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Abstract
Supervised multimodal learning is defined as
learning to map a set of separate modalities to a
target. Despite its intuitive definition, it is unclear
whether one should model this problem using a
multidimensional model, where the features from
all the modalities are concatenated and treated as
multidimensional features from a single modality
or a multimodal model, where we use the infor-
mation about the modality boundaries. In this
work we formalize the framework for supervised
multimodal learning and identify the conditions
that favor multimodal modeling over multidimen-
sional modeling. It is advantageous when the de-
pendency across or within modalities shift during
test time. Through a series of synthetic experi-
ments, where we fully control the data generation
process, we verify the necessity of multimodal
modeling for solving a supervised multimodal
learning problem. Our proposed framework is
agnostic to any assumptions pertaining to model
architectures and can have a widespread impact
by informing modeling choices when dealing with
data from different modalities.

1. Introduction
The problem of supervised multimodal learning involves
mapping input data to a target, where the data is generated
from multiple domains and the information about the bound-
aries between different domains (a.k.a., modality grouping)
is accessible. This problem has garnered interest in nu-
merous applications, such as autonomous vehicles (Xiao
et al., 2020), clinical efficiency (Soenksen et al., 2022),
robotics (Driess et al., 2023) and so on. Despite the avail-
ability of diverse data sources in numerous approaches (Bal-
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trušaitis et al., 2018; Wang et al., 2020; Akkus et al., 2023),
we often observe that they fail to obtain performance that is
even on-par with the unimodal predictors (Goyal et al., 2017;
Wu et al., 2022; Dancette et al., 2021; Si et al., 2022b).

In this work, motivated by the goal of bringing more struc-
ture to solving the multimodal learning problem, we address
the question of whether and when we benefit from the modal-
ity grouping information. We adopt a probabilistic formula-
tion and describe two modeling paradigms for multimodal
learning, multidimensional and multimodal modeling. Mul-
tidimensional modeling clubs the input data features from
each modality disregarding the modality grouping informa-
tion. On the other hand, multimodal modeling leverages
the modality grouping by separately learning dependencies
among features within each modality (a.k.a. intra-modality
dependencies) and among features across different modali-
ties (a.k.a. inter-modality dependencies), and subsequently
combining them. We demonstrate that when the distribu-
tions of the training and the test sets are identical, the gen-
eralization performance of the two modeling approaches
is indistinguishable. Multimodal modeling proves to be
advantageous over multidimensional modeling when en-
countering specific types of distribution shifts, such as shifts
in the inter- and intra-modality dependencies between train-
ing and test distributions because we can explicitly control
the contribution of these dependencies.

2. What is multimodal learning?
Multimodal learning refers to a problem setup where the
input is expressed as a set of observations from different
modalities. Unlike conventional unimodal learning, multi-
modal learning can exploit the information from multiple
modalities for modelling purposes. In this work, we are in-
terested in supervised multimodal learning, where the goal
is to map this set of multiple modalities as input to the target.

We begin with the dataset D = {(xi, yi)
n
i=1}. Without

loss of generality, yi is the binary output and xi ∈ Rn

represents the input attributes, where n is even with two
modalities, x = [x1, . . . , xn/2] and x′ = [xn/2+1, . . . , xn].
We use [x′

1, . . . , x
′
n/2] to indicate the features of the second

modality, emphasizing that these features belong to x′.
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In multimodal learning, a natural question that arises is
whether and when do we benefit from using information
about modality boundaries for multimodal learning. This
question is interesting because we can build a multimodal
learner that does not exploit the modality grouping infor-
mation by concatenating all the modalities. To answer this
question, we define multidimensional and multimodal mod-
eling in the following section: multidimensional modeling
disregards modality grouping, and multimodal modeling
exploits this information.

3. Multidimensional modeling vs. multimodal
modeling

Several studies have proposed ways to incorporate modality
boundary information, primarily by building novel archi-
tectures (Katsaggelos et al., 2015; Lin et al., 2017; Cadene
et al., 2019; Radford et al., 2021; Wu et al., 2022). We how-
ever shift our focus towards the probabilistic formulation
rather than the parameterization to study multimodal learn-
ing. In doing so, we describe two modeling paradigms for
multimodal learning. First, multidimensional modeling dis-
regards the modality grouping information by concatenating
the modalities. Second, multimodal modeling incorporates
the modality grouping information directly. In this section,
we elaborate the details of these two modeling paradigms.

3.1. Multidimensional modelling

Multidimensional modeling considers all the dimensions to-
gether as a single modality without exploiting the modality
boundaries. In addition to the input x and output y, we
introduce a match variable m in order to capture the statisti-
cal dependencies across the input features given the label.
This match variable is a binary random variable that is con-
ditioned on all the input features and the target. We only
observe the instances where the match condition is satisfied
(i.e., when m = 1):

p(x, y,m = 1) = p(y)

(
n∏

i=1

p(xi|y)

)
p(m = 1|x1, . . . , xn, y).

(1)

We characterize this data generating process as a multidi-
mensional data generating process. We use this mechanism
to break the conditional independence among the input di-
mensions given the label, which is often referred to as the
‘explaining away’ phenomenon. That is,

p(x|y) ̸=
n∏

i=1

p(xi|y). (2)

Under this data generating process, the predictive probabil-
ity over the label y encompasses both the marginal proba-
bility of the label and the relationship between the features

and the label. This can be expressed formally as follows:

log p(y|x, x′) = log p(y) + log p(x, x′|y) + const. (3)

The second term on the right hand side cannot be expressed
as a sumamtion of log p(x|y) and log p(x′|y) because x and
x′ are not conditionally independent of each other. Thus,
this predictive probability clearly shows that it is neces-
sary to model the interaction among all the observational
dimensions in order to properly predict the label.

3.2. Multimodal modeling

Multimodal modeling differs from multidimensional mod-
eling by levaraging information about the modality bound-
aries. From here on, we refer the match variable m from
multidimensional modeling as global match variable. We
incorporate the modality boundary information by intro-
ducing modality specific match variables u and u′ that are
associated with the modalities x and x′ respectively. These
match variables are always set to one. As a result, these
match variables give rise to two types of dependencies due
to the phenomenon of explaining away, as discussed earlier.

The first type of dependency is inter-modality dependency,
which is induced by the global match variable m between
different modalities. We denote it by p(m = 1|x, x′, y).
The second type of dependency is intra-modality depen-
dency, which is induced by the modality-specific match
variables u and u′ separately within the features of each
modality. The degrees of match is captured by p(u = 1|x, y)
and p(u′ = 1|x′, y).

Multimodal modeling captures inter and intra-modality de-
pendencies separately and combines them later. The joint
probability including the global and modality-specific match
variables, can be expressed as follows:

p(x, x′, y,m = 1,u = 1, u′ = 1) = p(y)

×

⌊n/2⌋∏
i=1

p(xi|y)

 p(u = 1|x, y)

︸ ︷︷ ︸
Modality 1

×

⌊n/2⌋∏
i=1

p(x′
i|y)

 p(u′ = 1|x′, y)

︸ ︷︷ ︸
Modality 2

× p(m = 1|x, x′, y). (4)

We refer to this data generating process as the multimodal
data generating process. The predictive distribution un-
der this data generating process captures the influence of
both the individual modalities on the label, as well as the
combined impact of multiple modalities on the label.
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We can write this as

log p(y|x, x′) = log p(y) + log p(x|y) + log p(x′|y)
+ log p(x, x′|y) + const. (5)

3.3. Relationship between multidimensional and
multimodal modeling

We can define multidimensional modeling and multimodal
modeling as two extremes of a spectrum, with the joint
probability represented as follows:

p(x, x′, y,m = 1,u = 1, u′ = 1) ∝ p(y)

×

⌊n/2⌋∏
i=1

p(xi|y)

 pα(u = 1|x, y)

︸ ︷︷ ︸
Modality 1

×

⌊n/2⌋∏
i=1

p(x′
i|y)

 pα(u′ = 1|x′, y)

︸ ︷︷ ︸
Modality 2

× pβ(m = 1|x, x′, y). (6)

The presence and influence of the dependencies, both intra-
modality and inter-modality, can be regulated by parameters
α and β. When α is set to zero, we revert to the joint distri-
bution of multidimensional modeling in Equation (1), where
there is no consideration of modality boundaries. Similarly,
when β is equal to zero, the joint probability simplifies to
an ensemble of unimodal predictors, where there is no de-
pendency across the modalities. On the other hand, when
both α and β are greater than zero, we recover the joint
distribution of multimodal modeling in Equation (4), which
exploits the information about modality boundaries.

4. When do these modeling paradigms differ?
In this section, we distinguish multidimensional and mul-
timodal modeling approaches by highlighting two specific
types of shifts related to the presence of modality grouping
information. More specifically, we focus on how the inter-
and intra-modality dependencies change between training
and test times. They may not change, change together or
change separately from each other. These shifts can stem
from factors such as variations in data collection methods,
dissimilar characteristics of training and testing datasets, or
external influences that affect the distribution of the global
and modality-specific match variables.

To provide readers with a more concrete example, consider
visual question answering (VQA), a task that involves an-
swering an open-ended question using information from an
associated image. Dancette et al. (2021); Si et al. (2022a)
showed that VQA contains exploitable shortcuts associated

with either image-only information, text-only information
or a combination of both. These unimodal and multimodal
shortcuts are decision rules that perform well when there is
no distribution shift; they however fail to generalize effec-
tively when faced with certain type of distribution shifts.

4.1. With inter-modality dependency shifts

The change in the conditional distribution of the global
match variable p(m = 1|x, x′, y) (a.k.a multimodal short-
cuts) is what we define as the inter-modality dependency
shift. Especially, we are interested in the case where the
inter-modality dependency that exists during training dis-
appears or weakens during test time. This is equivalent to
having a smaller β at the test time in Equation (6).

When β decreases, the dependency between modalities
weakens. This is equivalent to changing the term log p(m =
1|x, x′, y) in Equation (5). We model this by introduc-
ing a parameter ν as a coefficient of the predictive term
log p(m = 1|x, x′, y) in the predictive probability. This
parameter allows us to effectively cope with the shift in the
inter-modality dependency. The updated formulation of the
predictive distribution for multimodal modeling is

log p(y|x, x′) = log p(y) + log p(x|y) + log p(x′|y)
+ ν · log p(x, x′|y) + const. (7)

During the inference phase, when such a distribution shift
occurs, we would ideally adjust the value of ν to a smaller
value. This is reflected in the vanishing of the predictive
term log p(x, x′|y) towards zero.

In contrast to multimodal modeling, in multidimensional
modeling we do not capture the unimodal relationships
between the input and output. Thus, we cannot weaken
the inter-modality dependency separately from the intra-
modality dependencies. This differentiates multimodal mod-
eling from multidimensional modeling.

4.2. With intra-modality dependency shifts

The shift in the dependencies within a modality
p(u = 1|x, y) and p(u′ = 1|x′, y) (a.k.a unimodal short-
cuts), are defined as the intra-modality dependency shifts.
Similar to the previous case, we are interested in the case
where the intra-modality dependency that exists during train-
ing weakens during testing. This is equivalent to having a
smaller α at the test time in Equation (4). During inference,
to control the strength of the intra-modality shifts, we adjust
the values of α towards zero.

As α decreases, the dependencies within the modalities
weaken, which can be expressed by reducing the impact of
the terms log p(x|y) and log p(x′|y) in Equation (6). Thus,
to cope with the intra-modality dependency shift, we intro-
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duce parameter µ as coefficient of the terms log p(x|y) and
log p(x′|y), allowing us to adjust the contributions of these
terms in the predictive distribution. We do not have prior
knowledge about which modality exhibits a stronger depen-
dency, hence we use the same coefficient for both modalities.
The updated formulation of the predictive distribution can
be expressed as

log p(y|x, x′) = log p(y) + µ · log p(x|y) + µ · log p(x′|y)
+ log p(x, x′|y) + const. (8)

When the intra-modality dependency shifts during the test-
ing time, we adjust µ to a smaller value. to reduce the con-
tribution of the predictive terms log p(x|y) and log p(x′|y)
for each modality.

Although we model the intra-modality dependency shifts,
but it is much more realistic for the inter-modality depen-
dency to shift. This is because the features with a modality
are more tightly coupled because they tend to be acquired
from a single sensory device. Empirically based on the prior
study (Dancette et al., 2021) we do see that in VQA majority
of the shortcuts (approximately 90%) are due to the shift in
the inter-modality dependencies.

4.3. What if there was no distributional shift?

In scenarios where the distributions remain unchanged be-
tween training and test times, there is no distinction between
multidimensional and multimodal modeling approaches, in
principle. This is because multidimensional modeling sub-
sumes the modality-specific terms in Equation (5) within
log p(x, x′|y). While this observation may appear trivial,
we empirically verify it using synthetic data in Section 6,
where both approaches achieve identical performance when
we solely focus on evaluating their performance on identi-
cally distributed test set.

5. Discussion and related work
In the previous section, we examined the circumstances
under which multimodal and multidimensional paradigms
differ from each other, focusing on intra- and inter-modality
distribution shifts in multimodal learning. In this section,
we differentiate our work from earlier attempts and delve
into some properties of our analysis.

Distribution shifts. Distributional shifts in machine learn-
ing are being studied increasingly more so in recent
years (Arjovsky et al., 2019; Lipton et al., 2018; Ruan et al.,
2022; Castro et al., 2020). These studies however are neither
well-specified nor are generically applicable to a broad set
of models. Here, we instead focus on carefully defining and
studying inter- and intra-modality dependency shifts that
are relevant to multimodal learning, where we have modal-
ity grouping information. These kind of shifts have been

observed in some of the existing VQA benchmarks (Goyal
et al., 2017; Dancette et al., 2021; Si et al., 2022a). In this
work, rather than concentrating on a particular dataset, we
provide a general framework to study and express the shifts
in inter- and intra-modality dependencies mathematically.

Selection bias. To capture the dependencies among differ-
ent dimensions, we use match variables, similar to the use of
selection variables in modeling selection bias (Hernán et al.,
2004; Cortes et al., 2008; Bareinboim and Pearl, 2016). Se-
lection bias occurs when certain examples are excluded from
the dataset (Horwitz and Feinstein, 1978; Heckman, 1979;
Robins, 2001). In real-world scenarios, it is commonly
observed that the distribution of the selection variables devi-
ates between the training and testing phases (Hernán et al.,
2004; Cortes et al., 2008; Bareinboim and Pearl, 2016).

Parametrization-free analysis. Our work stands out from
existing research on multimodal learning (Katsaggelos et al.,
2015; Lin et al., 2017; Cadene et al., 2019; Radford et al.,
2021; Wu et al., 2022) in a significant way – we do not try to
come up with a better parametrization of a conditional distri-
bution over the label given multiple modalities, but instead
look at the probabilistic formulation, independent of specific
parametrization of conditional distributions. By doing so,
we illustrate that the prevailing strategy of creating novel ar-
chitectures may not yield a desired outcome in multimodal
learning. We instead look at the probabilistic generative
model of multimodal learning and identify a specific case of
distributional shift under which multimodal modeling can
be more beneficial than multidimensional modeling.

In the absence of inter-modality dependency. If we al-
ready know in advance that intra-modality dependencies
are much stronger and important than inter-modality de-
pendencies, then the best approach would be to ignore the
inter-modality dependency term in Equation (7). When the
value of ν approaches zero in an extreme case, multimodal
modeling simplifies to an ensemble of unimodal predic-
tors due to the lack of meaningful correlation between the
modalities (Wu et al., 2022; Makino et al., 2022).

Consider an example of tiger detection, where y = 1 (indi-
cating the presence of a tiger). The first modality is shape
information, and the second modality is texture information.
When y = 0, the first modality would have a random shape,
and the second modality a random texture. Conversely,
when the label is “tiger”, i.e., y = 1, first modality (shape)
has a tiger-like shape, regardless of the second modality
(texture) and the same applies to the texture modality. This
implies that β = 0 i.e., there is no special dependency
between these two modalities.
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Figure 1: Results for Inter-modality dependency shift.
(Left) Accuracy comparison between multidimensional, en-
semble of unimodal predictors and multimodal modeling
with varying β during inference. (Right) Change in optimal
ν with changing β during inference. Red curve represents
the ν obtained during training.
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Figure 2: Results for Intra-modality dependency shift.
(Left) Accuracy comparison between multidimensional, en-
semble of unimodal predictors and multimodal modeling
with varying α during inference. (Right) Change in optimal
µ with changing α during inference. Red curve represents
the µ obtained during training.

6. Experiments
To differentiate multidimensional and multimodal modeling,
we examine the shifts in the inter- and intra-modality depen-
dency during testing. We create a synthetic data generating
process that allows us to control the strength of these depen-
dencies and show a clear advantage of multimodal modeling
when there is a shift in these dependencies.

6.1. Experimental Setup

The label y is generated from a Bernoulli distribution and
six features x = {x0, . . . x5} are drawn from a normal dis-
tribution with a mean of (0.1i+ 0.1) · (y − 0.5) for xi. m
follows a Bernoulli distribution, with its mean determined
by σ′(βx1x2x3, 0.1) · y + σ′(−βx1x2x3,−0.3) · (1 − y).
σ′(x, λ) = 1

1+exp (−(x+λ)) denotes the shifted sigmoid
function. Similarly, u and u′ follow Bernoulli distributions
with means σ′(αx0x1, 0.3)·y+σ′(−αx0x1,−0.5)·(1−y).
and σ′(αx4x5, 0.2) · y + σ′(−αx4x5,−0.4) · (1 − y) re-
spectively. β and α are used to control the intra- and inter-
modality dependencies in the multimodal data generating
process. We generate a total of 20,000 samples, with an
equal distribution of 10,000 samples for each class. These
samples were then divided into three subsets: 60% for train-
ing, 20% for validation, and 20% for testing.

6.2. Quantitative results

Performance with inter-modality dependency shift. To
simulate the shift in inter-modality dependency, we fix α to
one and β to two during the training phase. During testing,
we introduce variation in the value of β within the range
of −β to β, thereby replicating the desired shift. Figure 1
shows the impact of inter-modality dependency shift on dif-
ferent modeling paradigms. As expected, multidimensional
modeling experiences a significant decrease in accuracy
when this dependency weakens. Conversely, multimodal
modeling with optimal ν and an ensemble of unimodal

predictors consistently outperforms multidimensional mod-
eling. To verify our hypothesis, the optimal ν was found
using random search on the validation set of the shifted dis-
tribution. As β increases, optimal ν proportionally increases
as well since ν captures the strength of the inter-modality
dependency in the predictive distribution.

Performance with intra-modality dependency shift. We
replicate the inter-modality dependency shift by keeping α
and β constant to one during training. Then, during test-
ing, we vary α within the range of −α to α. The results
are demonstrated in Figure 2. The accuracy of the uni-
modal ensemble experiences a substantial decline as the
intra-modality dependency weakens. Similarly, multidimen-
sional modeling’s performance is also affected, although it
performs relatively better. On the other hand, multimodal
modeling consistently achieves higher accuracy across all
values of α. As expected, the optimal µ obtained through
random search exhibits a consistent upward trend even when
intra-modality dependency shifts during testing time.

7. Conclusion
In this work, we focus on supervised multimodal learn-
ing, where in addition to the relationship between inputs
and outputs, we have the modality grouping information.
Taking a probabilistic perspective, we explore two model-
ing paradigms for multimodal learning: multidimensional
modeling, which treats the features as a single modality
and multimodal modeling, which takes into account the
modality grouping information. We distinguish these two
modeling paradigms by highlighting two specific types of
shifts relevant to multimodal learning. Specifically, we
show the advantages of multimodal modeling in the pres-
ence of shift in the inter- and intra-modality dependencies.
Conversely, when these dependencies remain unchanged
between training and testing, these modeling paradigms in
principle collapse onto each other.
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