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ABSTRACT

Diffusion transformers typically incorporate textual information via (i) attention
layers and (ii) a modulation mechanism using a pooled text embedding. Never-
theless, recent approaches discard modulation-based text conditioning and rely
exclusively on attention. In this paper, we address whether modulation-based
text conditioning is necessary and whether it can provide any performance ad-
vantage. Our analysis shows that, in its conventional usage, the pooled embedding
contributes little to overall performance, suggesting that attention alone is generally
sufficient for faithfully propagating prompt information. However, we reveal that
the pooled embedding can provide significant gains when used from a different
perspective—serving as guidance and enabling controllable shifts toward more
desirable properties. This approach is training-free, simple to implement, incurs
negligible runtime overhead, and can be applied to various diffusion models, bring-
ing improvements across diverse tasks, including text-to-image/video generation
and image editing.

1 INTRODUCTION

Since the pioneering works on diffusion models (DMs) (Ho et al., [2020; [Song et al., |2020), the
UNet architecture (Ronneberger et al., [2015) has served as the dominant backbone for diffusion-
based image generation. This trend extended to text-to-image models (Saharia et al., [2022} Nichol
et al.,[2021)), which employ UNet-based architectures (Rombach et al., [2022) and incorporate the
CLIP text encoder (Radford et al., |2021)) to condition the model on text sequences through the
attention mechanism (Vaswani et al., [2017). Later, models such as [Podell et al.| (2023) began to
incorporate the pooled CLIP embedding via modulation mechanisms (Karras et al., 2017, [2019),
in addition to the token-wise text embeddings. More recently, works including [Labs et al.| (2025);
Labs| (2024); [Esser et al.| (2024); [Kong et al.| (2024); |Cai et al.|(2025) have adopted transformer-based
architectures (Peebles & Xie, [2023)) while retaining modulation-based text conditioning. Recent
models (Wan et al., 2025; Wu et al., [2025}; |Agarwal et al.| 2025} | Xie et al., [2024)) discard global text
conditioning, achieving comparable text alignment by relying solely on attention. This transition
raises questions about the role and necessity of global text conditioning, which we aim to explore.

We observe that, at first glance, modulation-based text conditioning appears non-contributory, and
attention alone is sufficient to capture textual information. However, we argue that it is premature to
discard global text conditioning and that it should instead be leveraged from a different perspective.
Specifically, we draw inspiration from the interpretability of the modulation mechanism (Karras et al.|
2019) and the ability of CLIP to control it (Garibi et al.| [2025]). We suggest that the pooled text
embedding can act as a corrector, adjusting the diffusion trajectory toward better modes.

In summary, our contributions are as follows: (1) We conduct an in-depth analysis of global text
conditioning in contemporary DMs and find that it plays only a minor role relative to attention-based
text conditioning. (2) We show that global text conditioning can yield significant improvements when
viewed from the perspective of modulation guidance. Furthermore, we enhance its effectiveness by
proposing dynamic strategies. (3) We introduce techniques for integrating the pooled embedding
into fully attention-based models, thereby improving their performance via modulation guidance. (4)
From a practical standpoint, our approach is simple to implement, incurs negligible overhead, and
delivers performance gains on state-of-the-art multi- and few-step DMs across text-to-image/video
and image-editing tasks.
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2 RELATED WORK

Several post-training approaches have been proposed to improve DM quality. The first group centers
on classifier-free guidance (CFG) modifications (Ho & Salimans| [2022)). Specifically, prior works im-
prove CFG by optimizing scale factors (Fan et al., [2025)), addressing off-manifold challenges (Chung
et al.,|2024), modifying the unconditional branch (Karras et al., 2024), mitigating oversaturation at
high CFG scales (Sadat et al., [2024; 2025} |Lin et al., 2024}, and introducing dynamic CFG strate-
gies (Kynkdanniemi et al., [2024} Sadat et al., 2023; [Wang et al., [2024; [Yehezkel et al.l [2025). In
contrast, our method complements CFG and, importantly, can also be applied to few-step DMs (Song
et al.l |2023; Sauer et al., |2024b; | Y1n et al., 2024 a; [Starodubcev et al., [2025) that do not use CFG.

The second group focuses on test-time optimization. A dominant line of work (Chefer et al., 2023}
Seo et al.| 20255 |Yiflach et al., 2025} |L1 et al., 2023} |Rassin et al., 2023} |Agarwal et al., 2023} |Dahary
et al., [2024; Marioriyad et al., |2025; |Binyamin et al., [2025; |Phung et al.| 2024} |Chen et al., [2024)
relies on handcrafted loss functions, typically guided by heuristics about how attention maps should
behave, and optimizes these maps accordingly. Other methods focus on optimizing only the initial
noise rather than the full denoising trajectory (Eyring et al., 2025 Ma et al., [2025a} |[Eyring et al.,
2024; |Guo et al.| [2024), or on fine-tuning LoRAs to extract different concepts (Gandikota et al.|
2024). In contrast, our approach avoids complex loss design and intensive model tuning while still
improving performance.

Finally, works most closely related to ours are attention guidance methods. These methods (Chen
et al.| 2025; Hong et al., 2023 |Ahn et al., 2025; [Nguyen et al.,|2024)) leverage positive and negative
prompts, compute attention outputs for both, and perform controlled extrapolation in the attention
space—pushing the model toward positive prompts and away from negative ones. Our approach also
relies on guidance in feature space but applies it through a small MLP rather than through attention.

3 MODULATION LAYERS

In this section, we briefly recap the key components of modulation layers used in transformer DMs.

State-of-the-art text-to-image DMs (Labs, [2024; (Cai et al., [2025) typically represent images as
sequences of continuous tokens, aligning them with text tokens in a unified representation. This
combined sequence is processed through a series of transformer blocks (Peebles & Xie, [2023)),
which primarily consist of MLPs, normalization, and attention layers. To condition the model on
a text prompt, two types of encoders are usually used: a T5 (Raffel et al., [2020) and a CLIP text
encoder (Radford et al.,|2021), which operate as follows:

y(p,t) = MLP(t, CLIP(p)), s= [T5(p), x|, (1)

Here, y denotes a global conditioning vector derived from the time step ¢ and the pooled embedding
of the prompt p, whereas s denotes the concatenated sequence of image tokens x and text tokens
T5(p). The sequence s is then processed via cross-attention to incorporate text information, while
the global conditioning vector y is shared across the entire model and constructs a modulation space
that influences the modulation layers.

MOd(57 Y) = as(Y) S+ /BS(Y)7 (2)

Here, o and S5 are the coefficients of the modulation layer, representing scaling and shifting
operations, respectively. Notably, modulation layers have proved effective in enabling semantic
control and transformation in GANs (Karras et al.| [2019; 20205 2021). In DMs, they have been
used to address image editing problems (Garibi et al. 2025} |Dalva et al.,|2024)). While these layers
have shown effectiveness in semantic control tasks, their role in improving image generation quality
remains unexplored.

4 ANALYSIS OF THE POOLED TEXT EMBEDDING ROLE

In recent DM, there is a trend to discard the pooled text embedding and rely solely on the timestep
¢ to produce y, i.e., MLP(¢, CLIP(p)) — MLP(t). In this setup, the text is incorporated only
through the text encoder T5. However, no strict justification for this design choice has been provided.
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Deviation from initial image (DreamSim) relative to number of tokens in prompt
T T

Configuration CLIP Score?  PickScore 7 ImageReward T '
0.8F 4

FLUX schnell
Initial, short 30.1 21.6 6.2 0.61 1

w/o CLIP, short 29.0(—1.1) 21.3(—0.3)  4.5(—L7)
wloT5,  short 28.9(—1.2) 21.0(-0.6)  L5(—47)  ,

Initial, long 33.1 21.0 10.3
w/o CLIP, long 32.8(—0.3)  21.0(-0.0) 10.4 (++0.1) 02 B
w/o TS, long 30.7 (—2.4) 19.9 (—1.1) 2.4 (—17.9)

HiDream-Fast T 20 30 10 E -
Tnidal, — T g — Nusber of tokens

w/o CLIP, short  30.3(—0.0) 21.8(-0.0) 8.1 (+0.1)
w/o Llama, short 20.2(—10.1) 18.2(-3.6) —21.5(—29.4)

Initial, long 32.9 21.5 12.8
w/o CLIP, long  32.9(—0.0) 21.5(—0.0) 13.0 (+0.2)
w/o Llama, long 16.8 (—16.1) 16.0(—4.5) —20.8 (—33.6)

B ~ b -~
wi/o CLIP, long with CLIP, long w/o CLIP, short with CLIP, short

Table 1: Image quality results for short and long Figure 1: (top) Difference between images (Dream-
prompts. The CLIP embedding does not affect output Sim) with and without CLIP as a function of prompt
quality on long prompts for FLUX schnell and has no length. (bot) For long prompts, images without CLIP
effect for HiDream-Fast. generally do not differ from the initial ones.

Therefore, in this section, we investigate the impact of the pooled embedding on the generative
performance of DMs.

Influence of the CLIP pooled embedding. First, we analyze the influence of CLIP on text-to-image
generation performance. To this end, we examine two contemporary models: FLUX schnell and
HiDream-Fast. Specifically, we analyze the impact of CLIP by removing the pooled embedding,
setting CLIP(p) — 0, and comparing it to the standard case with CLIP enabled. Our key observation
is that the pooled CLIP embedding is partially inactive in FLUX schnell and fully inactive in
HiDream-Fast.

Specifically, we find that the influence of CLIP in FLUX schnell is inconsistent: it is negligible
for long prompts but can be impactful for short ones. To confirm this, we construct two subsets of
prompts (1K each) from the MJTHQ dataset (L1 et al.,|2024): short (10 tokens) and long (77 tokens).
We then evaluate the DM’s performance on each subset. In Table[T](top), we report image quality
metrics (CLIP Score, PickScore, and ImageReward) for each subset. We observe that for long
prompts, CLIP has little effect, with only a minimal impact on quality. In contrast, for short prompts,
its influence is more pronounced.

Moreover, in Figure[I] we analyze the difference between images generated with and without CLIP
as a function of prompt length (measured by the number of tokens). We find that for longer prompts,
the deviation from the initial generation becomes negligible, and the images fully resemble the initial
ones, as visually confirmed in Figure|[T] (bottom).

For HiDream-Fast, we observe slightly different behavior: the CLIP pooled embedding exhibits no
effect for either short or long prompts, as numerically confirmed in Table [T] (bottom).

Influence of the pooled embedding on other models. Additionally, we explore the reintegration
of CLIP into a DM from which it was originally absent. To this end, we consider the COSMOS
model (Agarwal et al., | 2025)) and incorporate the CLIP pooled embedding into it as described in
Section |§l In this case, we observe the same behavior as with the HiDream-Fast model: CLIP has no
influence. This result is numerically confirmed in Section [f] Finally, in Appendix [A] we observe the
same effect in the instruction-guided image editing task performed with the FLUX Kontext model. In
Section[6] we show that this limitation can result in insufficient editing strength for complex cases.

5 MODULATION GUIDANCE

Our observations raise questions about the necessity of using the pooled embedding in generative
tasks. However, although the pooled text embedding may seem uninformative in some cases,
we propose reconsidering its role from a different perspective—one that can lead to improved
generative performance in DMs.
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Guidance in modulation space. We draw inspiration from the understanding that modulation layers
can drive semantic changes in generated images (Karras et al.,[2019). Moreover, the CLIP encoder
is trained to construct a shared space between images and text, resulting in interpretable geometry.
Thus, we suggest that CLIP enables interpretable modifications of the modulation space using natural
language and guides the model toward modes with more desirable properties.

We propose a training-free, plug-and-play technique to reactivate CLIP and strengthen its influence
during generation, drawing inspiration from |Garibi et al.| (2025)). Specifically, we amplify its effect
by introducing guidance in the modulation space.

y(,t) =y, p1,p—.t) =y(p,t) + w- (y(ps,t) —y(p-,1)). 3)

We note that y affects only the modulation coefficients and is shared across all DM blocks, thereby
incurring negligible computational overhead compared to basic generation. Moreover, this technique
can be applied on top of CFG guidance or with distilled DMs that do not rely on CFG.

To provide intuition behind the guidance, we - Short hair Original generation -
first analyze it from the perspective of se- )
mantic changes. Prior work has focused on
identifying interpretable directions in DMs,
either through supervised (Gandikota et all
2024) or unsupervised approaches (Gandikota|
et al, [2025). In contrast, we demonstrate that
such interpretable directions are already em-
bedded within the model and can be accessed
by shifting in the modulation space. Specif-
ically, in Figure 2] we consider two exam-
ples: p+ = Long hair; Modern car
and p_ = Short hair; 01d car. Weob-
serve that the pooled embedding can substan-
tially influence the generated image, leading to Figure 2: The modulation guidance enables local (top)

both local (hair length) and global (car style) and global (bottom) changes and encourages its use to
changes shift a DM toward modes with better properties.

Original 'geﬁeratioﬂ + Modern car

Our observations suggest that modulation guidance provides an additional degree of freedom in
generation, beyond what CFG offers. Building on this, we propose using it to enhance generation
quality across multiple dimensions. Specifically, we consider general changes: aesthetics,
complexity, and specific changes: hands correction, object counting, color,
position. For the latter, we focus on common criteria typically measured in T2I bench-
marks (Ghosh et al} [2023)). Notably, our technique requires only the selection of a suitable prompt
for each category—no additional training or fine-tuning is necessary. In Appendix[C| we present the
prompts used for each targeted aspect.

Dynamic modulation guidance. We find that a constant guidance scale w is generally effective,
but excessively high values can overweight the prompt and cause the model to neglect textual
information (Appendix [B). To address this, we draw inspiration from dynamic CFG
[2023; [Kynk&inniemi et al.,[2024), which has shown promising results in DMs. Unlike dynamic CFG,
we aim to adjust w across layers rather than across time steps.

It is known that in transformer architectures, different layers are responsible for capturing semantics
at different levels (Avrahami et al.,[2025)). This motivates us to explore which layers are most suitable
for introducing guidance, depending on the targeted aspect. For instance, if local features, such as
hands, are primarily processed in the middle layers, applying guidance specifically at those layers is
more appropriate, as it helps avoid unintended changes.

Thus, we construct two prompt subsets of 1,000 examples each: one targeting local features
(e.g., hands, face, eyes) and the other targeting global features (e.g., realism, cinematic,
crisp). We then generate images for each subset and collect the corresponding attention maps for
each target aspect. Finally, we average these maps across all examples and present the results for
different layers in Figure 3[a). We observe that the model primarily focuses on local features in two
layer regions: layers 10-30 and 42-58. In contrast, attention to global features remains relatively
constant, with a slight drop between layers 20 and 35.
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Figure 3: Analysis on dynamic modulation guidance. To derive a dynamic guidance scale, we (a)
analyze how the model allocates attention to different features by computing averaged attention maps
over two token groups (specific and general). Building on this, we (b) explore dynamic strategies for
setting layer-specific w values.

Based on this analysis, we propose applying dynamic modulation guidance at the layer level. We
present four possible strategies in Figure [3(b), with strategies 3 and 4 designed to resemble the
observed attention behavior for specific changes. Interestingly, in Appendix B} we find that these
strategies provide better results for hands correction. For global changes, the step function
(case 1) performs well, outperforming the constant scale. Despite introducing additional hyperpa-
rameters, our dynamic guidance offers an extra degree of improvement for practitioners, which we
believe is important in real-world applications.

Difference

Ours, modulation guidance Original generation

(a)
10 n per token " Mean attention per token group

What does modulation guidance actually do?
We address the question of how the model is
affected by the guidance in improving the gen-
erated content. To this end, we analyze the case
of hands correction. Specifically, in Fig-
ure Eka), we visualize the attention map corre-
sponding to the word hands for a specific im-
age. Interestingly, we observe that the model
places greater focus on the relevant region, high-
lighting it more distinctly. In addition, in Fig-
ure[d[b, left), we plot the averaged attention map
for all tokens in the corresponding prompt. We

Attention Value

find that the model primarily shifts its attention I 1
toward more relevant tokens—such as hands "= & e T
and child. - ; o )

To confirm this intuition, we analyze a subset Figure 4: After applying modulation guidance, the

of é’m;@tlsl folc;‘useq onfhands COTTection mgqe] focuses more on the desired features, such
and split all tokens into four groups: non-content < pandc'ca. by).

tokens, the token hands, tokens related to
hands, and other important tokens. The results in Figure b, right) confirm that the model shifts its
attention toward hands and hand-related tokens.

Integrating the pooled text embedding into CLIP-free models. Finally, we extend modulation
guidance to models without pooled text embeddings, showing that it can improve generation quality.
To this end, we fine-tune existing text-to-image/video models |Agarwal et al.[(2025)); Wan et al.| (2025)
by introducing the pooled embedding. Specifically, we train a small MLP on top of the pooled text
embedding and add it to the timestep embedding, while keeping the rest of the network frozen. The
model behaves identically to the original when the pooled embedding is set to 0. Importantly, we train
on the model’s own synthetic data to ensure that improvements do not stem from dataset differences.
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Table 2: Performance of text-to-image DMs with and without modulation guidance (gray) on
Aesthetics and Complexity, evaluated with human preferences and automatic metrics. Human
win rates are reported with respect to the original model; green indicates statistically significant
improvement, red a decline. For automatic metrics, bold denotes improvement over the original
model.

Model Side-by-Side Win Rate, % Automatic Metrics, COCO 5k
Relevance 1 Aesthetics T Complexity T Defects T PickScoret CLIPT IR{1 HPSv3 1

FLUX schnell 22.9 35.6 10.2 11.3
Aesthetics 48 72 78 48 23.1 35.8 11.0 11.8
Complexity 53 56 69 47 23.0 35.9 10.8 11.4
FLUX dev 23.1 34.7 10.5 12.4
Aesthetics 44 56 69 52 23.2 34.5 11.0 12.8
Complexity 48 59 72 47 23.1 34.6 11.1 12.8
SD3.5 Large 23.0 35.8 10.5 11.1
Aesthetics 50 62 70 47 23.1 359 10.7 11.2
Complexity 49 49 60 45 23.0 35.8 11.7 11.0
HiDream 23.4 34.4 11.7 13.2
Aesthetics 49 60 80 46 23.5 34.4 12.1 13.7
Complexity 47 52 70 45 23.5 34.4 11.9 13.3
COSMOS 23.0 35.0 11.4 12.3
+ CLIP 50 49 43 50 23.0 35.0 11.4 12.2
Aesthetics 50 60 70 45 23.2 35.0 11.7 12.6
Complexity 50 52 61 44 23.0 35.4 11.8 124

We highlight two important aspects of the training process. First, we propagate the textual prompt
solely through the pooled text embedding, using an unconditional prompt for T'5. This design forces
the model to perceive textual information through the pooled embedding. Second, we employ a
distillation-based training regime. Specifically, we sample a clean image, add noise to it, and then
generate two predictions: one from the original model (without the pooled embedding) and one from
the modified model (with the pooled embedding). The objective is to minimize the MSE loss between
these two predictions. This distillation approach is well-suited for few-step DMs, as it eliminates the
need for complex adversarial or distribution-matching losses (Yin et al.| 2024a).

6 EXPERIMENTS

6.1 TEXT-TO-IMAGE GENERATION

Configuration. We validate our approach on state-of-the-art text-to-image DMs that include
modulation-based text conditioning: FLUX schnell (Sauer et al.| |2024a), FLUX (Labs| [2024),
SD3.5 Large (Esser et al., [2024), and HiDream (Cai et al.l 2025). In addition, we consider the
CLIP-free COSMOS model (Agarwal et al.,[2025)) and fine-tune it for 4K iterations to introduce the
pooled text embedding. We train the model on its own synthetic dataset of 500K samples, following
the generation settings of /Agarwal et al.|(2025) and using prompts from Li et al.| (2024).

We evaluate performance using two types of metrics: human preference and automatic evaluation.
Human preference is measured via side-by-side comparisons, where annotators assess image pairs on
four criteria: text relevance, aesthetics, complexity, and defects (details in Appendix [H). For general
changes, we use 128 prompts from PartiPrompts (Yu et al., [2022), generating two images per prompt.
For specific changes, we use 70 prompts from CompBench (Jia et al.|[2025) for object counting
and 200 LLM-generated prompts for hands correction. For automatic evaluation, we report
CLIP score (Hessel et al[2021), ImageReward (IR) (Xu et al.,|2023)), PickScore (PS) (Kirstain et al.|
2023), and HPSv3 (Ma et al., 2025b)), tested on 5K prompts from COCO2014 (Lin et al.,2014). We
also use GenEval (Ghosh et al.,|2023) to validate modulation guidance across multiple benchmark
criteria.

Our main baselines are the original models without modulation guidance. In addition, we con-
sider the Normalized Attention Guidance approach (Chen et al.,|2025) and LLM-enhanced prompt
modifiers (Lian et al.| 2023). Finally, we include the test-time optimization method Concept Slid-
ers (Gandikota et al., [2024) for the hands correction task.
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Ours, quality

Original

Ours, complexity

Original

a cardboard spaceship

Figure 5: Qualitative results of modulation guidance for Aesthetics (top) and Complexity
(bottom). The Aesthetics guidance notably improves image quality, while the Complexity
guidance can enhance the complexity of both the main object and background details.

General changes. In this case, we focus on two aspects for improvement: aesthetics and
complexity. These aspects are crucial for text-to-image generation and are typically the targets
of self-supervised fine-tuning techniques (Startsev et al.,[2025) or RL-based approaches
2024), which are commonly adopted in DMs. However, we demonstrate that our simple
technique achieves significant improvements without any fine-tuning. The only requirement is to
select appropriate positive and negative prompts, along with a suitable dynamic guidance strategy.
Our choices are summarized in Table [5]and discussed in Appendix [C|

Table [2] reports numerical results, showing clear human preference gains for both aspects.
Aesthetics guidance significantly improves both aesthetics and complexity, while complexity
guidance mainly enhances complexity. Automatic metrics show consistent ImageReward gains across
all models and HPSv3 improvements in most cases, except for SD3.5 Large with complexity
guidance. Importantly, we observe that introducing CLIP into COSMOS does not improve perfor-
mance and even reduces complexity; gains appear only when combined with modulation guidance,
confirming that CLIP alone is ineffective. We note slight drops in text relevance for FLUX dev and
in defects for COSMOS, though these are minor. Qualitative examples are shown in Figure 5]and

Appendix

Specific changes. Next, we focus on improving object counting, hands correction,
color, and position. The first two are particularly important, as they have been extensively
studied in prior work (Binyamin et al} 2025} (Gandikota et al}, 2024). For object counting, we
use the number of target objects as the positive direction, while for hands correction, we draw




Under review as a conference paper at ICLR 2026

Table 3: Quantitative results of the modulation guidance for specific changes. The modulation
guidance yields improvements according to GenEval and human preference.

Model GenEval SbS Win Rate, %
Object Counting  Color  Position Object Counting Hands correction
Original 56 79 25 39 41
FLUX schnell ¢, ¢ 65(+9)  86(+7) 30(+5)  61(+22) 59 (+18)
oo
5
=
=
S
g
2
=]
z
=
=)

Original

Ours, hands

Original

Figure 6: Qualitative results of the modulation guidance for Object counting (top) and Hands
correction (bottom).

inspiration from (Gandikota et al.| (2024) in designing positive and negative prompts. Further details
are provided in Table[3]

We present the results in Table [3]and Figure [f] Improvements are observed in several aspects of the
GenEval benchmark, including object counting, color, and position. According to human evaluation,
our approach improves the original model by 22% in object counting and 18% in hands
correction. We report text relevance and defects as the evaluation criteria for object counting
and hands correction, respectively.

Comparison with baselines. Normalized Attention Guidance targets general
changes, so we compare it with our aesthetics guidance using SbS evaluation. Similarly, we
compare Concept Sliders (Gandikota et al [2024) with our hands correction guidance by
evaluating defects. For LLM-enhanced prompts (Lian et al., [2023), we consider general changes,
hands correction,and object counting. Resultsin Appendix [D](Tables[8and[9) show
that our approach outperforms Normalized Attention Guidance by 34% and Concept Sliders by 16%,
without additional computational overhead. Moreover, Table [§]shows that modulation guidance can
further improve performance when combined with LLM-enhanced prompts.




Under review as a conference paper at ICLR 2026

Table 4: Quantative evaluation on VBench. The results show an improved dynamic degree compared
to the original models and baseline approach (normalized attention guidance).

Model, video total score T motion smoothness T dynamic degree T aesthetic quality  overall consistency 1
Hunvan. 13B Original 56.68 99.23 50.51 55.88 21.08
yan, Modulation guidance 57.56 99.03 53.61 56.50 21.09
Original 62.72 98.76 75.25 57.85 19.01
- + CLIP 62.82 98.63 76.38 57.77 18.49
CausVid, 138 Norm. attent. guidance 63.58 98.39 74.22 62.08 19.61
Modulation guidance 65.43 98.45 86.59 57.65 19.02

Ours

CausVId, 1.3B

Figure 7: Qualitative comparison between the original CausVid and CausVid with modulation
guidance.

Reference image FLUX Kontext + Mod, guld‘ancc

;g,

Reference image FLUX Kontext FLUX Kontext + Mod. guidance

Instruction: Turn people into robots Instruction: Replace the cars with boats

Figure 8: Qualitative results for text-guided image editing tasks. We observe that FLUX Kontext
sometimes struggles with complex edits, while modulation guidance can mitigate this limitation.

6.2 TEXT-TO-VIDEO GENERATION

Configuration. We apply modulation guidance to Hunyuan 13B and CausVid
1.3B 2024b). The latter does not include a CLIP model, so we fine-tune it for 1K iterations.
To evaluate performance, we use VBench (Huang et al.,[2024), which covers various aspects. In this
experiment, we apply the same aesthetics guidance as in the text-to-image task. In addition, we
compare our approach with Normalized Attention Guidance.

Results. The results are presented in Table [ and Figure[7} Importantly, we observe improvements in
dynamic degree for both models, with particularly strong gains for CausVid. This is notable because
CausVid is distilled from WAN 2025), and video models typically lose dynamics after
distillation. Furthermore, we find that incorporating CLIP provides no improvement. Additional
visual comparisons are provided in Appendix [G|

6.3 INSTRUCTION-GUIDED IMAGE EDITING

Finally, we address image editing using the FLUX Kontext model 2025), which, as
we find, can struggle with complex edits involving multiple objects. To overcome this, we apply
modulation guidance, using the final prompt as the positive direction and a blank prompt as the
negative. We validate our approach on the SEED-Data benchmark and present the
results and implementation details in Appendix [E] Representative examples are shown in Figure([§]

7 CONCLUSION

In this paper, we revisit the role of the pooled text embedding, showing that, despite its weak influence,
it can improve performance across tasks and models when used from a different perspective. We
present ablation studies in Appendix [B] where dynamic modulation guidance outperforms constant
guidance, offering greater flexibility for practitioners. Limitations are discussed in Appendix [
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Reference Image without CLIP with CLIP
~

change the background to a sunset

Figure 9: We observe that the CLIP text encoder does not influence instruction-guided image editing
performed with the FLUX kontext model.

Table 5: Configuration of hyperparameters for dynamic modulation guidance

Task Positive prompt Negative prompt Guidance strategy

Text-to-image Ultrafdetéllﬁed’ Low-res, flat, Strategy 1 in Figure[3{b)
photorealistic .
aesthetics . . ! cartoonish i=5 w=3
cinematic
Text-to-image Extremely complex, Very simple, Strategy 1 in Figureb)
complexity the highest quality no details at all =10, w =3
Text-to-image Natural and Strategy 4in F1gu;eb)
. S Unnatural hands i1 = 13,49 = 30,43 = 45
hands correction realistic hands
w1 = 3, Wo = 1
Text-to-image [n] [objects] Very simple, Strategy 1 in Figureb)
object counting no details at all i=5 w=3
Ultra—-detailed, _ -
Text-to-video photorealistic, Low res, flat, Strategy Lin Flgureb)
. . cartoonish i=5 w=3
cinematic
Image editing Textual prompt — Z_Stiatg:g}lful_m Figure b)
=5 w=
APPENDIX

A ADDITIONAL ANALYSIS FOR FLUX KONTEXT MODEL

Here, we analyze the impact of the CLIP  Table 6: Editing quality for the FLUX kontext model
model on FLUX Kontext (with and without CLIP). CLIP has no effect on the
[2025)). We find that dropping the pooled model.

embfeddlng does not afjfect 'edltlng results, Configuration CLIP Score, Image 1 CLIP Score, Text 1
as visually confirmed in Figure[9] In ad-

dition, we evaluate performance on the LI D = 29.3
SEED.Data benchrmark wio CLIP 80 (++0.7) 29.3 (0)

with and without the pooled text embed-
ding. We compute the CLIP score (Hessel et al} 2021) to measure reference preservation and prompt
correspondence. The results in Table[6] confirm the observation.
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Table 7: Ablation study of dynamic modulation guidance strategies using human preference (side-
by-side win rate). The results demonstrate that dynamic guidance outperforms a constant guidance
approach.

Configuration Constant ~ Strategy 1 ~ Strategy 2  Strategy 3  Strategy 4
Hand rrection Original 52 48 49 45 41
anas correction  our 48 (—4)  52(+4)  B51(4+2)  B5(+10) 59 (+18)
Ob-ect countin Original 50 39 40 45 39
J 9 Ours 50 (—0)  61(+22) 60 (+20) 55(+10) 61 (+22)
Aesthet ics Original 38 28 43 43 46
Ours 62 (+24) 72 (4+44) 57 (+14) 57 (+14) 54 (+8)
Original, FLUX schnell Constant modulation guidance Dynamic modulation guidance

Figure 10: Qualitative comparison of modulation strategies for aesthetics. Constant guidance can
overweight the original prompt, leading to significant divergence, whereas dynamic guidance better
balances quality and prompt correspondence, allowing the use of larger w without degradation.

The lack of impact in the editing case may stem from the out-of-distribution nature of instructions
for the CLIP model. We find that this mismatch can lead to a lack of editing strength, particularly in
complex scenes with multiple objects. To address this, we propose using the final prompt as the CLIP
input and applying modulation guidance.

B ABLATION STUDY

Dynamic modulation guidance. First, we ablate different dynamic modulation guidance strategies.
Specifically, we consider the FLUX schnell model, testing it on the aesthetics, hands correction, and
object counting aspects.

We consider different dynamic guidance strategies from Figure [3[b) and compare them to a constant
value of w = 3. For dynamic strategies, we use the following parameters.

e Strategy 1. i =5, w = 3;
» Strategy 2. iy = 13,15 = 30, w = 3;
 Strategy 3. We use two exponential functions with centers at 2; = 20, i = 50, and w = 3;

o Strategy 4. il = 13,i2 = 30,i3 = 45, wp = 3, Wy = 1.

Strategies 3 and 4 are designed to follow the attention pattern illustrated in Figure[3|a).

We conduct a human preference study comparing these strategies to the original model, with results
presented in Table[7} First, we observe that dynamic strategies yield higher performance gains com-
pared to a constant scale for hands correction and object counting. Moreover, strategy 4 demonstrates
the best performance on hands correction, which aligns with the analysis of attention behavior. For
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i=0 (Start layer) i | Original
) - '

Imagine a meticulously detailed, hyperrealistic portrait of an aged sage with piercing eyes and a flowing, white beard ...

Figure 11: Influence of starting layers for complexity guidance. Different choices of ¢ with fixed
w = 3 illustrate how earlier or later starting layers balance between preserving the original image and
improving complexity. In particular, ¢ = 18 and ¢ = 28 preserve the overall image while enhancing
fine-grained details such as faces and hands.

w=15 ) w=3.0 w=8.0

a crayon drawing of a space elevator

Figure 12: Influence of guidance strength w for aesthetics. With fixed ¢ = 5, increasing w improves
image quality by boosting the main object (the elevator) and background details. However, excessively
large values, such as w = 8.0, can introduce artifacts.

object counting, strategies 1 and 4 perform equally well. We therefore select strategy 1 for this aspect
due to its simplicity.

Second, for aesthetics guidance, we observe that strategy 1 achieves the best results, while constant
guidance also performs well. However, we find that a constant w can introduce artifacts. As shown
in Figure [T0} constant guidance can overweight the original prompt, causing significant divergence
from the source image. In contrast, dynamic guidance achieves a better balance between quality
enhancement and prompt correspondence, enabling the use of higher w values without introducing
artifacts.

Influence of guidance strength and starting layer number. Next, we analyze how the results
change across different starting layers ¢ and modulation guidance strengths w. Our main dynamic
strategy is the step function (strategy 1 in Figure 3p), and we ablate different choices for this strategy.

Specifically, in Figure[IT} we evaluate different starting layers ¢ with a fixed w = 3 under complexity
guidance. This setting allows us to balance original image preservation with complexity improvement.
In particular, ¢ = 18 and ¢ = 28 fully preserve the original image while enhancing only fine-grained
details such as face and hands.

Then, in Figure [I2] we examine the influence of different w values with a fixed starting layer i = 5
under aesthetics guidance. We observe that higher w enhances the main object (e.g., the elevator
in the example) but also improves background details. However, excessively large values, such as
w = 8§, may introduce artifacts.

Modulation guidance for different CFG. Finally, we examine how modulation guidance behaves
under different CFG values, demonstrating that it can operate effectively on top of CFG. Using the
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FLUX dev, CFG=1.5 CFG =25 CFG =3.5

a close-up of an old-fashioned cocktail

Figure 13: We apply modulation guidance across different CFG values and observe consistent
improvements, confirming that it is complementary to CFG.

FLUX dev model with complexity guidance, we evaluate multiple CFG values in combination with
modulation guidance. The results in Figure T3] show that modulation guidance improves performance
across different CFG values, confirming that it is complementary to CFG.

C HYPERPARAMETERS CHOICE

In Table 5] we provide the hyperparameters configuration used in our experiments.

For general changes (aesthetics and complexity), we use positive and negative prompts, following
the quality-improving prompt modifiers commonly adopted in DMs (Oppenlaender, 2024). In both
cases, we employ strategy 1 for dynamic modulation guidance with w = 3, but vary the starting layer.
Specifically, for complexity, we apply guidance at deeper layers to better preserve the original content
while refining high-frequency details.

For specific changes (hands correction and object counting), we adopt strategies 1 and 4, as suggested
by the ablation study. For hands correction, we use simple positive and negative prompts: Natural
and realistic handsand Unnatural hands. For object counting, the positive direction
is adapted per prompt but follows a general structure: [n][objects], where the main object and desired
count are taken from the prompt.

For text-to-video generation, we use the same configuration as in aesthetics guidance for text-to-image
generation. We find that this not only makes the videos more realistic but also significantly improves
their dynamic degree.

For image editing, we adopt the configuration commonly used in CFG: the original prompt serves as
the positive direction and a blank prompt as the negative. This setup increases editing strength in
cases where the base FLUX Kontext model struggles. For this setting, we use strategy 1.
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Table 8: Comparison with baselines for general changes. We use Normalized Attention Guidance
and LLM-enhanced prompts as baselines, and conduct human evaluation on two criteria—aesthetics
and complexity—reporting the corresponding win rates.

Model Variant Aesthetics Complexity
Baseline Variant Baseline Variant

Baseline: LLM-enhanced prompts

FLUX schnell Ours 45 55 (+10) 38 62 (+24)

FLUX schnell Ours + LLM-enhanced 39 61 (+22) 26 74 (+48)

COSMOS Ours + LLM-enhanced 41 59 (+18) 35 65 (+30)

Baseline: Normalized Attention Guidance

FLUX schnell Ours 33 67 (+34) 21 79 (+58)

Table 9: Comparison with baselines for specific changes. We use Concept Sliders and LLM-enhanced
prompts as baselines, and conduct human evaluation on two criteria: defects for hands correction and
text relevance for object counting, reporting the corresponding win rates.

Model Variant Defects, Hands Text relevance, Counting
Baseline Variant Baseline Variant

Baseline: LLM-enhanced prompts

FLUX schnell Ours 26 74 (+48) 39 61 (+22)

Baseline: Concept Sliders

FLUX schnell Ours 42 58 (+16) — —

D BASELINES COMPARISONS FOR TEXT-TO-IMAGE GENERATION

We compare our approach against the following baselines: Normalized Attention Guidance (Chen
et al.,|2025)), used for general changes; Concept Sliders (Gandikota et al.,[2024), applied to hands
correction; and LLM-enhanced prompts (Oppenlaender} [2024)), which we consider for both general
and specific changes.

For the LLM-enhanced baseline, we use an LLM to modify the prompt sets by adding additional
beautifiers, following the same structure used to construct the positive directions in modulation
guidance. For the other approaches, we adopt the default configurations provided in their respective
papers.

We present the results for general changes in Table|S| We observe significant improvements over
Normalized Attention Guidance for both criteria (aesthetics and complexity). Importantly, our method
does not incur additional overhead, unlike Normalized Attention Guidance, which requires extra
passes through computationally intensive attention layers. Second, we find that our approach can be
applied on top of LLM-enhanced prompts and brings additional improvements. This is especially
important in practice, where different modifiers are commonly applied to basic prompts (Ramesh
et al.,[2022).

We present the results for specific changes in Table[9] First, we find that our approach outperforms
the LLM-enhanced prompt baseline on both tasks (hands correction and object counting). Notably,
for hands correction, the LLM-enhanced prompt approach can lead to divergence—where the model
overemphasizes hands and neglects other parts of the image. In contrast, our approach localizes model
attention without adversely affecting the rest of the image. Second, we find that our approach even
brings improvements over the Concept Sliders approach, without requiring test-time optimization.
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Table 10: Comparison of editing performance measured by VLM scores for Editing Strength and Reference
Preservation.

Configuration Editing Strength 1 Reference Preservation 1

Material ~ Object Style Replace object Material ~ Object Style Replace object
Flux Kontext 66 +4 78 £2 68 +5 71 +5 93 +0.1 92403 77 1 90 +2
Flux Kontext w/o CLIP 69 (+3) 78 (0) 68 (0) 71 (0) 93 (0) 93 (+1) 79 (+2) 90 (0)
Flux Kontext using final prompt for CLIP 69 (+3) 75 (—3) 68 (0) 73 (+2) 93 (0) 93 (+1) 80 (+3) 89 (—1)
Flux Kontext, modulation guidance 79 (+13) 81 (+3) 72(+4) 78 (+7) 93 (0) 92 (0) 78 (+1) 89 (—1)

Reference image

Figure 14: We find that the FLUX Kontext model sometimes struggles with complex image edits, and
even higher CFG values do not alleviate this issue. In contrast, modulation guidance can effectively
address such cases.

E INSTRUCTION-GUIDED IMAGE EDITING

Here, we present the numerical results for instruction-guided image editing using the FLUX Kontext
model 2025)). Specifically, we evaluate four settings: (1) the original model; (2) the
model without CLIP; (3) the model using the final textual prompt instead of the editing instruction
for CLIP; and (4) the model with modulation guidance. For the latter, we use the final prompt as the
positive prompt and a blank prompt as the negative, as summarized in Table 3}

To evaluate performance, we follow the basic setting of FLUX Kontext and generate images using the
SEED-Data benchmark 2024), which provides reference images, editing instructions, and
final textual prompts. Evaluation is conducted with a VLM model 2025), which is asked
to assess editing strength and reference preservation on a 0 — 100 scale. For this purpose, we provide
the VLM with triples consisting of the reference image, the edited image, and the corresponding
1nstruction.

We report the results in Table[I0} First, we observe that removing CLIP does not degrade performance
and even yields small improvements, further supporting our intuition that CLIP does not contribute
meaningful gains. Second, we find that using the final prompt instead of the editing instruction for
the CLIP model leads to inconsistent outcomes—improving material and replacement criteria while
degrading performance on object editing. Finally, we observe that modulation guidance consistently
provides improvements across all criteria in terms of editing strength.

Specifically, modulation guidance improves performance on complex editing cases, such as those
involving multiple objects. As shown in Figure[I4] this problem cannot be solved by simply increasing
the CFG scale—only modulation guidance provides improvements.
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F LIMITATIONS

Our approach also has several limitations. First, it does not address text-to-image correspondence,
meaning that it cannot improve how accurately the generated image reflects the input prompt. This
limitation is inherent to the modulation guidance design, which focuses on enhancing aesthetic quality,
complexity, and other visual attributes rather than semantic alignment. Second, our method introduces
a small number of additional hyperparameters that must be tuned to achieve optimal performance.
While this tuning process is relatively straightforward, it may add an extra step compared to baseline
methods that do not require such configuration.

G MORE VISUAL RESULTS
We provide additional visual comparisons in Figures and

H HUMAN EVALUATION

The evaluation is conducted using Side-by-Side (SbS) comparisons, where assessors are presented
with two images alongside a textual prompt and asked to choose the preferred one. For each pair,
three independent responses are collected, and the final decision is determined through majority
voting.

The human evaluation is carried out by professional assessors who are formally hired, compensated
with competitive salaries, and fully informed about potential risks. Each assessor undergoes de-
tailed training and testing, including fine-grained instructions for every evaluation aspect, before
participating in the main tasks.

In our human preference study, we compare the models across four key criteria: relevance to the
textual prompt, presence of defects, image aesthetics, and image complexity. Figures 22] 25] 23]
[24)illustrate the interface used for each criterion. Note that the images displayed in the figures are
randomly selected for demonstration purposes.

I ADDITIONAL DISCUSSION

This work involves human evaluations conducted through side-by-side image comparisons to assess
model performance across various criteria (e.g., aesthetics, complexity, and defects). All human
studies were performed with informed consent, and participants were compensated fairly for their
time. No personally identifiable information was collected, and all data were anonymized prior to
analysis. Our research uses publicly available datasets and pre-trained models, adhering to their
respective licenses and terms of use. While our method aims to improve the quality and controllability
of generative models, we recognize the potential for misuse of generative technologies, including
the creation of misleading or harmful content. We encourage responsible use and recommend
implementing safeguards in real-world applications.

We note that in this paper a large language model (LLM) was used exclusively for polishing the
writing. It was not employed to generate ideas, methods, or contributions.
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Ours, aesthetics Original, FLUX schnell

a black dog sitting between a bush and a pair of green pants
standing up with nobody inside them

g - [ i iy )\
long shards of a broken mirror reflecting the eyes of a great
horned owl

Two cups of coffee, one with latte art of a heart. The other a triangle with a smiling face
has latte art of stars.

¢ :
A raccoon wearing formal clothes, wearing a tophat and A castle made of tortilla chips, in a river made of salsa.
holding a cane. The raccoon is holding a garbage bag. There are tiny burritos walking around the castle

Oil painting in the style of abstract cubism.

Figure 15: Visual comparisons for FLUX schnell model
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Ours, aesthetics Original, COSMOS

’ ]

h — "

a plant growing on the side of a brick wall

A boy holds and a girl paints a piece of wood.

A castle made of cardboard. a bat landing on a baseball bat

Figure 16: Visual comparisons for COSMOS model

23



Under review as a conference paper at ICLR 2026

A TS

a smiling banana wearing a bandana

A smiling sloth is wearing a leather jacket, a cowboy hat, a kilt
and a bowtie. The sloth is holding a quarterstaff and a big book.

A close-up of two beetles wearing karate uniforms and
fighting, jumping over a waterfall.

/
g v
a drawing of a house on a mountain A glass of red wine tipped over on a couch, with a stain that
writes 'OOPS' on the couch.

Gt 5 e -

a blck baseball hat with a flame decal on it a doorknocker shaped like a lion’s head

Figure 17: Visual comparisons for HiDream-Fast model
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Ours, aesthetics Original, FLUX

A green heart with shadow

(¥ | )
a grandmother reading a book to her grandson and
granddaughter

FA

A close-up of two beetles wearing karate uniforms and
fighting, jumping over a waterfall.

A bowl of soup that looks like a monster made out of plasticine a drawing of a house on a mountain
Figure 18: Visual comparisons for FLUX model
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Ours, aesthetics Original, SD3.5 Large

A green heart

A castle made of cardboard.

a dog wearing a baseball cap backwards and writing BONEZ
on a chalkboard

Figure 19: Visual comparisons for SD3.5 Large model
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Ours, hands Original, FLUX schnell

A photo of a woman showing hands during sunset

Ours, object counting Original, FLUX schnell

five sheep grazed in the pasture

seven frogs leaped into the water four apples were picked from the tree

Figure 20: Visual comparisons for FLUX schnell model
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CausVid Ours

Figure 21: Visual comparisons for CausVid video model
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Prompt:

A medieval Scottish castle with grey stone walls and turrets, positioned next to a mirror-like loch under a misty sky, Highland
cows grazing in the foreground, rugged mountains rising in the distance.

Image 1

Image 2

Which image is better according to the instructions?

9 The images are uncomparable

Quality: Brightness and contrast

Image 1 is better
Image 2 is better
© The images are equal in this aspect

The images were not evaluated for
this aspect

Quality: Acidic and unnatural colors

Image 1 is better
Image 2 is better
°Tha images are equal in this aspect

The images were not evaluated for
this aspect

Quality: Glow

Image 1 is better
Image 2 is better
© The images are equal in this aspect

The images were not evaluated for
this aspect

1 Quality: Image 1 is better
2 Quality: Image 2 is better

Aesthetics: Visibility of the main
objects

© Image 1 is better
Image 2 is better
The images are equal in this aspect

The images were not evaluated for
this aspect

Aesthetics: Background and
environment

Image 1 is better
Image 2 is better
© The images are equal in this aspect

The images were not evaluated for
this aspect

Aesthetics: Image detail

Image 1 is better
Image 2 is better
© The images are equal in this aspect

The images were not evaluated for
this aspect

3 @ Aesthetics: Image 1 is better
4 Aesthetics: Image 2 is better
8 Can't decide

Figure 22: Human evaluation interface for aesthetics.
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Prompt:
an oak door and a cowhide leather beit

Image 1

Image 2

Defects in compaosition and ks

Image 1 is better
Image 2 is battar
Images are equal

Images style

The images have the same style
The images differ in style / The images are uncomparable due o the style
The verdict was based on the previous steps

Defects of the main objects

Image 1 is better

Image 2 is better

Can't decide

The verdict was based on the previous steps

Defects of the secondary objects

Image 1 is better

Image 2 is better

Can't decide

The verdict was based on the previous steps

Final answer

Image 1 is battar

Image 2 is better

Can't decide

The images are uncomparable

w e w =

Error loading images

Figure 23: Human evaluation interface for defects.
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Prompt:
an oak door and a cowhide leather belt

Image 1 Image 2

Main objects

there are more main objects in Image 1
O there are more main objects in Image 2

bath images have the same number of main objects

Final answer

1 Image 1 is better

2 (@ Image 2 is better

3 Can't decide

4 Error loading images

Main objects

there are more main objects in Image 1
there are more main objects in Image 2
° both images have the same number of main objects

Secondary objects

there are more secondary objects in Image 1
there are more secondary objects in Image 2

° both images have the same number of secondary objects

Extra objects
o Image 1 is better in terms of the effect of exira objects

Image 2 is better in terms of the effect of extra objects
both images have the same effect of extra objects

Final answer
1 @ Image 1 is better
2 Image 2 is better

3 Can'tdecide
4 Error loading images

Figure 24: Human evaluation interface for relevance.
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Image 1 Image 2

Which image is more complex according to the instructions?

1 Image 1 is better
2 Image 2 is batter
8 Can't decide

Figure 25: Human evaluation interface for complexity.

32



	Introduction
	Related work
	Modulation Layers
	Analysis of the Pooled Text Embedding Role
	Modulation Guidance
	Experiments
	Text-to-Image Generation
	Text-to-video Generation
	Instruction-guided Image Editing

	Conclusion
	Additional analysis for FLUX kontext model
	Ablation study
	Hyperparameters choice
	Baselines comparisons for text-to-image generation
	Instruction-guided image editing
	Limitations
	More visual results
	Human evaluation
	Additional discussion

