
Under review as a conference paper at ICLR 2023

PROTECTING DNN FROM EVASION ATTACKS USING
ENSEMBLE OF HIGH FOCAL DIVERSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Edge AI continues to attract emerging applications that deploy well-trained DNN
models on heterogeneous edge clients for real-time object detection. Recent stud-
ies have shown that evasion attacks on DNN object detection models at the test
time are on the rise. Such evasion attacks generate deceptive queries using ma-
liciously manipulated or out-of-distribution data, aiming to mislead high-quality
object detectors during edge inference. This paper introduces ODEN, a novel ap-
proach to object detection ensemble, which combines a detection inconsistency
solver with focal diversity-optimized ensemble pruning to defend against evasion
attacks. The focal diversity ranking techniques enable ODEN to compose an en-
semble from a pool of base object detectors with high failure independence, which
strengthens the generalization performance of the ODEN ensemble in the pres-
ence of irregular query data and evasion attacks. The ODEN inconsistency solver
can detect and resolve three types of inconsistency by combining detection results
from multiple DNN object detectors: the inconsistency of the object existence, the
size and location inconsistency of the bounding boxes of detected objects, and the
classification inconsistency of detected objects and their confidence. Extensive
experiments on three benchmark vision datasets (OpenImages, COCO, and VOC)
show that under no attack, ODEN can outperform existing ensemble methods by
up to 9.33% of mAP. Compared to the low mAP of 2.64~18.07% under four eva-
sion attacks, ODEN can maintain a high mAP of 58.97~86.00%, achieving up to
an 82.44% increase in AI safety.

1 INTRODUCTION

Evasion attacks allow an adversary to control the detection capability of well-trained DNN mod-
els by generating deceptive queries. Apart from irregular out-of-distribution data, a representative
approach to creating such queries is to use the gradients of object detection models to find tiny
perturbations to input (Chow et al., 2020a). The patterns can mislead the kernels in DNN object de-
tectors to amplify the perturbation, which becomes large enough to interfere with the final decision
in the output layer. Such attacks can drastically reduce the detection accuracy in mAP (mean average
precision (Everingham et al., 2015)). Figure 1a shows that under four evasion attacks: TOG (Chow
et al., 2020a), DAG (Xie et al., 2017), RAP (Li et al., 2018), and UEA (Wei et al., 2019), the mAP of
a Faster RCNN (FRCNN) (Ren et al., 2015) model drastically drops from 67.37% to 2.64~18.07%.
This deception-induced malfunctioning can lead to severe consequences in safety-critical edge AI
applications such as autonomous vehicles (Feng et al., 2021) and intelligent surveillance (Teixidó
et al., 2021).

This paper presents ODEN, a focal diversity-enhanced ensemble framework for real-time object
detection with dual goals: (i) to improve the safety of edge AI under evasion attacks and (ii) to
enhance the generalization performance of DNN models in benign scenarios for high-quality edge
inference. Unlike reactive defense methods, ODEN is a proactive methodology with built-in auto-
verification and auto-repairing capability through two novel and synergistic functional components:
(i) the inconsistency solver for producing robust ensemble detection results by attesting and restor-
ing inconsistent detection results from multiple member models of an ensemble, and (ii) the fo-
cal diversity-optimized ensemble pruning for producing the sub-ensemble of high focal diversity
(high failure-independence) and small ensemble size, hence strengthening the effectiveness of our
inconsistency solver at a low computational cost. First, unlike the ensemble of single-task learn-
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(a) Evasion attack to FRCNN (b) Protection by ODEN

Figure 1: Evasion attacks can cause well-trained object detectors (FRCNN in this example) to have severely
reduced mAP. ODEN is a protection mechanism to enhance mAP under both benign and attack scenarios.
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Table 1: A deceptive query (1st row) can mislead three object detectors to misbehave (1st-3rd columns). Since
the ODEN focal diversity encourages models to make errors differently, the inconsistency solver can construct
correct decision (4th column). The same can happen to the benign scenario (2nd row) with no attack.

ers such as DNN image classifiers (Wu et al., 2021b), DNN object detectors are multi-task learn-
ers (Redmon & Farhadi, 2018). ODEN has to deal with inconsistent detection results on all three
learning tasks from each ensemble member model: inconsistency in object existence detection, in-
consistency in bounding box locations of detected objects, and inconsistency in the classification
of detected objects and their confidence scores. The inconsistency solver of ODEN distills those
disagreeing predictions from the member models of an ensemble by jointly calibrating (i) the de-
tection inconsistency in object existence and (ii) the perception inconsistency of detected objects,
including their bounding boxes and their prediction confidence scores. Second, we introduce a focal
diversity-optimized ensemble selection method, which can select the top-k ensembles from a pool
of base DNN models using their focal detection diversity scores, ensuring that an ensemble with
high focal diversity will result in high mAP performance under both evasion attacks and benign test
scenarios. Figure 1b shows that ODEN can perform auto-verification and auto-repairing to boost
the defensibility, achieving up to a 82.44% increase in edge AI safety under four evasion attacks
and enhancing the benign mAP performance of FRCNN from 67.37% to 86.77%. Table 1 provides
illustrative visualization examples. Consider the first three columns. The 1st row shows a deceptive
query example generated by TOG (Chow et al., 2020b) at test time, which deceives all three DNN
models pre-trained independently though the adverse effect of deception may vary. Model 1 fabri-
cates two fake objects and cannot detect the person, while the other two models incorrectly detect
one additional object. The 2nd row shows that even with a benign query at test time, these three
DNN detectors may not succeed and interestingly fail independently. We show in the 4th column
and Figure 1b that the ODEN-optimized detection ensemble can outperform the best-performing
member detector in mAP under evasion attacks and in benign scenarios, thanks to both the ODEN
focal diversity ensemble selection, which selects the detectors of high failure-independence to form
an ensemble, and the ODEN inconsistency solver, which efficiently combines two types of detection
calibrations to rectify three levels of inconsistency.

This paper makes two original contributions. First, we present a robust inconsistency solver to distill
disagreeing predictions from member models of an ensemble. Second, we introduce the concept of
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focal detection diversity to measure the failure independence of member models of an ensemble and
propose a focal diversity-optimized ensemble pruning method, which selects top sub-ensembles in
terms of their high focal diversity scores, ensuring high mAP performance under benign scenarios
and evasion attacks. We conduct extensive experiments with three popular vision benchmarks: MS
COCO (Lin et al., 2014), Open Images (Kuznetsova et al., 2020), and PASCAL VOC (Everingham
et al., 2015), under four recent evasion attacks to DNN object detection. Our evaluations show
three important results: (1) Object detection ensembles from ODEN consistently offer high mAP
over the best-performing member and improve the ensemble performance by about 9.33% in mAP
compared to the existing representative detection ensemble methods. (2) ODEN can effectively
select the top-k ensemble teams based solely on their high focal diversity scores, demonstrating the
novelty and importance of our focal diversity-optimized ensemble pruning. (3) The combination of
our inconsistency solver and focal diversity ensemble selection empowers the ODEN-enabled edge
systems for object detection with high defensibility against state-of-the-art evasion attacks.

2 RELATED WORK

Evasion Attacks. Evasion attacks include adversarial input perturbations, such as DAG (Wei et al.,
2019), RAP (Xie et al., 2017), UEA (Li et al., 2018), and TOG (Chow et al., 2020a), and malicious
physical world attacks using small color-dense patches (Song et al., 2018; Thys et al., 2019). They
differ from one another in attack strategies. DAG and RAP attack the object existence prediction
and bounding box regression components to cause the victim to misbehave randomly. UEA utilizes
GAN to generate adversarial perturbations with attention regularization but tends to inject unneces-
sarily larger noise in comparison. TOG is a general-purpose evasion attack with both random attack
and targeted attack formulations, such as TOG-vanishing, TOG-fabrication, and TOG-mislabeling.
These attacks have shown transferability properties (Staff et al., 2021).

Evasion Defenses. Compared to the evasion attacks to well-trained DNN object detection algo-
rithms, such as FRCNN (Ren et al., 2015), SSD (Liu et al., 2016), and YOLOv3 (Redmon &
Farhadi, 2018), there has been limited study on defense methods for mitigating these threats. First,
existing defenses against adversarial examples crafted to evade single-task learners like DNN classi-
fiers are not applicable to object detection (Zhang et al., 2021), including adversarial training-based
defenses (Bai et al., 2021). For example, the adversarial training of DNN object detectors (Zhang &
Wang, 2019) suffers from significant performance reduction in benign mAP (dropped by 31.38%),
while it can only improve the mAP of FRCNN under DAG attack to 35.58%.

DNN Ensembles. Neural network ensembles are known to provide better generalization perfor-
mance (Geman et al., 1992; Sharkey, 2012). Most of the existing attempts have been made to create
DNN ensembles for image classifiers (Wu & Liu, 2021). In comparison, the DNN ensemble for
object detection has received much less attention in both benign scenarios and under recent evasion
attacks. Clearly, the consensus with majority voting popularly used for classification ensembles is
not applicable. It fails miserably when dealing with detection inconsistency because different de-
tectors may detect different sets of objects in terms of existence, the bounding box size and location
of detected objects, and their classification prediction and confidence. NMS (Neubeck & Van Gool,
2006) and SoftNMS (Bodla et al., 2017) are popularly used to merge disagreeable bounding boxes
in training a DNN object detector. Hence, they are used as the two baselines for comparison with
ODEN. NMW (Zhou et al., 2017) and FUSE (Chow & Liu, 2021) are recent enhancements for com-
bining detection results from multiple detectors. Both use a set of hand-picked models pre-trained
using different NN backbones to compose an ensemble, where FUSE uses SoftNMS and NMW uses
soft-weighting to recompute the confidence for each detection.

3 ODEN METHODOLOGY

Given an ensemble of N object detection models, denoted by F = {F1, ..., FN}, a query image x
to the ensemble F will be first sent to each of its N member models in parallel and obtain a set of
predictions, denoted by {Fi(x)|Fi ∈ F }. The problem of an object detection ensemble is to find
a detection combination function E that maps the collection of candidate detection sets, one from
each member model of the ensemble, to a carefully-constructed set of ensemble detected objects as
close as possible to the ground-truth objects G of the query x in a dataset D, i.e.,

min
(x,G)∈D

||E(F1(x), ..., FN (x))− G||, (1)
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Figure 2: The framework for ODEN inconsistency solver.

where || · || denotes the difference between the ensemble detected objects and the ground truth. In
particular, for a member Fi, each of its detected objects oi,j ∈ Fi(x) has two perceptual attributes:
(i) the estimated bounding box bi,j = (bxmin

i,j , bymin
i,j , bxmax

i,j , bymax
i,j ), recorded by the top-left and bottom-

right corners of the object in the input image and (ii) the predicted K-class probability vector pi,j =
(p1i,j , p

2
i,j , ..., p

K
i,j) indicating the object classification result. Hence, each detected object can be

formally described by oi,j = (bi,j , `i,j , ci,j) where `i,j = arg max1≤k≤K pki,j is the class label and
ci,j = max1≤k≤K pki,j is the prediction confidence.

3.1 ODEN Inconsistency Solver
The ODEN inconsistency solver is a critical functional component for generating ensemble outputs
by solving the three learning task-level inconsistency from multiple member detectors of an ensem-
ble: (i) the inconsistency in object existence detection, (ii) the inconsistency in bounding box size
and location of detected objects, and (iii) the inconsistency in classification prediction and confi-
dence of detected objects. Figure 2 gives an architectural overview of our inconsistency solver with
three phases of calibration and distillation.

Phase I: Candidate Detection Grouping. The goal of candidate detection grouping is to perform
entity resolution: It determines whether two detected objects from different member models refer to
the same entity and thus are associated based on (i) whether they are detected with the same class
label and (ii) whether their bounding boxes (BBoxes) overlap significantly. Given a set of detection
results from each of the N member models in an ensemble, we first partition all detected objects by
their class label and sort the detected objects of each class in the descending order of their prediction
confidence scores and produce a sorted list of detected objects for each class `, denoted by O`.
Second, we further partition the sorted list O` into different groups. Each corresponds to the same
entity. Concretely, we find the detected object with the highest confidence in O` and use it as the
anchor prediction for the first group. Then, we choose the next detected object oj ∈ O` and assign
it to a group γ if it satisfies the following conditions: (i) the model detecting the object oj has not yet
contributed any detected object to the group γ, and (ii) there is a significant overlapping between the
detected object oj and those already in the group γ. Otherwise, we will create a new group with oj .
This process repeats until all detected objects in the partition O` are examined and added to a group.
There are several options to make the overlapping comparison between the oj and those already in
the group γ: The object with the highest detection confidence is used as the anchor, denoted by
oanchor(γ) = arg maxoi∈γ ci where ci is the confidence of the detected object oi in group γ.
Choosing the BBox of the anchor detection as the representative BBox of the group γ, we can
formally compare the BBox bj of an object oj as follows: βanchor(oj ,γ) = IOU(bj , banchor(γ)),
which denotes the anchor detection-based overlapping. (2) An alternative is to examine the BBox of
every detected object in the group γ and use the minimum overlapping to compare with a threshold
TIOU (i.e., 0.50). We call this the lower bound (LB) approach and define βLB(oj ,γ) as follows:
βLB(oj ,γ) = min[{IOU(bj , br) | or ∈ γ}]. (3) Another technique to computing the overlapping
of an object oj with the group γ is to generate the representative BBox of the group γ by averaging
all BBoxes of the detected objects in the group, weighted by their confidence scores, and measure the
overlapping with it. We call this option the weighted averaging approach, denoted as βWA(oj ,γ):

βWA(oj ,γ) = IOU(bj ,
∑
or∈γ

brcr/
∑
oi∈γ

ci). (2)

The final result of Phase I is a list of groups, denoted by Γ, where each group γ ∈ Γ contains a set of
detected objects of the same class label, each from a different member model, and all recognizing the
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same entity. By default, ODEN uses the weighted averaging (WA) approach to define the significant
overlapping for grouping. We provide the pseudocode in Algorithm 1 in the appendix.

Phase II: Per-Group BBox Calibration. Different detectors often generate different bounding
boxes and different confidence scores for their detection, and all detected objects in each group γ ∈
Γ have the same class label and correspond to the same entity. To generate the ensemble detection
results, each characterizes the delegate object representing a group, we need to compute the exact
bounding box (location and size) by aggregating the BBoxes and the different confidence scores
of the detected objects in each group. Based on how the group is composed, several approaches
can be employed to calibrate the bounding boxes of each group. If we use the anchor detection for
grouping (i.e., βanchor), we can return the bounding box banchor(γ) of the anchor as the calibrated
BBox. Alternatively, if we use the overlapping lower bound βLB or the weighted averaging βWA,
we can compute the BBox of the delegate object by aggregating the bounding boxes of all detected
objects in the group, each is weighted by the confidence of the corresponding detection. Formally,
the bounding box b̂ of the delegate object is computed as:

b̂ =

(∑
oi∈γ b

xmin
i ci∑

oj∈γ cj
,

∑
oi∈γ b

ymin
i ci∑

oj∈γ cj
,

∑
oi∈γ b

xmax
i ci∑

oj∈γ cj
,

∑
oi∈γ b

ymax
i ci∑

oj∈γ cj

)
. (3)

The confidence-weighted calibration of the bounding boxes incorporates both the estimated location
and size of each bounding box and how certain the estimation is from each corresponding member.
We use this approach as the default in our prototype of ODEN.

Phase III: Per-Group Confidence Calibration. Upon completing the first two phases, we obtain
the list Γ of groups, and for each group γ ∈ Γ, we have the class label ˆ̀ and the bounding box b̂
for the delegate object representing the group. An intuitive approach to computing the confidence ĉ
for the delegate object of each group is to take the average of the confidence scores of the detected
objects in the group γ: ĉ =

∑
oi∈γ ci/|γ|. However, this approach does not consider the votes

from different member models of the ensemble and can work poorly when the member models gen-
erate fake detection, which is the weakness of existing techniques (Neubeck & Van Gool, 2006;
Bodla et al., 2017; Zhou et al., 2017). A fake object produced by one model without significant
overlapping with the others will form a single-object group with high confidence. One solution is
to aggregate the confidence scores of all the detected objects normalized by the ensemble size N :
ĉ =

∑
oi∈γ ci/N . If the group γ contains the detected objects from only a few member models, the

ensemble detection should be assigned low confidence, reflecting that the delegate object represent-
ing the group is less likely to correspond to a real entity compared to another group supported by a
larger number of member models. The third approach is learn to calibrate, which trains a model for
confidence calibration using the validation data. It is motivated by the observation that a group hav-
ing the detected objects of high confidence and high overlapping with their bounding boxes is more
likely to correspond to a real entity, compared to a group having objects of low confidence and with
marginally overlapping bounding boxes. Instead of manually examining these statistics for all the
groups on each input image, the learn-to-calibrate approach will first perform feature extraction for
each group γ to summarize useful perceptual properties of the group. Let Vc denote the confidence
vector of N elements for group γ, each element denotes the confidence of the detected object from
a member model. Similarly, let VIOU denote the IOU vector of the group with N elements, each
denotes the overlapping between the BBox of each detected object in the group γ and that of the
delegate object representing the group. Zero confidence and IOU are assigned if a member does not
contribute any detected object to the group. We define the features extracted for the group γ as the
concatenation of these two vectors: Θ(γ,F ) = Vc||VIOU. To learn how to calibrate the confidence
of the delegate object representing the group γ, we train a model to estimate the probability of a
given group corresponding to a real entity in the ground truth, i.e., P (REAL = TRUE|Θ(γ,F )). We
employ logistic regression to estimate such a distribution and compute the calibrated confidence ĉ:

ĉ =

∑
oi∈γ ci

N(1 + exp(−(WΘ(γ,F ) + b)))
, (4)

whereW and b are learned using a validation set. The learn to calibrate is used by default in ODEN.

3.2 Diversity-based Ensemble Selection
Given a pool of N base models, we can formulate 2N − (N + 1) teams with the size ranging from
2 to N . For instance, a 10-model pool leads to 1, 013 teams, and the number of choices jumps
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exponentially to 1, 048, 555 when N = 20. In this section, we first introduce the focal detection
ensemble diversity measure and then describe the ensemble selection algorithm. The selected sub-
ensembles are of high focal diversity, can outperform the best-performing model in the respective
team, and tend to have a smaller committee size yet more accurate than using all availableN models
to form a large ensemble.

Focal Detection Ensemble Diversity. We adopt a focal model paradigm (Wu et al., 2021b) for
diversity assessment. For each sub-ensemble of size M , we consider each member as a focal model
to evaluate the diversity of the ensemble based on the negative samples of the focal model from a
validation set. Finding negative samples of an object detection model is non-trivial because an object
detector tends to detect far more objects than those in the ground truth set and it requires a confidence
threshold to decide which ones to discard. An inadequate decision on the threshold may result in
unnecessary false positives (too low) or false negatives (too high). In light of this, we implement
a ranking-based approach for negative sample determination, which first sorts the detected objects
of the focal model in the descending order of their confidence and finds a one-to-one mapping to
the set of ground-truth objects. The approach requires the correctly detected objects to have higher
confidence than other irrelevant detection (i.e., no false positives), and all ground-truth objects will
be recognized (i.e., no false negatives). We provide the pseudocode in Algorithm 2 in the appendix.

Given an ensemble F of M models (M ≤ N ), we compute M focal detection diversity scores
by considering each member to be the focal model. Given a focal model Ffocal, we obtain a set of
negative samples and measure the focal model-based disagreement among the otherM−1 members.
In our prototype of ODEN, we measure the focal ensemble diversity by leveraging the non-pairwise
general disagreement (Partridge & Krzanowski, 1997). Let Y denote a random variable representing
the proportion of models (i.e., i out of M ) that fail to recognize a random input sample x defined
in Algorithm 2. The probability of Y = i

M is denoted as pi. The focal diversity of an ensemble
F = {F1, ..., Ffocal, ..., FM} of size M w.r.t. the focal model Ffocal is defined as follows:

divfocal(F , Ffocal) = 1−
∑M

i=1
i
M pi∑M

i=1
i(i−1)

M(M−1)pi
, (5)

where divfocal is in the range of [0, 1] with the maximum diversity score of 1 when the failure of one
member model is accompanied by the correct recognition by the other.

Focal Diversity-based Ensemble Selection. Given a pool of N base models, say N = 10, by
choosing F1 as the focal model, we can compare all the sub-ensembles of size M containing
F1 as the focal model by their focal diversity scores. For M = 5, we have a total of 126 sub-
ensembles containing the focal model F1. We can utilize the focal diversity measure divfocal(F , F1)
to partition this set into those sub-ensembles of high focal diversity and those with low diver-
sity and select the top-k sub-ensembles of highest focal diversity as our recommendation for the
top-performing teams. For a given focal model Ffocal, we denote ΛFfocal,M to be the set of sub-
ensembles of size M containing the focal model Ffocal. Using Equation 5, we measure the fo-
cal ensemble diversity of each sub-ensemble and obtain the diversity-accuracy set, defined by
DA = {divfocal(F , Ffocal),ACC(F ))|F ∈ ΛFfocal,M }, where ACC(·) returns the mAP using ODEN’s
detection combination algorithm. To identify those ensembles with high focal diversity, we define
two initial centroids: one for the cluster with high ensemble diversity using the maximum diversity
and accuracy of ensembles in the DA set, and one for the low diversity using the minimum diversity
and accuracy of ensembles in the DA set. Then, we partition the DA set using a binary clustering
algorithm, such as K-Means, and use the largest diversity in the cluster with low diversity as the
cut-off threshold. For each sub-ensemble of M member models, each of the M models will be used
as a focal model once and thus it will have M focal diversity scores. For example, the ensemble
F1,2,3 (i.e., a team with F1, F2, and F3 as members) has three focal diversity scores: one in ΛF1,3

with F1 as the focal model, one in ΛF2,3 with F2 as the focal model, and the third one in ΛF3,3 with
F3 as the focal model. Let HDENSSETFfocal,M,F be the partition of the sub-ensembles of size M
with high focal diversity for a given focal model Ffocal. We can use affirmative vote or unanimous
vote to determine if an ensemble should be recommended. Using the unanimous voting scheme (in-
tersection), an ensemble E is selected if E ∈

⋂N
i=1 HDENSSETF focal

i ,M,F . Using affirmative voting

(union), an ensemble E is selected if E ∈
⋃N

i=1 HDENSSETF focal
i ,M,F . The affirmative voting is used

as the default in the prototype of ODEN.
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(a) MS COCO (b) PASCAL VOC (c) Open Images

Figure 3: ODEN outperforms three representative detection ensemble methods in benign mAP and the best-
performing base model in the respective pool marked by the horizontal line. Compared to ODEN (no-focal),
ODEN achieves better mAP by using the ensemble of the highest focal diversity.

4 EXPERIMENTAL EVALUATION

MS COCO Open Images PASCAL VOC
Model mAP Model mAP Model mAP

F1 SSD300-R 52.47 CRCNN 50.60 FRCNN 67.37
F2 SSD300-V 46.70 RetinaNet 51.99 SSD300 76.11
F3 SSD512-R 57.67 CRCNN-FPN 50.55 SSD512 79.83
F4 SSD512-V 55.81 MRCNN 49.14 YOLOv3-D 83.43
F5 SSD512-M 42.70 FRCNN 45.28 YOLOv3-M 71.84
F6 YOLOv3-D 67.91 - - - -
F7 YOLOv3-M 60.20 - - - -

Best YOLOv3-D 67.91 RetinaNet 51.99 YOLOv3-D 83.43
Avg. - 54.78 - 49.51 - 75.72

Table 2: A summary of base models for three
benchmark datasets in experiments.

We conduct experiments on three object detection
benchmarks: (i) MS COCO (Lin et al., 2014) with
80 classes of objects, (ii) Open Images (Kuznetsova
et al., 2020) with 500 classes of objects, and (iii)
PASCAL VOC (Everingham et al., 2015) with 20
classes of objects with the standard accuracy metric,
mean average precision (mAP) (Everingham et al.,
2015). Table 2 summarizes the seventeen base mod-
els used in our experiments, including their mAP,
the best-performing model, and the average mAP
of each pool. For edge inference, we tested ODEN
on an edge client connected to multiple Intel Neural
Compute Stick 2 (Intel). The source code of ODEN is available at [anonymized].

4.1 BENIGN DETECTION PERFORMANCE ANALYSIS

We first evaluate ODEN under no attack because maintaining high benign mAP is a prerequi-
site for any defense mechanism to be usable in practice. Figure 3 compares ODEN with non-
maximum weighted (NMW), soft non-maximum suppression (SoftNMS), and non-maximum sup-
pression (NMS) in terms of benign mAP on three vision benchmarks. ODEN refers to our ensemble
with both inconsistency solver and focal diversity ensemble pruning turned on. The team with the
highest focal diversity is F1,3,4,6,7 for MS COCO, F1,2,3,4 for PASCAL VOC, and F1,2,3,5 for Open
Images. To provide a zoom-in comparison of ODEN with NMW, SoftNMS, and NMS, which use
the entire base model pool as the ensemble, we also include ODEN (no-focal), which is the version
of ODEN that has the inconsistency solver but does not use focal diversity-optimized ensemble prun-
ing. Instead, the entire pool of the base models is used as the ensemble team. We make two observa-
tions. First, both ODEN and ODEN (no-focal) significantly outperform existing approaches for all
benchmark datasets, and both provide better generalization performance than the best-performing
base model in the pool. Second, compared to ODEN (no-focal), we show that the generalization
performance of ODEN can be further strengthened by combining the detection inconsistency solver
with the focal diversity ensemble pruning. Table 3 provides two visual examples to compare ODEN
(the 4th column) with three existing baselines: NMW, SoftNMS, and NMS (the 5th to 7th columns).
We use the same ensemble team of F2,3,4 on PASCAL VOC for a fair comparison. The compari-
son shows their effectiveness in resolving detection inconsistency when combining partially correct
decisions from individual member models (the 1st to 3rd columns). Consider the first example, F2

and F3 correctly recognize the car, but they either estimate a wrong bounding box for the pedestrian
or misdetect a fake bird. While F4 can detect the pedestrian, the bounding box of the car is impre-
cise. ODEN produces the correct detection of the pedestrian by combining the two correct bounding
boxes from F3 and F4. The per-group confidence calibration in ODEN reduces the confidence of the
incorrect person bounding box by F2 from 0.99 to 0.03, which is negligible and thus not considered a
false positive. In contrast, the incorrect person bounding box from F2 is preserved by the other three
methods with high confidence, even though it is only detected by one out of three member models.
Similar observations can also be made on the fake bird by F3, where ODEN successfully corrects the
confidence to remove it from the detection results of the ensemble, while the other three approaches
still include it with a confidence of 0.93. These results demonstrate that the per-group BBox and
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Member Model Detection Ensemble Detection F2,3,4

Member F2 Member F3 Member F4 ODEN NMW SoftNMS NMS

Table 3: Detection results on two test images by three member models and four ensemble methods using the
same ensemble team F2,3,4. ODEN inconsistency solver successfully removes false positives.

Dataset MS COCO Open Images PASCAL VOC
Ensemble F1,2,3,4,5,6,7 F1,2,3,4,6,7 F1,3,4,6,7 F1,3,6,7 F1,4,6 F1,2,3,4,5 F1,2,3,5 F1,2,3 F1,2,3,4,5 F1,2,3,4 F2,3,4

mAP 70.70% 71.32% 72.38% 72.19% 71.69% 60.14% 61.09% 60.33% 86.37% 86.77% 86.62%
mAP Gain 0% +0.62% +1.68% +1.49% +0.99% 0% +0.95% +0.19% 0% +0.40% +0.25%
Best Mem. (mAP) F6(67.91%) F6(67.91%) F6(67.91%) F6(67.91%) F6(67.91%) F2(51.99%) F2(51.99%) F2(51.99%) F4(83.43%) F4(83.43%) F4(83.43%)
Best Mem. mAP Gain +2.79% +3.41% +4.47% +4.28% +3.78% +8.15% +9.10% +8.34% +2.94% +3.34% +3.19%
Team Size 7 6 5 4 3 5 4 3 5 4 3
Cost 100% 86% 71% 57% 43% 100% 80% 60% 100% 80% 60%

Table 4: An illustration of diversity-based ensemble selection by examples in ODEN. The 4th and 6th rows
compare the mAP gains of using the ensembles selected by high diversity compared to the ensemble composed
of all base models and the best mAP member model. The last two rows show that the higher mAP of sub-
ensembles can be achieved with smaller ensemble team size and lower execution cost.

Figure 4: ODEN improves mAP
over the best-performing member.

confidence calibration modules in ODEN play significant roles in
boosting the ensemble robustness when member models gener-
ate fake detection with high confidence. Figure 4 shows a quan-
titative comparison with the same team, where NMS and Soft-
NMS perform worse than the best member (F5) with an mAP of
83.43%, and ODEN reaches an ensemble mAP of 86.62%, hav-
ing a 3.19% improvement. Table 4 gives the top-k sub-ensembles
with the highest diversity scores identified by ODEN on MS
COCO (top-4), Open Images (top-2), and PASCAL VOC (top-
2). The 2nd, 7th, and 10th columns show the teams using all
available models in the respective pool (i.e., the ODEN (no-focal) in Figure 3). In such cases, the
detection mAP reaches 70.70% on MS COCO, 60.14% on Open Images, and 86.37% on PASCAL
VOC. Ensembles with a smaller size can lead to a higher mAP than the ensemble composed of all
base models. For example, the 5-member ensemble F1,3,4,6,7 on MS COCO achieves an mAP of
72.38%, which is +4.47% higher than the best member model and +1.68% higher than the ensem-
ble using all seven models, while the cost of ensemble execution is only 71% compared with the
ensemble using all base models. Similar observations can be made in the other two datasets.

4.2 DEFENSIBILITY UNDER EVASION ATTACKS

This section evaluates how effective ODEN can protect object detection against evasion attacks.
We conduct experiments on PASCAL VOC using four state-of-the-art evasion attacks: TOG (Chow
et al., 2020b), UEA (Wei et al., 2019), RAP (Li et al., 2018), and DAG (Wei et al., 2018). We
compare ODEN and ODEN (no-focal) with three ensemble defense methods (NMW, SoftNMS, and
NMS) and adversarial training (AdvDetTrain) (Zhang & Wang, 2019). We report the comparison
results in Table 5. F1 (i.e., FRCNN) is the victim model. We make three observations. First, ODEN
outperforms ODEN (no-focal) and the other three ensemble approaches as well as the representative
adversarial training defense under all four evasion attacks and in benign scenarios (2nd column).
Second, all five ensemble methods significantly outperform the adversarial training defense under
all four evasion attacks and in benign scenarios. Third, the ensemble methods NMW, SoftNMS,
and NMS suffer severely under TOG evasion attack with a low mAP of 13.41~17.56%, showing
its poor defensibility. In comparison, AdvDetTrain offers slightly better defensibility under TOG
attack (from 2.64% to 34.07%), but the benign mAP drops significantly from 67.37% to 35.99%.

Table 6 provides the visualization of the defensibility of ODEN under TOG targeted attacks: TOG-
vanishing (row 1), TOG-fabrication (row 2), and TOG-mislabeling (row 3) (Chow et al., 2020b). It
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Benign
mAP (%)

Attack mAP (%)
TOG UEA RAP DAG

No Protection
F1: FRCNN 67.37 2.64 18.07 4.78 3.56

Protected
ODEN
(Inconsistency solver + focal pruning) 86.77 81.47 58.97 84.67 86.00

ODEN (no-focal)
(Inconsistency solver only) 86.37 80.34 57.98 84.17 84.68

NMW
(Zhou et al., 2017) 82.98 17.56 54.64 75.65 76.29

SoftNMS
(Bodla et al., 2017) 82.23 13.41 53.29 76.67 76.11

NMS
(Neubeck & Van Gool, 2006) 82.15 16.86 54.08 75.02 76.01

AdvDetTrain
(Zhang & Wang, 2019) 35.99 34.07 17.67 35.60 35.58

Table 5: Defensibility comparison under four evasion
attacks on PASCAL VOC.

Member Model Detection ODEN
F1,3,4F1 (Victim) F3 F4

TO
G

-v
TO

G
-f

TO
G

-m

Table 6: Detection results by three member mod-
els and ODEN under three targeted TOG attacks.

shows the detection results by three member models (the 1st to 3rd columns) on PASCAL VOC and
the ensemble team F1,3,4 (the 4th column) under three different TOG attacks, and F1 is the victim.
TOG-v fools the victim model F1 to detect no object, TOG-f deceives the victim model F1 to detect
the extra person and the car, and TOG-m makes the victim model mislabel the person as a plant. As
shown in the 4th column, ODEN successfully attests and restores the correct decision, showing that
ODEN can defend against both untargeted and targeted evasion attacks. Additional experiments and
visualization are provided in the appendix.

4.3 COMPUTATION TIME ANALYSIS

This section reports the computation time comparison in Figure 5 on PASCAL VOC. We
compare the average time spent to detect one query image using ODEN, ODEN (no-
focal), NMW, SoftNMS, and NMS. This includes the model inference and detection com-
bination time in milliseconds. Even though ODEN uses the focal diversity-optimized en-
semble, which is F1,2,3,4, instead of the ensemble of all five detectors in the base model
pool like the other approaches, the computation time is comparable. This is because
all ensemble methods run on an edge node with Intel Neural Compute Stick 2 (Intel),

Figure 5: Computation time analysis for de-
tecting objects on an image.

enabling parallel execution of all five member mod-
els (Wu et al., 2021a). Other alternative Edge AI ac-
celerators include NVIDIA Jetson (NVIDIA) and Google
Coral (Coral). Hence, the computation time is dominated
by the slowest model (i.e., FRCNN), which takes 55.56
milliseconds to compute. Comparatively, the time spent
on ensemble detection inconsistency solver is negligible:
3.60 milliseconds by ODEN, 3.65 milliseconds by ODEN
(no-focal), 2.15 milliseconds by NMW, 2.16 milliseconds
by SoftNMS, and 0.92 milliseconds by NMS.

5 CONCLUSIONS

We have presented ODEN, a novel object detection ensemble approach to protecting DNNs from
evasion attacks. ODEN consists of two synergistic functional components: a robust inconsistency
solver to combine object detection results from multiple detectors and a focal diversity-optimized
ensemble selection algorithm. Validated by extensive experiments on three benchmark datasets cov-
ering seventeen object detection models, we show that (1) ODEN enhances AI safety by maintaining
high mAP of an object detection system under evasion attacks; (2) ODEN outperforms existing rep-
resentative ensemble methods and adversarial training defense over all three vision benchmarks and
also consistently outperforms the best-performing member detector in the base model pool; and (3)
ODEN focal diversity ensemble pruning algorithm can find the top-k best performing sub-ensembles
with high mAP and smaller ensemble size.
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A SUPPLEMENTARY MATERIALS - OUTLINE

In this supplementary material, we provide additional experiments for ODEN, including the quanti-
tative studies of ODEN under targeted evasion attacks (Section B), the consistent mAP improvement
over existing combination approaches (Section C), an ablation study of ODEN’s inconsistency solver
(Section D), additional visual examples under benign scenarios with no attack (Section E) and under
seven evasion attacks (Section F to Section L), the detailed experiment setup (Section M), and the
pseudocode of ODEN’s key components (Section N).

B ROBUSTNESS UNDER TARGETED EVASION ATTACKS

Targeted attacks are considered stealthy in applied scenarios because the adversary can control the
malicious behavior of the victim system to maximize the fatality (Chow et al., 2020a). We conduct
targeted attacks using TOG (Chow et al., 2020b), the state-of-the-art attacks on object detection
systems, with object-vanishing, object-fabrication, and object-mislabeling effects. Table 7 summa-
rizes the quantitative results. The three targeted attacks successfully reduce the mAP of the victim
detector F1 on PASCAL VOC from 67.37% to 0.14%, 1.24%, and 2.14% respectively, making the
victim system with virtually no utility. ODEN offers a high mAP of 83.68% under TOG-v, 81.67%
under TOG-f, and 80.25% under TOG-m. In contrast, NMW, SoftNMS, NMS, and AdvDetTrain
can lead to an mAP higher than the victim but are comparatively less effective than ODEN with
TOG-v having 34.03~80.64%, TOG-f having 34.18~72.14%, and TOG-m having 34.81~44.28%.
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Benign
mAP (%)

Attack mAP (%)
TOG-v TOG-f TOG-m

No Protection
F1: FRCNN (Victim) 67.37 0.14 1.24 2.14

Protected
ODEN 86.77 83.68 81.67 80.25
NMW (Zhou et al., 2017) 82.98 80.64 72.14 44.28
SoftNMS (Bodla et al., 2017) 82.23 79.57 71.01 43.01
NMS (Neubeck & Van Gool, 2006) 82.15 80.50 72.01 44.02
AdvDetTrain (Zhang & Wang, 2019) 35.99 34.03 34.18 34.81

Table 7: Detection ensemble robustness under evasion attacks on PASCAL VOC.

(a) MS COCO (b) Open Images (c) PASCAL VOC

Figure 6: Ensemble mAP comparisons for all possible ensemble teaming with at least two members.

C DETECTION ENSEMBLE COMBINATION ANALYSIS

For each dataset and its corresponding base model pool, we evaluate all ensemble teams with at
least two members, resulting in 120 ensembles for MS COCO, 26 ensembles for Open Images, and
26 ensembles for PASCAL VOC. Figure 6 reports the ensemble mAP of all teams by comparing
ODEN with three existing representative detection combination methods. Among the 172 teams
across three datasets, ODEN consistently outperforms the three existing schemes by a large margin.
The improvement can be as large as 9.14% on MS COCO, 4.58% on Open Images, and 6.05% on
PASCAL VOC. Also, the three existing representative methods for combining multiple detections
(i.e., NMW, SoftNMS, and NMS) behave similarly in terms of the ensemble mAP performance for
different teams, with NMW performing slightly better than NMS and SoftNMS is the worst among
the three with a marginally lower mAP for all three datasets.

D CONFIDENCE CALIBRATION: IMPACT OF DESIGN CHOICES

We compare different design choices for the inconsistency solver in Table 8 to understand the con-
tribution of different decisions to the mAP performance of ensembles in ODEN. We use the best en-
semble team identified by our diversity-based ensemble selection method for each dataset: F1,3,4,6,7

for MS COCO, F1,2,3,5 for Open Images, and F1,2,3,4 for PASCAL VOC. We make the following
observations. First, conducting confidence averaging (a) on each group alone is insufficient to offer
satisfactory detection performance on all datasets. In particular, this approach reaches an ensem-
ble mAP of 62.56%, 55.58%, and 81.59% on three datasets but two of them are even worse than
the best-performing member in their respective team: 67.91% by F6 on MS COCO and 83.43%
by F4 on PASCAL VOC. Second, empowering the detection ensemble combination with (b) vote-
to-calibrate or (c) learn-to-calibrate immediately improves the ensemble mAP on MS COCO from
62.56% to 69.70% and 70.02% respectively. Improvements of a similar scale can be found in the

Ensemble mAP (%)
MS COCO Open Images PASCAL VOC

(a) Confidence Averaging 62.56 55.58 81.59
(b) Vote-to-Calibrate 69.70 60.38 85.55
(c) Learn-to-Calibrate 70.02 60.32 85.72
(a) + (b) + (c) = ODEN 72.38 61.09 86.77

Table 8: Analysis on the design choice in ODEN inconsistency solver.
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other two datasets, showing the importance of having dedicated modules to handle the existence of
objects through confidence calibration. Third, the vote-to-calibrate and learn-to-calibrate compo-
nents together further strengthen the decision on the object existence and result in the best ensemble
performance.

E VISUAL EXAMPLES: BENIGN (NO ATTACK)

Member Model Detection - PASCAL VOC ODEN
F1,3,4F1 F3 F4

F VISUAL EXAMPLES: EVASION ATTACK - TOG (UNTARGETED)

Member Model Detection - PASCAL VOC ODEN
F1,3,4F1 (Victim) F3 F4
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G VISUAL EXAMPLES: EVASION ATTACK - TOG (VANISHING)

Member Model Detection - PASCAL VOC ODEN
F1,3,4F1 (Victim) F3 F4

H VISUAL EXAMPLES: EVASION ATTACK - TOG (FABRICATION)

Member Model Detection - PASCAL VOC ODEN
F1,3,4F1 (Victim) F3 F4
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I VISUAL EXAMPLES: EVASION ATTACK - TOG (MISLABELING)

Member Model Detection - PASCAL VOC ODEN
F1,3,4F1 (Victim) F3 F4

J VISUAL EXAMPLES: EVASION ATTACK - UEA

Member Model Detection - PASCAL VOC ODEN
F1,3,4F1 (Victim) F3 F4
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K VISUAL EXAMPLES: EVASION ATTACK - RAP

Member Model Detection - PASCAL VOC ODEN
F1,3,4F1 (Victim) F3 F4

L VISUAL EXAMPLES: EVASION ATTACK - DAG

Member Model Detection - PASCAL VOC ODEN
F1,3,4F1 (Victim) F3 F4

M EXPERIMENT SETUP

The default IOU threshold is set to 0.5. We conduct grid search to find the hyperparameters for all
detection combination schemes. The original test set for each dataset is randomly split with a ratio
of 80:20. The smaller partition is used for hyperparameter tuning and training the learn-to-calibrate
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model for confidence calibration in ODEN. We repeat each experiment five times and report the
mean performance to account for the randomness in partitioning datasets.

N PSEUDOCODE

Algorithm 1 Candidate Detection Grouping

Input: x: prediction query; F : ensemble team
Output: Γ: object groups

1: M← HASHMAP()
2: for member Fi ∈ F do
3: for candidate object oj ∈ Fi(x) do
4: M[`j ].APPEND(oj)
5: end for
6: end for
7: Γ← LIST()
8: for class ` in M do
9: O` ← SORTBYCONFIDENCEDESCENDING(M[`])

10: Γ` ← LIST(LIST(O`.POPFIRST()))
11: for candidate object oj ∈ O` do
12: MAXGROUPINDEX ← −1
13: MAXIOU ← TIOU
14: for group γk ∈ Γ` do
15: β ← βWA(oj ,γk)
16: dj ← the member detector producing oj
17: if member dj not in γ and β ≥ MAXIOU then
18: MAXGROUPINDEX ← k
19: MAXIOU ← β
20: end if
21: end for
22: if MAXGROUPINDEX ≥ 0 then
23: γMAXGROUPINDEX.APPEND(oj)
24: else
25: Γ`.APPEND(LIST(oj))
26: end if
27: end for
28: Γ.CONCATENATE(Γ`)
29: end for
30: return Γ
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Algorithm 2 Negative Sample Determination

Input: Ffocal: focal model; x: validation sample; G: ground-truth objects; TIOU: an IOU threshold
Output: A boolean indicating whether x is a negative sample of focal model Ffocal

1: O ← SORTBYCONFIDENCEDESCENDING(Ffocal(x))
2: for detected object oi ∈ O do
3: MAXGTINDEX ← −1
4: MAXIOU ← TIOU
5: for ground-truth object gj ∈ G do
6: η ← IOU(oi, gj)
7: if SAMECLASS(oi, gj) and η ≥ MAXIOU then
8: MAXGTINDEX ← j
9: MAXIOU ← η

10: end if
11: end for
12: if MAXGTINDEX≥ 0 then
13: G.REMOVE(gj)
14: if G.LENGTH() == 0 then
15: return FALSE
16: end if
17: else
18: return TRUE
19: end if
20: end for
21: return not(G.LENGTH() == 0)
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