
Published in Transactions on Machine Learning Research (11/2023)

Minorization-Maximization for Learning Determinantal
Point Processes

Takahiro Kawashima tkawa@ism.ac.jp
Department of Statistical Science
The Graduate University for Advanced Studies, SOKENDAI

Hideitsu Hino hino@ism.ac.jp
The Institute of Statistical Mathematics
RIKEN Center for Advanced Intelligence Project

Reviewed on OpenReview: https: // openreview. net/ forum? id= 65AzNvY73Q

Abstract

A determinantal point process (DPP) is a powerful probabilistic model that generates diverse
random subsets from a ground set. Since a DPP is characterized by a positive definite
kernel, a DPP on a finite ground set can be parameterized by a kernel matrix. Recently,
DPPs have gained attention in the machine learning community and have been applied to
various practical problems; however, there is still room for further research on the learning
of DPPs. In this paper, we propose a simple learning rule for full-rank DPPs based on a
minorization-maximization (MM) algorithm, which monotonically increases the likelihood
in each iteration. We show that our minorizer of the MM algorithm provides a tighter
lower-bound compared to an existing method locally. We also generalize the algorithm for
further acceleration. In our experiments on both synthetic and real-world datasets, our
method outperforms existing methods in most settings. Our code is available at https:
//github.com/ISMHinoLab/DPPMMEstimation.

1 Introduction

A determinantal point process (DPP) is a probabilistic model that represents the occurrence probability
of random subsets of a ground set. Initially, DPPs were originated in statistical mechanics to describe the
probabilistic behavior of fermions (Macchi, 1975). In recent years, broader applications of DPPs have been
developed in the machine learning community (Kulesza & Taskar, 2012).

An important feature of DPPs is the presence of negative dependence (Borcea et al., 2009). There exists some
characterizations of negative dependence (Mariet, 2019), and here we consider (pairwise) negative correlation
as an example. Letting A be a random subset, P ({i, j} ⊆ A) ≤ P (i ∈ A)P (j ∈ A) holds for any pair of items
i, j in a ground set when P (·) is defined as a DPP. This means that DPPs can take into account inter-element
repulsion, which encourages the occurrence of diverse subsets. This feature aligns with a variety of machine
learning applications, such as diversity-promoting image search (Kulesza & Taskar, 2011), recommender
systems (Gillenwater et al., 2014), base station configuration for cellular networks (Miyoshi & Shirai, 2014),
random design regression (Dereziński et al., 2022), and locating inducing points of sparse variational Gaussian
process regression (Burt et al., 2020).

A natural problem on DPPs is efficient learning of the parameters. Since a DPP defined on a finite ground
set is parameterized by a positive semidefinite kernel matrix, the learning methods are roughly classified
into three approaches: (a) assuming the kernel matrix is full-rank and having no additional structure (full-
rank DPPs), (b) assuming the kernel matrix is low-rank (low-rank DPPs), or (c) assuming other tractable
structure for the kernel matrix.

1

https://openreview.net/forum?id=65AzNvY73Q
https://github.com/ISMHinoLab/DPPMMEstimation
https://github.com/ISMHinoLab/DPPMMEstimation

Published in Transactions on Machine Learning Research (11/2023)

So far, some learning methods have been designed for full-rank DPPs. Gillenwater et al. (2014) pioneered
the learning problem of DPPs; they developed an EM algorithm for full-rank DPPs. Mariet & Sra (2015)
later proposed a fixed-point algorithm for full-rank DPPs. They derived a simple update rule for the kernel
matrix and showed its monotonicity by finding its equivalence with a minorization-maximization (MM)
algorithm. Their experiments also showed that the fixed-point algorithm is more efficient and stable than
the EM algorithm.

Gartrell et al. (2017) introduced low-rank DPPs. Learning of low-rank DPPs involves gradient-based opti-
mization. Mariet et al. (2019) proposed contrastive estimation as an alternative of the maximum likelihood
estimation (MLE), while Osogami et al. (2018) incorporated temporal dynamics into low-rank DPPs. A
Bayesian extension of low-rank DPPs was also proposed in (Gartrell et al., 2016).

In principle, without special structures, it is difficult to overcome the O(N3) time complexity for full-rank
DPPs and O(NK2) for low-rank DPPs, where N is the size of the ground set and K is the rank of the kernel
matrix. To go beyond these complexities, DPPs with special structure are developed, such as Kronecker
DPPs (Mariet & Sra, 2016) and the “diagonal+special low-rank” structure (Dupuy & Bach, 2018).

Our study focuses on learning of full-rank DPPs. While full-rank DPPs are sometimes not suitable for
problems with a large ground set, we often want to conduct an exact inference for small to medium-sized
problems. For example, consider a hypothetical application of a DPP. The first step in the data analysis is
to assess whether DPP-based modeling is appropriate for our task or not. Even if our final goal is to handle
large data, we typically take relatively small data collected provisionally during this assessment phase. In
such a situation, we hope to utilize a ready-made learning algorithm: requiring less hyperparameter tuning,
easily implementable, well-behaved, and good convergence speed. However, the existing methods for full-rank
DPPs have some difficulties; the EM algorithm (Gillenwater et al., 2014) internally requires optimization on
a Stiefel manifold, making the learning procedure complicated and unstable. In (Mariet & Sra, 2015), the
authors introduced a step size in order to accelerate the fixed-point algorithm, but the step size was fixed
throughout the learning.

In this paper, we propose a simple yet powerful learning rule for full-rank DPPs based on the MM algorithm.
Our method increases the log-likelihood monotonically and stably, and locally provides a tighter minorizer
than the fixed-point algorithm. Our minorizer is concave while the fixed-point algorithm maximizes a non-
concave minorizer in the iteration. This means it has no concern about optimization failure in each iteration.
Moreover, we also develop an accelerated version of the proposed MM algorithm. Although the accelerated
algorithm requires fixed hyperparameters, the step size is determined adaptively in each iteration. We
conduct experiments with both synthetic and real-world datasets and our method outperforms the existing
methods in most settings.

In summary, our main contributions in this paper are:

• We present an easy-to-implement learning method for full-rank DPPs based on the MM algorithm.
By the property of MM algorithms, our method monotonically increases the log-likelihood.

• We compare the tightness of the minorizers between the existing and proposed methods. The
fixed-point algorithm for DPPs proposed in (Mariet & Sra, 2015) can also be viewed as an MM
algorithm. Our result indicate that our minorizer locally provides a tighter lower-bound than the
existing method. Moreover, our method provides a concave minorizer unlike the exsiting method.

• We derive a generalized form of the minorizer and develop an accelerated algorithm. We also provides
an adaptive method to determine the step size values in the iterations for the accelerated algorithm.

• We conduct experiments to evaluate learning algorithms for full-rank DPPs using both synthetic
and real-world datasets. Our empirical results show superiority of our method in convergence speed
and stability.

2

Published in Transactions on Machine Learning Research (11/2023)

2 Determinantal Point Processes

Let k(·, ·) be a kernel function on a ground set Ω. A determinantal point process (DPP) with the kernel
function k(·, ·) is a point process on Ω whose joint intensities are formed as

ρn(x1, x2, . . . , xn) = det(K [n]),

where x1, x2, . . . , xn ∈ Ω and K [n] = (k(xi, xj))n
i,j=1 (Hough et al., 2009). The following theorem gives a

sufficient condition for the existence and uniqueness of DPP:
Theorem 2.1 (Soshnikov (2000); Shirai & Takahashi (2000)). Let K be a self-adjoint integral operator
determined by a kernel function k and be of locally trace class. Then, the kernel function k(·, ·) determines
a DPP if and only if all the eigenvalues of K are in [0, 1].

If the restriction of an operator K to an arbitrary compact subset of Ω is of trace class, K is said to be locally
trace class. Roughly speaking, Theorem 2.1 states that a positive definite kernel k(·, ·) defines a DPP under
appropriate scaling which ensures the resulting probabilities in [0, 1].

In the context of machine learning, DPPs on a finite ground set Y = {1, 2, . . . , N} are typically considered.
On the finite ground set Y, a point process P (·) is a DPP with a kernel matrix K ∈ SN

+ if

P (S ⊆ A) = det([K]S)

for a random subset A ⊆ Y drawn by P and an arbitrary S ⊆ Y. [K]S = (Kij)i,j∈S ∈ S|S|
+ denotes the

principal submatrix of K and the kernel matrix K must be O ⪯K ⪯ I from an analogy with the DPPs on
a general ground set1. A DPP on a finite ground set has an alternative representation called the L-ensemble
(Borodin & Rains, 2005), which defines the occurrence probability of a random subset A ⊆ Y as

PL(A) =
det([L]A)

det(L + I),

where L ∈ SN
+ is a positive semidefinite kernel matrix. We can commute between K and L using the

equation K = L(L + I)−1 or its inversion L = K(I−K)−1 if I−K is invertible. In this paper, we develop
a learning algorithm for L.

3 Learning Algorithm

Given M samples A1,A2, . . . ,AM ⊆ Y, our goal is to solve MLE. That is, to find a maximizer of the
log-likelihood

f(L) =
1

M

M∑
m=1

log det([L]Am)− log det(L + I)

=
1

M

M∑
m=1

log det(UAm
LU⊤

Am
)− log det(L + I), (1)

where UAm
∈ {0, 1}|Am|×N is the submatrix of I obtained by keeping the rows corresponding to the elements

in Am.

3.1 MM Algorithm

A minorization-maximization (MM) algorithm is a powerful meta-algorithm for finding a local maximizer
of a generally non-concave objective f(θ) (Hunter & Lange, 2004; Sun et al., 2017). The MM algorithm
consists of two steps: (i) find a minorizer g(θ|θ(t)) of f(θ) that satisfies

1We use ≺, ⪯, ≻, and ⪰ in the sense of positive (semi-)definite ordering.

3

Published in Transactions on Machine Learning Research (11/2023)

• f(θ) ≥ g(θ|θ(t))

• f(θ(t)) = g(θ(t)|θ(t))

for all θ and θ(t) within a feasible region. Then, (ii) maximize the minorizer g(θ|θ(t)) with respect to θ and
set θ(t+1) = arg max g(θ|θ(t)). Repeating this process, we can obtain a sequence of the parameters {θ(t)}t≥0
which monotonically increases the objective value, because

f(θ(t+1)) ≥ g(θ(t+1)|θ(t)) ≥ g(θ(t)|θ(t)) = f(θ(t)) (2)

holds.

Since log det(·) is concave on S++, the objective function (1) is a combination of concave and convex functions.
From the concavity of log det(·), the following linear upper bound is derived with the first-order Taylor
expansion

log det(X) ≤ log det(Y) + tr{Y −1(X − Y)} = log det(Y) + tr(Y −1X)− n (3)

for any X, Y ∈ Sn
++, n ∈ N, and by swapping X and Y ,

log det(X) ≥ log det(Y)− tr{X−1(Y −X)} = log det(Y)− tr(X−1Y) + n (4)

also holds. From (3) with X → L + I and Y → L(t+1) + I, we have

− log det(L + I) ≥ − log det(L(t) + I)− tr{(L(t) + I)−1(L−L(t))}, (5)

which yields a choice for minorizing the objective (1). This method is referred to as the concave-convex
procedure (CCCP) (Yuille & Rangarajan, 2001), a special case of MM algorithms. However, the minorizer
derived by the CCCP has no closed-form maximizer in our case, therefore, we devise an easy-to-optimize
alternative.

3.2 Proposed Algorithm

In the proposed minorizer of (1), the convex part is lower-bounded linearly by (5) and the concave part
log det([L]Am

) = log det(UAm
LU⊤

Am
) is also lower-bounded. The following proposition provides the concrete

form of our proposed minorizer.
Proposition 3.1. Let f(L) be given by (1) and

g(L|L(t)) = −
1

M

M∑
m=1

tr{L(t)U⊤
Am

[L(t)]−1
Am

UAm
L(t)L−1} − tr{(L(t) + I)−1L}+ ζ(L(t)), (6)

where

ζ(L(t)) =
1

M

M∑
m=1

{
log det(UAm

L(t)U⊤
Am

) + |Am|
}
− log det(L(t) + I) + tr{(L(t) + I)−1L(t)}

is a constant term. Then, f(L) ≥ g(L|L(t)) and f(L(t)) = g(L(t)|L(t)) hold for any L, L(t) ∈ SN
++.

Proof. For any positive definite P , P t ≻ 0 and any square or tall non-generated matrix A, the following
matrix inequality holds (Sun et al., 2016; 2017):

(AP A⊤)−1 ⪯ R−1
t AP tP

−1P tA
⊤R−1

t ,

Rt = AP tA
⊤,

and thus we have

tr{(AP A⊤)−1S} ≤ tr{R−1
t AP tP

−1P tA
⊤R−1

t S} (7)

4

Published in Transactions on Machine Learning Research (11/2023)

Algorithm 1: Minorization-Maximization (MM)
Input: Training set {A1,A2, . . . ,AM}, initial value L ≻ O, and machine epsilon ε ≥ 0
Output: L
for t = 1 to T do

A← O;

Qε ← L

(
1

M

M∑
m=1

U⊤
Am

[L]−1
Am

UAm

)
L + εI;

G← (L + I)−1;
L← SolveCARE(A, Qε, G); // Solve Equation (12)

end

for any appropriately sized and positive semidefinite S ⪰ O. Using the lower-bound (4) with the sub-
stitutions X → UAmLU⊤

Am
, Y → UAmL(t)U⊤

Am
and (7) with A → UAm , P → L, P t → L(t) and

S → UAm
L(t)U⊤

Am
, we have

log det(UAm
LU⊤

Am
) ≥ |Am|+ log det(UAm

L(t)U⊤
Am

)− tr{(UAm
LU⊤

Am
)−1UAm

L(t)U⊤
Am
}

≥ |Am|+ log det(UAmL(t)U⊤
Am

)− tr{L(t)U⊤
Am

[L(t)]−1
Am

UAmL(t)L−1}. (8)

Combining the lower-bounds (5) and (8), we can construct the minorizer of f(L) as (6).

In order to obtain the maximizer of (1), we iteratively optimize the proposed minorizer g(L|L(t)) by solving
the first-order optimality condition for t = 1, . . . , T . Since g(L|L(t)) is concave because of the convexity of
tr(X−1) for X ≻ 0, a stationary point of g(L|L(t)) is also its global maximizer.
Proposition 3.2. A global maximizer of g(L|L(t)) satisfies

−L(L(t) + I)−1L + Q
(t)
M = O, (9)

where

Q
(t)
M = L(t)

(
1

M

M∑
m=1

U⊤
Am

[L(t)]−1
Am

UAm

)
L(t). (10)

Proof. Noting that ∇Xtr(AX) = A⊤ and ∇Xtr(AX−1) = −(X−1AX−1)⊤ for appropriate matrices X
and A, the optimality condition of (6) is

∇Lg(L|L(t)) = L−1Q
(t)
M L−1 − (L(t) + I)−1 = O. (11)

By multiplying both sides of (11) by L, we can see that the stationary points of g(L|L(t)) satisfy (9). From
the concavity of g(L|L(t)), we obtain the result.

The matrix quadratic equation (9) is a special case of the continuous algebraic Riccati equation (CARE):

A⊤X + XA−XGX + Q = O, (12)

where X ∈ SN is unknown, and G, Q ∈ SN , A ∈ RN×N are fixed coefficient matrices. The CARE is
well-studied in control engineering and is solvable by some numerical methods such as the Schur method
(Laub, 1979) and Newton’s method (Bini et al., 2011; Benner & Byers, 1998). It is worth noting that
CARE solvers are available in most programming languages through packages for scientific computation; for
example, SciPy in Python and MatrixEquations.jl in Julia.

In addition, we can confirm the following statement as a corollary of Proposition 3.2.

5

Published in Transactions on Machine Learning Research (11/2023)

Corollary 3.1. With the same notation as in Proposition 3.2 and a positive definite initial value L(0) ≻ 0,
we have rank(L(t)) = rank(Q(t)

M) for t = 1, 2,

Proof. Since L(0) is positive definite, (L(0) + I)−1 is non-singular. Therefore, from the optimality condition
(9),

rank(L(1)(L(0) + I)−1L(1)) = rank(L(1)) = rank(Q(1)
M).

By applying similar operations recursively, the result can be confirmed.

From the assumption in Corollary 3.1, we find that L(0) should be initialized by some positive definite matrix.
See the experimental settings described in Section 5 for examples of the initialization. Corollary 3.1 also
says that if Q

(t)
M is degenerated, the solution of (9) must also be degenerated. This means that when Q

(t)
M is

singular, the solution of (9) falls outside the feasible region SN
++. This problem arises when some elements

of Y are never observed in the given data A1,A2, . . . ,AM , that is,
⋃M

m=1Am ⊊ Y holds. To avoid this issue
and stabilize numerical computation, we recommend to solve

−L(L(t) + I)−1L + Q
(t)
M + εI = O

with a machine epsilon ε > 0 instead of (9). We note that the choice of the machine epsilon ε does not
affect the estimate significantly; we use ε = 10−10 throughout this paper. The procedure for the proposed
MM-based learning is summarized in Algorithm 1.

3.3 Relation to the Existing Method

Mariet & Sra (2015) derived the following update rule to maximize (1) as a fixed-point algorithm:

L(t+1) = L(t) + aL(t)∇f(L(t))L(t), (13)

∇f(L) =
1

M

M∑
m=1

U⊤
Am

[L]−1
Am

UAm
− (L + I)−1,

where a > 0 is a step size. For a = 1, they also show that the update rule (13) can also be regarded as an
MM algorithm with the non-concave minorizer

h(L|L(t)) = −
1

M

M∑
m=1

tr{L(t)U⊤
Am

[L(t)]−1
Am

UAm
L(t)L−1}

− log det(L)− tr{(L(t) + I)−1L−1L(t)}+ ξ(L(t)), (14)

where ξ(L(t)) is a constant term and explicitly given in Appendix A. Comparing (14) with (6), we can see
that the lower-bounds for the first term in (1) are the same, and those for the second term only differ. With
respect to these minorizers, the following proposition holds.
Proposition 3.3. For g(L|L(t)) defined in (6) and h(L|L(t)) defined in (14), it holds that
g(L|L(t)) ≥ h(L|L(t)) for L in the δ-neighborhood of L(t): Bδ(L(t)) = {L(t) + δM :
M is a symmetric matrix whose eigenvalues are all in [−1, 1]} with a sufficiently small δ > 0.

Proof. We have the following inequality:

g(L|L(t))− h(L|L(t)) ≥ tr{(L(t) + I)−1(2L(t) −L−L(t)L−1L(t))}, (15)

where the derivation is shown in Appendix A. If L ∈ Bδ(L(t)), we have

2L(t) −L−L(t)L−1L(t) ≈ O. (16)

The details of the derivation can be found in the appendix. Applying the approximation (16) to (15), we
can conclude the proposition.

6

Published in Transactions on Machine Learning Research (11/2023)

(a) Neighborhood of L(t). (b) Non-neighborhood of L(t).

Figure 1: Behavior of minorizers.

The proposition 3.3 states that the proposed minorizer gives a tighter lower-bound of the objective than
that of the existing method locally. This leads to a tighter leftmost inequality in (2), making it likely that
the proposed method will produce better L(t+1). Figure 1 shows the behavior of the minorizers in the
neighborhood and non-neighborhood of L(t). The proposed minorizer becomes looser as L moves farther
away from L(t), but the experimental results in Section 5 show that the proposed method converges faster
in most cases. Note that the minorizer of the fixed-point algorithm is non-convex as seen in Figure 1(b).
This implies that the fixed-point algorithm is possible to get trapped in poor stationary points of h(L|L(t)).

3.4 Computational Costs

In our method, the total computational cost per iteration is O(Mκ3 + N3), where κ = maxm|Am|. It
is computed as follows; the computation of Q

(t)
M in (9) requires O(

∑M
m=1|Am|3 + N3) = O(Mκ3 + N3)

operations, including the evaluation of [L(t)]−1
Am

for all m = 1, 2, . . . , M and the matrix multiplications of
N ×N matrices. The inversion (L(t) + I)−1 and solving the CARE also cost O(N3).

The computational complexity of our method is equal to that of the fixed-point algorithm (Mariet & Sra,
2015). Although our method incurs additional O(N3) computations due to the CARE, the experimental
results in Section 5 show faster convergence of our method in computational time. We note that the gradient-
based learning of a low-rank factorized DPP also takes the sameO(Mκ3+N3) per iteration if the factorization
is full-rank (Gartrell et al., 2017; Osogami et al., 2018).

4 Generalization and Acceleration

In this section, we develop generalization of the minorizer (6) and the CARE (9) for further acceleration of
the algorithm.

4.1 Generalizing the Minorizer

By adding a penalty term to the mean log-likelihood (1), we can generalize the objective as

fµ(t)(L|L(t)) = f(L)− µ(t)d(L∥L(t)), (17)

where µ(t) ≥ 0 is a non-negative coefficient and d(·∥·) is an appropriate divergence defined on SN
++×SN

++. The
additional penalty term µ(t)d(L∥L(t)) effects to prevent a big change from L(t) to L(t+1). By the definition

7

Published in Transactions on Machine Learning Research (11/2023)

Algorithm 2: Accelerated MM
Input: Training set {A1,A2, . . . ,AM}, initial value L ≻ O, machine epsilon ε ≥ 0, tolerance δ ∈ (0, 1),

and acceleration steps Tacc ∈ {0, 1, . . . , T}
Output: L
for t = 1 to T do

H ←

(
1

M

M∑
m=1

U⊤
Am

[L]−1
Am

UAm

)
;

if t ≤ Tacc then
µ← min {max {−1/λmax (H(L + I)) ,−1}+ δ, 0};

end
else

µ← 0;
end
A← O;
Qµ,ε ← (1 + µ)LHL + εI;
Gµ ← µH + (L + I)−1;
L← SolveCARE(A, Qµ,ε, Gµ); // Solve Equation (12)

end

of a divergence, d(L∥L(t)) ≥ 0 for any L, L(t) ∈ SN
++ and the equality holds if and only if L = L(t). This

means that the generalized objective fµ(t)(L|L(t)) also works as the minorizer of f(L). Specifically, such a
scheme is called as the proximal point algorithm if the divergence d(·∥·) is the squared Euclidean distance
(Parikh & Boyd, 2014). Or it is also called mirror ascent (descent) or Bregman minorization (majorization)
if d(·∥·) is a Bregman divergence (Nemirovsky, 1983; Beck & Teboulle, 2003; Lange et al., 2021).

In our case, we consider a logdet divergence:

Dld(X∥Y) = − log det(X) + log det(Y) + tr{Y −1(X − Y)},

and define d(·∥·) as

d(L∥L(t)) =
1

M

M∑
m=1

Dld([L(t)]Am
∥[L]Am

). (18)

The defined d(·∥·) in (18) satisfies the definition of a divergence if and only if
⋃

mAm = Y holds. The
divergence (18) leads the following minorizer of f(L) and fµ(t)(L|L(t)).
Proposition 4.1. Let f(L) be defined in (1) and fµ(t)(L|L(t)) be defined in (17) with µ(t) ≥ 0 and the
divergence (18). Then, the concave function

gµ(t)(L|L(t)) = −
1 + µ(t)

M

M∑
m=1

tr(L(t)U⊤
Am

[L(t)]−1
Am

UAm
L(t)L−1)

−
µ(t)

M

M∑
m=1

tr([L(t)]−1
Am

[L]Am
)− tr{(L(t) + I)−1L}+ ζµ(t)(L(t)),

where ζµ(t)(L(t)) is a constant term, is the minorizer of f(L) and fµ(t)(L|L(t)).

See Appendix B for the proof.

We can maximize gµ(t)(·|L(t)) by solving a CARE in the same manner as Proposition 3.2.
Proposition 4.2. A global maximizer of gµ(t)(L|L(t)) satisfies the CARE

−L
{

µ(t)H
(t)
M + (L(t) + I)−1

}
L + (1 + µ(t))L(t)H

(t)
M L(t) = O, (19)

8

Published in Transactions on Machine Learning Research (11/2023)

where

H
(t)
M =

1
M

M∑
m=1

U⊤
Am

[L(t)]−1
Am

UAm
.

H
(t)
M degenerates if

⋃M
m=1Am ⊊ Y holds as well as Q

(t)
M = L(t)H

(t)
M L(t) defined in (10). For µ(t) = 0, we

have gµ(t)(L|L(t)) = g(L|L(t)) and the update rule (19) comes down to the original CARE (9). For µ(t) > 0,
the update rule (19) also works as the MM iteration but the convergence may become slower by the penalty
term.

4.2 Acceleration and Hyperparameter Determination

What happens if the coefficient µ(t) is set to negative? Then, fµ(t)(L|L(t)) and gµ(t)(L|L(t)) can no longer
be regarded as the minorizers, but it is expected that the update rule produces a bigger change from L(t)

to L(t+1) and the learning speed may become faster. However, similar to the learning rate of a gradient
descent, a too large absolute value for µ(t) < 0 may lead bad convergence. What is worse, the solution of
the CARE (19) can even not exist. Our approach to decide the negative µ(t) < 0 is to ensure that there is
at least a feasible solution to the CARE (19).
Lemma 4.1. Let G ∈ SN and Q ∈ SN

++ be fixed coefficients and X ∈ SN be unknown. Then, the following
equation

XGX = Q (20)

has a solution in SN
++ if and only if G ≻ O.

Proof. If G is not positive definite, any X does not satisfy (20). By taking the contrapositive, if X is the
solution of (20), G must be positive definite. Conversely, if G is positive definite, G

1
2 ≻ O exists and the

equation (20) becomes XG
1
2 G

1
2 X = Q

1
2 Q

1
2 . We thus have XG

1
2 = Q

1
2 and the equation has the solution

X = Q
1
2 G− 1

2 ∈ SN
++.

Proposition 4.3. Suppose H
(t)
M ≻ O. Then, the CARE (19) has a solution in SN

++ if

µ(t) > max{−1,−1/λmax(H(t)
M (L(t) + I))}, (21)

where λmax(X) denotes the largest eigenvalue of X.

Proof. The right-hand side of the following CARE

L
{

µ(t)H
(t)
M + (L(t) + I)−1

}
L = (1 + µ(t))L(t)H

(t)
M L(t) (22)

is positive definite by the conditions. For µ(t) ≥ 0, the solution of (22) immediately exists by Lemma 4.1.
When −1 < µ(t) < 0, we can see that the solution exists if and only if

µ(t)H
(t)
M + (L(t) + I)−1 ≻ O

also from Lemma 4.1. Then, we have

µ(t)H
(t)
M + (L(t) + I)−1 ≻ O ⇐⇒ H

(t) 1
2

M (I + µ(t)−1H
(t)− 1

2
M (L(t) + I)−1H

(t)− 1
2

M)H(t) 1
2

M ≺ O

⇐⇒ I + µ(t)−1H
(t)− 1

2
M (L(t) + I)−1H

(t)− 1
2

M ≺ O

⇐⇒ µ(t)I ≻ −H
(t)− 1

2
M (L(t) + I)−1H

(t)− 1
2

M

⇐⇒ µ(t)I ≻ −H
(t)−1
M (L(t) + I)−1

⇐⇒ µ(t) > λmax(−H
(t)−1
M (L(t) + I)−1)

⇐⇒ µ(t) > −1/λmax(H(t)
M (L(t) + I)).

9

Published in Transactions on Machine Learning Research (11/2023)

In the accelerated algorithm, the inequality (21) should be satisfied strictly. Algorithm 2 shows the entire
procedure of our MM-based learning with acceleration on the basis of Proposition 4.3. In Algorithm 2, we
introduce two hyperparameters; one is a tolerance δ > 0 that guarantees the inequality (21) strictly and
Tacc ∈ {0, 1, . . . , T} denotes up to how many iterations the acceleration is applied. We can automatically
adjust the step size coefficient µ(t) at each iteration in the algorithm with fixed δ > 0, while user-defined fixed
step size coefficients are used in the existing fixed-point algorithm (Mariet & Sra, 2015). In the resulting
algorithm, we decide the step size by

µ = min
{

max
{
−1/λmax

(
H

(t)
M (L(t) + I)

)
,−1

}
+ δ, 0

}
to ensure (21) and prevent µ(t) > 0, which may provide monotonic but slower convergence than µ(t) = 0.
Since only the largest eigenvalue of H

(t)
M (L(t) + I) incorporates in the inequality (21), determining µ(t) takes

less computational time than solving the CARE.

5 Experiments

5.1 Experimental Settings

We evaluate performance of the learning methods for full-rank DPPs through experiments on synthetic and
real-world datasets. For references, we take the fixed-point algorithm (FP) (Mariet & Sra, 2015) and Adam
(Kingma & Ba, 2015) as a representative gradient-based method. For Adam, we factorize the kernel matrix
as L = V V ⊤ by V ∈ RN×N and optimize V as with the low-rank DPPs (Gartrell et al., 2017; Osogami
et al., 2018). We adopt full-batch learning for all the algorithms.

We provide the following two initialization schemes with reference to (Mariet & Sra, 2015):

• WISHART: We sample an initial value from the Wishart distribution as L(0) ∼ W(N, I)/N .

• BASIC: We uniformly sample v
(0)
ij ∼ U(0,

√
2/N) for i, j = 1, 2, . . . , N and initialize as L(0) =

V (0)V (0)⊤.

The WISHART initialization provides a near-identity matrix, while BASIC provides a unstructured matrix for
L(0).

We adopt the acceleration schemes for each algorithm. We set the step size a = 1.3 for the fixed-point
algorithm2 and the tolerance δ = 0.15 for the proposed MM algorithm. For Tacc < t, we use the default
parameter a = 1 for the fixed-point algorithm, which monotonically increases the objective but no accel-
eration is applied, and the same way is used for the proposed MM. In Adam optimization, we employ the
default values β1 = 0.999, β2 = 0.9 for the decay rates, and the machine epsilon ϵ = 10−8. The acceleration
steps Tacc of the fixed-point and MM algorithms and the learning rate η of Adam are set to be different with
the initialization schemes: Tacc = 5, η = 0.1 for WISHART initialization and Tacc = 10, η = 0.01 for BASIC
initialization.

In each experiment, we stop the learning when the criterion |f(L(t))−f(L(t−1))|
|f(L(t−1))| ≤ δtol is satisfied. We set

δtol = 10−4 as the relative tolerance for all the experiments reported below. We implemented all the
experiments in Julia, and all our experiments were run on a Linux Mint system with 32GB of RAM and an
Intel Core i9-10900K CPU @ 3.70GHz.

5.2 Datasets

We compare the learning algorithms with the following three datasets.

2This is a possibly large value that does not fail optimization in our datasets.

10

Published in Transactions on Machine Learning Research (11/2023)

Synthetic

We make true parameters as L∗ = V ∗V ∗⊤ with v∗
ij ∼ U(0, 10/N) for i, j = 1, 2, . . . , N , and sample M

realizations from the DPP PL∗(·). We consider three different problem sizes: (N, M) = (32, 2,500), (N, M) =
(32, 10,000), and (N, M) = (128, 2,500). Because the true parameters are constructed from the uniform
distribution, they are likely to have no clear structure. Using this Synthetic dataset, we test the general
applicability of our method.

In Synthetic, true parameters L∗ are available; we assess goodness of estimation using not only log-
likelihoods but also the von Neumann divergences DvN(L, L∗) = tr(L log L− L log L∗ − L + L∗), which is
a Bregman divergence for positive definite matrices.

Nottingham

We apply our method to the Nottingham music dataset3, which was used in (Boulanger-Lewandowski et al.,
2012; Osogami et al., 2018). The dataset contains more than 1,000 folk tracks in the ABC format in which a
sequence of chords is stored. We treat each chord in the tracks as an i.i.d. sample of a DPP on the ground set
{1, 2, . . . , 88}, where N = 88 is the number of keys. We randomly pick 25 tracks and that yields M = 6,364
samples on average.

In Nottingham, there is large disparity in the probability of each item appearing, with very low- and high-
pitched keys being rarely used. Moreover, music theory prohibits certain key combinations within a chord.
From these facts, the optimal L∗ of the Nottingham dataset is expected to have unknown but particular
structure.

Amazon Baby Registry

Amazon baby registry has served as a benchmark for learning methods of DPPs since (Gillenwater et al.,
2014). It contains 13 categories of child care products, including “feeding” and “carseats,” and on average,
has N = 71 items and M = 8,585 samples, respectively. We run our experiment on each of the 13 categories
to assess performance of the learning methods for medium-sized recommender systems.

5.3 Experimental Results

Synthetic

The final mean log-likelihoods, runtimes, and von-Neumann divergence values of the Synthetic datasets
with the acceleration are presented in Table 1. For each experiment, we conducted 30 trials with different
L∗ and L(0) and calculated the average and standard deviation. As shown in Table 1, our method (MM)
achieves the best runtimes for all the settings. While the final log-likelihood values are almost equivalent
by the algorithms in WISHART initialization, those obtained by the proposed MM tend to be larger in BASIC
initialization. Furthermore, our method also produces the best von Neumann divergences DvN with BASIC
initialization and moderately performs with WISHART initialization. The results show good stablity of our
method; the proposed algorithm is considered to be favorable in standard situations. The result of the
Synthetic datasets without the acceleration is also shown in Appendix C.

In Figure 2, we show the learning curves with and without acceleration. While the fixed-point algorithm
convergences stably yet slightly slow without the acceleration, the accelerated version becomes competitive
in WISHART initialization. The Adam optimizer may temporarily fall into poor local optima, depending on
the initial value. On the other hand, the proposed MM algorithm consistently indicates stable and rapid
convergence both with and without the acceleration.

3Available at https://abc.sourceforge.net/NMD/.

11

https://abc.sourceforge.net/NMD/

Published in Transactions on Machine Learning Research (11/2023)

Table 1: Final mean log-likelihoods, runtimes, and von Neumann divergences DvN(L, L∗) of the Synthetic
datasets. Each value is computed from the average or standard deviation of 30 trials with the accelerated
settings.

WISHART BASIC
Data Size Method Log-likelihood Runtime (s) vN div. Log-likelihood Runtime (s) vN div.

N = 32
M = 2,500

FP −15.58± 0.15 0.39± 0.03 38.22± 1.85 −15.61± 0.20 1.46± 0.31 41.39± 4.17
Adam −15.55± 0.16 0.36± 0.23 56.77± 9.40 −15.64± 0.34 0.71± 0.37 33.42± 3.13
MM −15.58± 0.15 0.18± 0.07 42.63± 2.38 −15.45± 0.20 0.21± 0.03 30.16± 1.97

N = 32
M = 10,000

FP −15.58± 0.17 1.32± 0.14 38.05± 2.01 −15.71± 0.14 5.59± 0.85 40.79± 3.29
Adam −15.58± 0.17 1.23± 0.56 49.35± 4.54 −15.70± 0.22 3.05± 1.45 32.50± 2.11
MM −15.58± 0.18 0.48± 0.09 42.53± 2.43 −15.55± 0.14 0.77± 0.09 29.75± 1.52

N = 128
M = 2,500

FP −30.14± 0.18 3.36± 0.22 36.17± 0.45 −30.34± 0.19 6.37± 0.48 52.62± 1.74
Adam −30.18± 0.22 2.50± 0.40 44.88± 1.53 −30.46± 1.08 2.30± 0.56 39.44± 5.54
MM −30.11± 0.18 0.69± 0.05 42.54± 0.53 −30.08± 0.19 1.27± 0.21 32.15± 0.55

WISHART

BASIC

(a) N = 32, M = 2,500 (b) N = 32, M = 10,000 (c) N = 128, M = 2,500

Figure 2: Learning curves of the Synthetic datasets. Results with the default parameters (Tacc = 0 for
fixed-point and MM, and η = 0.001 for Adam) are also shown.

Nottingham

The results of the Nottingham dataset with the acceleration are presented in Table 2, and the learning curves
with and without acceleration are showed in Figure 3. The convergence of Adam is remarkably rapid in the
Nottingham dataset.

Under the BASIC initialization, the fixed-point and MM algorithms get stuck in poor local optima. Since the
optimal L∗ is considered to have a particular structure, the BASIC initialization may not be compatible with
Nottingham. We can also find the acceleration scheme of the MM algorithm does not perform well in Figure
3 (see also the result without the acceleration shown in Appendix C). This may be because the assumption⋃M

m=1Am = Y for the accelerated MM is not satisfied in the Nottingham dataset.

Amazon Baby Registry

In Table 3, we show the results with the accelerated algorithms in all the 13 categories of Amazon baby
registry. Overall, our algorithm achieves moderately better log-likelihood values and outstanding con-
vergence speeds in most categories. Adam tends to produce the best final log-likelihoods but they are not
statistically significant in most cases. Especially, when the sample size is relatively large, such as M > 10,000,

12

Published in Transactions on Machine Learning Research (11/2023)

Table 2: Final mean log-likelihoods and runtimes of the Nottigham dataset. Each value is computed from
the average or standard deviation of 30 trials with the accelerated settings.

WISHART BASIC
Method Log-likelihood Runtime (s) Log-likelihood Runtime (s)

FP −8.31± 0.22 40.68± 2.86 −10.13± 0.27 33.19± 8.08
Adam −7.84± 1.02 9.01± 1.59 −7.92± 0.64 21.05± 6.75
MM −9.51± 0.24 19.69± 4.89 −9.58± 0.21 19.11± 5.49

(a) WISHART (b) BASIC

Figure 3: Learning curves of the Nottingham dataset. Results with the default parameters (Tacc = 0 for
fixed-point and MM, and η = 0.001 for Adam) are also shown.

our algorithm outperforms in the convergence speed that is about 5-10 times faster than the fixed-point al-
gorithm.

Although the convergences of the MM algorithm seems to be slow in some of the smaller categories in Table
3, that is not very serious. In these cases, the MM algorithm quickly reaches a near optimum value, but
takes longer to meet the stopping criterion. By managing the stopping criterion, we may be able to stop its
learning much earlier.

6 Conclusion and Future Work

In this paper, we developed an efficient learning method for full-rank DPPs based on the MM algorithm.
Compared with the existing methods, our algorithm has many advantages: it has guaranteed convergence
and monotonicity, requires no bothersome hyperparameters, convergences rapidly and stably, and is easy to
implement. Upon considering the performance of our algorithm, we revealed that our algorithm provides a
locally tighter minorizer than the existing method. We also assessed the empirical performance of our method
through experiments on both synthetic and real-world datasets, outperforming in terms of convergence speed
and reaching a better estimate in most experimental settings.

We believe that our algorithm is a strong candidate for learning full-rank DPPs at the present moment, but
there is still much future work to be done. First, we need to deepen our understanding of the performance of
our method. Proposition 3.3 partially addresses this question, but it is just an implication. One considerable
future direction is establishing general recipes for comparing MM with different minorizers. Second, scaling
up our method for large N is a crucial issue. Several numerical algorithms for solving large-sized CARE
(12) have been proposed based on some structure of a problem: low-rank structure and/or sparsity (Bini
et al., 2011; Simoncini, 2016). On the other hand, our CARE (9) formed by full-rank and dense matrices,
therefore, exploring a good CARE solver is considered to be an essential task.

13

Published in Transactions on Machine Learning Research (11/2023)

Table 3: Final mean log-likelihoods and runtimes of the Amazon baby registry dataset. Each value is
computed from the average or standard deviation of 30 trials with the accelerated settings and initialized by
WISHART.

Category Method Log-likelihood Runtime (s) Category Method Log-likelihood Runtime (s)
Apparel
N = 100

M = 14,970

FP −10.20± 0.00 24.54± 0.69 Gear
N = 100

M = 16,823

FP −9.27± 0.00 30.54± 0.90
Adam −10.08± 0.26 17.99± 2.61 Adam −9.16± 0.41 25.85± 5.74
MM −10.17± 0.00 3.13± 0.30 MM −9.24± 0.00 2.02± 0.38

Bath
N = 100

M = 14,542

FP −8.79± 0.00 26.51± 0.47 Health
N = 62

M = 14,057

FP −7.59± 0.00 13.22± 0.35
Adam −8.72± 0.79 17.97± 4.84 Adam −7.37± 0.27 10.06± 1.66
MM −8.75± 0.00 2.06± 0.47 MM −7.55± 0.00 2.16± 0.44

Bedding
N = 100

M = 16,370

FP −8.79± 0.00 32.23± 0.73 Media
N = 58

M = 5,904

FP −8.56± 0.00 4.01± 0.67
Adam −8.59± 0.18 23.26± 1.31 Adam −8.39± 0.16 2.97± 1.07
MM −8.77± 0.00 4.79± 1.10 MM −8.52± 0.01 1.75± 0.75

Carseats
N = 34

M = 7,566

FP −5.18± 0.06 5.04± 3.27 Safety
N = 36

M = 8,892

FP −4.76± 0.16 8.93± 7.46
Adam −4.82± 0.29 2.03± 0.33 Adam −4.30± 0.00 2.28± 0.10
MM −5.00± 0.05 4.96± 1.45 MM −4.57± 0.05 6.19± 2.10

Diaper
N = 100

M = 16,759

FP −10.71± 0.00 27.16± 0.83 Strollers
N = 40

M = 7,393

FP −5.66± 0.06 4.58± 3.21
Adam −10.61± 0.35 25.75± 5.96 Adam −5.25± 0.38 2.35± 0.39
MM −10.67± 0.00 3.21± 0.53 MM −5.46± 0.05 6.12± 2.39

Feeding
N = 100

M = 19,001

FP −12.17± 0.00 28.97± 0.36 Toys
N = 62

M = 10,073

FP −8.10± 0.00 7.65± 0.71
Adam −12.17± 0.27 18.38± 5.11 Adam −7.94± 0.27 5.77± 1.25
MM −12.15± 0.00 3.11± 0.39 MM −8.07± 0.00 1.45± 0.34

Furniture
N = 32

M = 7,093

FP −4.86± 0.13 4.93± 4.75
Adam −4.40± 0.00 1.88± 0.05
MM −4.65± 0.05 5.37± 1.78

Acknowledgements

We thank anonymous reviewers for insightful comments and suggestions. Part of this work is supported by
NEDO grant number JPNP18002, JST grant number JPMJFS2136, JST CREST JPMJCR2015, and JSPS
KAKENHI JP22H03653.

References
Amir Beck and Marc Teboulle. Mirror Descent and Nonlinear Projected Subgradient Methods for Convex

Optimization. Operations Research Letters, 31(3):167–175, May 2003. ISSN 0167-6377. doi: 10.1016/
S0167-6377(02)00231-6.

P. Benner and R. Byers. An Exact Line Search Method for Solving Generalized Continuous-Time Algebraic
Riccati Equations. IEEE Transactions on Automatic Control, 43(1):101–107, January 1998. ISSN 1558-
2523. doi: 10.1109/9.654908.

Dario Bini, Bruno Iannazzo, and B. Meini. Numerical Solution of Algebraic Riccati Equations. Society for
Industrial and Applied Mathematics, Philadelphia, 2011. ISBN 978-1-61197-208-5.

Julius Borcea, Petter Brändén, and Thomas M. Liggett. Negative Dependence and the Geometry of Poly-
nomials. Journal of the American Mathematical Society, 22(2):521–567, 2009. ISSN 0894-0347.

Alexei Borodin and Eric M. Rains. Eynard–Mehta Theorem, Schur Process, and Their Pfaffian Analogs.
Journal of Statistical Physics, 121(3):291–317, November 2005. ISSN 1572-9613. doi: 10.1007/
s10955-005-7583-z.

14

Published in Transactions on Machine Learning Research (11/2023)

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling Temporal Dependencies in
High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription. In Proceed-
ings of the 29th International Conference on Machine Learning, ICML’12, pp. 1881–1888, Madison, WI,
USA, 2012. Omnipress. ISBN 978-1-4503-1285-1.

David R. Burt, Carl Edward Rasmussen, and Mark van der Wilk. Convergence of Sparse Variational
Inference in Gaussian Processes Regression. Journal of Machine Learning Research, 21(131):1–63, 2020.
ISSN 1533-7928.

Michał Dereziński, Manfred K. Warmuth, and Daniel Hsu. Unbiased Estimators for Random Design Re-
gression. Journal of Machine Learning Research, 23(167):1–46, 2022. ISSN 1533-7928.

Christophe Dupuy and Francis Bach. Learning Determinantal Point Processes in Sublinear Time. In Proceed-
ings of the Twenty-First International Conference on Artificial Intelligence and Statistics, pp. 244–257.
PMLR, March 2018.

Mike Gartrell, Ulrich Paquet, and Noam Koenigstein. Bayesian Low-Rank Determinantal Point Processes.
In Proceedings of the 10th ACM Conference on Recommender Systems, pp. 349–356, Boston Massachusetts
USA, September 2016. ACM. ISBN 978-1-4503-4035-9. doi: 10.1145/2959100.2959178.

Mike Gartrell, Ulrich Paquet, and Noam Koenigstein. Low-Rank Factorization of Determinantal Point
Processes. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1), February 2017. ISSN
2374-3468, 2159-5399. doi: 10.1609/aaai.v31i1.10869.

Jennifer A Gillenwater, Alex Kulesza, Emily Fox, and Ben Taskar. Expectation-Maximization for Learning
Determinantal Point Processes. In Advances in Neural Information Processing Systems, volume 27. Curran
Associates, Inc., 2014.

J. Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág. Zeros of Gaussian Analytic Functions and
Determinantal Point Processes, volume 51 of University Lecture Series. American Mathematical Society,
Providence, Rhode Island, October 2009. ISBN 978-0-8218-4373-4 978-1-4704-1646-1. doi: 10.1090/ulect/
051.

David R Hunter and Kenneth Lange. A tutorial on MM algorithms. The American Statistician, 58(1):30–37,
February 2004. ISSN 0003-1305, 1537-2731. doi: 10.1198/0003130042836.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations. arXiv, 2015. doi: 10.48550/arXiv.1412.6980.

Alex Kulesza and B. Taskar. K-Dpps: Fixed-Size Determinantal Point Processes. In International Conference
on Machine Learning, June 2011.

Alex Kulesza and Ben Taskar. Determinantal Point Processes for Machine Learning. Foundations and
Trends® in Machine Learning, 5(2-3):123–286, 2012. ISSN 1935-8237, 1935-8245. doi: 10.1561/
2200000044.

Kenneth Lange, Joong-Ho Won, Alfonso Landeros, and Hua Zhou. Nonconvex Optimization via MM Al-
gorithms: Convergence Theory. In Wiley StatsRef: Statistics Reference Online, pp. 1–22. John Wiley &
Sons, Ltd, 2021. ISBN 978-1-118-44511-2. doi: 10.1002/9781118445112.stat08295.

A. Laub. A Schur Method for Solving Algebraic Riccati Equations. IEEE Transactions on Automatic
Control, 24(6):913–921, December 1979. ISSN 1558-2523. doi: 10.1109/TAC.1979.1102178.

Odile Macchi. The Coincidence Approach to Stochastic Point Processes. Advances in Applied Probability, 7
(1):83–122, 1975. ISSN 0001-8678. doi: 10.2307/1425855.

Zelda Mariet and Suvrit Sra. Fixed-Point Algorithms for Learning Determinantal Point Processes. In
Proceedings of the 32nd International Conference on Machine Learning, pp. 2389–2397. PMLR, June
2015.

15

Published in Transactions on Machine Learning Research (11/2023)

Zelda Mariet, Mike Gartrell, and Suvrit Sra. Learning Determinantal Point Processes by Corrective Negative
Sampling. In Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics, pp. 2251–2260. PMLR, April 2019.

Zelda E. Mariet and Suvrit Sra. Kronecker Determinantal Point Processes. In Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc., 2016.

Zelda Elaine Mariet. Learning with Generalized Negative Dependence : Probabilistic Models of Diversity for
Machine Learning. Thesis, Massachusetts Institute of Technology, 2019.

Naoto Miyoshi and Tomoyuki Shirai. A Cellular Network Model with Ginibre Configured Base Stations.
Advances in Applied Probability, 46(3):832–845, September 2014. ISSN 0001-8678, 1475-6064. doi: 10.
1239/aap/1409319562.

Arkadi Nemirovsky. Problem Complexity and Method Efficiency in Optimization. Wiley-Interscience Series
in Discrete Mathematics. New York: Wiley, 1983. ISBN 978-0-471-10345-5.

Takayuki Osogami, Rudy Raymond, Akshay Goel, Tomoyuki Shirai, and Takanori Maehara. Dynamic
Determinantal Point Processes. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1),
April 2018. ISSN 2374-3468. doi: 10.1609/aaai.v32i1.11598.

Neal Parikh and Stephen Boyd. Proximal Algorithms. Found. Trends Optim., 1(3):127–239, January 2014.
ISSN 2167-3888. doi: 10.1561/2400000003.

Tomoyuki Shirai and Yoichiro Takahashi. Fermion Process and Fredholm Determinant. In Proceedings of
the Second ISAAC Congress, pp. 15–23. Springer, 2000.

V. Simoncini. Computational Methods for Linear Matrix Equations. SIAM Review, 58(3):377–441, January
2016. ISSN 0036-1445, 1095-7200. doi: 10.1137/130912839.

A Soshnikov. Determinantal Random Point Fields. Russian Mathematical Surveys, 55(5):923–975, October
2000. ISSN 0036-0279, 1468-4829. doi: 10.1070/RM2000v055n05ABEH000321.

Ying Sun, Prabhu Babu, and Daniel P. Palomar. Robust Estimation of Structured Covariance Matrix for
Heavy-Tailed Elliptical Distributions. IEEE Transactions on Signal Processing, 64(14):3576–3590, July
2016. ISSN 1941-0476. doi: 10.1109/TSP.2016.2546222.

Ying Sun, Prabhu Babu, and Daniel P. Palomar. Majorization-Minimization Algorithms in Signal Process-
ing, Communications, and Machine Learning. IEEE Transactions on Signal Processing, 65(3):794–816,
February 2017. ISSN 1053-587X, 1941-0476. doi: 10.1109/TSP.2016.2601299.

Alan L Yuille and Anand Rangarajan. The Concave-Convex Procedure (CCCP). In Advances in Neural
Information Processing Systems, volume 14. MIT Press, 2001.

A Proof of Proposition 3.3

A.1 Derivation of Equation (15)

In (14), the constant term is given by

ξ(L(t)) =
1

M

M∑
m=1

{
log det(UAm

L(t)U⊤
Am

) + |Am|
}

+ log det{(L(t) + I)−1L(t)}+ tr{(L(t) + I)−1}.

By the following inequality from the Taylor expansion

− log det(L(t)) ≥ − log det(L)− tr{(L−1(L(t) −L)},

16

Published in Transactions on Machine Learning Research (11/2023)

we have

g(L|L(t))− h(L|L(t)) = tr{(L(t) + I)−1(L−1L(t) − I −L + L(t))}+ log det(L)− log det(L(t))
≥ tr{(L(t) + I)−1(L−1L(t) − I −L + L(t))} − tr{L−1(L(t) −L)}
= tr{(L(t) + I)−1(L−1L(t) −L + 2L(t))} − tr{L−1L(t)} −N + N

= tr{(L(t) + I)−1(2L(t) −L−L(t)L−1L(t))}.

A.2 Derivation of Equation (16)

Let L = L(t) + δM , where δ > 0 is a sufficient small coefficient and M is a symmetric matrix whose
all eigenvalues are in [−1, 1]. Then, we can approximate the matrix inverse as L−1 = (L(t) + δM)−1 ≈
L(t)−1 − δL(t)−1ML(t)−1 by the Taylor expansion. Using this approximation, we have

2L(t) −L−L(t)L−1L(t) = 2L(t) − (L(t) + δM)−L(t)(L(t) + δM)−1L(t)

≈ 2L(t) − (L(t) + δM)−L(t)(L(t)−1 − δL(t)−1ML(t)−1)L(t)

= O.

B Proof of Proposition 4.1

Proof. fµ(t)(L|L(t)) can be minorized as:

fµ(t)(L|L(t))

=
1

M

M∑
m=1

(log det([L]Am)− µ(t) log det([L]Am)︸ ︷︷ ︸
majorizing by (3) w/

X → [L]Am ,

Y → [L(t)]Am

−µ(t)tr([L]−1
Am

[L(t)]Am))− log det(L + I)︸ ︷︷ ︸
majorizing by (3) w/

X → L + I,

Y → L(t) + I

+const.

≥
1

M

M∑
m=1

(log det([L]Am)︸ ︷︷ ︸
minorizing by (4) w/

X → [L]Am ,

Y → [L(t)]Am

−µ(t)tr([L(t)]−1
Am

[L]Am)− µ(t)tr([L]−1
Am

[L(t)]Am))− tr{(L + I)−1L}+ const.

≥ −
1

M

M∑
m=1

((1 + µ(t)) tr([L]−1
Am

[L(t)]Am
)︸ ︷︷ ︸

majorizing by (7) w/
AP A⊤ → [L]Am ,

S → [L(t)]Am

+µ(t)tr([L(t)]−1
Am

[L]Am
))− tr{(L + I)−1L}+ const.

≥ −
1 + µ(t)

M

M∑
m=1

tr(L(t)U⊤
Am

[L(t)]−1
Am

UAm
L(t)L−1)

−
µ(t)

M

M∑
m=1

tr([L(t)]−1
Am

[L]Am)− tr{(L(t) + I)−1L}+ const.

= gµ(t)(L|L(t)).

C Additional Experimental Results

Table C.1 shows the learning result of the Synthetic dataset with the default (non-accelerated) settings.
Tacc = 0 for fixed-point and MM and η = 0.001 for Adam are used as the default settings. We find the

17

Published in Transactions on Machine Learning Research (11/2023)

Table C.1: Final mean log-likelihoods, runtimes, and von Neumann divergences DvN(L, L∗) of the Synthetic
datasets. Each value is computed from the average or standard deviation of 30 trials with the non-accelerated
settings.

WISHART BASIC
Data Size Method Log-likelihood Runtime (s) vN div. Log-likelihood Runtime (s) vN div.

N = 32
M = 2,500

FP −15.58± 0.15 0.43± 0.06 38.20± 1.84 −15.61± 0.21 1.69± 0.22 42.19± 4.19
Adam −15.63± 0.15 3.29± 0.25 63.07± 5.71 −15.54± 0.20 3.41± 0.17 29.51± 1.85
MM −15.58± 0.15 0.40± 0.06 43.94± 2.62 −15.46± 0.20 0.32± 0.03 30.15± 1.99

N = 32
M = 10,000

FP −15.58± 0.18 1.32± 0.17 38.03± 2.00 −15.72± 0.14 5.53± 0.96 41.61± 3.30
Adam −15.66± 0.17 12.83± 1.11 61.41± 5.40 −15.63± 0.14 14.59± 0.56 29.08± 1.23
MM −15.58± 0.18 1.22± 0.16 43.95± 2.58 −15.56± 0.14 1.00± 0.11 29.74± 1.47

N = 128
M = 2,500

FP −30.14± 0.18 3.70± 0.22 36.20± 0.44 −30.35± 0.19 6.56± 0.45 53.47± 1.79
Adam −30.05± 0.19 24.05± 0.78 85.47± 4.02 −30.12± 0.19 5.84± 0.23 33.44± 0.56
MM −30.11± 0.18 1.39± 0.08 44.68± 0.62 −30.10± 0.19 1.29± 0.07 32.26± 0.50

Table C.2: Final mean log-likelihoods and runtimes of the Nottigham dataset. Each value is computed from
the average or standard deviation of 30 trials with the non-accelerated settings.

WISHART BASIC
Method Log-likelihood Runtime (s) Log-likelihood Runtime (s)

FP −8.30± 0.22 40.92± 3.01 −10.14± 0.28 33.75± 6.84
Adam −7.81± 0.25 68.12± 4.94 −8.02± 0.26 103.27± 15.57
MM −9.51± 0.25 21.73± 6.04 −9.59± 0.22 19.95± 3.59

proposed MM algorithm with the default setting still performs better than the other algorithms with the
accelerated settings, shown in Table 1.

Table C.2 shows the result of the Nottingham dataset with the default settings which is the same to the
Synthetic experiments. In contrast to Synthetic, the performance of the MM algorithm with and without
the acceleration is not much different (cf. Table 2). This may be due to the absence of the assumption
required in the accelerated MM algorithm. We need that

⋃
mAm = Y in Section 4, but Nottingham does

not satisfy that as described in Section 5.

18

	Introduction
	Determinantal Point Processes
	Learning Algorithm
	MM Algorithm
	Proposed Algorithm
	Relation to the Existing Method
	Computational Costs

	Generalization and Acceleration
	Generalizing the Minorizer
	Acceleration and Hyperparameter Determination

	Experiments
	Experimental Settings
	Datasets
	Experimental Results

	Conclusion and Future Work
	Proof of Proposition 3.3
	Derivation of Equation (15)
	Derivation of Equation (16)

	Proof of Proposition 4.1
	Additional Experimental Results

