidence issue. To tackle these, we propose a novel method, ASPEST, described next.

4 PROPOSED METHOD: ASPEST

We propose a novel method Active Selective Prediction using Ensembles and Self-training (AS-
PEST), which utilizes two key techniques, checkpoint ensembles and self-training, to solve the
active selective prediction problem. The key constituents, checkpoint ensembles and self-training,
are designed to tackle the fundamental challenges in active selective prediction, with the ideas of
selecting samples for labeling based on uncertainty to achieve high accuracy and using checkpoint
ensembles and self-training to alleviate overconfidence. We empirically analyze why they can tackle
the challenges in Section 5.3. In Appendix E, we analyze the complexity of the ASPEST algorithm.

We first describe how the weights from the intermediate checkpoints during training are used to
construct the checkpoint ensemble. Since we have all the test inputs, we don’t need to save the
checkpoints during training, but just record their outputs on the test set UX . Specifically, we use a
n × K matrix P (recall that n = |UX | and K is the number of classes) to record the average of
the softmax outputs of the checkpoint ensemble and use Ne to record the number of checkpoints in
the current checkpoint ensemble. During training, we get a stream of checkpoints (assuming no two
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checkpoints arrive at the same time), and for each incoming checkpoint f , we update P and Ne as:

Pi,k ←
1

Ne + 1
(Pi,k ·Ne + f(xi | k)) for 1 ≤ i ≤ n and 1 ≤ k ≤ K, Ne ← Ne + 1. (6)

Since it has been observed that an ensemble of DNNs (known as ‘deep ensembles’) usually pro-
duces a confidence score that is better calibrated compared to a single DNN (Lakshminarayanan
et al., 2017), we consider f to be in the form of deep ensembles and g to be the confidence of the
ensemble. Specifically, we continue fine-tuning N models independently via Stochastic Gradient
Descent (SGD) with different random seeds (e.g., the randomness can come from different random
orders of training batches). At the beginning, we set each model f j0 = f̄ (j = 1, . . . , N ), and set
Ne = 0 and P = 0n×K . Here, we initialize each model f j0 with the source-trained classifier f̄ in-
stead of random initialization, to minimize the computational cost. We fine-tune each model f j0 on
Dtr for ns steps via SGD using the following training objective: minθj E(x,y)∈Dtr `CE(x, y; θj),

where `CE is the cross-entropy loss and θj is the model parameters of f j0 . For every cs steps when
training each f j0 , we update P and Ne using Eq (6) with the checkpoint model f j0 .

After constructing the initial checkpoint ensemble, we perform a T -round active learning process.
In each round of active learning, we first select samples for labeling based on the margin of the
checkpoint ensemble, then fine-tune the models on the selected labeled test data, and finally perform
self-training. We describe the procedure below:

Sample selection. In the t-th round, we select a batch Bt with a size of m = [MT ] from UX via:

Bt = arg max
B⊂UX\(∪t−1

l=0Bl),|B|=m
−
∑
xi∈B

S(xi) (7)

where B0 = ∅, S(xi) = Pi,ŷ − maxk∈Y\{ŷ} Pi,k and ŷ = arg maxk∈Y Pi,k. We use an oracle
to assign ground-truth labels to the examples in Bt to get B̃t. Here, we select the test samples
for labeling based on the margin of the checkpoint ensemble. The test samples with lower margin
should be closer to the decision boundary and they are data points where the ensemble is uncertain
about its predictions. Training on those data points can either make the predictions of the ensemble
more accurate or make the ensemble have higher confidence on its correct predictions.

Fine-tuning. After the sample selection, we reset Ne and P as Ne = 0 and P = 0n×K , because
we want to remove those checkpoints in the previous rounds with a worse performance from the
checkpoint ensemble (experiments in Appendix G.9 show that after each round of active learning,
the accuracy of the ensemble will significantly improve). We then fine-tune each model f jt−1 (j =
1, . . . , N ) independently via SGD with different randomness on the selected labeled test data to get
f jt using the following training objective:

min
θj

E(x,y)∈∪t
l=1B̃l

`CE(x, y; θj) + λ · E(x,y)∈Dtr `CE(x, y; θj), (8)

where θj is the model parameters of f jt−1 and λ is a hyper-parameter. Note that here we use joint
training on Dtr and ∪tl=1B̃l to avoid over-fitting to the small set of labeled test data and prevent the
models from forgetting the source training knowledge (see the results in Appendix G.5 for the effect
of using joint training and the effect of λ). For every ce epoch when fine-tuning each model f jt−1,
we update P and Ne using Eq. (6) with the checkpoint model f jt−1.

Self-training. After fine-tuning the models on the selected labeled test data and with the checkpoint
ensemble, we construct a pseudo-labeled set R via:

R = {(xi, [Pi,1, · · · , Pi,K ]) | xi ∈ UX ∧ (η ≤ max
k∈Y

Pi,k < 1)}, (9)

where maxk∈Y Pi,k is the confidence of the checkpoint ensemble on xi and η is a threshold (refer
to Section 5.2 for the effect of η). We do not add those test data points with confidence equal to 1
into the pseudo-labeled set because training on those data points cannot change the models much
and may even hurt the performance (refer to Appendix G.8 for the justification of such a design).
We then perform self-training on the pseudo-labeled set R. For computational efficiency, we only
apply self-training on a subset of R. We construct the subset Rsub by randomly sampling up to
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[p · n] data points from R, where p ∈ [0, 1]. We train each model f jt (j = 1, . . . , N ) further on the
pseudo-labeled subset Rsub via SGD using the following training objective:

min
θj

E(x,y)∈Rsub `KL(x,y; θj) + λ · E(x,y)∈Dtr `CE(x, y; θj) (10)

where `KL is the KL-Divergence loss, which is defined as: `KL(x,y; θ) =
∑K
k=1 yk · log( yk

f(x|k;θ) ).
We use the KL-Divergence loss with soft pseudo-labels to alleviate the overconfidence issue since
the predicted labels might be wrong and training the models on those misclassified pseudo-labeled
data using the typical cross entropy loss will cause the overconfidence issue, which hurts selective
prediction performance. For every ce epoch of self-training each model f jt , we will update P andNe
using Eq (6) with the checkpoint model f jt . We add checkpoints during self-training into checkpoint
ensemble to improve the sample selection in the next round of active learning.

After T rounds active learning, we use the checkpoint ensemble as the final selective classifier: the
classifier f(xi) = arg maxk∈Y Pi,k and the selection scoring function g(xi) = maxk∈Y Pi,k.

5 EXPERIMENTS

This section presents experimental results, especially focusing on the following questions: (Q1) Can
we use a small labeling budget to significantly improve selective prediction performance under dis-
tribution shift? (Q2) Does the proposed ASPEST outperform baselines across different datasets with
distribution shift? (Q3) What is the effect of checkpoint ensembles and self-training in ASPEST?

5.1 SETUP

Datasets. We use the following datasets with distribution shift: (i) MNIST→SVHN (LeCun, 1998;
Netzer et al., 2011), (ii) CIFAR-10→CINIC-10 (Krizhevsky et al., 2009; Darlow et al., 2018), (iii)
FMoW (Koh et al., 2021), (iv) Amazon Review (Koh et al., 2021), (v) DomainNet (Peng et al., 2019)
and (vi) Otto (Benjamin Bossan, 2015). Details of the datasets are described in Appendix F.2.

Model architectures and source training. On MNIST→SVHN, we use CNN (LeCun et al., 1989).
On CIFAR-10→CINIC-10, we use ResNet-20 (He et al., 2016b). On the FMoW dataset, we use
DensetNet-121 (Huang et al., 2017b). On Amazon Review, we use the pre-trained RoBERTa (Liu
et al., 2019). On the DomainNet dataset, we use ResNet-50 (He et al., 2016a). On the Otto dataset,
we use a multi-layer perceptron. On each dataset, we train the models on the training set Dtr. More
details on model architectures and training on source data are presented in Appendix F.3.

Active learning hyper-parameters. We evaluate different methods with different labeling budget
M values on each dataset. By default, we set the number of rounds T = 10 for all methods (Ap-
pendix G.6 presents the effect of T ). During the active learning process, we fine-tune the model on
the selected labeled test data. During fine-tuning, we don’t apply any data augmentation to the test
data. We use the same fine-tuning hyper-parameters for different methods to ensure a fair compari-
son. More details on the fine-tuning hyper-parameters can be found in Appendix F.4.

Baselines. We consider Softmax Response (SR) (Geifman & El-Yaniv, 2017) and Deep Ensem-
bles (DE) (Lakshminarayanan et al., 2017) with various active learning sampling methods as the
baselines. SR+Uniform means combining SR with an acquisition function based on uniform sam-
pling (similarly for DE and other acquisition functions). We consider sampling methods from both
traditional active learning (e.g., BADGE (Ash et al., 2019)) and active domain adaptation (e.g.,
CLUE (Prabhu et al., 2021)). Appendix D further describes the details of the baselines.

Hyper-parameters of ASPEST. We set λ = 1, ns = 1000 and N = 5 (see Appendix G.7 for the
effect ofN ), which are the same as those for Deep Ensembles, for fair comparisons. For all datasets,
we use cs = 200, p = 0.1, η = 0.9, the number of self-training epochs to be 20 and ce = 5. Note
that we don’t tune cs, ce, p and use the fixed values. We select η based on the performance on a
validation dataset (i.e., DomainNet R→I) and use the same value across all other datasets.

5.2 RESULTS

Impacts of combining selective prediction with active learning. We evaluate the accuracy of the
source trained models on the test set UX of different datasets. The results in Appendix G.1 show that
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Method cov∗|acc ≥ 90% ↑ Accuracy of f ↑

Selective Prediction SR (M=0) 0.08±0.0 24.68±0.0
DE (M=0) 0.12±0.1 26.87±0.8

Active Learning

Margin (M=1K) N/A 82.26±0.3
kCG (M=1K) N/A 59.98±4.6
CLUE (M=1K) N/A 81.65±0.3
BADGE (M=1K) N/A 82.11±0.8

Active Selective Prediction ASPEST (M=1K) 94.91±0.4 89.20±0.3

Table 2: Results on MNIST→SVHN to describe the effect of combining selective prediction with
active learning. The mean and std of each metric over three random runs are reported (mean±std).
cov∗ is defined in Appendix G.4. All numbers are percentages. Bold numbers are superior results.

the models trained on the source training set Dtr suffer a performance drop on the target test set UX ,
and sometimes this drop can be large. For example, the model trained on MNIST has a source test
accuracy of 99.40%. However, its accuracy on the target test set UX from SVHN is only 24.68%.
If we directly build a selective classifier on top of the source trained model, then to achieve a target
accuracy of 90%, the coverage would be at most 27.42%. In Table 2, we demonstrate that for a target
accuracy of 90%, the coverage achieved by the selective prediction baselines SR and DE is very low
(nearly 0%). It means that almost all test examples need human intervention or labeling. This is a
large cost since the test set of SVHN contains over 26K images. The results in Table 2 also show that
the active learning baselines Margin, kCG, CLUE and BADGE fail to achieve the target accuracy of
90% with a labeling budget of 1K. However, by combining selective prediction with active learning
with the proposed method ASPEST, we only need to label 1K test examples to achieve a target
accuracy of 90% with a coverage of 94.91%. Thus, during active learning and selective prediction
processes, only 5.09% test examples from SVHN need to be labeled by a human to achieve the target
accuracy of 90%, resulting in a significant reduction of the overall human labeling cost. Similar
results are observed for other datasets (see Appendix G.4).

Dataset DomainNet R→C (easy) Amazon Review Otto
Metric cov|acc ≥ 80% ↑ AUACC ↑ cov|acc ≥ 80% ↑ AUACC ↑ cov|acc ≥ 80% ↑ AUACC ↑
SR+Uniform 25.56±0.6 63.31±0.4 13.71±11.3 72.71±1.5 63.58±0.7 84.46±0.2
SR+Confidence 25.96±0.2 64.20±0.6 11.28±8.9 72.89±0.7 69.63±1.7 85.91±0.3
SR+Entropy 25.44±1.0 63.52±0.6 5.55±7.8 71.96±1.6 67.79±0.8 85.41±0.3
SR+Margin 26.28±1.2 64.37±0.8 14.48±10.9 73.25±1.0 68.10±0.1 85.56±0.1
SR+kCG 21.12±0.3 58.88±0.0 20.02±11.0 72.34±3.2 64.84±0.7 85.08±0.2
SR+CLUE 27.17±0.8 64.38±0.6 4.15±5.9 73.43±0.4 68.21±1.2 85.82±0.3
SR+BADGE 27.78±0.8 64.90±0.5 22.58±0.4 73.80±0.6 67.23±1.0 85.41±0.3
DE+Uniform 30.82±0.8 67.60±0.4 34.35±1.4 76.20±0.3 70.74±0.5 86.78±0.1
DE+Entropy 29.13±0.9 67.48±0.3 31.74±1.4 75.98±0.4 75.71±0.3 87.87±0.1
DE+Confidence 29.90±0.8 67.45±0.3 35.12±1.8 76.63±0.2 75.52±0.2 87.84±0.1
DE+Margin 31.82±1.3 68.85±0.4 33.42±1.3 76.18±0.2 75.49±0.8 87.89±0.2
DE+Avg-KLD 32.23±0.2 68.73±0.2 33.03±1.5 76.21±0.4 75.91±0.2 87.89±0.0
DE+CLUE 30.80±0.3 67.82±0.2 33.92±3.0 76.27±0.6 69.66±0.5 86.67±0.1
DE+BADGE 30.16±1.3 68.46±0.3 32.23±3.7 76.13±0.7 73.23±0.2 87.55±0.1
ASPEST (ours) 37.38±0.1 71.61±0.2 38.44±0.7 77.69±0.1 77.85±0.2 88.28±0.1

Table 3: Results of comparing ASPEST to the baselines on DomainNet R→C, Amazon Review
and Otto. The mean and std of each metric over three random runs are reported (mean±std). The
labeling budget M is 500. All numbers are percentages. Bold numbers are superior results.

Baseline comparisons. We compare ASPEST with two existing selective prediction methods:
SR and DE with various active learning methods. The results in Table 3 (complete results on all
datasets for all metrics and different labeling budgets are provided in Appendix G.3) show that
ASPEST consistently outperforms the baselines across different image, text and tabular datasets.
For example, for MNIST→SVHN, ASPEST improves the AUACC from 79.36% to 88.84% when
the labeling budget (M ) is only 100. When M = 500, for DomainNet R→C, ASPEST improves
the AUACC from 68.85% to 71.61%; for Amazon Review, ASPEST improves the AUACC from
76.63% to 77.69%; for Otto, ASPEST improves the AUACC from 87.89% to 88.28%.

5.3 ANALYSES AND DISCUSSIONS

In this section, we analyze why the key components checkpoint ensembles and self-training in AS-
PEST can improve selective prediction and perform ablation study to show their effect.
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Checkpoint ensembles can alleviate overfitting and overconfidence. We observe that in active
selective prediction, when fine-tuning the model on the small amount of selected labeled test data,
the model can suffer overfitting and overconfidence issues and ensembling the checkpoints in the
training path can effectively alleviate these issues (see the analysis in Appendix G.10).

Self-training can alleviate overconfidence. We observe that the checkpoint ensemble constructed
after fine-tuning is less confident on the test data UX compared to the deep ensemble. Thus, using
the softmax outputs of the checkpoint ensemble as soft pseudo-labels for self-training can alleviate
overconfidence and improve selective prediction performance (see the analysis in Appendix G.11).

Dataset MNIST→SVHN DomainNet R→C
Metric AUACC ↑ AUACC ↑
Labeling Budget 100 500 500 1000
DE+Margin 78.59±1.4 94.31±0.6 68.85±0.4 71.29±0.3
ASPEST without self-training 78.09±1.3 94.25±0.4 69.59±0.2 72.45±0.1
ASPEST without checkpoint ensemble 83.78±2.9 96.54±0.2 69.94±0.1 72.20±0.4
ASPEST (η=0.1) 83.77±1.7 96.01±0.4 70.35±0.2 72.89±0.4
ASPEST (η=0.5) 83.99±1.3 96.24±0.2 70.92±0.3 73.37±0.1
ASPEST (η=0.6) 85.17±1.3 96.24±0.2 70.96±0.2 73.05±0.1
ASPEST (η=0.8) 85.40±2.3 96.74±0.1 71.05±0.2 72.99±0.3
ASPEST (η=0.9) 88.84±1.0 96.62±0.2 71.61±0.2 73.27±0.2
ASPEST (η=0.95) 87.67±1.3 96.74±0.1 71.03±0.3 73.38±0.2

Table 4: Ablation study results for ASPEST. The mean and std of each metric over three random
runs are reported (mean±std). All numbers are percentages. Bold numbers are superior results.

Ablation studies. Compared to DE+Margin, ASPEST has two additional components: checkpoint
ensemble and self-training. We perform ablation experiments on MNIST→SVHN and DomainNet
to analyze the effect of these. We also study the effect of the threshold η in self-training. The results
in Table 4 show for MNIST→SVHN, adding the checkpoint ensemble component alone (ASPEST
without self-training) does not improve the performance over DE+Margin, whereas adding the self-
training component alone (ASPEST without checkpoint ensemble) can significantly improve the
performance. For DomainNet, both checkpoint ensemble and self-training have positive contribu-
tions. For both cases, ASPEST (with both self-training and checkpoint ensemble) achieves much
better results than DE+Margin or applying those components alone. We also show the performance
is not highly sensitive to η, while typically setting larger η (e.g. η = 0.9) yields better results.

Integrating with UDA. To study whether incorporating unsupervised domain adaption (UDA)
techniques into training could improve active selective prediction, we evaluate DE with UDA and
ASPEST with UDA in Appendix G.12. Our results show that ASPEST outperforms (or on par with)
DE with UDA, although ASPEST doesn’t utilize UDA. Furthermore, we show that by combining
ASPEST with UDA, it might achieve even better performance. For example, on MNIST→SVHN,
ASPEST with DANN improves the mean AUACC from 96.62% to 97.03% when the labeling
budget is 500. However, in some cases, combining ASPEST with UDA yields much worse results.
For example, on MNIST→SVHN, when the labeling budget is 100, combining ASPEST with UDA
will reduce the mean AUACC by over 4%. We leave the exploration of UDA techniques to im-
prove active selective prediction to future work – superior and robust UDA techniques can be easily
incorporated into ASPEST to enhance its overall performance.

6 CONCLUSION

In this paper, we introduce a new learning paradigm called active selective prediction which uses ac-
tive learning to improve selective prediction under distribution shift. We show that this new paradigm
results in improved accuracy and coverage on a distributionally shifted test domain and reduces the
need for human labeling. We also propose a novel method ASPEST using checkpoint ensemble and
self-training with a low labeling cost. We demonstrate ASPEST’s effectiveness over other baselines
for this new problem setup on various image, text and structured datasets. Future work in this di-
rection can investigate unsupervised hyperparameter tuning on test data, online data streaming, or
further minimizing the labeling effort by designing time-preserving labeling interfaces.
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for active learning in image classification. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 9368–9377, 2018.

Wendy Kan Benjamin Bossan, Josef Feigl. Otto group product classification challenge, 2015.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density-
based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on
Management of data, pp. 93–104, 2000.

Jiefeng Chen, Frederick Liu, Besim Avci, Xi Wu, Yingyu Liang, and Somesh Jha. Detecting errors
and estimating accuracy on unlabeled data with self-training ensembles. Advances in Neural
Information Processing Systems, 34:14980–14992, 2021.

Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6172–
6180, 2018.

Ching-Yao Chuang, Antonio Torralba, and Stefanie Jegelka. Estimating generalization under distri-
bution shifts via domain-invariant representations. arXiv preprint arXiv:2007.03511, 2020.

Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet
or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

Sanjoy Dasgupta. Two faces of active learning. Theoretical computer science, 412(19):1767–1781,
2011.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a margin
based approach. arXiv preprint arXiv:1802.09841, 2018.

Ran El-Yaniv et al. On the foundations of noise-free selective classification. Journal of Machine
Learning Research, 11(5), 2010.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape per-
spective. arXiv preprint arXiv:1912.02757, 2019.

Bo Fu, Zhangjie Cao, Jianmin Wang, and Mingsheng Long. Transferable query selection for active
domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7272–7281, 2021.

Giorgio Fumera and Fabio Roli. Support vector machines with embedded reject option. In Interna-
tional Workshop on Support Vector Machines, pp. 68–82. Springer, 2002.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
In International Conference on Machine Learning, pp. 1183–1192. PMLR, 2017.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
works. The journal of machine learning research, 17(1):2096–2030, 2016.

10



Under review as a conference paper at ICLR 2024

Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. Advances in
neural information processing systems, 30, 2017.

Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an integrated reject
option. In International conference on machine learning, pp. 2151–2159. PMLR, 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. Advances
in neural information processing systems, 17, 2004.

Federica Granese, Marco Romanelli, Daniele Gorla, Catuscia Palamidessi, and Pablo Piantanida.
Doctor: A simple method for detecting misclassification errors. Advances in Neural Information
Processing Systems, 34:5669–5681, 2021.

Guy Hacohen, Avihu Dekel, and Daphna Weinshall. Active learning on a budget: Opposite strategies
suit high and low budgets. arXiv preprint arXiv:2202.02794, 2022.

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger,
Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep speech: Scaling up end-to-end
speech recognition. arXiv preprint arXiv:1412.5567, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645. Springer, 2016b.

Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks yield high-
confidence predictions far away from the training data and how to mitigate the problem. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 41–
50, 2019.

Martin E Hellman. The nearest neighbor classification rule with a reject option. IEEE Transactions
on Systems Science and Cybernetics, 6(3):179–185, 1970.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger.
Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109, 2017a.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017b.

Sheng-Jun Huang, Rong Jin, and Zhi-Hua Zhou. Active learning by querying informative and
representative examples. Advances in neural information processing systems, 23, 2010.

Fredrik D Johansson, David Sontag, and Rajesh Ranganath. Support and invertibility in domain-
invariant representations. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 527–536. PMLR, 2019.

Amita Kamath, Robin Jia, and Percy Liang. Selective question answering under domain shift. arXiv
preprint arXiv:2006.09462, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Andreas Kirsch, Tom Rainforth, and Yarin Gal. Test distribution-aware active learning: A principled
approach against distribution shift and outliers. arXiv preprint arXiv:2106.11719, 2021.

11



Under review as a conference paper at ICLR 2024

Sosuke Kobayashi, Shun Kiyono, Jun Suzuki, and Kentaro Inui. Diverse lottery tickets boost en-
semble from a single pretrained model. arXiv preprint arXiv:2205.11833, 2022.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning,
pp. 5637–5664. PMLR, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Yann LeCun. The MNIST database of handwritten digits. 1998. URL http://yann.lecun.
com/exdb/mnist/.

Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hubbard,
and Lawrence Jackel. Handwritten digit recognition with a back-propagation network. Advances
in neural information processing systems, 2, 1989.

Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In Workshop on challenges in representation learning, ICML, volume 3,
pp. 896, 2013.

Xiaofeng Liu, Chaehwa Yoo, Fangxu Xing, Hyejin Oh, Georges El Fakhri, Je-Won Kang, Jonghye
Woo, et al. Deep unsupervised domain adaptation: A review of recent advances and perspectives.
APSIPA Transactions on Signal and Information Processing, 11(1), 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. Advances in neural information processing systems, 31, 2018.

Andrew McCallum, Kamal Nigam, et al. Employing em and pool-based active learning for text
classification. In ICML, volume 98, pp. 350–358. Citeseer, 1998.

Mohammad Moghimi, Serge J Belongie, Mohammad J Saberian, Jian Yang, Nuno Vasconcelos, and
Li-Jia Li. Boosted convolutional neural networks. In BMVC, volume 5, pp. 6, 2016.

Hussein Mozannar and David Sontag. Consistent estimators for learning to defer to an expert. In
International Conference on Machine Learning, pp. 7076–7087. PMLR, 2020.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods
in natural language processing and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP), pp. 188–197, 2019.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. Advances in neural information processing
systems, 32, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

12

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Under review as a conference paper at ICLR 2024

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 1406–1415, 2019.

Viraj Prabhu, Arjun Chandrasekaran, Kate Saenko, and Judy Hoffman. Active domain adaptation
via clustering uncertainty-weighted embeddings. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8505–8514, 2021.

Stephan Rabanser, Anvith Thudi, Kimia Hamidieh, Adam Dziedzic, and Nicolas Papernot. Selective
classification via neural network training dynamics. arXiv preprint arXiv:2205.13532, 2022.

Shiori Sagawa, Pang Wei Koh, Tony Lee, Irena Gao, Sang Michael Xie, Kendrick Shen, Ananya
Kumar, Weihua Hu, Michihiro Yasunaga, Henrik Marklund, et al. Extending the wilds benchmark
for unsupervised adaptation. arXiv preprint arXiv:2112.05090, 2021.

Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate Saenko. Semi-supervised do-
main adaptation via minimax entropy. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 8050–8058, 2019.

Mohammadreza Salehi, Hossein Mirzaei, Dan Hendrycks, Yixuan Li, Mohammad Hossein Ro-
hban, and Mohammad Sabokrou. A unified survey on anomaly, novelty, open-set, and out-of-
distribution detection: Solutions and future challenges. arXiv preprint arXiv:2110.14051, 2021.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Burr Settles. Active learning literature survey. 2009.

Samarth Sinha, Sayna Ebrahimi, and Trevor Darrell. Variational adversarial active learning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5972–5981,
2019.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised
learning with consistency and confidence. Advances in neural information processing systems,
33:596–608, 2020.

Jong-Chyi Su, Yi-Hsuan Tsai, Kihyuk Sohn, Buyu Liu, Subhransu Maji, and Manmohan Chan-
draker. Active adversarial domain adaptation. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pp. 739–748, 2020.

Vladimir Vapnik. Statistical learning theory. Wiley, 1998. ISBN 978-0-471-03003-4.

Feng Wang, Guoyizhe Wei, Qiao Liu, Jinxiang Ou, Hairong Lv, et al. Boost neural networks by
checkpoints. Advances in Neural Information Processing Systems, 34:19719–19729, 2021.

Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of self-training
with deep networks on unlabeled data. In International Conference on Learning Representations,
2020.

Wanqian Yang. Making Decisions Under High Stakes: Trustworthy and Expressive Bayesian Deep
Learning. PhD thesis, 2020.

Huaxiu Yao, Caroline Choi, Bochuan Cao, Yoonho Lee, Pang Wei Koh, and Chelsea Finn. Wild-
time: A benchmark of in-the-wild distribution shift over time. arXiv preprint arXiv:2211.14238,
2022.

David Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In 33rd
annual meeting of the association for computational linguistics, pp. 189–196, 1995.

Michelle Yuan, Hsuan-Tien Lin, and Jordan Boyd-Graber. Cold-start active learning through self-
supervised language modeling. arXiv preprint arXiv:2010.09535, 2020.

Eric Zhao, Anqi Liu, Animashree Anandkumar, and Yisong Yue. Active learning under label shift.
In International Conference on Artificial Intelligence and Statistics, pp. 3412–3420. PMLR, 2021.

13



Under review as a conference paper at ICLR 2024

Xiatian Zhu, Shaogang Gong, et al. Knowledge distillation by on-the-fly native ensemble. Advances
in neural information processing systems, 31, 2018.

14



Under review as a conference paper at ICLR 2024

Supplementary Material
In Section A, we discuss some potential negative societal impacts of our work. In Section B, we
discuss some additional related work. In Section C, we give the definitions of some evaluation
metrics. In Section D, we describe the baselines in detail. In Section E, we show the complete
ASPEST algorithm and analyze its computational complexity. In Section F, we provide the details
of the experimental setup. In Section G, we give some additional experimental results.

A POTENTIAL NEGATIVE SOCIETAL IMPACTS

The proposed framework yields more reliable predictions with more optimized utilization of humans
in the loop. One potential risk of such a system is that if the humans in the loop yield inaccurate
or biased labels, our framework might cause them being absorbed by the predictor model and the
selection prediction mechanism, and eventually the outcomes of the system might be inaccurate and
biased. We leave the methods for inaccurate label or bias detection to future work.

B MORE RELATED WORK

Distribution shift. Distribution shift, where the training distribution differs from the test distribu-
tion, often occurs in practice and can substantially degrade the accuracy of the deployed DNNs (Koh
et al., 2021; Yao et al., 2022; Barbu et al., 2019). Distribution shift can also substantially reduce the
quality of uncertainty estimation (Ovadia et al., 2019), which is often used for rejecting examples in
selective prediction and selecting samples for labeling in active learning. Several techniques try to
tackle the challenge caused by distribution shift, including accuracy estimation (Chen et al., 2021;
Chuang et al., 2020), error detection (Hendrycks & Gimpel, 2016; Granese et al., 2021), out-of-
distribution detection (Salehi et al., 2021), domain adaptation (Ganin et al., 2016; Saito et al., 2019),
selective prediction (Kamath et al., 2020) and active learning (Kirsch et al., 2021). In our work, we
combine selective prediction with active learning to address the issue of distribution shift.

Deep ensembles. Ensembles of DNNs (or deep ensembles) have been successfully used to boost
predictive performance (Moghimi et al., 2016; Zhu et al., 2018). Deep ensembles can also be used
to improve the predictive uncertainty estimation (Lakshminarayanan et al., 2017; Fort et al., 2019).
(Lakshminarayanan et al., 2017) shows that random initialization of the NN parameters along with
random shuffling of the data points are sufficient for deep ensembles to perform well in practice.
However, training multiple DNNs from random initialization can be very expensive. To obtain deep
ensembles more efficiently, recent papers explore using checkpoints during training to construct
the ensemble (Wang et al., 2021; Huang et al., 2017a), or fine-tuning a single pre-trained model
to create the ensemble (Kobayashi et al., 2022). In our work, we use the checkpoints during fine-
tuning a source-trained model via active learning as the ensemble and further boost the ensemble’s
performance via self-training. We also use the ensemble’s uncertainty measured by a margin to
select samples for labeling in active learning.

Self-training. Self-training is a common algorithmic paradigm for leveraging unlabeled data with
DNNs. Self-training methods train a model to fit pseudo-labels (i.e., predictions on unlabeled data
made by a previously-learned model) to boost the model’s performance (Yarowsky, 1995; Grand-
valet & Bengio, 2004; Lee et al., 2013; Wei et al., 2020; Sohn et al., 2020). In this work, we
use self-training to improve selective prediction performance. Instead of using predicted labels as
pseudo-labels as a common practice in prior works, we use the average softmax outputs of the check-
points during training as the pseudo-labels and self-train the models in the ensemble on them with
the KL-Divergence loss to improve selective prediction performance.

C EVALUATION METRICS

We have introduced the accuracy and coverage metrics in Section 3.2. The accuracy is measured on
the predictions made by the model without human intervention while the coverage is the fraction of
remaining unlabeled data points where we can rely on the model’s prediction without human inter-
vention. The accuracy and coverage metrics depend on the threshold τ . The following evaluation
metrics are proposed to be agnostic to the threshold τ :
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Maximum Accuracy at a Target Coverage. Given a target coverage tc, the maximum accuracy is
defined as:

max
τ

acc(fs, τ), s.t. cov(fs, τ) ≥ tc (11)

We denote this metric as acc|cov ≥ tc.
Maximum Coverage at a Target Accuracy. Given a target accuracy ta, the maximum coverage is
defined as:

max
τ

cov(fs, τ), s.t. acc(fs, τ) ≥ ta (12)

When τ =∞, we define cov(fs, τ) = 0 and acc(fs, τ) = 1. We denote this metric as cov|acc ≥ ta.

Area Under Accuracy-Coverage Curve (AUACC). We define the AUACC metric as:

AUACC(fs) =

∫ 1

0

acc(fs, τ)dcov(fs, τ) (13)

We use the composite trapezoidal rule to estimate the integration.

D BASELINES

We consider two selective classification baselines Softmax Response (SR) (Geifman & El-Yaniv,
2017) and Deep Ensembles (DE) (Lakshminarayanan et al., 2017) and combine them with active
learning techniques. We describe them in detail below.

D.1 SOFTMAX RESPONSE

Suppose the neural network classifier is f where the last layer is a softmax. Let f(x | k) be the soft
response output for the k-th class. Then the classifier is defined as f(x) = arg maxk∈Y f(x | k)
and the selection scoring function is defined as g(x) = maxk∈Y f(x | k), which is also known
as the Maximum Softmax Probability (MSP) of the neural network. Recall that with f and g, the
selective classifier is defined in Eq (1). We use active learning to fine-tune the model f to improve
selective prediction performance of SR on the unlabeled test dataset UX . The complete algorithm
is presented in Algorithm 1. In our experiments, we always set λ = 1. We use the joint training
objective (22) to avoid over-fitting to the small labeled test set ∪tl=1B̃l and prevent the model from
forgetting the source training knowledge. The algorithm can be combined with different kinds of
acquisition functions. We describe the acquisition functions considered for SR below.

Uniform. In the t-th round of active learning, we select [MT ] data points as the batch Bt
from UX \ ∪t−1l=0Bl via uniform random sampling. The corresponding acquisition function is:
a(B, ft−1, gt−1) = 1. When solving the objective (21), the tie is broken randomly.

Confidence. We define the confidence score of f on the input x as

Sconf(x; f) = max
k∈Y

f(x | k) (14)

Then the acquisition function in the t-th round of active learning is defined as:

a(B, ft−1, gt−1) = −
∑
x∈B

Sconf(x; ft−1) (15)

That is we select those test examples with the lowest confidence scores for labeling.

Entropy. We define the entropy score of f on the input x as

Sentropy(x; f) =
∑
k∈Y

−f(x | k) · log f(x | k) (16)

Then the acquisition function in the t-th round of active learning is defined as:

a(B, ft−1, gt−1) =
∑
x∈B

Sentropy(x; ft−1) (17)
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That is we select those test examples with the highest entropy scores for labeling.

Margin. We define the margin score of f on the input x as
Smargin(x; f) = f(x | ŷ)− max

k∈Y\{ŷ}
f(x | k) (18)

s.t. ŷ = arg max
k∈Y

f(x | k) (19)

Then the acquisition function in the t-th round of active learning is defined as:

a(B, ft−1, gt−1) = −
∑
x∈B

Smargin(x; ft−1) (20)

That is we select those test examples with lowest margin scores for labeling.

kCG. We use the k-Center-Greedy algorithm proposed in (Sener & Savarese, 2017) to select test
examples for labeling in each round.

CLUE. We use the Clustering Uncertainty-weighted Embeddings (CLUE) proposed in (Prabhu
et al., 2021) to select test examples for labeling in each round. Following (Prabhu et al., 2021),
we set the hyper-parameter T = 0.1 on DomainNet and set T = 1.0 on other datasets.

BADGE. We use the Diverse Gradient Embeddings (BADGE) proposed in (Ash et al., 2019) to
select test examples for labeling in each round.

Algorithm 1 Softmax Response with Active Learning

Input: A training dataset Dtr, an unlabeled test dataset UX , the number of rounds T , the labeling
budget M , a source-trained model f̄ , an acquisition function a and a hyper-parameter λ.
Let f0 = f̄ .
Let B0 = ∅.
Let gt(x) = maxk∈Y ft(x | k).
for t = 1, · · · , T do

Select a batch Bt with a size of m = [MT ] from UX for labeling via:

Bt = arg max
B⊂UX\(∪t−1

l=0Bl),|B|=m
a(B, ft−1, gt−1) (21)

Use an oracle to assign ground-truth labels to the examples in Bt to get B̃t.
Fine-tune the model ft−1 using the following training objective:

min
θ

E(x,y)∈∪t
l=1B̃l

`CE(x, y; θ) + λ · E(x,y)∈Dtr `CE(x, y; θ) (22)

where θ is the model parameters of ft−1 and `CE is the cross-entropy loss function.
Let ft = ft−1.

end for
Output: The classifier f = fT and the selection scoring function g = maxk∈Y f(x | k).

D.2 DEEP ENSEMBLES

It has been shown that deep ensembles can significantly improve selective prediction perfor-
mance (Lakshminarayanan et al., 2017), not only because deep ensembles are more accurate than a
single model, but also because deep ensembles yield more calibrated confidence.

Suppose the ensemble model f contains N models f1, . . . , fN . Let f j(x | k) denote the predicted
probability of the model f j on the k-th class. We define the predicted probability of the ensemble
model f on the k-th class as:

f(x | k) =
1

N

N∑
j=1

f j(x | k). (23)

The classifier is defined as f(x) = arg maxk∈Y f(x | k) and the selection scoring function is de-
fined as g(x) = maxk∈Y f(x | k). We use active learning to fine-tune each model f j in the ensem-
ble to improve selective prediction performance of the ensemble on the unlabeled test dataset UX .
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Each model f j is first initialized by the source-trained model f̄ , and then fine-tuned independently
via Stochastic Gradient Decent (SGD) with different sources of randomness (e.g., different random
order of the training batches) on the training dataset Dtr and the selected labeled test data. Note that
this way to construct the ensembles is different from the standard Deep Ensembles method, which
trains the models from different random initialization. We use this way to construct the ensemble
due to the constraint in our problem setting, which requires us to fine-tune a given source-trained
model f̄ . Training the models from different random initialization might lead to an ensemble with
better performance, but it is much more expensive, especially when the training dataset and the
model are large (e.g., training foundation models). Thus, the constraint in our problem setting is
feasible in practice. The complete algorithm is presented in Algorithm 2. In our experiments, we
always set λ = 1, N = 5, and ns = 1000. We also use joint training here and the reasons are the
same as those for the Softmax Response baseline. The algorithm can be combined with different
kinds of acquisition functions. We describe the acquisition functions considered below.

Uniform. In the t-th round of active learning, we select [MT ] data points as the batch Bt
from UX \ ∪t−1l=0Bl via uniform random sampling. The corresponding acquisition function is:
a(B, ft−1, gt−1) = 1. When solving the objective (30), the tie is broken randomly.

Confidence. The confidence scoring function Sconf for the ensemble model f is the same as that in
Eq. (14) (f(x | k) for the ensemble model f is defined in Eq. (23)). The acquisition function in the
t-th round of active learning is defined as:

a(B, ft−1, gt−1) = −
∑
x∈B

Sconf(x; ft−1) (24)

That is we select those test examples with the lowest confidence scores for labeling.

Entropy. The entropy scoring function Sentropy for the ensemble model f is the same as that in
Eq. (16). The acquisition function in the t-th round of active learning is defined as:

a(B, ft−1, gt−1) =
∑
x∈B

Sentropy(x; ft−1), (25)

That is we select those test examples with the highest entropy scores for labeling.

Margin. The margin scoring function Smargin for the ensemble model f is the same as that in
Eq. (18). The acquisition function in the t-th round of active learning is defined as:

a(B, ft−1, gt−1) = −
∑
x∈B

Smargin(x; ft−1) (26)

That is we select those test examples with the lowest margin scores for labeling.

Avg-KLD. The Average Kullback-Leibler Divergence (Avg-KLD) is proposed in (McCallum et al.,
1998) as a disagreement measure for the model ensembles, which can be used for sample selection
in active learning. The Avg-KLD score of the ensemble model f on the input x is defined as:

Skl(x; f) =
1

N

N∑
j=1

∑
k∈Y

f j(x | k) · log
f j(x | k)

f(x | k)
. (27)

Then the acquisition function in the t-th round of active learning is defined as:

a(B, ft−1, gt−1) =
∑
x∈B

Skl(x; ft−1), (28)

That is we select those test examples with the highest Avg-KLD scores for labeling.

CLUE. CLUE (Prabhu et al., 2021) is proposed for a single model. Here, we adapt CLUE for the
ensemble model, which requires a redefinition of the entropy functionH(Y | x) and the embedding
function φ(x) used in the CLUE algorithm. We define the entropy function as Eq. (16) with the
ensemble model f . Suppose φj is the embedding function for the model f j in the ensemble. Then,
the embedding of the ensemble model f on the input x is [φ1(x), . . . , φN (x)], which is the concate-
nation of the embeddings of the models f1, . . . , fN on x. Following (Prabhu et al., 2021), we set
the hyper-parameter T = 0.1 on DomainNet and set T = 1.0 on other datasets.
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BADGE. BADGE (Ash et al., 2019) is proposed for a single model. Here, we adapt BADGE for
the ensemble model, which requires a redefinition of the gradient embedding gx in the BADGE
algorithm. Towards this end, we propose the gradient embedding gx of the ensemble model f as the
concatenation of the gradient embeddings of the models f1, . . . , fN .

Algorithm 2 Deep Ensembles with Active Learning

Input: A training dataset Dtr, An unlabeled test dataset UX , the number of rounds T , the total
labeling budget M , a source-trained model f̄ , an acquisition function a(B, f, g), the number of
models in the ensemble N , the number of initial training steps ns, and a hyper-parameter λ.
Let f j0 = f̄ for j = 1, . . . , N .
Fine-tune each model f j0 in the ensemble via SGD for ns training steps independently using the
following training objective with different randomness:

min
θj

E(x,y)∈Dtr `CE(x, y; θj) (29)

where θj is the model parameters of f j0 and `CE is the cross-entropy loss function.
Let B0 = ∅.
Let gt(x) = maxk∈Y ft(x | k).
for t = 1, · · · , T do

Select a batch Bt with a size of m = [MT ] from UX for labeling via:

Bt = arg max
B⊂UX\(∪t−1

l=0Bl),|B|=m
a(B, ft−1, gt−1) (30)

Use an oracle to assign ground-truth labels to the examples in Bt to get B̃t.
Fine-tune each model f jt−1 in the ensemble via SGD independently using the following training
objective with different randomness:

min
θj

E(x,y)∈∪t
l=1B̃l

`CE(x, y; θj) + λ · E(x,y)∈Dtr `CE(x, y; θj) (31)

where θj is the model parameters of f jt−1.
Let f jt = f jt−1 for j = 1, . . . , N .

end for
Output: The classifier f = fT and the selection scoring function g = maxk∈Y f(x | k).

E ASPEST ALGORITHM AND ITS COMPUTATIONAL COMPLEXITY
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Figure 3: Illustration of the checkpoint ensemble and pseudo-labeled set construction in the proposed AS-
PEST.

Algorithm 3 presents the overall ASPEST method. Figure 3 illustrates how the checkpoint ensemble
and the pseudo-labeled set are constructed in the proposed ASPEST. Next, we will analyze the
computational complexity of ASPEST.

Let the complexity for one step of updating P and Ne be tu (mainly one forward pass of DNN);
for one DNN gradient update step is tg (mainly one forward and backward pass of DNN); and for
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Algorithm 3 Active Selective Prediction using Ensembles and Self-Training

Input: A training set Dtr, a unlabeled test set UX , the number of rounds T , the labeling budget M ,
the number of models N , the number of initial training steps ns, the initial checkpoint steps cs, a
checkpoint epoch ce, a threshold η, a sub-sampling fraction p, and a hyper-parameter λ.
Let f j0 = f̄ for j = 1, . . . , N .
Set Ne = 0 and P = 0n×K .
Fine-tune each f j0 for ns training steps using the following training objective:

min
θj

E(x,y)∈Dtr `CE(x, y; θj),

and update P and Ne using Eq. (6) every cs training steps.
for t = 1, · · · , T do

Select a batch Bt from UX for labeling using the sample selection objective (7).
Use an oracle to assign ground-truth labels to the examples in Bt to get B̃t.
Set Ne = 0 and P = 0n×K .
Fine-tune each f jt−1 using objective (8), while updating P andNe using Eq (6) every ce training
epochs.
Let f jt = f jt−1.
Construct the pseudo-labeled set R via Eq (9) and create Rsub by randomly sampling up to
[p · n] data points from R.
Train each f jt further via SGD using the objective (10) and update P andNe using Eq (6) every
ce training epochs.

end for
Output: The classifier f(xi) = arg maxk∈Y Pi,k and the selection scoring function g(xi) =

maxk∈Y Pi,k.

sample selection is ts (mainly sorting test examples). Then, the total complexity of ASPEST would
be O

(
N · ns

cs
· tu + N · ns · tg + T · [ts + N · (ef + es · p) · nb · tg + N · es+efce

· tu]
)

, where ef
is the number of fine-tuning epochs and es is the number of self-training epochs and b is the batch
size. Although the training objectives include training on Dtr, the complexity doesn’t depend on the
size of Dtr since we measure ef over ∪tl=1B̃l in training objective (8) and measure es over Rsub in
training objective (10). In practice, we usually have ts � tg and tu � tg . Also, we set es · p < ef ,

ns � n
b ·T ·ef and es+ef

ce
� (ef +es ·p) · nb . So the complexity of ASPEST isO

(
N ·T · nb ·ef ·tg

)
.

Suppose the size of Dtr is ntr and the number of source training epochs is ep. Then, the complexity
for source training is O(ntr

b · ep · tg). In practice, we usually have N ·T ·n · ef � ntr · ep. Overall,
the complexity of ASPEST would be much smaller than that of source training.

F DETAILS OF EXPERIMENTAL SETUP

F.1 COMPUTING INFRASTRUCTURE AND RUNTIME

We run all experiments with TensorFlow 2.0 on NVIDIA A100 GPUs in the Debian GNU/Linux 10
system. We report the total runtime of the proposed method ASPEST on each dataset in Table 5.
Note that in our implementation, we train models in the ensemble sequentially. However, it is
possible to train models in the ensemble in parallel, which can significantly reduce the runtime. With
the optimal implementation, the inference latency of the ensemble can be as low as the inference
latency of a single model.

F.2 DATASETS

We describe the datasets used below. For all image datasets, we normalize the range of pixel values
to [0,1].
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Dataset Total Runtime
MNIST→SVHN 24 min
CIFAR-10→CINIC-10 1 hour
FMoW 2 hour 48 min
Amazon Review 1 hour 34 min
DomainNet (R→C) 2 hours 10 min
DomainNet (R→P) 1 hour 45 min
DomainNet (R→S) 1 hour 51 min
Otto 18 min

Table 5: The runtime of ASPEST when the labeling budget M = 500. We use the default hyper-parameters
for ASPEST described in Section 5.1.

MNIST→SVHN. The source training dataset Dtr is MNIST (LeCun, 1998) while the target test
dataset UX is SVHN (Netzer et al., 2011). MNIST consists 28×28 grayscale images of handwritten
digits, containing in total 5,500 training images and 1,000 test images. We resize each image to be
32×32 resolution and change them to be colored. We use the training set of MNIST as Dtr and the
test set of MNIST as the source validation dataset. SVHN consists 32×32 colored images of digits
obtained from house numbers in Google Street View images. The training set has 73,257 images
and the test set has 26,032 images. We use the test set of SVHN as UX .

CIFAR-10→CINIC-10. The source training dataset Dtr is CIFAR-10 (Krizhevsky et al., 2009)
while the target test dataset UX is CINIC-10 (Darlow et al., 2018). CIFAR-10 consists 32×32
colored images with ten classes (dogs, frogs, ships, trucks, etc.), each consisting of 5,000 training
images and 1,000 test images. We use the training set of CIFAR-10 as Dtr and the test set of
CIFAR-10 as the source validation dataset. During training, we apply random horizontal flipping
and random cropping with padding data augmentations to the training images. CINIC-10 is an
extension of CIFAR-10 via the addition of downsampled ImageNet images. CINIC-10 has a total of
270,000 images equally split into training, validation, and test. In each subset (90,000 images) there
are ten classes (identical to CIFAR-10 classes). There are 9,000 images per class per subset. We use
a subset of the CINIC-10 test set containing 30,000 images as UX .

FMoW. We use the FMoW-WILDS dataset from (Koh et al., 2021). FMoW-wilds is based on the
Functional Map of the World dataset (Christie et al., 2018), which collected and categorized high-
resolution satellite images from over 200 countries based on the functional purpose of the buildings
or land in the image, over the years 2002–2018. The task is multi-class classification, where the
input x is an RGB satellite image, the label y is one of 62 building or land use categories, and the
domain d represents both the year the image was taken as well as its geographical region (Africa, the
Americas, Oceania, Asia, or Europe). The training set contains 76,863 images from the years 2002-
2013. The In-Distribution (ID) validation set contains 11,483 images from the years 2002-2013.
The OOD test set contains 22,108 images from the years 2016-2018. We resize each image to be
96×96 resolution to save computational cost. We use the training set asDtr and the ID validation set
as the source validation dataset. During training, we apply random horizontal flipping and random
cropping with padding data augmentations to the training images. We use the OOD test set as UX .

Amazon Review. We use the Amazon Review WILDS dataset from (Koh et al., 2021). The dataset
comprises 539,502 customer reviews on Amazon taken from the Amazon Reviews dataset (Ni et al.,
2019). The task is multi-class sentiment classification, where the input x is the text of a review,
the label y is a corresponding star rating from 1 to 5, and the domain d is the identifier of the
reviewer who wrote the review. The training set contains 245,502 reviews from 1,252 reviewers.
The In-Distribution (ID) validation set contains 46,950 reviews from 626 of the 1,252 reviewers in
the training set. The Out-Of-Distribution (OOD) test set contains 100,050 reviews from another set
of 1,334 reviewers, distinct from those of the training set. We use the training set as Dtr and the
ID validation set as the source validation dataset. We use a subset of the OOD test set containing
22,500 reviews from 300 reviewers as UX .

DomainNet. DomainNet (Peng et al., 2019) is a dataset of common objects in six different domains.
All domains include 345 categories (classes) of objects such as Bracelet, plane, bird, and cello. We
use five domains from DomainNet including: (1) Real: photos and real world images. The training
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set from the Real domain has 120,906 images while the test set has 52,041 images; (2) Clipart: a
collection of clipart images. The training set from the Clipart domain has 33,525 images while the
test set has 14,604 images; (3) Sketch: sketches of specific objects. The training set from the Sketch
has 48,212 images while the test set has 20,916 images; (4) Painting: artistic depictions of objects
in the form of paintings. The training set from the Painting domain has 50,416 images while the
test set has 21,850 images. (5) Infograph: infographic images with specific objects. The training set
from the Infograph domain has 36,023 images while the test set has 15,582 images. We resize each
image from all domains to be 96×96 resolution to save computational cost. We use the training
set from the Real domain as Dtr and the test set from the Real domain as the source validation
dataset. During training, we apply random horizontal flipping and random cropping with padding
data augmentations to the training images. We use the test sets from three domains Clipart, Sketch,
and Painting as three differentUX for evaluation. So we evaluate three shifts: Real→Clipart (R→C),
Real→Sketch (R→S), and Real→Painting (R→P). We use the remaining shift Real→Infograph
(R→I) as a validation dataset for tuning the hyper-parameters.

Otto. The Otto Group Product Classification Challenge (Benjamin Bossan, 2015) is a tabular dataset
hosted on Kaggle 2. The task is to classify each product with 93 features into 9 categories. Each
target category represents one of the most important product categories (like fashion, electronics,
etc). It contains 61, 878 training data points. Since it only provides labels for the training data,
we need to create the training, validation and test set. To create a test set that is from a different
distribution than the training set, we apply the Local Outlier Factor (LOF) (Breunig et al., 2000),
which is an unsupervised outlier detection method, on the Otto training data to identify a certain
fraction (e.g., 0.2) of outliers as the test set. Specifically, we apply the LocalOutlierFactor function
provided by scikit-learn (Pedregosa et al., 2011) on the training data with a contamination of 0.2
(contamination value determines the proportion of outliers in the data set) to identify the outliers.
We identify 12, 376 outlier data points and use them as the test set UX . We then randomly split
the remaining data into a training set Dtr with 43, 314 data points and a source validation set with
6, 188 data points. We show that the test set indeed has a distribution shift compared to the source
validation set, which causes the model trained on the training set to have a drop in performance (see
Table 6 in Appendix G.1).

F.3 DETAILS ON MODEL ARCHITECTURES AND TRAINING ON SOURCE DATA

On all datasets, we use the following supervised training objective for training models on the source
training set Dtr:

min
θ

E(x,y)∈Dtr `CE(x, y; θ) (32)

where `CE is the cross-entropy loss and θ is the model parameters.

On MNIST→SVHN, we use the Convolutional Neural Network (CNN) (LeCun et al., 1989) con-
sisting of four convolutional layers followed by two fully connected layers with batch normalization
and dropout layers. We train the model on the training set of MNIST for 20 epochs using the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 10−3 and a batch size of 128.

On CIFAR-10→CINIC-10, we use the ResNet-20 network (He et al., 2016b). We train the model
on the training set of CIFAR-10 for 200 epochs using the SGD optimizer with a learning rate of 0.1,
a momentum of 0.9, and a batch size of 128. The learning rate is multiplied by 0.1 at the 80, 120,
and 160 epochs, respectively, and is multiplied by 0.5 at the 180 epoch.

On the FMoW dataset, we use the DensetNet-121 network (Huang et al., 2017b) pre-trained on
ImageNet. We train the model further for 50 epochs using the Adam optimizer with a learning rate
of 10−4 and a batch size of 128.

On the Amazon Review dataset, we use the pre-trained RoBERTa base model (Liu et al., 2019) to
extract the embedding of the input sentence for classification (i.e., RoBERTa’s output for the [CLS]
token) and then build an eight-layer fully connected neural network (also known as a multi-layer
perceptron) with batch normalization, dropout layers and L2 regularization on top of the embedding.
Note that we only update the parameters of the fully connected neural network without updating the
parameters of the pre-trained RoBERTa base model during training (i.e., freeze the parameters of

2URL: https://kaggle.com/competitions/otto-group-product-classification-challenge
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the RoBERTa base model during training). We train the model for 200 epochs using the Adam
optimizer with a learning rate of 10−3 and a batch size of 128.

On the DomainNet dataset, we use the ResNet-50 network (He et al., 2016a) pre-trained on Ima-
geNet. We train the model further on the training set from the Real domain for 50 epochs using the
Adam optimizer with a learning rate of 10−4 and a batch size of 128.

On the Otto dataset, we use a six-layer fully connected neural network (also known as a multi-layer
perceptron) with batch normalization, dropout layers and L2 regularization. We train the model on
the created training set for 200 epochs using the Adam optimizer with a learning rate of 10−3 and a
batch size of 128.

F.4 ACTIVE LEARNING HYPER-PARAMETERS

During the active learning process, we fine-tune the model on the selected labeled test data. During
fine-tuning, we don’t apply any data augmentation to the test data. We use the same fine-tuning
hyper-parameters for different methods to ensure a fair comparison. The optimizer used is the same
as that in the source training stage (described in Appendix F.3). On MNIST→SVHN, we use a
learning rate of 10−3; On CIFAR-10→CINIC-10, we use a learning rate of 5 × 10−3; On FMoW,
we use a learning rate of 10−4; On Amazon Review, we use a learning rate of 10−3; On DomainNet,
we use a learning rate of 10−4; On Otto, we use a learning rate of 10−3. On all datasets, we fine-tune
the model for at least 50 epochs and up to 200 epochs with a batch size of 128 and early stopping
using 10 patient epochs.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 EVALUATE SOURCE-TRAINED MODELS

In this section, we evaluate the accuracy of the source-trained models on the source validation dataset
and the target test dataset UX . The models are trained on the source training set Dtr (refer to Ap-
pendix F.3 for the details of source training). The source validation data are randomly sampled from
the training data distribution while the target test data are sampled from a different distribution than
the training data distribution. The results in Table 6 show that the models trained on Dtr always
suffer a drop in accuracy when evaluating them on the target test dataset UX .

Dataset Source Accuracy Target Accuracy
MNIST→SVHN 99.40 24.68
CIFAR-10→CINIC-10 90.46 71.05
FMoW 46.25 38.01
Amazon Review 65.39 61.40
DomainNet (R→C) 63.45 33.37
DomainNet (R→P) 63.45 26.29
DomainNet (R→S) 63.45 16.00
Otto 80.72 66.09

Table 6: Results of evaluating the accuracy of the source-trained models on the source validation dataset and
the target test dataset UX . All numbers are percentages.

G.2 EVALUATE SOFTMAX RESPONSE WITH VARIOUS ACTIVE LEARNING METHODS

To see whether combining existing selective prediction and active learning approaches could solve
the active selective prediction problem, we evaluate the existing selective prediction method Soft-
max Response (SR) with active learning methods based on uncertainty or diversity. The results
in Table 7 show that the methods based on uncertainty sampling (SR+Confidence, SR+Entropy
and SR+Margin) achieve relatively high accuracy of f , but suffer from the overconfidence issue
(i.e., mis-classification with high confidence). The method based on diversity sampling (SR+kCG)
doesn’t have the overconfidence issue, but suffers from low accuracy of f . Also, the hybrid meth-
ods based on uncertainty and diversity sampling (SR+CLUE and SR+BADGE) still suffer from the
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overconfidence issue. In contrast, the proposed method ASPEST achieves much higher accuracy of
f , effectively alleviates the overconfidence issue, and significantly improves the selective prediction
performance.

Method Accuracy of f ↑ Overconfidence ratio ↓ AUACC↑
SR+Confidence 45.29±3.39 16.91±2.24 64.14±2.83
SR+Entropy 45.78±6.36 36.84±18.96 65.88±4.74
SR+Margin 58.10±0.55 13.18±1.85 76.79±0.45
SR+kCG 32.68±3.87 0.04±0.01 48.83±7.21
SR+CLUE 55.22±2.27 9.47±0.94 73.15±2.68
SR+BADGE 56.55±1.62 8.37±2.56 76.06±1.63
ASPEST (ours) 71.82±1.49 0.10±0.02 88.84±1.02

Table 7: Evaluating the Softmax Response (SR) method with various active learning methods and the proposed
ASPEST on MNIST→SVHN. The experimental setup is describe in Section 5.1. The labeling budget M is
100. The overconfidence ratio is the ratio of mis-classified unlabeled test inputs that have confidence ≥ 1 (the
highest confidence). The mean and std of each metric over three random runs are reported (mean±std). All
numbers are percentages. Bold numbers are superior results.

G.3 COMPLETE EVALUATION RESULTS

We give complete experimental results for the baselines and the proposed method ASPEST on
all datasets in this section. We repeat each experiment three times with different random seeds
and report the mean and standard deviation (std) values. These results are shown in Table 8
(MNIST→SVHN), Table 9 (CIFAR-10→CINIC-10), Table 10 (FMoW), Table 11 (Amazon Re-
view), Table 12 (DomainNet R→C), Table 13 (DomainNet R→P), Table 14 (DomainNet R→S) and
Table 15 (Otto). Our results show that the proposed method ASPEST consistently outperforms the
baselines across different image, text and structured datasets.

Dataset MNIST→SVHN
Metric cov|acc ≥ 90% ↑ acc|cov ≥ 90% ↑ AUACC ↑
Labeling Budget 100 500 1000 100 500 1000 100 500 1000
SR+Uniform 0.00±0.0 51.46±3.7 75.57±0.9 58.03±1.5 76.69±1.2 84.39±0.2 74.08±1.5 88.80±0.8 93.57±0.2
SR+Confidence 0.00±0.0 55.32±5.1 82.22±1.3 47.66±3.4 79.02±0.7 87.19±0.4 64.14±2.8 89.93±0.6 94.62±0.2
SR+Entropy 0.00±0.0 0.00±0.0 75.08±2.4 47.93±7.0 77.09±1.0 84.81±0.7 65.88±4.7 88.19±0.8 93.37±0.5
SR+Margin 0.00±0.0 63.60±2.7 82.19±0.3 61.39±0.5 80.96±0.9 86.97±0.2 76.79±0.5 91.24±0.5 94.82±0.1
SR+kCG 2.52±1.3 23.04±0.3 38.97±2.6 34.57±4.4 52.76±1.1 64.34±4.8 48.83±7.2 73.65±1.0 83.16±2.0
SR+CLUE 0.00±0.0 62.03±2.4 81.29±1.1 57.35±1.9 79.55±0.8 86.28±0.5 72.72±1.9 90.98±0.5 94.99±0.2
SR+BADGE 0.00±0.0 62.55±4.4 82.39±2.8 59.82±1.7 79.49±1.6 86.96±0.9 76.06±1.6 91.09±0.9 95.16±0.6
DE+Uniform 24.71±5.6 68.98±1.6 83.67±0.1 63.22±1.7 81.67±0.4 87.32±0.1 79.36±1.7 92.47±0.2 95.48±0.0
DE+Entropy 6.24±8.8 63.30±6.5 84.62±1.5 56.61±0.6 80.16±2.0 88.05±0.5 72.51±1.5 91.21±1.4 95.45±0.5
DE+Confidence 14.92±5.1 67.87±1.4 89.41±0.3 61.11±2.9 81.80±0.5 89.75±0.1 75.85±3.0 92.16±0.2 96.19±0.1
DE+Margin 21.59±3.8 77.84±2.8 92.75±0.3 62.88±1.2 85.11±1.1 91.17±0.1 78.59±1.4 94.31±0.6 97.00±0.0
DE+Avg-KLD 10.98±4.6 61.45±3.4 88.06±2.2 54.80±1.6 78.21±1.6 89.23±0.9 71.67±2.2 90.92±0.8 96.23±0.4
DE+CLUE 22.34±1.4 69.23±1.9 82.80±1.0 59.47±1.3 81.05±0.9 86.78±0.4 76.88±1.0 92.70±0.5 95.56±0.2
DE+BADGE 22.02±4.5 72.31±1.2 88.23±0.4 61.23±1.9 82.69±0.5 89.15±0.2 77.65±1.9 93.38±0.2 96.51±0.1
ASPEST (ours) 52.10±4.0 89.22±0.9 98.70±0.4 76.10±1.5 89.62±0.4 93.92±0.3 88.84±1.0 96.62±0.2 98.06±0.1

Table 8: Results of comparing ASPEST to the baselines on MNIST→SVHN. The mean and std of each
metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are
superior results.

G.4 EFFECT OF COMBINING SELECTIVE PREDICTION WITH ACTIVE LEARNING

Selective prediction without active learning corresponds to the case where the labeling budget M =
0 and the selected set B∗ = ∅. To make fair comparisons with selective prediction methods without
active learning, we define a new coverage metric:

cov∗(fs, τ) = Ex∼UX
I[g(x) ≥ τ ∧ x /∈ B∗] (33)

The range of cov∗(fs, τ) is [0, 1− M
n ], where M = |B∗| and n = |UX |. If we use a larger labeling

budget M for active learning, then the upper bound of cov∗(fs, τ) will be smaller. Thus, in order
to beat selective classification methods without active learning, active selective prediction methods
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Dataset CIFAR-10→CINIC-10
Metric cov|acc ≥ 90% ↑ acc|cov ≥ 90% ↑ AUACC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 57.43±0.2 57.15±0.6 58.37±0.7 75.67±0.2 75.69±0.1 76.11±0.3 89.77±0.0 89.81±0.1 90.09±0.2
SR+Confidence 57.96±0.6 57.05±0.7 61.11±1.1 76.49±0.2 76.87±0.2 78.77±0.4 90.00±0.2 89.92±0.2 90.91±0.3
SR+Entropy 57.78±0.7 57.07±1.4 61.07±0.4 76.57±0.3 76.71±0.5 78.85±0.2 90.01±0.2 89.94±0.3 90.88±0.0
SR+Margin 57.72±0.8 57.98±0.7 61.71±0.2 76.24±0.2 76.90±0.2 78.42±0.2 89.95±0.2 90.14±0.1 91.02±0.0
SR+kCG 57.90±0.5 57.81±0.7 60.36±0.3 75.59±0.1 75.73±0.2 76.68±0.2 89.78±0.1 89.79±0.2 90.41±0.2
SR+CLUE 57.29±0.5 58.89±0.5 62.28±0.2 75.74±0.2 76.68±0.3 78.10±0.2 89.67±0.2 90.15±0.1 91.03±0.1
SR+BADGE 58.58±0.6 58.63±0.3 61.95±0.4 76.33±0.5 76.58±0.1 78.26±0.2 90.05±0.2 90.16±0.1 90.99±0.0
DE+Uniform 58.06±0.3 58.72±0.1 59.54±0.3 76.65±0.1 77.06±0.2 77.46±0.1 90.26±0.1 90.45±0.1 90.73±0.1
DE+Entropy 58.91±0.6 60.96±0.2 63.85±0.2 77.66±0.1 79.14±0.1 80.82±0.2 90.55±0.1 91.16±0.1 91.89±0.0
DE+Confidence 58.53±0.3 61.03±0.6 64.42±0.2 77.73±0.2 79.00±0.1 80.87±0.0 90.53±0.0 91.11±0.1 91.96±0.0
DE+Margin 58.76±0.5 61.60±0.5 64.92±0.5 77.61±0.2 78.91±0.1 80.59±0.1 90.56±0.1 91.11±0.1 91.98±0.1
DE+Avg-KLD 59.99±0.6 62.05±0.3 65.02±0.5 77.84±0.1 79.15±0.0 81.04±0.1 90.74±0.1 91.30±0.1 92.10±0.1
DE+CLUE 59.27±0.1 61.16±0.4 64.42±0.0 77.19±0.1 78.37±0.2 79.44±0.1 90.44±0.1 91.03±0.1 91.74±0.0
DE+BADGE 59.37±0.4 61.61±0.1 64.53±0.4 77.13±0.1 78.33±0.2 79.44±0.3 90.49±0.1 91.12±0.0 91.78±0.1
ASPEST (ours) 60.38±0.3 63.34±0.2 66.81±0.3 78.23±0.1 79.49±0.1 81.25±0.1 90.95±0.0 91.60±0.0 92.33±0.1

Table 9: Results of comparing ASPEST to the baselines on CIFAR-10→CINIC-10. The mean and std of
each metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are
superior results.

Dataset FMoW
Metric cov|acc ≥ 70% ↑ acc|cov ≥ 70% ↑ AUACC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 38.50±0.7 42.00±0.5 52.34±1.1 51.76±0.7 54.27±0.2 60.31±0.7 65.75±0.4 67.67±0.3 72.73±0.3
SR+Confidence 37.34±0.3 42.28±1.2 53.72±0.7 52.24±0.1 55.52±0.5 61.76±0.4 65.57±0.1 68.03±0.5 73.14±0.5
SR+Entropy 37.42±0.3 42.08±0.2 51.18±0.4 51.74±0.4 54.94±0.2 60.62±0.2 65.31±0.2 68.00±0.1 71.99±0.2
SR+Margin 38.40±1.4 44.67±0.7 55.68±1.5 52.88±0.3 56.66±0.4 62.98±0.7 66.11±0.6 69.12±0.4 73.86±0.5
SR+kCG 36.50±0.8 39.76±1.2 45.87±0.6 49.36±0.7 51.45±0.5 55.47±0.1 64.34±0.5 66.21±0.6 69.63±0.2
SR+CLUE 38.65±0.7 44.50±1.8 54.71±0.5 52.23±0.4 55.54±1.0 61.13±0.4 65.78±0.3 68.76±0.9 73.80±0.1
SR+BADGE 40.47±1.5 45.65±1.2 57.59±0.4 53.08±1.0 56.63±0.3 63.57±0.2 66.74±0.8 69.43±0.6 74.76±0.2
DE+Uniform 44.74±0.4 51.57±1.1 61.92±0.4 56.39±0.5 60.01±0.5 65.74±0.2 69.44±0.3 72.48±0.5 77.02±0.1
DE+Entropy 43.76±0.3 50.52±1.4 62.73±0.4 56.29±0.3 60.31±0.3 66.53±0.2 69.02±0.1 72.10±0.5 76.65±0.2
DE+Confidence 45.23±0.6 50.11±0.9 64.29±0.3 57.18±0.4 60.46±0.3 67.46±0.0 69.80±0.3 72.11±0.4 77.37±0.1
DE+Margin 46.35±0.6 54.79±1.3 69.70±0.8 57.84±0.3 62.43±0.5 69.87±0.4 70.18±0.3 73.62±0.3 78.88±0.4
DE+Avg-KLD 46.29±0.3 53.63±0.8 68.18±0.9 57.75±0.4 61.60±0.3 69.11±0.4 70.16±0.1 73.09±0.2 78.48±0.3
DE+CLUE 45.22±0.2 49.97±0.3 58.05±0.5 56.39±0.1 59.05±0.1 63.23±0.4 69.53±0.0 71.95±0.1 75.72±0.3
DE+BADGE 47.39±0.7 53.83±0.7 66.45±0.8 57.71±0.4 61.16±0.2 68.13±0.4 70.59±0.4 73.40±0.3 78.66±0.1
ASPEST (ours) 53.05±0.4 59.86±0.4 76.52±0.6 61.18±0.2 65.18±0.2 72.86±0.3 71.12±0.2 74.25±0.2 79.93±0.1

Table 10: Results of comparing ASPEST to the baselines on FMoW. The mean and std of each metric over
three random runs are reported (mean±std). All numbers are percentages. Bold numbers are superior results.

need to use a small labeling budget to achieve significant accuracy and coverage improvement. We
still use the accuracy metric defined in (4).

Dataset Amazon Review
Metric cov|acc ≥ 80% ↑ acc|cov ≥ 80% ↑ AUACC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 13.71±11.3 24.10±5.3 24.87±2.6 65.13±0.8 66.33±0.6 66.26±0.3 72.71±1.5 73.64±0.7 73.53±0.7
SR+Confidence 11.28±8.9 17.96±4.0 33.19±1.4 65.15±0.7 66.29±0.4 68.94±0.1 72.89±0.7 73.25±0.7 76.17±0.2
SR+Entropy 5.55±7.8 13.32±9.5 25.47±1.8 65.11±1.1 66.56±0.7 67.31±0.7 71.96±1.6 72.53±1.1 74.19±0.5
SR+Margin 14.48±10.9 22.61±4.2 28.35±6.1 65.75±0.5 66.31±0.4 68.15±0.4 73.25±1.0 73.65±0.5 75.17±0.8
SR+kCG 20.02±11.0 17.02±12.2 29.08±4.2 64.03±3.1 66.17±0.5 66.63±1.0 72.34±3.2 74.35±0.7 74.49±1.0
SR+CLUE 4.15±5.9 25.15±4.9 31.88±2.1 66.17±0.4 66.30±0.4 67.12±0.7 73.43±0.4 74.07±0.7 75.29±0.9
SR+BADGE 22.58±0.4 23.78±6.4 30.71±4.6 66.29±0.4 66.31±0.6 68.58±0.7 73.80±0.6 74.00±1.0 75.76±0.8
DE+Uniform 34.35±1.4 33.15±1.1 36.55±1.8 68.13±0.4 68.12±0.6 68.88±0.2 76.20±0.3 76.16±0.4 77.07±0.3
DE+Entropy 31.74±1.4 36.29±1.6 40.33±1.7 68.19±0.3 69.44±0.2 71.27±0.3 75.98±0.4 77.10±0.3 78.53±0.3
DE+Confidence 35.12±1.8 34.48±1.4 40.46±0.5 69.07±0.3 69.47±0.2 71.08±0.2 76.63±0.2 76.87±0.3 78.27±0.1
DE+Margin 33.42±1.3 35.03±1.3 41.20±0.4 68.45±0.3 69.30±0.2 70.88±0.1 76.18±0.2 76.91±0.3 78.31±0.1
DE+Avg-KLD 33.03±1.5 38.55±3.2 41.75±1.8 68.63±0.3 69.95±0.4 71.10±0.3 76.21±0.4 77.62±0.6 78.62±0.3
DE+CLUE 33.92±3.0 35.27±1.4 34.83±3.1 68.09±0.3 68.07±0.3 68.40±0.6 76.27±0.6 76.65±0.3 76.69±0.7
DE+BADGE 32.23±3.7 36.18±1.5 40.58±3.3 68.34±0.4 68.87±0.2 70.29±0.3 76.13±0.7 77.09±0.2 78.44±0.5
ASPEST (ours) 38.44±0.7 40.96±0.8 45.77±0.1 69.31±0.3 70.17±0.2 71.60±0.2 77.69±0.1 78.35±0.2 79.51±0.2

Table 11: Results of comparing ASPEST to the baselines on Amazon Review. The mean and std of each
metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are
superior results.
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Dataset DomainNet R→C (easy)
Metric cov|acc ≥ 80% ↑ acc|cov ≥ 80% ↑ AUACC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 25.56±0.6 27.68±0.8 29.86±0.0 43.63±0.4 45.57±0.3 47.27±0.4 63.31±0.4 65.11±0.5 66.70±0.2
SR+Confidence 25.96±0.2 27.80±1.2 32.51±1.3 44.90±0.8 47.26±0.4 52.04±0.8 64.20±0.6 65.88±0.6 69.70±0.7
SR+Entropy 25.44±1.0 27.79±0.4 33.51±1.1 44.46±0.7 46.96±0.3 52.25±0.5 63.52±0.6 65.72±0.2 70.03±0.5
SR+Margin 26.28±1.2 27.77±1.0 32.92±0.4 45.24±1.0 47.12±0.7 52.29±0.4 64.37±0.8 65.91±0.6 70.01±0.4
SR+kCG 21.12±0.3 21.79±0.4 23.43±0.5 39.19±0.1 40.59±0.4 41.11±0.3 58.88±0.0 60.11±0.4 60.89±0.1
SR+CLUE 27.17±0.8 29.78±0.8 34.82±0.6 44.57±0.7 46.79±0.1 49.70±0.3 64.38±0.6 66.47±0.3 69.59±0.1
SR+BADGE 27.78±0.8 30.78±0.6 36.00±0.6 45.36±0.6 48.43±0.6 53.00±0.4 64.90±0.5 67.56±0.4 71.39±0.4
DE+Uniform 30.82±0.8 33.05±0.4 36.80±0.2 48.19±0.3 50.09±0.3 52.98±0.5 67.60±0.4 69.31±0.3 71.64±0.4
DE+Entropy 29.13±0.9 34.07±0.3 40.82±0.3 48.67±0.4 51.66±0.2 57.81±0.2 67.48±0.3 70.05±0.2 74.64±0.2
DE+Confidence 29.90±0.8 33.73±0.2 40.80±0.2 48.60±0.3 52.03±0.3 58.43±0.1 67.45±0.3 70.19±0.2 74.80±0.1
DE+Margin 31.82±1.3 35.68±0.2 43.39±0.7 50.12±0.4 53.19±0.4 59.17±0.2 68.85±0.4 71.29±0.3 75.79±0.3
DE+Avg-KLD 32.23±0.2 36.09±0.6 44.00±0.5 49.81±0.3 53.38±0.3 58.93±0.1 68.73±0.2 71.40±0.2 75.73±0.2
DE+CLUE 30.80±0.3 33.04±0.4 35.52±0.2 48.56±0.3 49.91±0.3 51.40±0.2 67.82±0.2 69.10±0.2 70.62±0.2
DE+BADGE 30.16±1.3 36.18±0.3 43.34±0.3 49.78±0.3 53.26±0.1 58.65±0.4 68.46±0.3 71.35±0.2 75.37±0.3
ASPEST (ours) 37.38±0.1 39.98±0.3 48.29±1.0 54.56±0.3 56.95±0.1 62.69±0.2 71.61±0.2 73.27±0.2 77.40±0.4

Table 12: Results of comparing ASPEST to the baselines on DomainNet R→C. The mean and std of each
metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are
superior results.

Dataset DomainNet R→P (medium)
Metric cov|acc ≥ 70% ↑ acc|cov ≥ 70% ↑ AUACC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 21.01±1.0 21.35±0.3 22.64±0.5 36.78±0.6 37.18±0.2 38.20±0.4 51.87±0.7 52.31±0.0 53.34±0.4
SR+Confidence 20.64±0.6 22.15±0.8 23.60±0.6 37.01±0.3 38.46±0.7 40.23±0.4 51.77±0.3 53.33±0.8 54.80±0.5
SR+Entropy 20.76±0.7 22.11±0.3 23.56±0.3 37.09±0.2 38.38±0.3 40.30±0.1 51.86±0.4 53.29±0.3 54.81±0.2
SR+Margin 21.43±0.4 23.29±0.3 24.70±1.0 37.21±0.2 39.15±0.4 40.81±0.4 52.33±0.1 54.09±0.3 55.70±0.4
SR+kCG 17.33±0.4 17.62±0.2 18.49±0.2 33.97±0.3 34.12±0.1 34.36±0.1 48.61±0.5 48.65±0.2 49.25±0.2
SR+CLUE 21.15±0.6 22.49±0.5 24.84±0.7 36.96±0.2 37.93±0.5 39.31±0.4 51.97±0.4 53.20±0.5 54.84±0.5
SR+BADGE 20.07±0.3 22.21±0.5 24.92±0.2 36.10±0.1 38.11±0.4 40.40±0.5 50.99±0.0 53.10±0.4 55.40±0.4
DE+Uniform 25.42±0.2 26.38±0.2 28.83±0.3 40.83±0.1 41.66±0.2 43.93±0.2 55.86±0.1 56.62±0.1 58.80±0.2
DE+Entropy 25.74±0.4 27.11±0.4 30.39±0.1 41.34±0.1 42.92±0.3 45.92±0.3 56.06±0.2 57.51±0.3 60.10±0.2
DE+Confidence 25.69±0.4 27.38±0.7 30.47±0.1 41.45±0.2 43.12±0.3 45.88±0.1 56.13±0.2 57.68±0.3 60.20±0.2
DE+Margin 25.78±0.3 27.88±0.5 31.03±0.4 41.26±0.2 43.13±0.3 46.23±0.4 56.23±0.2 57.90±0.3 60.49±0.3
DE+Avg-KLD 26.30±0.7 28.00±0.1 31.97±0.2 41.80±0.3 43.17±0.1 46.32±0.2 56.65±0.3 57.99±0.1 60.82±0.2
DE+CLUE 25.38±0.6 26.65±0.4 27.89±0.1 40.86±0.3 41.62±0.2 42.46±0.1 55.79±0.4 56.65±0.2 57.71±0.1
DE+BADGE 26.27±0.7 27.69±0.1 31.84±0.2 42.02±0.6 43.41±0.2 46.37±0.1 56.67±0.5 58.03±0.1 60.84±0.1
ASPEST (ours) 29.69±0.1 32.50±0.3 35.46±0.6 44.96±0.1 46.77±0.2 49.42±0.1 58.74±0.0 60.36±0.0 62.84±0.2

Table 13: Results of comparing ASPEST to the baselines on DomainNet R→P. The mean and std of each
metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are
superior results.

We then define a new maximum coverage at a target accuracy ta metric as:

max
τ

cov∗(fs, τ), s.t. acc(fs, τ) ≥ ta (34)

We denote this metric as cov∗|acc ≥ ta. We also measure the accuracy of f on the remaining
unlabeled test data for different approaches.

The results under these metrics are shown in Table 2 (MNIST→SVHN), Table 16 (CIFAR-
10→CINIC-10 and Otto), Table 17 (FMoW and Amazon Review) and Table 18 (DomainNet). The
results show that the coverage achieved by the selective prediction baselines SR and DE is usually
low and the active learning baselines Margin, kCG, CLUE and BADGE fail to achieve the target
accuracy with a labeling budget of 1K. In contrast, the proposed active selective prediction method
ASPEST achieves the target accuracy with a much higher coverage.

G.5 EFFECT OF JOINT TRAINING

In the problem setup, we assume that we have access to the training dataset Dtr and can use joint
training to improve selective prediction performance. In this section, we perform experiments to
study the effect of joint training and the effect of the loss coefficient λ when performing joint train-
ing. We consider three active selective prediction methods: SR+margin (Algorithm 1 with margin
sampling), DE+margin (Algorithm 2 with margin sampling), and ASPEST (Algorithm 3). We con-
sider λ ∈ {0, 0.5, 1.0, 2.0}. When λ = 0, we don’t use joint training; when λ > 0, we use joint
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Dataset DomainNet R→S (hard)
Metric cov|acc ≥ 70% ↑ acc|cov ≥ 70% ↑ AUACC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 12.12±0.7 12.42±0.4 15.88±0.2 27.01±0.6 27.74±0.3 31.29±0.3 41.12±0.8 41.89±0.2 46.17±0.3
SR+Confidence 11.06±1.1 11.48±0.5 14.49±1.5 26.53±1.4 27.98±0.2 31.31±0.7 40.26±1.6 41.65±0.2 45.46±1.1
SR+Entropy 10.91±0.3 12.45±0.6 14.65±0.6 26.84±0.5 28.72±0.5 31.07±0.6 40.47±0.6 42.61±0.8 45.31±0.4
SR+Margin 12.23±0.4 13.06±0.4 15.31±0.4 27.87±0.2 29.19±0.4 31.51±0.8 41.91±0.3 43.22±0.4 45.97±0.8
SR+kCG 9.03±0.2 9.76±0.2 11.41±0.2 23.32±0.4 24.06±0.4 25.68±0.4 36.63±0.3 37.57±0.4 39.80±0.3
SR+CLUE 12.39±0.3 14.17±1.0 15.80±0.8 27.82±0.4 29.68±0.4 30.62±0.8 42.00±0.4 44.19±0.7 45.58±0.9
SR+BADGE 12.18±0.9 13.13±1.0 15.83±0.7 27.68±1.0 28.96±0.7 32.00±0.4 41.72±1.1 43.28±0.9 46.60±0.6
DE+Uniform 15.91±0.5 17.55±0.4 21.33±0.3 31.37±0.5 32.57±0.4 36.12±0.2 46.28±0.5 47.79±0.4 51.64±0.2
DE+Entropy 13.70±0.3 16.31±0.5 19.58±0.4 30.38±0.4 32.45±0.2 36.18±0.2 44.79±0.5 47.15±0.2 50.87±0.3
DE+Confidence 13.73±0.2 16.21±0.2 19.22±0.4 30.55±0.3 33.02±0.1 36.29±0.5 45.05±0.3 47.59±0.0 50.84±0.4
DE+Margin 14.99±0.2 17.45±0.4 21.74±0.7 31.67±0.5 33.51±0.5 37.88±0.3 46.38±0.5 48.44±0.5 52.78±0.4
DE+Avg-KLD 15.75±0.5 18.14±0.7 22.15±0.3 31.36±0.2 33.79±0.2 37.96±0.2 46.29±0.1 48.77±0.3 53.02±0.3
DE+CLUE 14.76±0.5 17.38±0.1 19.75±0.4 31.05±0.4 32.58±0.2 34.61±0.4 45.80±0.3 47.74±0.1 50.09±0.2
DE+BADGE 14.97±0.1 17.49±0.3 21.71±0.3 31.35±0.2 33.46±0.1 37.35±0.3 46.03±0.1 48.31±0.1 52.33±0.2
ASPEST (ours) 17.86±0.4 20.42±0.4 25.87±0.4 35.17±0.1 37.28±0.3 41.46±0.2 49.62±0.1 51.61±0.4 55.90±0.2

Table 14: Results of comparing ASPEST to the baselines on DomainNet R→S. The mean and std of each
metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are
superior results.

Dataset Otto
Metric cov|acc ≥ 80% ↑ acc|cov ≥ 80% ↑ AUACC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 63.58±0.7 64.06±0.4 67.49±0.9 73.56±0.3 73.57±0.6 75.21±0.2 84.46±0.2 84.61±0.3 85.72±0.2
SR+Confidence 69.63±1.7 73.41±0.6 84.19±0.5 75.96±0.5 77.57±0.2 81.39±0.2 85.91±0.3 86.86±0.1 88.93±0.1
SR+Entropy 67.79±0.8 73.83±1.0 83.12±0.7 75.43±0.4 77.91±0.3 81.07±0.2 85.41±0.3 86.94±0.2 88.86±0.1
SR+Margin 68.10±0.1 74.10±0.4 82.53±0.2 75.52±0.0 77.66±0.1 80.93±0.1 85.56±0.1 86.99±0.1 88.83±0.1
SR+kCG 64.84±0.7 62.90±1.1 59.85±1.0 73.75±0.3 73.03±0.2 71.90±0.3 85.08±0.2 84.67±0.2 83.79±0.3
SR+CLUE 68.21±1.2 70.85±0.6 78.26±0.9 75.26±0.5 76.32±0.2 79.30±0.3 85.82±0.3 86.69±0.2 88.53±0.2
SR+BADGE 67.23±1.0 73.52±0.2 83.17±0.4 74.74±0.3 77.43±0.2 81.20±0.2 85.41±0.3 87.10±0.2 89.25±0.1
DE+Uniform 70.74±0.5 72.20±0.6 75.58±0.5 76.40±0.1 77.06±0.2 78.35±0.2 86.78±0.1 87.26±0.1 88.11±0.1
DE+Entropy 75.71±0.3 80.91±0.2 92.62±0.2 78.44±0.1 80.29±0.1 84.05±0.1 87.87±0.1 88.77±0.1 90.99±0.1
DE+Confidence 75.52±0.2 81.69±0.7 92.15±0.9 78.28±0.1 80.49±0.2 83.83±0.1 87.84±0.1 89.05±0.1 90.98±0.1
DE+Margin 75.49±0.8 81.36±0.8 92.49±0.4 78.41±0.3 80.50±0.2 84.06±0.2 87.89±0.2 89.10±0.2 90.95±0.2
DE+Avg-KLD 75.91±0.2 80.97±0.5 91.94±0.8 78.50±0.1 80.33±0.2 83.80±0.2 87.89±0.0 89.06±0.1 90.98±0.1
DE+CLUE 69.66±0.5 70.52±0.1 70.17±0.4 76.09±0.3 76.32±0.1 76.31±0.2 86.67±0.1 87.11±0.0 87.06±0.1
DE+BADGE 73.23±0.2 77.89±0.6 86.32±0.5 77.33±0.1 79.21±0.3 82.32±0.2 87.55±0.1 88.75±0.1 90.58±0.0
ASPEST (ours) 77.85±0.2 84.20±0.6 94.26±0.6 79.28±0.1 81.40±0.1 84.62±0.1 88.28±0.1 89.61±0.1 91.49±0.0

Table 15: Results of comparing ASPEST to the baselines on Otto. The mean and std of each metric over three
random runs are reported (mean±std). All numbers are percentages. Bold numbers are superior results.

training. The results are shown in Table 19. From the results, we can see that using joint training
(i.e., when λ > 0) can improve performance, especially when the labeling budget is small. Also,
setting a too large value for λ (e.g., λ = 2) will lead to worse performance. Setting λ = 0.5 or 1
usually leads to better performance. In our experiments, we simply set λ = 1 by default.

G.6 EFFECT OF THE NUMBER OF ROUNDS T

In this section, we study the effect of the number of rounds T in active learning. The results in
Table 20 show that larger T usually leads to better performance, and the proposed method ASPEST

Dataset CIFAR-10→CINIC-10 Otto
Method cov∗|acc ≥ 90% ↑ Accuracy of f ↑ cov∗|acc ≥ 80% ↑ Accuracy of f ↑

Selective Prediction SR (M=0) 57.43±0.0 71.05±0.0 62.90±0.0 66.09±0.0
DE (M=0) 56.64±0.2 71.33±0.1 67.69±0.4 68.12±0.3

Active Learning

Margin (M=1000) N/A 72.74±0.1 N/A 70.19±0.2
kCG (M=1000) N/A 71.16±0.1 N/A 65.88±0.2
CLUE (M=1000) N/A 72.32±0.2 N/A 68.64±0.2
BADGE (M=1000) N/A 72.11±0.1 N/A 69.80±0.4

Active Selective Prediction ASPEST (M=1000) 61.23±0.2 74.89±0.1 77.40±0.5 74.13±0.1

Table 16: Results on CIFAR-10→CINIC-10 and Otto for studying the effect of combining selective prediction
with active learning. The mean and std of each metric over three random runs are reported (mean±std). All
numbers are percentages. Bold numbers are superior results.
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Dataset FMoW Amazon Review
Method cov∗|acc ≥ 70% ↑ Accuracy of f ↑ cov∗|acc ≥ 80% ↑ Accuracy of f ↑

Selective Prediction SR (M=0) 32.39±0.0 38.01±0.0 26.79±0.0 61.40±0.0
DE (M=0) 37.58±0.3 41.08±0.0 35.81±1.9 63.89±0.1

Active Learning

Margin (M=1000) N/A 45.17±0.5 N/A 62.64±0.6
kCG (M=1000) N/A 40.20±0.3 N/A 62.03±0.3
CLUE (M=1000) N/A 43.75±0.7 N/A 62.32±0.4
BADGE (M=1000) N/A 44.73±0.3 N/A 62.44±0.5

Active Selective Prediction ASPEST (M=1000) 57.15±0.4 52.42±0.1 39.14±0.8 65.47±0.2

Table 17: Results on FMoW and Amazon Review for studying the effect of combining selective prediction
with active learning. The mean and std of each metric over three random runs are reported (mean±std). All
numbers are percentages. Bold numbers are superior results.

Dataset DomainNet R→C (easy) DomainNet R→P (medium) DomainNet R→S (hard)
Method cov∗|acc ≥ 80% ↑ Accuracy of f ↑ cov∗|acc ≥ 70% ↑ Accuracy of f ↑ cov∗|acc ≥ 70% ↑ Accuracy of f ↑

Selective Prediction SR (M=0) 21.50±0.0 33.37±0.0 18.16±0.0 26.29±0.0 7.16±0.0 15.99±0.0
DE (M=0) 26.15±0.2 37.12±0.1 22.44±0.2 29.73±0.1 9.90±0.4 19.15±0.0

Active Learning

Margin (M=1000) N/A 39.42±0.6 N/A 29.83±0.3 N/A 22.14±0.3
kCG (M=1000) N/A 33.74±0.4 N/A 25.92±0.0 N/A 18.14±0.3
CLUE (M=1000) N/A 38.97±0.1 N/A 28.88±0.5 N/A 22.44±0.3
BADGE (M=1000) N/A 40.32±0.5 N/A 28.91±0.4 N/A 21.87±0.5

Active Selective Prediction ASPEST (M=1000) 37.24±0.3 47.76±0.1 31.01±0.3 35.69±0.1 19.45±0.3 28.16±0.3

Table 18: Results on DomainNet R→C, R→P and R→S for studying the effect of combining selective pre-
diction with active learning. The mean and std of each metric over three random runs are reported (mean±std).
All numbers are percentages. Bold numbers are superior results.

has more improvement as we increase T compared to SR+Margin and DE+Margin. Also, when T is
large enough, the improvement becomes minor (or can even be worse). Considering that in practice,
we might not be able to set a large T due to resource constraints, we thus set T = 10 by default.

G.7 EFFECT OF THE NUMBER OF MODELS N IN THE ENSEMBLE

In this section, we study the effect of the number of models N in the ensemble for DE+Margin and
ASPEST. The results in Table 21 show that larger N usually leads to better results. However, larger
N also means a larger computational cost. In our experiments, we simply set N = 5 by default.

G.8 EFFECT OF THE UPPER BOUND IN PSEUDO-LABELED SET CONSTRUCTION

When constructing the pseudo-labeled set R using Eq. (9), we exclude those test data points with
confidence equal to 1. In this section, we study whether setting such an upper bound can improve
performance. The results in Table 22 show that when the labeling budget is small, setting such an
upper bound can improve performance significantly. However, when the labeling budget is large,
setting such an upper bound may not improve the performance. Since we focus on the low labeling
budget region, we decide to set such an upper bound for the proposed ASPEST method.

G.9 ENSEMBLE ACCURACY AFTER EACH ROUND OF ACTIVE LEARNING

We evaluate the accuracy of the ensemble model ft in the ASPEST algorithm after the t-
th round of active learning. Recall that ft contains N models f1t , . . . , f

N
t and ft(x) =

arg maxk∈Y
1
N

∑N
j=1 f

j
t (x | k). The results in Table 23 show that after each round of active learn-

ing, the accuracy of the ensemble model will be improved significantly.

G.10 EMPIRICAL ANALYSIS FOR CHECKPOINT ENSEMBLE

In this section, we analyze why the proposed checkpoint ensemble can improve selective prediction
performance. We postulate the rationales: (1) the checkpoint ensemble can help with generalization;
(2) the checkpoint ensemble can help with reducing overconfident wrong predictions.

Regarding (1), when fine-tuning the model on the small set of selected labeled test data, we hope that
the fine-tuned model could generalize to remaining unlabeled test data. However, since the selected
test set is small, we might have an overfitting issue. So possibly some intermediate checkpoints
along the training path achieve better generalization than the end checkpoint. By using checkpoint
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Dataset MNIST→SVHN DomainNet R→C (easy)
Metric AUACC ↑ AUACC ↑
Labeling Budget 100 500 500 1000
SR+Margin (λ = 0) 71.90±3.1 90.56±0.8 60.05±0.9 60.34±1.2
SR+Margin (λ = 0.5) 75.54±1.7 91.43±0.5 64.99±0.7 66.81±0.5
SR+Margin (λ = 1) 76.79±0.5 91.24±0.5 64.37±0.8 65.91±0.6
SR+Margin (λ = 2) 72.71±2.5 90.80±0.3 64.17±0.3 66.21±0.2
DE+Margin (λ = 0) 77.12±0.5 94.26±0.5 66.86±0.5 69.29±0.6
DE+Margin (λ = 0.5) 79.35±1.4 94.22±0.2 69.28±0.3 71.60±0.2
DE+Margin (λ = 1) 78.59±1.4 94.31±0.6 68.85±0.4 71.29±0.3
DE+Margin (λ = 2) 77.64±2.3 93.81±0.4 68.54±0.1 71.28±0.2
ASPEST (λ = 0) 84.48±2.5 96.99±0.2 68.61±1.2 73.21±1.2
ASPEST (λ = 0.5) 86.46±3.1 97.01±0.0 71.53±0.1 73.69±0.1
ASPEST (λ = 1) 88.84±1.0 96.62±0.2 71.61±0.2 73.27±0.2
ASPEST (λ = 2) 85.46±1.7 96.43±0.1 70.54±0.3 73.02±0.1

Table 19: Ablation study results for the effect of using joint training and the effect of the loss coefficient λ.
The mean and std of each metric over three random runs are reported (mean±std). All numbers are percentages.

Dataset MNIST→SVHN DomainNet R→C (easy)
Metric AUACC ↑ AUACC ↑
Labeling Budget 100 500 500 1000
SR+Margin (T=1) 63.10±2.7 75.42±3.6 65.16±0.4 66.76±0.3
SR+Margin (T=2) 68.09±3.1 87.45±1.6 64.64±0.8 66.91±0.1
SR+Margin (T=5) 74.87±1.7 91.32±0.5 64.35±0.2 66.76±0.3
SR+Margin (T=10) 76.79±0.5 91.24±0.5 64.37±0.8 65.91±0.6
SR+Margin (T=20) 72.81±1.5 90.34±1.3 63.65±0.6 66.08±0.4
DE+Margin (T=1) 69.85±0.5 82.74±2.1 68.39±0.2 70.55±0.0
DE+Margin (T=2) 75.25±1.0 90.90±1.0 68.79±0.2 70.95±0.5
DE+Margin (T=5) 78.41±0.2 93.26±0.3 68.80±0.2 71.21±0.2
DE+Margin (T=10) 78.59±1.4 94.31±0.6 68.85±0.4 71.29±0.3
DE+Margin (T=20) 76.84±0.4 94.67±0.2 68.50±0.5 71.39±0.2
ASPEST (T=1) 62.53±1.0 80.72±1.5 69.44±0.1 71.79±0.2
ASPEST (T=2) 75.08±1.4 89.70±0.7 70.68±0.2 72.56±0.3
ASPEST (T=5) 81.57±1.8 95.43±0.1 71.23±0.1 73.19±0.1
ASPEST (T=10) 88.84±1.0 96.62±0.2 71.61±0.2 73.27±0.2
ASPEST (T=20) 91.26±0.9 97.32±0.1 70.57±0.4 73.32±0.3

Table 20: Ablation study results for the effect of the number of rounds T . The mean and std of each metric
over three random runs are reported (mean±std). All numbers are percentages.

ensemble, we might get an ensemble that achieves better generalization to remaining unlabeled
test data. Although standard techniques like cross-validation and early stopping can also reduce
overfitting, they are not suitable in the active selective prediction setup since the amount of labeled
test data is small.

Regarding (2), when fine-tuning the model on the small set of selected labeled test data, the model
can get increasingly confident on the test data. Since there exist high-confidence mis-classified test
points, incorporating intermediate checkpoints along the training path into the ensemble can reduce
the average confidence of the ensemble on those mis-classified test points. By using checkpoint
ensemble, we might get an ensemble that has better confidence estimation for selective prediction
on the test data.

We perform experiments on the image dataset MNIST→SVHN and the text dataset Amazon Review
to verify these two hypotheses. We employ one-round active learning with a labeling budget of 100
samples. We use the margin sampling method for sample selection and fine-tune a single model on
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Dataset MNIST→SVHN DomainNet R→C (easy)
Metric AUACC ↑ AUACC ↑
Labeling Budget 100 500 500 1000
DE+Margin (N=2) 67.41±3.9 91.20±0.8 65.82±0.5 67.72±0.4
DE+Margin (N=3) 77.53±1.5 93.41±0.1 67.54±0.4 69.61±0.2
DE+Margin (N=4) 74.46±2.7 93.65±0.3 68.09±0.2 70.65±0.3
DE+Margin (N=5) 78.59±1.4 94.31±0.6 68.85±0.4 71.29±0.3
DE+Margin (N=6) 79.34±0.7 94.40±0.1 68.63±0.2 71.65±0.3
DE+Margin (N=7) 80.30±1.5 93.97±0.2 69.41±0.1 71.78±0.3
DE+Margin (N=8) 78.91±1.5 94.52±0.2 69.00±0.0 71.88±0.4
ASPEST (N=2) 80.38±1.2 96.26±0.0 69.14±0.3 71.36±0.3
ASPEST (N=3) 84.86±1.0 96.60±0.2 69.91±0.2 72.25±0.2
ASPEST (N=4) 84.94±0.3 96.76±0.1 70.68±0.2 73.09±0.2
ASPEST (N=5) 88.84±1.0 96.62±0.2 71.61±0.2 73.27±0.2
ASPEST (N=6) 84.51±0.5 96.66±0.2 71.20±0.2 73.42±0.3
ASPEST (N=7) 86.70±2.3 96.90±0.2 71.16±0.2 73.50±0.1
ASPEST (N=8) 88.59±0.9 97.01±0.1 71.62±0.3 73.76±0.2

Table 21: Ablation study results for the effect of the number of models N in the ensemble. The mean and std
of each metric over three random runs are reported (mean±std). All numbers are percentages.

Dataset MNIST→SVHN DomainNet R→C (easy)
Metric AUACC ↑ AUACC ↑
Labeling Budget 100 500 500 1000
ASPEST without upper bound 86.95±1.4 96.59±0.1 71.39±0.1 73.52±0.2
ASPEST 88.84±1.0 96.62±0.2 71.61±0.2 73.27±0.2

Table 22: Ablation study results for the effect of setting an upper bound when constructing the pseudo-labeled
set R in ASPEST. The mean and std of each metric over three random runs are reported (mean±std). All
numbers are percentages. Bold numbers are superior results.

the selected labeled test data for 200 epochs. We first evaluate the median confidence of the model
on the correctly classified and mis-classified test data respectively when fine-tuning the model on the
selected labeled test data. In Figure 4, we show that during fine-tuning, the model gets increasingly
confident not only on the correctly classified test data, but also on the mis-classified test data.

We then evaluate the Accuracy, the area under the receiver operator characteristic curve (AUROC)
and the area under the accuracy-coverage curve (AUACC) metrics of the checkpoints during fine-

Metric Ensemble Test Accuracy
Dataset MNIST→SVHN DomainNet R→C (easy)
Labeling Budget 100 500 500 1000
Round 0 24.67 24.87 37.33 37.46
Round 1 24.91 43.80 39.61 39.67
Round 2 37.75 54.91 41.15 41.55
Round 3 45.62 64.15 41.97 43.24
Round 4 50.94 71.65 42.57 45.09
Round 5 56.75 77.23 43.85 45.62
Round 6 59.82 79.97 44.20 46.60
Round 7 63.10 81.43 45.02 47.51
Round 8 67.49 82.78 45.17 48.59
Round 9 69.93 84.70 45.80 48.66
Round 10 71.14 85.48 46.36 49.70

Table 23: Ensemble test accuracy of ASPEST after each round of active learning. All numbers are percentages.
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Figure 4: Evaluating the median confidence of the model on the correctly classified and mis-classified test
data respectively when fine-tuning the model on the selected labeled test data.

tuning and the checkpoint ensemble constructed after fine-tuning on the target test dataset. The
AUROC metric is equivalent to the probability that a randomly chosen correctly classified input has
a higher confidence score than a randomly chosen mis-classified input. Thus, the AUROC metric
can measure the quality of the confidence score for selective prediction. The results in Figure 5
show that in the fine-tuning path, different checkpoints have different target test accuracy and the
end checkpoint may not have the optimal target test accuracy. The checkpoint ensemble can have
better target test accuracy than the end checkpoint. Also, in the fine-tuning path, different check-
points have different confidence estimation (the quality of confidence estimation is measured by the
metric AUROC) on the target test data and the end checkpoint may not have the optimal confidence
estimation. The checkpoint ensemble can have better confidence estimation than the end check-
point. Furthermore, in the fine-tuning path, different checkpoints have different selective prediction
performance (measured by the metric AUACC) on the target test data and the end checkpoint may
not have the optimal selective prediction performance. The checkpoint ensemble can have better
selective prediction performance than the end checkpoint.
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Figure 5: Evaluating the checkpoints during fine-tuning and the checkpoint ensemble constructed after fine-
tuning on the target test dataset.

G.11 EMPIRICAL ANALYSIS FOR SELF-TRAINING

In this section, we analyze why the proposed self-training can improve selective prediction perfor-
mance. Our hypothesis is that after fine-tuning the models on the selected labeled test data, the
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checkpoint ensemble constructed is less confident on the test data UX compared to the deep ensem-
ble (obtained by ensembling the end checkpoints). Thus, using the softmax outputs of the checkpoint
ensemble as soft pseudo-labels for self-training can alleviate the overconfidence issue and improve
selective prediction performance.

We perform experiments on the image dataset MNIST→SVHN and the text dataset Amazon Re-
view to verity this hypothesis. To see the effect of self-training better, we only employ one-round
active learning (i.e., only apply one-round self-training) with a labeling budget of 100 samples. We
visualize the histogram of the confidence scores on the test data UX for the deep ensemble and the
checkpoint ensemble after fine-tuning. We also evaluate the receiver operator characteristic curve
(AUROC) and the area under the accuracy-coverage curve (AUACC) metrics of the checkpoint en-
semble before and after the self-training. We use the AUROC metric to measure the quality of the
confidence score for selective prediction. The results in Figure 6 show that the checkpoint ensemble
is less confident on the test data UX compared to the deep ensemble. On the high-confidence region
(i.e., confidence≥ η. Recall that η is the confidence threshold used for constructing the pseudo-
labeled set R. We set η = 0.9 in our experiments), the checkpoint ensemble is also less confident
than the deep ensemble. Besides, the results in Table 24 show that after self-training, both AU-
ROC and AUACC metrics of the checkpoint ensemble are improved significantly. Therefore, the
self-training can alleviate the overconfidence issue and improve selective prediction performance.
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Figure 6: Plot the histogram of the confidence scores on the test data UX for the deep ensemble and the
checkpoint ensemble after fine-tuning.

Dataset MNIST→SVHN Amazon Review
Metric AUROC↑ AUACC↑ AUROC↑ AUACC↑
Before self-training 73.92 66.75 67.44 76.24
After self-training 74.31 67.37 67.92 76.80

Table 24: Evaluating the AUROC and AUACC metrics of the checkpoint ensemble before and after self-
training. All numbers are percentages.
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G.12 TRAINING WITH UNSUPERVISED DOMAIN ADAPTATION

In this section, we study whether incorporating Unsupervised Domain Adaptation (UDA) techniques
into training could improve the selective prediction performance. UDA techniques are mainly pro-
posed to adapt the representation learned on the labeled source domain data to the target domain
with unlabeled data from the target domain (Liu et al., 2022). We can easily incorporate those UDA
techniques into SR (Algorithm 1), DE (Algorithm 2), and the proposed ASPEST (Algorithm 3) by
adding unsupervised training losses into the training objectives.

We consider the method DE with UDA and the method ASPEST with UDA. The algorithm for
DE with UDA is presented in Algorithm 4 and the algorithm for ASPEST with UDA is presented in
Algorithm 5. We consider UDA techniques based on representation matching where the goal is to
minimize the distance between the distribution of the representation onDtr and that on UX . Suppose
the model f is a composition of a prediction function h and a representation function φ (i.e., f(x) =

h(φ(x))). Then LUDA(Dtr, UX ; θ) = d(pφDtr , p
φ
UX

), which is a representation matching loss. We
consider the representation matching losses from the state-of-the-art UDA methods DANN (Ganin
et al., 2016) and CDAN (Long et al., 2018).

We evaluate two instantiations of Algorithm 4 – DE with DANN and DE with CDAN, and two
instantiations of Algorithm 5 – ASPEST with DANN and ASPEST with CDAN. The values of
the hyper-parameters are the same as those described in the paper except that we set ns = 20.
For DANN and CDAN, we set the hyper-parameter between the source classifier and the domain
discriminator to be 0.1. The results are shown in Table 25 (MNIST→SVHN), Table 26 (CIFAR-
10→CINIC-10), Table 27 (FMoW), Table 28 (Amazon Review), Table 29 (DomainNet R→C), Ta-
ble 30 (DomainNet R→P), Table 31 (DomainNet R→S) and Table 32 (Otto).

From the results, we can see that ASPEST outperforms (or on par with) DE with DANN and
DE with CDAN across different datasets, although ASPEST doesn’t use UDA techniques. We
further show that by combining ASPEST with UDA, it might achieve even better performance. For
example, on MNIST→SVHN, ASPEST with DANN improves the mean AUACC from 96.62%
to 97.03% when the labeling budget is 500. However, in some cases, combining ASPEST with
DANN or CDAN leads to much worse results. For example, on MNIST→SVHN, when the labeling
budget is 100, combining ASPEST with DANN or CDAN will reduce the mean AUACC by over
4%. It might be because in those cases, DANN or CDAN fails to align the representations between
the source and target domains. Existing work also show that UDA methods may not have stable
performance across different kinds of distribution shifts and sometimes they can even yield accuracy
degradation (Johansson et al., 2019; Sagawa et al., 2021). So our findings align with those of existing
work.

Dataset MNIST→SVHN
Metric cov|acc ≥ 90% ↑ acc|cov ≥ 90% ↑ AUACC ↑
Labeling Budget 100 500 1000 100 500 1000 100 500 1000
DE with DANN + Uniform 27.27±1.8 72.78±2.0 87.05±0.5 63.95±1.4 82.99±0.8 88.64±0.2 80.37±0.7 93.25±0.4 96.05±0.1
DE with DANN + Entropy 11.33±8.2 74.04±2.2 91.06±1.4 58.28±2.1 83.64±0.9 90.41±0.5 74.62±1.6 93.45±0.5 96.47±0.2
DE with DANN + Confidence 15.68±6.3 76.34±3.1 93.96±1.2 61.32±3.0 85.02±0.9 91.64±0.4 76.43±3.0 93.85±0.6 96.97±0.3
DE with DANN + Margin 30.64±2.1 83.44±0.9 96.17±0.5 66.79±0.9 87.30±0.4 92.71±0.2 82.14±0.8 95.40±0.3 97.60±0.1
DE with DANN + Avg-KLD 22.30±3.0 78.13±2.1 93.42±1.0 63.22±2.0 85.40±0.8 91.47±0.5 78.88±1.6 94.25±0.5 97.02±0.2
DE with DANN + CLUE 16.42±13.6 72.27±2.8 86.71±0.4 61.79±2.7 82.72±1.1 88.46±0.2 77.47±3.4 93.33±0.5 96.21±0.0
DE with DANN + BADGE 25.41±10.9 78.83±1.2 90.94±1.1 63.93±4.4 85.27±0.5 90.45±0.5 79.82±4.1 94.58±0.3 96.89±0.1
DE with CDAN + Uniform 28.10±4.8 73.15±0.7 87.50±0.6 63.95±2.7 83.10±0.3 88.86±0.3 80.28±2.2 93.44±0.1 96.13±0.2
DE with CDAN + Entropy 6.94±9.8 74.38±1.5 90.77±1.3 59.90±2.3 84.14±0.4 90.32±0.6 76.04±2.0 93.48±0.3 96.38±0.2
DE with CDAN + Confidence 13.47±10.2 75.15±2.8 92.77±0.7 60.98±2.0 84.62±0.9 91.23±0.3 76.19±2.8 93.62±0.6 96.63±0.1
DE with CDAN + Margin 22.44±3.3 81.84±2.5 96.07±0.2 62.89±3.8 86.71±1.0 92.64±0.0 78.69±2.6 94.89±0.5 97.57±0.0
DE with CDAN + Avg-KLD 20.23±4.1 80.62±1.7 93.13±2.5 62.23±2.7 86.34±0.6 91.30±1.0 77.68±2.5 94.81±0.4 96.97±0.4
DE with CDAN + CLUE 7.47±6.4 72.61±2.9 87.22±0.2 57.82±2.9 82.50±1.3 88.62±0.1 73.33±2.3 93.38±0.7 96.31±0.0
DE with CDAN + BADGE 26.88±3.5 79.21±0.1 92.50±0.7 65.69±1.7 85.32±0.1 91.18±0.4 81.10±1.3 94.73±0.1 97.17±0.2
ASPEST (ours) 52.10±4.0 89.22±0.9 98.70±0.4 76.10±1.5 89.62±0.4 93.92±0.3 88.84±1.0 96.62±0.2 98.06±0.1
ASPEST with DANN (ours) 37.90±2.4 91.61±0.6 99.39±0.4 69.45±1.7 90.70±0.3 94.42±0.4 84.55±1.0 97.03±0.1 98.23±0.1
ASPEST with CDAN (ours) 30.97±11.7 91.39±0.6 99.50±0.3 67.58±3.2 90.60±0.3 94.46±0.2 82.20±3.3 96.95±0.1 98.26±0.1

Table 25: Results of evaluating DE with UDA and ASPEST with UDA on MNIST→SVHN. The mean and std
of each metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers
are superior results.
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Algorithm 4 DE with Unsupervised Domain Adaptation

Input: A training dataset Dtr, An unlabeled test dataset UX , the number of rounds T , the total
labeling budget M , a source-trained model f̄ , an acquisition function a(B, f, g), the number of
models in the ensemble N , the number of initial training epochs ns, and a hyper-parameter λ.
Let f j0 = f̄ for j = 1, . . . , N .
Fine-tune each model f j0 in the ensemble via SGD for ns training epochs independently using the
following training objective with different randomness:

min
θj

E(x,y)∈Dtr `CE(x, y; θj) + LUDA(Dtr, UX ; θj) (35)

where LUDA is a loss function for unsupervised domain adaptation.
Let B0 = ∅.
Let gt(x) = maxk∈Y ft(x | k).
for t = 1, · · · , T do

Select a batch Bt with a size of m = [MT ] from UX for labeling via:

Bt = arg max
B⊂UX\(∪t−1

l=0Bl),|B|=m
a(B, ft−1, gt−1) (36)

Use an oracle to assign ground-truth labels to the examples in Bt to get B̃t.
Fine-tune each model f jt−1 in the ensemble via SGD independently using the following training
objective with different randomness:

min
θj

E(x,y)∈∪t
l=1B̃l

`CE(x, y; θj) + λ · E(x,y)∈Dtr `CE(x, y; θj) + LUDA(Dtr, UX ; θj)

(37)

where θj is the model parameters of f jt−1.
Let f jt = f jt−1.

end for
Output: The classifier f = fT and the selection scoring function g = maxk∈Y f(x | k).

Dataset CIFAR-10→CINIC-10
Metric cov|acc ≥ 90% ↑ acc|cov ≥ 90% ↑ AUACC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 58.85±0.3 59.39±0.2 60.04±0.1 77.06±0.2 77.33±0.2 77.84±0.1 90.40±0.1 90.60±0.1 90.73±0.1
DE with DANN + Entropy 59.42±0.4 60.86±0.3 64.52±0.3 78.14±0.2 79.20±0.1 81.31±0.1 90.72±0.0 91.06±0.1 92.02±0.0
DE with DANN + Confidence 59.44±0.6 61.08±0.3 65.12±0.2 78.19±0.1 79.38±0.0 81.29±0.1 90.73±0.1 91.26±0.1 92.06±0.0
DE with DANN + Margin 59.81±0.3 62.26±0.4 65.58±0.4 78.15±0.0 79.25±0.1 81.05±0.1 90.76±0.1 91.30±0.1 92.11±0.0
DE with DANN + Avg-KLD 60.50±0.5 62.04±0.1 65.08±0.2 78.32±0.1 79.31±0.1 81.07±0.0 90.89±0.1 91.34±0.0 92.11±0.0
DE with DANN + CLUE 60.20±0.5 61.69±0.2 64.08±0.2 77.84±0.2 78.35±0.2 79.38±0.1 90.73±0.2 91.07±0.1 91.63±0.0
DE with DANN + BADGE 60.18±0.4 62.15±0.2 65.31±0.6 77.70±0.1 78.54±0.1 79.81±0.2 90.72±0.1 91.19±0.1 91.86±0.1
DE with CDAN + Uniform 58.72±0.2 59.49±0.5 60.28±0.2 77.16±0.0 77.52±0.1 77.90±0.1 90.45±0.1 90.65±0.0 90.78±0.1
DE with CDAN + Entropy 58.73±0.4 60.82±0.5 64.45±0.2 77.95±0.1 79.20±0.1 81.04±0.1 90.57±0.1 91.10±0.1 91.86±0.1
DE with CDAN + Confidence 59.10±0.6 61.03±0.6 64.60±0.2 77.92±0.0 79.26±0.2 81.07±0.0 90.59±0.0 91.10±0.2 91.96±0.0
DE with CDAN + Margin 59.88±0.5 61.57±0.9 64.82±0.4 78.09±0.3 79.02±0.2 80.82±0.1 90.73±0.1 91.17±0.2 91.98±0.1
DE with CDAN + Avg-KLD 60.51±0.1 61.71±0.5 65.03±0.3 78.20±0.2 79.29±0.2 81.15±0.1 90.85±0.0 91.19±0.1 92.07±0.1
DE with CDAN + CLUE 60.12±0.5 61.77±0.3 64.06±0.2 77.88±0.1 78.38±0.2 79.42±0.2 90.73±0.1 91.08±0.1 91.64±0.0
DE with CDAN + BADGE 60.28±0.7 61.84±0.2 65.29±0.3 77.68±0.2 78.53±0.1 79.84±0.2 90.73±0.1 91.17±0.0 91.95±0.1
ASPEST (ours) 60.38±0.3 63.34±0.2 66.81±0.3 78.23±0.1 79.49±0.1 81.25±0.1 90.95±0.0 91.60±0.0 92.33±0.1
ASPEST with DANN (ours) 61.69±0.2 63.58±0.4 66.81±0.4 78.68±0.1 79.68±0.1 81.42±0.1 91.16±0.1 91.66±0.1 92.37±0.1
ASPEST with CDAN (ours) 61.00±0.2 62.80±0.4 66.78±0.1 78.56±0.1 79.54±0.1 81.49±0.0 91.13±0.0 91.57±0.1 92.41±0.0

Table 26: Results of evaluating DE with UDA and ASPEST with UDA on CIFAR-10→CINIC-10. The mean
and std of each metric over three random runs are reported (mean±std). All numbers are percentages. Bold
numbers are superior results.
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Algorithm 5 ASPEST with Unsupervised Domain Adaptation

Input: A training set Dtr, a unlabeled test set UX , the number of rounds T , the labeling budget
M , the number of models N , the number of initial training epochs ns, a checkpoint epoch ce, a
threshold η, a sub-sampling fraction p, and a hyper-parameter λ.
Let f j0 = f̄ for j = 1, . . . , N .
Set Ne = 0 and P = 0n×K .
Fine-tune each f j0 for ns training epochs using the following training objective:

min
θj

E(x,y)∈Dtr `CE(x, y; θj) + LUDA(Dtr, UX ; θj), (38)

where LUDA is a loss function for unsupervised domain adaptation. During fine-tuning, update
P and Ne using Eq. (6) every ce training epochs.
for t = 1, · · · , T do

Select a batch Bt from UX for labeling using the sample selection objective (7).
Use an oracle to assign ground-truth labels to the examples in Bt to get B̃t.
Set Ne = 0 and P = 0n×K .
Fine-tune each f jt−1 using the following training objective:

min
θj

E(x,y)∈∪t
l=1B̃l

`CE(x, y; θj) + λ · E(x,y)∈Dtr `CE(x, y; θj) + LUDA(Dtr, UX ; θj),

(39)

During fine-tuning, update P and Ne using Eq (6) every ce training epochs.
Let f jt = f jt−1.
Construct the pseudo-labeled set R via Eq (9) and create Rsub by randomly sampling up to
[p · n] data points from R.
Train each f jt further via SGD using the objective (10) and update P andNe using Eq (6) every
ce training epochs.

end for
Output: The classifier f(xi) = arg maxk∈Y Pi,k and the selection scoring function g(xi) =

maxk∈Y Pi,k.

Dataset FMoW
Metric cov|acc ≥ 70% ↑ acc|cov ≥ 70% ↑ AUACC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 46.11±0.6 51.77±0.3 62.76±0.5 57.62±0.3 60.67±0.4 66.21±0.2 70.17±0.3 72.46±0.3 76.83±0.2
DE with DANN + Entropy 44.36±0.7 48.19±0.3 59.52±0.8 56.78±0.1 59.51±0.0 65.75±0.3 69.09±0.2 71.02±0.2 75.15±0.3
DE with DANN + Confidence 44.46±0.5 49.32±0.1 61.47±0.3 57.04±0.3 60.51±0.3 66.61±0.1 69.14±0.1 71.50±0.1 75.70±0.1
DE with DANN + Margin 48.09±0.4 54.35±0.5 70.11±0.4 59.07±0.2 62.79±0.2 70.02±0.1 70.76±0.1 73.29±0.2 78.25±0.1
DE with DANN + Avg-KLD 48.42±0.1 55.95±0.2 68.73±1.1 59.06±0.2 63.44±0.2 69.41±0.5 70.84±0.1 73.83±0.1 77.91±0.4
DE with DANN + CLUE 44.14±0.6 46.15±0.2 49.02±0.5 56.01±0.3 56.89±0.2 58.66±0.3 69.11±0.2 70.16±0.2 71.46±0.2
DE with DANN + BADGE 48.57±0.5 54.47±0.5 67.69±0.9 58.61±0.2 61.67±0.0 68.71±0.5 71.17±0.2 73.64±0.1 78.65±0.3
DE with CDAN + Uniform 46.08±0.7 51.92±0.8 62.87±0.2 57.45±0.1 60.73±0.4 66.19±0.2 69.93±0.3 72.57±0.4 76.87±0.1
DE with CDAN + Entropy 44.42±0.3 49.32±0.1 60.11±0.3 56.83±0.1 60.04±0.2 65.95±0.2 69.18±0.2 71.34±0.3 75.44±0.3
DE with CDAN + Confidence 44.75±0.1 49.34±0.1 62.80±1.0 57.09±0.1 60.50±0.2 66.94±0.4 69.27±0.1 71.60±0.2 76.14±0.3
DE with CDAN + Margin 47.48±0.7 54.48±0.7 70.25±0.9 58.98±0.4 62.98±0.3 70.10±0.4 70.55±0.3 73.46±0.2 78.39±0.3
DE with CDAN + Avg-KLD 48.43±0.2 54.37±0.4 68.93±0.6 59.36±0.2 62.71±0.2 69.54±0.2 71.12±0.2 73.35±0.2 77.97±0.2
DE with CDAN + CLUE 44.09±0.3 46.11±0.5 48.90±0.1 55.78±0.3 56.98±0.2 58.46±0.2 69.03±0.1 70.02±0.2 71.31±0.1
DE with CDAN + BADGE 47.93±0.2 54.61±0.2 67.01±0.5 58.16±0.1 61.81±0.1 68.36±0.2 70.91±0.2 73.63±0.1 78.52±0.2
ASPEST (ours) 53.05±0.4 59.86±0.4 76.52±0.6 61.18±0.2 65.18±0.2 72.86±0.3 71.12±0.2 74.25±0.2 79.93±0.1
ASPEST with DANN (ours) 51.02±0.9 58.63±1.1 72.97±0.9 61.10±0.5 64.98±0.4 71.21±0.4 71.03±0.3 73.79±0.4 77.84±0.3
ASPEST with CDAN (ours) 51.40±0.6 58.21±0.6 73.94±0.6 61.38±0.2 65.04±0.2 71.63±0.2 71.17±0.1 73.59±0.1 78.04±0.2

Table 27: Results of evaluating DE with UDA and ASPEST with UDA on FMoW. The mean and std of
each metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are
superior results.
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Dataset Amazon Review
Metric cov|acc ≥ 80% ↑ acc|cov ≥ 80% ↑ AUACC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 38.55±3.3 37.25±1.8 39.21±1.9 69.06±0.6 68.94±0.1 69.41±0.2 77.52±0.7 77.03±0.4 77.70±0.2
DE with DANN + Entropy 38.22±2.3 41.85±0.8 41.57±1.3 69.48±0.3 70.71±0.3 71.55±0.2 77.49±0.5 78.39±0.2 78.58±0.1
DE with DANN + Confidence 38.01±1.0 38.36±2.5 38.89±1.3 69.45±0.1 70.16±0.3 71.44±0.2 77.54±0.2 77.58±0.5 78.48±0.3
DE with DANN + Margin 36.82±1.3 36.89±1.3 41.98±1.5 69.35±0.3 69.63±0.3 71.27±0.2 77.30±0.3 77.23±0.3 78.34±0.3
DE with DANN + Avg-KLD 37.15±2.9 38.21±1.3 42.46±1.4 69.38±0.4 69.79±0.2 71.21±0.2 77.25±0.6 77.72±0.3 78.68±0.3
DE with DANN + CLUE 40.23±4.0 34.71±1.8 31.38±0.9 68.95±0.7 68.07±0.2 67.44±0.3 77.62±1.0 76.27±0.6 75.60±0.2
DE with DANN + BADGE 37.51±1.8 37.00±0.9 41.62±2.3 68.98±0.4 69.27±0.1 70.20±0.4 77.20±0.4 77.21±0.1 78.31±0.5
DE with CDAN + Uniform 37.81±0.3 37.83±2.7 39.52±0.8 68.93±0.1 69.16±0.7 69.50±0.3 77.16±0.1 77.30±0.7 77.74±0.3
DE with CDAN + Entropy 37.99±0.8 37.68±1.1 42.55±0.9 69.54±0.3 70.01±0.2 71.52±0.2 77.52±0.2 77.61±0.1 78.63±0.1
DE with CDAN + Confidence 35.76±0.9 38.69±2.8 41.43±2.1 69.24±0.0 70.45±0.4 71.50±0.4 77.08±0.2 77.82±0.4 78.47±0.3
DE with CDAN + Margin 37.68±2.9 37.43±1.0 42.18±1.3 69.50±0.3 69.80±0.4 71.29±0.0 77.50±0.5 77.31±0.3 78.46±0.3
DE with CDAN + Avg-KLD 37.85±1.6 40.71±0.9 44.35±0.9 69.41±0.3 70.29±0.1 71.28±0.2 77.28±0.5 78.11±0.2 78.86±0.2
DE with CDAN + CLUE 34.85±2.7 34.03±1.3 30.70±0.4 68.70±0.3 67.84±0.1 67.12±0.3 76.95±0.7 76.23±0.4 75.36±0.4
DE with CDAN + BADGE 39.47±0.2 39.29±1.1 41.64±0.9 69.33±0.0 69.34±0.2 70.58±0.2 77.52±0.2 77.49±0.2 78.24±0.3
ASPEST (ours) 38.44±0.7 40.96±0.8 45.77±0.1 69.31±0.3 70.17±0.2 71.60±0.2 77.69±0.1 78.35±0.2 79.51±0.2
ASPEST with DANN (ours) 40.22±0.5 41.99±1.4 45.84±0.1 69.42±0.1 70.30±0.1 71.58±0.2 78.00±0.1 78.34±0.3 79.43±0.1
ASPEST with CDAN (ours) 40.02±0.5 42.46±0.6 44.95±0.4 69.50±0.1 70.37±0.2 71.42±0.0 77.80±0.1 78.57±0.1 79.25±0.0

Table 28: Results of evaluating DE with UDA and ASPEST with UDA on Amazon Review. The mean and std
of each metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers
are superior results.

Dataset DomainNet R→C (easy)
Metric cov|acc ≥ 80% ↑ acc|cov ≥ 80% ↑ AUACC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 33.53±0.5 36.28±0.3 40.13±1.0 50.57±0.5 52.19±0.1 55.15±0.1 69.34±0.3 70.98±0.2 73.50±0.3
DE with DANN + Entropy 28.66±1.0 34.47±0.1 42.77±0.7 48.13±0.6 52.70±0.3 59.01±0.2 66.60±0.5 70.64±0.1 75.45±0.2
DE with DANN + Confidence 29.92±0.4 35.29±1.0 43.33±0.4 48.61±0.1 53.36±0.5 59.72±0.3 67.23±0.2 70.92±0.5 75.89±0.3
DE with DANN + Margin 35.19±0.3 39.63±0.2 46.51±0.5 52.29±0.3 55.60±0.2 60.97±0.4 70.70±0.1 73.41±0.1 77.24±0.3
DE with DANN + Avg-KLD 36.02±0.6 39.67±0.5 47.20±0.8 53.00±0.3 55.75±0.3 61.22±0.3 71.19±0.3 73.51±0.2 77.46±0.2
DE with DANN + CLUE 32.26±1.5 35.09±0.4 35.66±0.3 50.21±0.0 50.90±0.1 51.50±0.1 69.17±0.2 70.20±0.2 70.82±0.1
DE with DANN + BADGE 35.27±0.5 38.88±0.3 45.97±0.7 52.15±0.3 54.89±0.1 60.03±0.3 70.65±0.1 72.95±0.1 76.87±0.1
DE with CDAN + Uniform 33.49±0.6 36.01±0.7 39.93±0.2 50.46±0.2 51.89±0.1 55.23±0.2 69.32±0.3 70.86±0.3 73.55±0.2
DE with CDAN + Entropy 29.50±0.5 33.86±0.3 42.24±0.5 48.01±0.1 52.52±0.3 58.96±0.2 66.82±0.2 70.28±0.1 75.33±0.1
DE with CDAN + Confidence 29.21±1.0 34.92±0.6 43.36±0.4 48.48±0.4 52.85±0.4 59.88±0.4 66.82±0.5 70.61±0.4 75.93±0.3
DE with CDAN + Margin 35.87±0.7 38.37±0.4 46.42±0.6 52.58±0.1 55.28±0.2 61.20±0.2 70.95±0.2 72.95±0.2 77.26±0.1
DE with CDAN + Avg-KLD 36.21±0.6 40.08±0.3 47.62±0.4 52.95±0.3 55.93±0.1 61.56±0.2 71.29±0.3 73.60±0.1 77.58±0.2
DE with CDAN + CLUE 31.74±2.1 35.11±0.2 35.87±0.5 49.99±0.2 51.39±0.2 51.43±0.2 69.04±0.3 70.35±0.0 70.82±0.3
DE with CDAN + BADGE 34.74±0.5 38.68±0.7 45.87±1.0 51.80±0.3 54.75±0.2 60.22±0.1 70.38±0.1 72.90±0.2 76.85±0.2
ASPEST (ours) 37.38±0.1 39.98±0.3 48.29±1.0 54.56±0.3 56.95±0.1 62.69±0.2 71.61±0.2 73.27±0.2 77.40±0.4
ASPEST with DANN (ours) 37.41±0.8 42.45±1.0 49.74±0.6 55.60±0.1 58.29±0.2 63.64±0.2 71.88±0.2 74.18±0.4 78.09±0.0
ASPEST with CDAN (ours) 36.60±1.2 42.96±0.6 50.86±0.2 55.55±0.2 58.71±0.2 63.85±0.2 71.99±0.2 74.60±0.2 78.45±0.3

Table 29: Results of evaluating DE with UDA and ASPEST with UDA on DomainNet R→C. The mean
and std of each metric over three random runs are reported (mean±std). All numbers are percentages. Bold
numbers are superior results.

Dataset DomainNet R→P (medium)
Metric cov|acc ≥ 70% ↑ acc|cov ≥ 70% ↑ AUACC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 26.98±0.1 28.34±0.5 30.63±0.2 41.96±0.2 42.89±0.2 44.73±0.1 57.04±0.1 58.10±0.2 59.87±0.1
DE with DANN + Entropy 24.75±0.4 27.02±0.5 30.10±0.2 40.29±0.4 42.34±0.2 45.78±0.2 55.19±0.3 57.12±0.3 60.21±0.1
DE with DANN + Confidence 22.41±0.9 27.03±0.6 31.70±0.6 39.05±0.5 42.61±0.2 46.60±0.2 53.66±0.6 57.35±0.3 60.93±0.4
DE with DANN + Margin 29.16±0.1 30.58±0.3 33.64±0.6 43.78±0.2 45.17±0.2 47.69±0.4 58.76±0.1 59.94±0.0 62.19±0.4
DE with DANN + Avg-KLD 29.52±0.1 31.17±0.4 34.09±0.3 43.84±0.3 45.33±0.2 48.18±0.2 58.89±0.2 60.25±0.2 62.54±0.2
DE with DANN + CLUE 27.48±0.5 27.83±0.2 28.39±0.5 42.05±0.3 42.34±0.2 42.65±0.1 57.32±0.3 57.64±0.2 57.99±0.2
DE with DANN + BADGE 28.92±0.1 30.36±0.2 33.86±0.3 43.38±0.1 44.85±0.1 47.64±0.3 58.38±0.0 59.82±0.1 62.26±0.2
DE with CDAN + Uniform 26.96±0.4 28.33±0.2 29.98±0.4 41.77±0.3 42.85±0.2 44.23±0.4 56.86±0.4 58.01±0.0 59.42±0.4
DE with CDAN + Entropy 24.91±0.4 26.30±0.9 30.33±0.4 40.34±0.3 42.07±0.6 45.79±0.2 55.38±0.4 56.70±0.8 60.23±0.2
DE with CDAN + Confidence 24.58±0.7 27.11±0.5 31.07±0.5 40.32±0.2 42.64±0.3 46.25±0.3 55.14±0.3 57.40±0.3 60.63±0.3
DE with CDAN + Margin 28.33±0.1 30.17±0.3 33.54±0.4 43.44±0.4 44.77±0.1 47.56±0.2 58.31±0.2 59.65±0.1 62.17±0.2
DE with CDAN + Avg-KLD 28.69±0.2 30.99±0.9 34.30±0.2 43.64±0.2 45.34±0.2 48.22±0.1 58.60±0.1 60.15±0.4 62.67±0.1
DE with CDAN + CLUE 27.52±0.6 27.96±0.2 28.18±0.5 42.02±0.2 42.44±0.1 42.67±0.2 57.21±0.3 57.70±0.1 58.04±0.3
DE with CDAN + BADGE 28.79±0.1 30.28±0.1 33.77±0.4 43.45±0.0 44.73±0.3 47.84±0.2 58.47±0.1 59.64±0.2 62.37±0.2
ASPEST (ours) 29.69±0.1 32.50±0.3 35.46±0.6 44.96±0.1 46.77±0.2 49.42±0.1 58.74±0.0 60.36±0.0 62.84±0.2
ASPEST with DANN (ours) 31.75±0.4 33.58±0.3 36.96±0.2 46.16±0.1 47.64±0.2 50.37±0.3 59.63±0.2 61.06±0.1 63.75±0.1
ASPEST with CDAN (ours) 30.39±0.4 33.57±0.3 37.53±0.7 45.90±0.1 47.71±0.2 50.31±0.2 59.13±0.3 61.17±0.2 63.69±0.3

Table 30: Results of evaluating DE with UDA and ASPEST with UDA on DomainNet R→P. The mean and std
of each metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers
are superior results.
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Dataset DomainNet R→S (hard)
Metric cov|acc ≥ 70% ↑ acc|cov ≥ 70% ↑ AUACC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 17.55±0.4 19.82±0.3 23.57±0.4 32.61±0.5 34.56±0.3 37.73±0.2 47.60±0.5 49.92±0.4 53.52±0.1
DE with DANN + Entropy 10.77±0.8 15.38±0.5 20.11±0.5 27.78±0.7 31.09±0.2 36.39±0.3 41.69±0.7 45.62±0.3 51.05±0.4
DE with DANN + Confidence 10.64±1.2 15.22±0.4 20.25±0.5 28.09±1.0 31.76±0.3 36.86±0.8 41.94±1.3 46.19±0.3 51.48±0.7
DE with DANN + Margin 17.90±0.7 20.44±0.6 25.52±0.4 33.61±0.1 35.79±0.5 40.29±0.3 48.67±0.1 51.03±0.6 55.64±0.4
DE with DANN + Avg-KLD 18.02±1.0 21.22±0.2 25.46±0.2 34.00±0.2 36.51±0.2 40.72±0.2 49.05±0.2 51.79±0.2 55.95±0.2
DE with DANN + CLUE 15.77±0.3 18.14±0.7 19.49±0.4 32.10±0.1 33.42±0.3 34.50±0.3 47.18±0.2 48.63±0.3 50.03±0.3
DE with DANN + BADGE 16.84±0.9 20.88±0.3 25.11±0.3 33.97±0.1 36.20±0.2 40.01±0.3 48.87±0.2 51.46±0.2 55.33±0.2
DE with CDAN + Uniform 17.33±0.5 19.79±0.1 22.99±0.5 32.47±0.5 34.59±0.3 37.88±0.2 47.49±0.5 50.02±0.2 53.51±0.3
DE with CDAN + Entropy 12.48±0.8 15.19±0.8 20.23±0.0 28.83±0.1 32.41±0.4 36.57±0.1 42.93±0.5 47.00±0.3 51.24±0.2
DE with CDAN + Confidence 11.23±0.6 13.93±0.1 18.45±1.3 28.67±0.3 31.35±0.4 35.56±0.8 42.87±0.5 45.40±0.7 49.80±1.0
DE with CDAN + Margin 18.06±0.7 20.39±0.3 25.05±0.3 33.98±0.2 35.76±0.2 40.11±0.1 49.15±0.1 50.92±0.1 55.27±0.1
DE with CDAN + Avg-KLD 18.63±1.0 20.80±0.3 25.49±0.9 34.19±0.4 36.41±0.2 40.53±0.5 49.45±0.5 51.58±0.1 55.74±0.5
DE with CDAN + CLUE 16.51±0.3 18.82±0.1 19.47±0.1 32.23±0.2 33.83±0.4 34.72±0.3 47.40±0.2 49.11±0.2 49.98±0.3
DE with CDAN + BADGE 17.52±0.8 21.48±0.5 25.35±0.4 33.53±0.5 36.19±0.4 40.31±0.3 48.67±0.5 51.65±0.3 55.62±0.3
ASPEST (ours) 17.86±0.4 20.42±0.4 25.87±0.4 35.17±0.1 37.28±0.3 41.46±0.2 49.62±0.1 51.61±0.4 55.90±0.2
ASPEST with DANN (ours) 16.35±1.2 23.18±0.4 28.00±0.1 36.56±0.2 39.40±0.4 42.94±0.1 50.58±0.4 53.73±0.3 57.25±0.1
ASPEST with CDAN (ours) 18.81±1.1 22.95±0.8 28.17±0.2 36.85±0.3 39.10±0.2 43.25±0.3 51.14±0.3 53.47±0.2 57.26±0.2

Table 31: Results of evaluating DE with UDA and ASPEST with UDA on DomainNet R→S. The mean
and std of each metric over three random runs are reported (mean±std). All numbers are percentages. Bold
numbers are superior results.

Dataset Otto
Metric cov|acc ≥ 80% ↑ acc|cov ≥ 80% ↑ AUACC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 70.35±0.5 72.42±0.4 75.63±0.7 76.12±0.3 77.04±0.1 78.25±0.1 86.67±0.1 87.16±0.1 88.09±0.1
DE with DANN + Entropy 75.27±0.3 81.25±0.1 92.23±0.3 78.14±0.1 80.45±0.0 83.73±0.1 87.73±0.1 88.91±0.0 90.90±0.1
DE with DANN + Confidence 74.66±0.3 81.62±0.1 92.57±0.6 78.05±0.2 80.50±0.0 83.67±0.2 87.51±0.1 89.06±0.1 90.94±0.1
DE with DANN + Margin 75.47±0.4 82.56±0.7 91.86±0.9 78.26±0.1 80.79±0.2 83.61±0.3 87.87±0.1 89.08±0.0 90.88±0.1
DE with DANN + Avg-KLD 76.02±0.6 81.78±0.4 91.82±0.3 78.53±0.0 80.70±0.1 83.88±0.0 87.99±0.0 89.17±0.0 90.90±0.1
DE with DANN + CLUE 69.68±0.4 68.07±0.3 62.70±0.6 75.81±0.3 75.44±0.0 73.49±0.3 86.68±0.2 86.31±0.1 84.89±0.2
DE with DANN + BADGE 74.69±0.5 79.04±0.6 87.63±0.4 77.97±0.1 79.57±0.3 82.99±0.1 87.82±0.1 88.92±0.1 90.67±0.1
DE with CDAN + Uniform 70.25±0.9 72.43±0.4 75.21±0.7 76.09±0.3 76.94±0.1 78.13±0.1 86.56±0.3 87.14±0.2 87.90±0.1
DE with CDAN + Entropy 74.73±0.6 81.60±0.8 92.58±0.2 77.97±0.2 80.59±0.3 83.81±0.2 87.47±0.1 88.93±0.1 90.84±0.1
DE with CDAN + Confidence 74.88±0.6 81.30±0.8 92.53±0.9 78.06±0.2 80.51±0.3 83.85±0.3 87.43±0.2 88.99±0.1 90.95±0.1
DE with CDAN + Margin 76.68±1.0 81.57±0.4 92.20±0.5 78.74±0.5 80.62±0.2 84.01±0.2 88.08±0.2 88.85±0.2 91.09±0.0
DE with CDAN + Avg-KLD 75.88±0.4 81.82±0.8 91.43±1.1 78.45±0.1 80.72±0.3 83.72±0.3 87.92±0.2 89.12±0.2 90.91±0.2
DE with CDAN + CLUE 69.86±0.5 67.79±0.2 63.46±0.9 76.09±0.2 75.42±0.3 73.66±0.3 86.81±0.1 86.25±0.1 85.00±0.1
DE with CDAN + BADGE 74.68±0.4 79.46±0.3 87.57±0.4 77.89±0.1 79.78±0.1 82.85±0.1 87.78±0.1 88.90±0.1 90.72±0.1
ASPEST (ours) 77.85±0.2 84.20±0.6 94.26±0.6 79.28±0.1 81.40±0.1 84.62±0.1 88.28±0.1 89.61±0.1 91.49±0.0
ASPEST with DANN (ours) 78.14±0.4 83.33±0.5 93.61±0.0 79.33±0.1 81.23±0.1 84.21±0.1 88.36±0.2 89.32±0.1 91.26±0.0
ASPEST with CDAN (ours) 77.75±0.3 83.68±0.5 94.44±0.3 79.27±0.0 81.30±0.2 84.76±0.1 88.35±0.1 89.59±0.0 91.41±0.0

Table 32: Results of evaluating DE with UDA and ASPEST with UDA on Otto. The mean and std of each
metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are
superior results.
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