

000 LLM CHESS: BENCHMARKING REASONING AND 001 INSTRUCTION-FOLLOWING IN LLMs THROUGH CHESS 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 We introduce LLM CHESS, an evaluation framework designed to probe the general-
010 ization of reasoning and instruction-following abilities in large language models
011 (LLMs) through extended agentic interaction in the domain of chess. We rank over
012 50 open and closed source models by playing against a random opponent using
013 a range of behavioral metrics, including win and loss rates, move quality, move
014 legality, hallucinated actions, and game duration. For a subset of top reasoning
015 models, we derive an Elo estimate by playing against a chess engine with vari-
016 ably configured skill, which allows for comparisons between models in an easily
017 understandable way. Despite the simplicity of the instruction-following task and
018 the weakness of the opponent, many state-of-the-art models struggle to complete
019 games or achieve consistent wins. Similar to other benchmarks on complex rea-
020 soning tasks, our experiments reveal a clear separation between reasoning and
021 non-reasoning models. However, unlike existing static benchmarks, the stochastic
022 and dynamic nature of LLM CHESS uniquely reduces overfitting and memorization
023 while preventing benchmark saturation, proving difficult even for top reasoning
024 models. To support future work on evaluating reasoning and instruction-following
025 in LLMs, we release our experimental framework, a public leaderboard, and a
026 dataset of associated games.¹
027

028 1 INTRODUCTION 029

030 Chess has long been viewed as an application for artificial intelligence (AI) since its inception,
031 often being one of the first domains in which new technologies are used (Prost, 2012). The idea
032 of computer chess was pursued by the founders of AI, who viewed it as an exciting application
033 in which advances could spur developments in other fields (Turing, 1988; Wiener, 2019; Shannon,
034 1950). In fact, chess is often referred to as the ‘drosophila of AI’, in that it both is a worthy testbed
035 for experiments and also has guided the field’s development (Simon & Schaeffer, 1992; McCarthy,
036 1990; Ensmenger, 2012). As such, chess also has often been used to study cognitive abilities and
037 decision making in humans (Groot, 1978; Simon & Chase, 1988; Sala et al., 2017; Sala & Gobet,
038 2017; Burgoyne et al., 2016; Blanch, 2022; Rosholm et al., 2017; Jankovic & Novak, 2019).
039

040 Since the 1950s, chess engines have been created with the hopes of beating humans, achieving various
041 levels of success along the way. As time progressed, these engines advanced both through hardware
042 and algorithmically, until reaching their current most powerful form with neural networks (Bernstein
043 & de V. Roberts, 1958; Adel’son-Vel’skii et al., 1970; Newborn, 1979; Condon & Thompson, 1983;
044 Campbell et al., 2002; Newborn, 2012; Silver et al., 2017). While certain architectures and algorithms
045 applied to chess have seen success elsewhere, these chess engines are explicitly tailored to chess
046 games, unable to generalize.

047 Recently, large language models (LLMs) have shown incredibly competent performance in many
048 diverse fields (Brown et al., 2020; Touvron et al., 2023; Thirunavukarasu et al., 2023; Liu et al., 2023;
049 Wu et al., 2023b; Wei et al., 2022; OpenAI et al., 2024; DeepSeek-AI et al., 2025), leading many to
050 wonder whether they may play an important role in achieving artificial general intelligence (Bubeck
051 et al., 2023; Feng et al., 2024; Mumuni & Mumuni, 2025). Additionally, tools like reinforcement
052 learning and test-time scaling approaches have been shown to greatly increase reasoning abilities,
053

¹Our code is available at https://anonymous.4open.science/r/llm_chess_anon-5CCE

accelerating the promise of a general reasoner (Chen et al., 2024; Shao et al., 2024; DeepSeek-AI et al., 2025). While chess engines can now regularly beat humans, the game has not yet sufficiently been tested on LLMs, which ideally would possess such general characteristics that they could excel at any complex reasoning task, whether it be math, coding, or gameplaying like chess. As we start to design models with more general capabilities, what is old becomes new again: the large combinatorial spaces, long-horizon planning, and dynamic nature of chess all present thorough challenges for LLMs. Continuing the tradition of using chess to test and gain insights into current model capabilities, we present two main contributions:

1. We introduce LLM CHESS, a benchmark assessing both reasoning and instruction-following in the context of chess. Central to our benchmark is agentic interaction: by having LLMs play chess through autonomously selecting actions within a conversation, the difficulty comes not only in reasoning about the board and choosing the best move, but also how to formulate these choices. Unlike other reasoning benchmarks that can be contaminated or easily saturated, LLM CHESS is extensible by scaling the difficulty of the opponents and is not reliant on static board positions that can be included in training data.
2. We evaluate over 50 models on LLM CHESS, showing that the domain of chess continues to present a challenging and informative reasoning task when applied to LLMs. We find that currently only the most powerful reasoning-enhanced LLMs can consistently beat a random agent, even when we let them query for legal moves. When playing against engines, these powerful models still fare poorly, with o3 (low) only achieving a 758 Elo in LLM CHESS. Through extensive ablations on specific parts of the game, we find that LLM performance varies widely based on the format of the conversations and prompt, suggesting a lack of robustness in their reasoning abilities.

Altogether, our comprehensive experiments show that chess is a worthy testbed for benchmarking the reasoning and instruction-following ability of LLMs and that current state-of-the-art models lack the ability to generalize their strong reasoning performance to be as impressive in chess as in other domains.

2 LLM CHESS

Here we introduce LLM CHESS (Figure 1), explaining our design choices and the metrics we use to score the models.

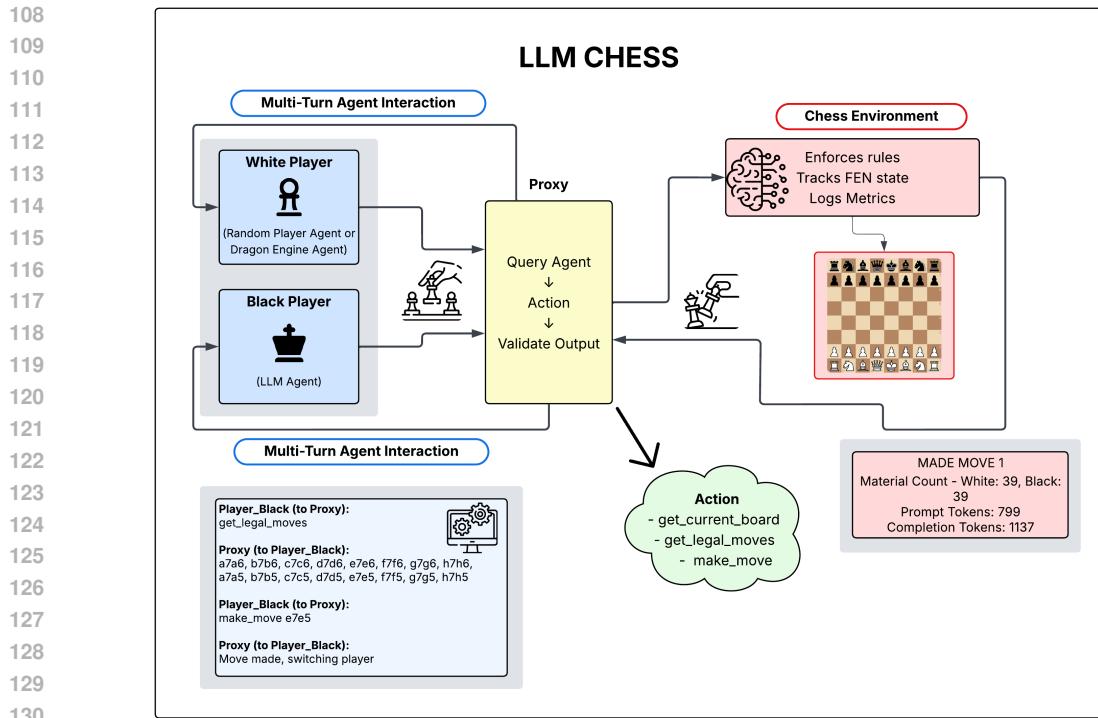
2.1 DESIGN

In chess, an action taken by one side is referred to as a half-move or ply while two concurrent plys are referred to as a move, one by white, the other by black.² At each ply, we initiate a conversation with the end goal of outputting a valid chess move. We format all moves in Universal Chess Interface (UCI) format, a commonly used notation for chess engines (Huber & Meyer-Kahlen, 2000). Each conversation consists of several turns, where each turn an LLM is prompted with instructions to output a valid action. We offer three actions to the LLM: 1) `get_current_board`, which fetches and presents the state of the current board using a unicode board, 2) `get_legal_moves`, which fetches a list of legal moves in UCI format, and 3) `make_move`, which takes a UCI-formatted string as input, adjusts the board state with that move, then ends the LLM’s turn.

We provided the opportunity to retrieve full board states and legal moves through tool calls while excluding move history, creating an agentic approach that balances realism with practical testing needs. Full design justifications are in Appendix A. Ablations on these choices are presented in Section 3.4. We implement our LLM in an agentic setting using the AG2 framework (Wu et al., 2023a; Wang et al., 2025).

We cap each game at 100 moves (200 plys), have a max of 10 conversation turns per ply, and allow a max of 3 attempts per conversation turn for the LLM to provide a legal action or move. The LLMs view each ply as independent of all others, as we do not provide any game history. While this differs

²When it is clear that we are only discussing one side’s actions, we occasionally overload move to refer to a ply, i.e., making a move in a ply refers to a single piece movement for that specific ply.



131 Figure 1: Overview of the LLM CHESS benchmark. White and Black player agents (random or engine
 132 for White, LLM for Black) interact with a central proxy that issues agent queries, validates outputs,
 133 and invokes one of three actions (get_current_board, get_legal_moves, make_move).
 134 The Chess Environment enforces the rules, updates and logs the FEN state, and records per-move
 135 metrics for downstream analysis.

136
 137 from humans who know their previous moves when playing chess, this aligns more with the machine
 138 setting where a model should be able to make the best move given the board state alone. Importantly,
 139 this setting does not eliminate the need for long-term planning: models must continue to be aware of
 140 how the moves they choose will impact future board states.

141 Instructions provided to the LLM to initiate the conversation and resulting from various actions are
 142 presented in Appendix D. From preliminary testing, we somewhat surprisingly found many LLMs
 143 performed poorly against random agents. So, we split our evaluation into two phases: first, we
 144 evaluate a wide set of models against random agents to get a general sense of their abilities. Second,
 145 on particularly good models, we play them against a chess engine with variably configured skill.

147 **Random Agent** We benchmark over 50 models by playing 30 games as black against a random
 148 agent, defined as a player who always chooses a move at random from all legal moves. We choose
 149 a random agent first because we want to focus on practical game-playing ability while removing
 150 skill as a main focus, i.e., to see if the model can play and finish a game of chess in the simplest
 151 setting. **The goal of this phase is to isolate instruction-following abilities while minimizing opponent**
 152 **difficulty.** While we only play 30 games, we note that our end-goal is not to precisely rank models
 153 based on their performance vs random, **but instead to see whether these models can both 1) exhibit**
 154 **sufficient performance against a random agent to be worth playing against a powerful chess engine,**
 155 **and 2) do not exhibit simple instruction-following errors that cause incomplete games.** In this sense,
 156 the random play phase can be seen as a cost-effective gating mechanism for reasoning evaluation
 157 with a chess engine, albeit one that can still tell us a lot about the models.

158
 159 **Chess Engine** From the initial models, we choose a subset of promising models to play against
 160 Komodo’s Dragon 1 engine, which can be set at various skill levels from 1-25. As an estimate,
 161 skill 1 is around Elo 250, then each subsequent skill level is a 125 boost in Elo based on chess.com
 games (Kaufman & Lefler, 2020). Since chess.com is one of the most popular online chess platforms,

162 having over 200 million members (Chess.com, 2025a), this lets us ground our LLM performance
 163 in the real world. We run experiments against Dragon 1 at 30 games per skill level and depending
 164 on the model, run experiments for a variety of skills, starting at skill 1 and getting as high as skill
 165 10, representing Elo scores of 250 to 1375 on chess.com. While currently we do not evaluate with
 166 too high of skills, our framework permits easy extensibility: as LLMs become better and better,
 167 we can increase the difficulty of the opponents to prevent saturation. **The goal of this phase is to**
 168 **evaluate reasoning abilities in our simple agentic setting on models we know can perform well without**
 169 **instruction-following errors. This should mimic real-world agentic settings in which we need models**
 170 **to have some minimal instruction-following abilities before they can successfully solve a task.**

171

172 2.2 METRICS

173

174 LLM CHESS evaluates LLMs by playing full chess games. However, we also evaluate the reasoning
 175 ability of the LLM with various per-ply metrics rating the quality of each move, as well as the
 176 instruction-following ability by examining how the model engages with our agentic structure.

177

178 **Per-model** The main way we quantify performance is to calculate a LLM’s Win/Loss percentage
 179 against an opponent, which is the difference between wins and losses as a percentage of total games:

$$180 \text{Win/Loss} = \frac{1}{2} \left(\frac{\text{llm_wins} - \text{opponent_wins}}{\text{total_games}} \right) + 0.5$$

182

183 Win/Loss admits easy interpretability: 50% means a model has equal wins and losses. To win a game,
 184 LLM must checkmate its opponent. LLMs can lose or draw in the following ways: 1) Chess-based.
 185 The LLM could lose through checkmate by the opponent or draw due to various rules (stalemate,
 186 insufficient material, seventy-five moves without a capture or pawn move, fivefold repetition, or the
 187 game reached 100 moves). 2) Instruction-based. The LLM loses if it reaches the maximum number
 188 of conversation turns without making a move (10) or if it reached the maximum number of attempts
 189 (3) at a conversation turn without selecting a valid action. We call failures here instruction-following
 190 errors. 3) Model errors. These are errors due to the model or how it’s served like timeout for reasoning
 191 models. We exclude all games with these errors when playing against a random agent so we could
 192 better analyze behavior, but include them when playing against Dragon 1 to simulate what would
 193 happen in a real-world scenario.

193

194 While Win/Loss is helpful for observing the quality of LLM performance against weaker opponents,
 195 it is less grounded in the world of chess. So, for LLMs that perform sufficiently well against random
 196 agents and against the engine at various skill levels, we calculate Elo (Elo, 1978). Normally Elo
 197 ratings update dynamically between players, but here we treat each engine opponent’s rating R_i as
 198 fixed and encode the LLM’s game outcomes as $S_i \in \{1, 0.5, 0\}$. Under Elo theory, the expected
 199 score $E_i(R)$ for a player with rating R against opponent i with rating R_i is:

$$200 E_i(R) = \frac{1}{1 + 10^{(R_i - R)/400}}.$$

201

202 Rather than updating R incrementally, we find the maximum-likelihood Elo rating \hat{R} by solving
 203 $\sum_i (S_i - E_i(\hat{R})) = 0$. Around \hat{R} , the observed Fisher information $\mathcal{I}(\hat{R}) = \sum_i E_i(\hat{R})(1 - E_i(\hat{R}))(\ln 10/400)^2$ yields a standard error $SE = 1/\sqrt{\mathcal{I}}$ and thus a 95% confidence interval for the
 204 Elo rating $\hat{R} \pm 1.96 SE$ (Glickman, 1999). We detail the exact skill levels we evaluate against for
 205 each model in the experiments section and the full Elo calculation algorithm in Appendix B.4.

206

207 **Per-game** For each game, we calculate the number of moves per game and the reason for each
 208 loss. We also record other metrics focused on instruction-following throughout the game that do not
 209 depend on the quality of the moves. For `get_current_board` and `get_legal_moves` we
 210 calculate the average number of times that action was called per ply. We also calculate the average
 211 number of times `make_move` was called but resulted in an invalid move, as well as the average
 212 number of invalid actions that were selected.

213

214

215 **Per-ply** Besides analyzing performance on a game level, we also calculate the performance per ply.
 After the LLM calls `make_move` in each ply, we calculate the Win% (Equation (1)), the chance of

winning a game from the given position as defined by Lichess (Lichess, 2025). This analysis is based on centipawns, which are calculated by Stockfish representing how much worse the player's move was than the engine's (Linville, 2023). We present the Win% for the LLM averaged over each ply, which tells us whether the LLM held a more favorable position throughout the game.

$$\text{Win\%} = 50 + 50 * (2/(1 + \exp(-0.00368208 * \text{centipawns}))) - 1 \quad (1)$$

Then, based on the difference in Win%, $\Delta = \text{Win\%}_{\text{before move}} - \text{Win\%}_{\text{after move}}$ (where a higher Δ means the player's Win% decreased), we can calculate Blunders, Mistakes, and Inaccuracies, common classifications of moves used by online chess platforms, following the Lichess cutoffs (Lichess, 2023):

$$\text{Judgment} = \begin{cases} \text{Blunder} & \text{if } \Delta \geq 30 \\ \text{Mistake} & \text{if } \Delta \geq 20 \\ \text{Inaccuracy} & \text{if } \Delta \geq 10 \end{cases} \quad (2)$$

We present the average Blunder, Mistake, and Inaccuracy rate per ply, as well as Best, the rate in which the LLM selected the best move as identified by Stockfish. We note that since our Win% scores are based on centipawns, these metrics can depend on the hyperparameters of Stockfish. Additional details for centipawn calculations are available in Appendix B.1.

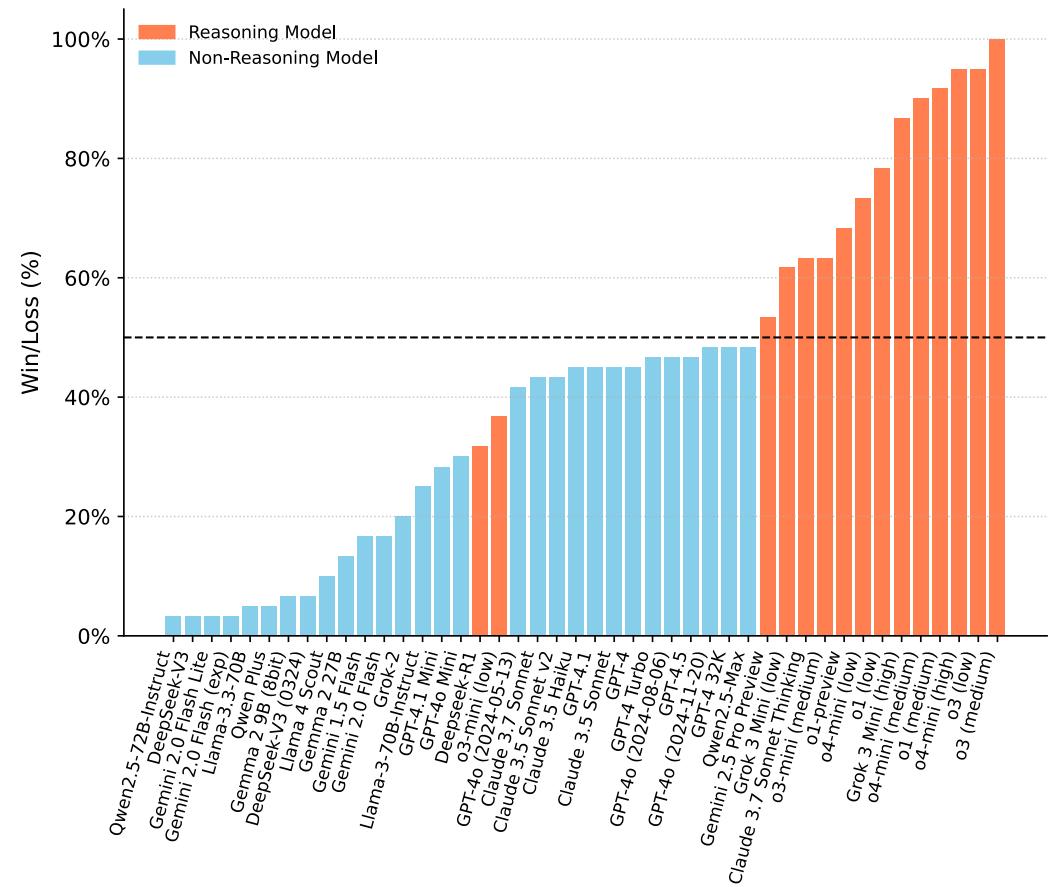


Figure 2: Win/Loss of LLM players versus random opponents. The dashed line marks a Win/Loss of 50%, which represents an equal amount of wins and losses.

3 EXPERIMENTS

By default, all LLMs are run with a temperature of 0.3 and a Top P of 1.0, with some exceptions. We run both regular LLMs as well as those trained for enhanced reasoning capabilities, which we term

270 reasoning-enhanced LLMs. Such LLMs have a separate space for thinking (e.g., a dedicated thinking
 271 tag in their chat template before the assistant response) indicating special training for reasoning,
 272 similar to o1 (OpenAI, 2024) or DeepSeek-R1 (DeepSeek-AI et al., 2025). More details about the
 273 models we evaluate on and how they are run is detailed in Appendix B.
 274

275 3.1 LLMs vs. RANDOM

277 We present the Win/Loss of 44 LLMs versus a random agent for 30 games in Figure 2. Most notably,
 278 we find that most models are not able to consistently beat a random agent; in fact, only models with
 279 reasoning abilities are able to perform better than 50%. To analyze the reasons behind this poor
 280 performance, we present per-game metrics including how the LLMs won and lost in Table 1. Note
 281 that the only way the LLM (black) can win is through a checkmate. For each of these metrics, we
 282 present the average over all reasoning and non-reasoning models, as well as on the two top and
 283 bottom reasoning and non-reasoning models.
 284

285 Table 1: Per-game metrics for Reasoning (shaded) vs Non-Reasoning models. We choose the top and
 286 bottom two models in each category (ranked among 15 reasoning, 29 non-reasoning models) based
 287 on Win/Loss from among all models with a Win/Loss over zero. We include the percent of losses
 288 due to errors in instruction-following (Instruction) or checkmates by white (MateW), as well as the
 289 amount of draws (Draw), checkmates by black (MateB), and average moves over all games.
 290

Model	Instruction (%)	Draw (%)	MateW (%)	MateB (%)	Avg Moves
Reasoning Avg	24.4	30.2	0.0	45.4	93.7
Non-Reasoning Avg	71.9	24.6	2.8	0.7	73.9
o3 (medium) ⁽¹⁾	0.0	0.0	0.0	100.0	40.1
o3 (low) ⁽²⁾	0.0	10.0	0.0	90.0	63.5
Qwen2.5-Max ⁽¹⁾	0.0	96.7	3.3	0.0	197.4
GPT-4o (2024-11-20) ⁽²⁾	0.0	90.0	6.7	3.3	194.9
o3-mini (low) ⁽¹⁴⁾	36.7	53.3	0.0	10.0	139.3
Deepseek-R1 ⁽¹⁵⁾	60.0	16.7	0.0	23.3	88.2
Gemini 2.0 Flash Lite ⁽²⁸⁾	90.0	0.0	6.7	3.3	90.3
Qwen2.5-72B-Instruct ⁽²⁹⁾	90.0	6.7	3.3	0.0	64.1

300 Our results indicate that reasoning LLMs dramatically outperform non-reasoning models in our
 301 random-opponent setting. Reasoning models have an average win rate of 45.4% with the top
 302 performers achieving close to 100%, whereas non-reasoning models have an average win rate
 303 of 0.7% with one of the top performers achieving only 3.3%. This performance gap is further
 304 supported by a three-fold reduction in instruction-following errors: 71.9% for non-reasoning models
 305 vs 24.4% for reasoning models. Lastly, non-reasoning models almost always draw if they don't have
 306 instruction-following issues. Interestingly, these models have a similar percentage of draws compared
 307 to reasoning models (24.6% vs 30.2%). While these statistics demonstrate that enhanced reasoning
 308 capabilities substantially improve both instruction-following and overall game performance, only one
 309 LLM was able to win every game against a random agent, indicating poor real world performance.
 310

311 Table 2: Per Ply Classification Rates (%) for Reasoning (shaded) vs Non-Reasoning Models.
 312

Model	Blunder (\downarrow)	Mistake (\downarrow)	Inaccuracy (\downarrow)	Best (\uparrow)
GPT-4.1-mini	31.3	8.7	13.4	4.1
o4-mini (low)	11.2	3.5	5.5	10.8
o4-mini (medium)	4.2	1.1	4.0	19.5

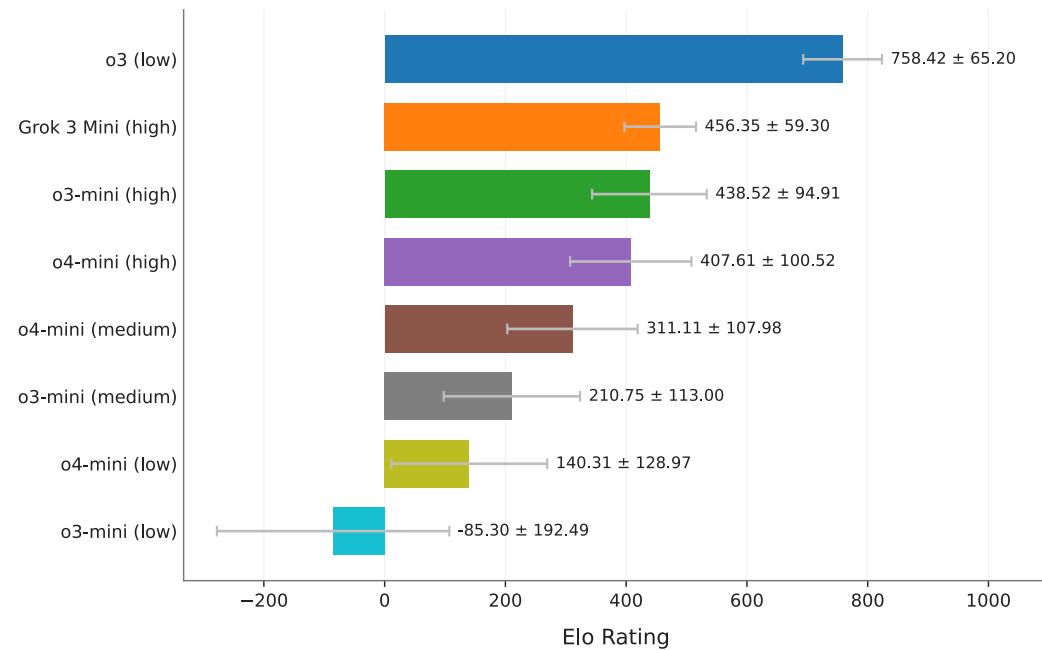
313 To see how models perform throughout the game, we present per-ply metrics on a handful of models
 314 performing at various levels in Table 2. Our results show that the provided reasoning models make
 315 far fewer bad moves and substantially more "Best" moves than GPT-4.1-mini, the representative
 316 non-reasoning model. For example, o4-mini (medium) blunders only 4.2% and mistakes 1.1% of
 317 the time per ply, compared to 31.3% blunders and 8.7% mistakes for GPT-4.1-mini. Furthermore,
 318 o4-mini (medium) selects the "Best" move 19.5% of the time versus just 4.1% for GPT-4.1-mini.
 319

324 These results confirm that enhanced reasoning capacity reduces catastrophic errors while boosting
 325 tactical decision making.
 326

327 Notably, we also ran experiments on over 10 models that have a 0% Win/Loss, often resulting from
 328 difficulties with instruction-following. We present these models in Table 6. We also present additional
 329 results for some models on more games in Appendix C.

330 3.2 LLMs vs. CHESS ENGINE

333 While random agents are a good test of LLMs’ abilities to complete games, they often make moves
 334 that are nonsensical and are not realistic as a chess opponent. As such, some LLMs are able to
 335 perform very well against random agents: the best models o3 (medium/low) and o4-mini (high) have
 336 a Win/Loss of at least 90%. To increase the difficulty of the games and ground LLMs in real-world
 337 performance, we now focus on the most powerful models (i.e., a subset of reasoning models) to play
 338 against Dragon 1: o3 (low), Grok 3 Mini (high), o4-mini, o3-mini.
 339

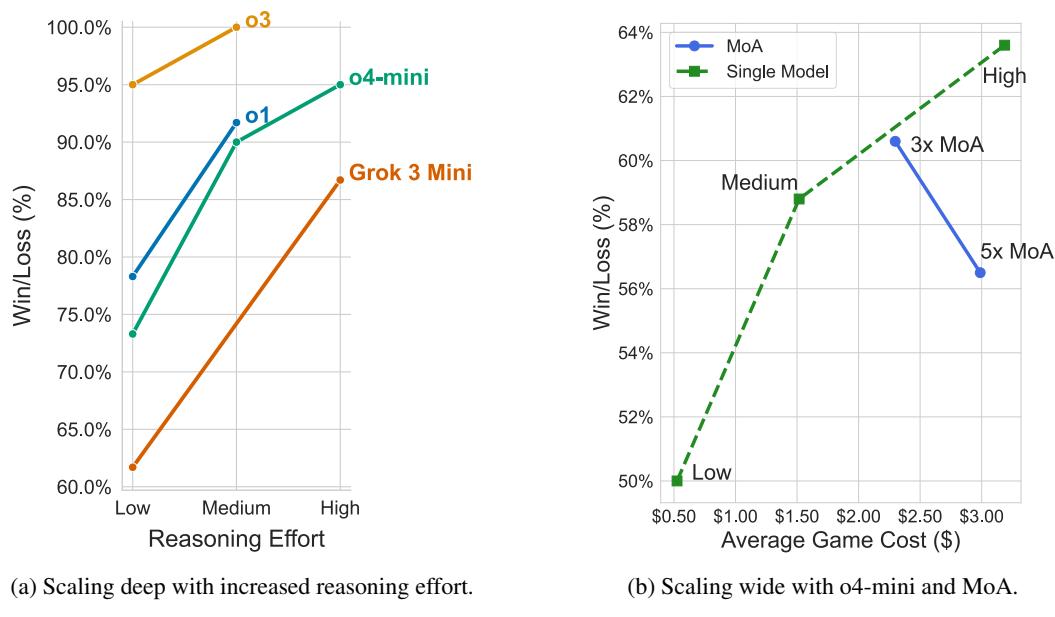


361 Figure 3: Elo of top reasoning models estimated using Dragon 1.
 362

363 Figure 3 reports estimated Elo ratings ($\pm 95\%$ CI) for o3 (low), Grok 3 Mini (high), o4-mini, o3-mini
 364 when playing at least 30 games against Dragon 1 at skill 1. For o3 (low) and Grok 3 Mini (high)
 365 we play against all skills 1–5 (Elos 250–750), with the former additionally playing against skill 10.
 366 These Elo estimates confirm several key insights. First, better reasoning models have higher strengths
 367 in LLM CHESS. For example, the o4-mini models dominate the o3-mini models on all but high
 368 reasoning effort, where they perform similarly. Second, even the strongest LLM in our study, o3
 369 (low), peaks at an adjusted Elo of about 758, which remains only slightly above the average and far
 370 below the human master level, underscoring how far LLMs lag behind specialized chess engines and
 371 general human gameplay. We include more about the models, skills each played against, real-world
 372 comparisons, and Elo calculations in Appendix B.
 373

374 3.3 EXPLORING TEST-TIME SCALING

375 **Scaling Deep** We show o1, o3, o4-mini, and Grok 3 Mini at various reasoning levels vs a random
 376 agent in Figure 4a. Similar to other reasoning domains, we find scaling with more tokens improves
 377 performance on LLM CHESS, with increases of up to 15% from low to medium, and 20% from low



(a) Scaling deep with increased reasoning effort.

(b) Scaling wide with o4-mini and MoA.

Figure 4: Performance comparisons of reasoning models. (a) Win/Loss when scaling with variable reasoning effort. (b) Cost-performance tradeoff for Win/Loss with o4-mini variants at each possible reasoning effort along with 3x and 5x MoA using o4-mini (low) as the proposer and o4-mini (medium) as the aggregator.

to high.³ To directly compare performance on LLM CHESS to performance on other domains, we calculate the correlation between scores on LLM CHESS and LiveCodeBench (Jain et al., 2025), a difficult competitive coding benchmark, finding a moderate positive correlation. This signifies that LLM CHESS uses reasoning abilities, though even the best models struggle to be as good as they are in other domains. See Appendix C.5 for further discussion.

Scaling Wide Besides increasing the number of tokens one model uses, we also run experiments using multiple instances of the same model in parallel. To do so, we apply a Mixture-of-Agents (MoA) approach where at each step of the conversation we have multiple proposer model calls fed into a separate aggregator model that provides the output (Wang et al., 2024). We run two settings on 30+ games with black against Dragon 1 skill 1 using either 3x and 5x o4-mini (low) as the proposers and always o4-mini (medium) as the aggregator. Results are in Figure 4b. Performance with 3x MoA reaches above o4-mini (medium), but 5x MoA performance is slightly lower. Though there are small differences between these approaches, in practice they all perform relatively similarly. This suggests that scaling the number of proposed moves doesn't yield significant improvements, unlike the benefits we see from scaling reasoning effort. Additional MoA experiments are in C.2, suggesting benefits can come from pairing models with poor instruction-following but strong reasoning capabilities with non-reasoning models that follow instructions well.

3.4 ABLATIONS

We design three types of ablations on o4-mini (low) and Grok 3 Mini (low) by varying the actions we present to the model during the conversation (Actions), the state of the board from the LLM's perspective (Board Representation), and adding or removing information the LLM has access to during the conversation (Changing Information). In each of the settings in each category we run 30 games per model against a random agent with the LLM playing as black (unless stated otherwise). Results are in Table 3, with more detail in Appendix C. With these results, we see performance varies widely, showing the lack of robustness in reasoning in the chess setting.

³Empirically, we notice that as we try to run OpenAI models with higher reasoning effort, they are more likely to result in a timeout. See Appendix E for further discussion.

432 Table 3: Win/Loss on ablations. Each is run with 30 games vs a random agent. LLM CHESS is the
 433 baseline.

435 Setting	436 Grok 3 Mini (low)	437 o4-mini (low)
438 LLM CHESS	439 61.7	440 73.3
441 Actions		
442 Always Board State	443 66.7	444 83.3
445 Always Legal Moves	446 68.3	447 93.3
448 Only make_move	449 71.7	450 96.7
451 Board Representation		
452 ASCII	453 63.3	454 88.3
455 FEN	456 63.3	457 95.0
458 LLM as White	459 78.3	460 83.3
461 Changing Information		
462 No Legal Moves	463 36.7	464 86.7
465 Previous Moves	466 75.0	467 76.7
468 Previous Moves + Only make_move	469 66.7	470 95.0

452 Overall, we find that simplifying the agentic scenario by removing actions and instead supplying the
 453 removed information directly in the prompt without offering the associated tools shows an increase in
 454 performance on both Grok 3 Mini (low) and o4-mini (low). In both cases, offering only make_move
 455 offers substantial improvements in Win/Loss, with o4-mini (low)'s performance increasing by over
 456 20%. This signifies the difficulty of reasoning models engaging in agentic interactions in LLM
 457 CHESS. Performance with both an ASCII board and FEN is similar to our default setting for Grok 3
 458 Mini (low), while for o4-mini (low) we see performance improve by over 15% in both cases, reaching
 459 95% for FEN. This suggests that some LLMs have similar performance across board representations,
 460 while some have trouble generalizing.

461 Though LLM CHESS's agentic setting can be challenging for some models, a major advantage given
 462 to the model is their ability to query for legal moves with `get_legal_moves`. When removing
 463 this ability, we see a decline in model capabilities of almost 30% for Grok 3 Mini (low), though we
 464 see an increase of 10% for o4-mini (low), meaning that some LLMs need help while others may
 465 be better off using their own internal reasoning processes. We also experiment with including the
 466 previous moves, finding that performance can increase but most often does not result in a substantial
 467 benefit.

4 RELATED WORK

471 **Chess and AI** Transformers have been applied to chess in both foundation and domain-specific
 472 settings. While prior work has suggested that large language models (LLMs) display surprising
 473 competence in chess (Dynomight, 2024; Acher, 2023), these findings often rely on a small set of
 474 models, static PGN completions, or idealized prompting conditions. Studies such as the Chess
 475 Transformer (Noever et al., 2020), Chessformer (Monroe & Chalmers, 2024), and BERT-based
 476 rule learners (DeLeo & Guven, 2022) demonstrate improved move legality and opening play, but
 477 confine game play to offline or single-turn evaluations. More recent work has involved fine-tuning
 478 transformer architectures directly on a large-scale chess corpus, such as ChessGPT (Feng et al.,
 479 2023) and Amortized Planning Transformers (Ruoss et al., 2024), with the latter treating chess as a
 480 planning problem. While these approaches show promise, they are typically assessed on win rate or
 481 move legality, focusing little on instruction-following or reasoning. For LLMs, several open-source
 482 efforts have attempted to evaluate on chess tasks, such as by creating frameworks letting humans
 483 play against LLMs (Carlini, 2024), having LLMs play against each other (Risdal, 2025), or having
 484 LLMs play against chess engines (Ndzomga, 2024). Other analyses examine how LLMs internalize
 485 chess rules from PGNs (Stöckl, 2021) and how LLMs can predict chess puzzle difficulty (Miłosz &
 486 Kapusta, 2024), or they include chess as part of a larger benchmark (Khan et al., 2025). While these
 487 frameworks provide initial insights, they typically focus only on outcome-level metrics such as win

486 rate or Elo, often over a narrow set of models in a basic setting. In contrast, our benchmark uses a
 487 diverse model pool in a simple agentic environment with a minimal set of tools, revealing fragility in
 488 instruction-following, real-time play, and strategic reasoning.
 489

490 **Strategic Reasoning and Game Benchmarks** Our work builds on a growing field of literature
 491 that poses games as testbed for strategic and multi-step reasoning. GTBench (Duan et al., 2024) and
 492 ZeroSumEval (Khan et al., 2025) leverage inter-model competition to assess strategy and robustness,
 493 while ChatArena (Wu et al., 2023c) and MastermindEval (Zhang et al., 2024) extend the space of
 494 game evaluation into multimodal and logic-heavy tasks. Additional studies in multi-game consistency
 495 (Toshniwal et al., 2022) highlight gaps in rule following and tactical depth when LLMs pivot between
 496 environments. While these efforts highlight the strengths and limitations of LLMs in planning,
 497 consistency, and rule/instruction following, they are typically spread across tasks or lack depth. Chess
 498 on the other hand, is a deeply studied environment with transparent rules, interpretable decision
 499 sequences, and established baselines. Our benchmark combines all of these strengths in a reproducible
 500 testbed that evaluates both instruction-following and reasoning.
 501

5 CONCLUSION

502 Chess has long been an important factor in the development of AI systems. However, LLMs, today’s
 503 most powerful generalist models, have not been sufficiently tested on the domain, missing out on the
 504 insights that have historically been made by doing so. To remedy this, we introduced LLM CHESS, a
 505 benchmarking framework for reasoning and instruction-following in LLMs in chess. Compared to
 506 standard reasoning benchmarks, our setting is more difficult: unlike math or coding where LLMs
 507 are reaching the level of seasoned experts, models evaluated by LLM CHESS are weak and many
 508 cannot consistently beat even a player making random moves. Importantly, as LLMs become better,
 509 LLM CHESS can still be used without fear of saturation. Built around a chess engine, it allows for
 510 extensibility through dynamic difficulty adjustment, as well as resistance to memorization thanks to
 511 the combinatorial richness of chess, offering a reasoning benchmark designed to remain informative
 512 as models improve.
 513

514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES
541

542 Mathieu Acher. Debunking the chessboard: Confronting gpts against chess engines to esti-
543 mate elo ratings and assess legal move abilities. <https://blog.mathieuacher.com/GPTsChessEloRatingLegalMoves/>, 2023.

544

545 Georgii Maksimovich Adel'son-Vel'skii, Vladimir L Arlazarov, AR Bitman, AA Zhivotovskii, and
546 Anatolii Vasil'evich Uskov. Programming a computer to play chess. *Russian Mathematical Surveys*,
547 25(2):221, 1970.

548

549 Alex Bernstein and Michael de V. Roberts. Computer v. chess-player. *Scientific American*, 198(6):
550 96–107, 1958.

551

552 Angel Blanch. Chess Instruction Improves Cognitive Abilities and Academic Performance: Real
553 Effects or Wishful Thinking? *Educational Psychology Review*, 34(3):1371–1398, September 2022.
554 ISSN 1040726X. doi: 10.1007/s10648-022-09670-9. URL <https://www.proquest.com/docview/2700444564/abstract/4D353806656F41A3PQ/1>. Num Pages: 1371-1398
555 Place: New York, Netherlands Publisher: Springer Nature B.V.
556

557 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
558 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
559 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
560 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
561 teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
562 dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learn-
563 ers. In *Advances in Neural Information Processing Systems*, volume 33, pp. 1877–1901,
564 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
565

566 Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
567 Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio
568 Ribeiro, and Yi Zhang. Sparks of Artificial General Intelligence: Early experiments with GPT-4,
569 April 2023. URL <http://arxiv.org/abs/2303.12712>. arXiv:2303.12712 [cs].
570

571 Alexander P. Burgoyne, Giovanni Sala, Fernand Gobet, Brooke N. Macnamara, Guillermo Campitelli,
572 and David Z. Hambrick. The relationship between cognitive ability and chess skill: A
573 comprehensive meta-analysis. *Intelligence*, 59:72–83, November 2016. ISSN 0160-2896.
574 doi: 10.1016/j.intell.2016.08.002. URL <https://www.sciencedirect.com/science/article/pii/S0160289616301593>.
575

576 Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. *Artificial intelligence*, 134
577 (1-2):57–83, 2002.
578

579 Nicholas Carlini. chess-llm. <https://github.com/carlini/chess-llm>, 2024. Accessed:
580 2025-05-14.
581

582 Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James
583 Zou. Are more llm calls all you need? towards scaling laws of compound inference systems, 2024.
584 URL <https://arxiv.org/abs/2403.02419>.
585

586 Chess.com. Chess.com members. <https://www.chess.com/members>, 2025a. Accessed:
587 2025-05-02.
588

589 Chess.com. Rapid leaderboard, 2025b. URL <https://www.chess.com/leaderboard/live/rapid>. Accessed: November 24, 2025.
590

591 Chess.com. Live chess ratings, 2025c. URL <https://www.chess.com/ratings>. Accessed:
592 November 24, 2025.
593 Joe H Condon and Ken Thompson. Belle. In *Chess skill in man and machine*, pp. 201–210. Springer,
1983.

594 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 595 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 596 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 597 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 598 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 599 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 600 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 601 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
 602 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
 603 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
 604 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
 605 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
 606 Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang,
 607 Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
 608 Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
 609 Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
 610 Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
 611 Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
 612 Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
 613 Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
 614 Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
 615 Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
 616 He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
 617 Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
 618 Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
 619 Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
 620 Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
 621 Zhang. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning,
 622 January 2025. URL <http://arxiv.org/abs/2501.12948>. arXiv:2501.12948 [cs].

623 Michael DeLeo and Erhan Guven. Learning chess with language models and transformers. In *Data
 624 Science and Machine Learning*, DSML 2022, pp. 179–190, 2022. doi: 10.5121/csit.2022.121515.
 625 URL <http://dx.doi.org/10.5121/csit.2022.121515>.

626 Jinhao Duan, Renming Zhang, James Diffenderfer, Bhavya Kailkhura, Lichao Sun, Elias
 627 Stengel-Eskin, Mohit Bansal, Tianlong Chen, and Kaidi Xu. Gtbench: Uncover-
 628 ing the strategic reasoning capabilities of llms via game-theoretic evaluations. In
 629 *Advances in Neural Information Processing Systems*, volume 37, pp. 28219–28253,
 630 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/3191170938b6102e5c203b036b7c16dd-Paper-Conference.pdf.

631 Dynomight. Something weird is happening with llms and chess. [https://dynamight.net/
 632 chess/](https://dynamight.net/chess/), 2024.

633 Arpad E. Elo. *The Rating of Chessplayers, Past and Present*. Arco Pub., New York, 1978. ISBN
 634 0668047216 9780668047210.

635 Nathan Ensmenger. Is chess the drosophila of artificial intelligence? A social history of an algo-
 636 rithm. *Social Studies of Science*, 42(1):5–30, February 2012. ISSN 0306-3127, 1460-3659. doi:
 637 10.1177/0306312711424596. URL <https://journals.sagepub.com/doi/10.1177/0306312711424596>.

638 Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu, Haoqin Tu, Zirui Cheng, Guanyu Lin, and
 639 Jiaxuan You. How Far Are We From AGI: Are LLMs All We Need?, November 2024. URL
 640 <http://arxiv.org/abs/2405.10313>. arXiv:2405.10313 [cs].

641 Xidong Feng, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue Yang, Kun Shao, David Mguni,
 642 Yali Du, and Jun Wang. Chessgpt: Bridging policy learning and language modeling. *arXiv preprint
 643 arXiv:2306.09200*, 2023. URL <https://arxiv.org/abs/2306.09200>.

644 Mark E. Glickman. Parameter estimation in large dynamic paired comparison experiments. *Journal
 645 of the Royal Statistical Society, Series C (Applied Statistics)*, 48(3):377–394, 1999.

648 Adrianus Dingeman de Groot. *Thought and Choice in Chess*. Walter de Gruyter, 1978. ISBN
 649 978-90-279-7914-8. Google-Books-ID: EI4gr42NwDQC.
 650

651 Rudolf Huber and Stefan Meyer-Kahlen. Universal chess interface (uci) protocol specification, 2000.
 652 URL <https://www.chessprogramming.org/UCI>.

653 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 654 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free eval-
 655 uation of large language models for code. In *The Thirteenth International Conference on Learning*
 656 *Representations*, 2025. URL <https://openreview.net/forum?id=chfJJYC3iL>.
 657

658 Alojzije Jankovic and Ivan Novak. Chess as a Powerful Educational Tool for Successful People.
 659 2019.

660 Larry Kaufman and Mark Lefler. Komodo Chess - README.txt. <https://komodochess.com/store/pages.php?cmsid=14>, 2020.
 661

663 Haidar Khan, Hisham A. Alyahya, Yazeed Alnumay, M. Saiful Bari, and Bülent Yener. Zerosumeval:
 664 Scaling lilm evaluation with inter-model competition. *arXiv preprint arXiv:2504.12562*, 2025.
 665 URL <https://arxiv.org/abs/2504.12562>.

666 Lichess. Advice.scala in lila repository. <https://github.com/lichess-org/lila/blob/cf9e10df24b767b3bc5ee3d88c45437ac722025d/modules/analyse/src/main/Advice.scala>, 2023. Accessed: 2025-05-07.
 667

670 Lichess. Lichess Accuracy metric. <https://lichess.org/page/accuracy>, 2025. Ac-
 671 cessed: May 4, 2025.

672 Ray Linville. Understanding average centipawn loss in chess, 2023. URL <https://www.chess.com/blog/raync910/average-centipawn-loss-chess-acpl>.
 673

675 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual Instruction Tuning, December
 676 2023. URL <https://arxiv.org/abs/2304.08485>. arXiv:2304.08485 [cs].
 677

678 J. McCarthy. Chess as the Drosophila of AI. In T. Anthony Marsland and Jonathan Schaeffer
 679 (eds.), *Computers, Chess, and Cognition*, pp. 227–237. Springer New York, New York, NY,
 680 1990. ISBN 978-1-4613-9082-4 978-1-4613-9080-0. doi: 10.1007/978-1-4613-9080-0_14. URL
 681 https://link.springer.com/10.1007/978-1-4613-9080-0_14.

682 Szymon Miłosz and Paweł Kapusta. Predicting chess puzzle difficulty with transformers, 2024. URL
 683 <https://arxiv.org/abs/2410.11078>.

684 Daniel Monroe and Philip A. Chalmers. Mastering chess with a transformer model, 2024. URL
 685 <https://arxiv.org/abs/2409.12272>.

687 Alhassan Mumuni and Fuseini Mumuni. Large language models for artificial general intelligence
 688 (agi): A survey of foundational principles and approaches, 2025. URL <https://arxiv.org/abs/2501.03151>.
 689

690 Franck S. Ndzmogba. What happens when llms play chess? https://github.com/fsndzmogba/chess_tournament_nebious_dspy, 2024. Accessed: 2025-05-14.
 691

693 Monroe Newborn. Chess 4.7 gives levy a run for his money. *The Mathematical Intelligencer*, 1:
 694 215–217, 1979.

695 Monty Newborn. *Kasparov versus Deep Blue: Computer Chess Comes of Age*. Springer Science &
 696 Business Media, December 2012. ISBN 978-1-4612-2260-6. Google-Books-ID: IiXjBwAAQBAJ.
 697

698 David Noever, Matt Ciolino, and Josh Kalin. The chess transformer: Mastering play using generative
 699 language models, 2020. URL <https://arxiv.org/abs/2008.04057>.
 700

701 OpenAI. Learning to reason with LLMs, September 2024. URL <https://openai.com/index/learning-to-reason-with-l1lms/>.

702 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
 703 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
 704 Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
 705 Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
 706 Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
 707 Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
 708 Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
 709 Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
 710 Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
 711 Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
 712 Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
 713 Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
 714 Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
 715 Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
 716 Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
 717 Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
 718 Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
 719 Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
 720 Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
 721 Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
 722 Aris Konstantinidis, Kyle Koscic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
 723 Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
 724 Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
 725 Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
 726 Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
 727 Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
 728 Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
 729 Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
 730 Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
 731 Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew
 732 Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira
 733 Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris
 734 Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond,
 735 Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario
 736 Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John
 737 Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
 738 Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl,
 739 Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers,
 740 Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian,
 741 Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea
 742 Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben
 743 Wang, Jonathan Ward, Jason Wei, C. J. Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng,
 744 Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong,
 745 Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu,
 746 Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao,
 747 Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. GPT-4 Technical Report, March
 748 2024. URL <http://arxiv.org/abs/2303.08774>. arXiv:2303.08774 [cs].

749 Frederic Prost. On the Impact of Information Technologies on Society: an Historical Perspective
 750 through the Game of Chess, March 2012. URL <http://arxiv.org/abs/1203.3434>.
 751 arXiv:1203.3434 [cs].

752 Meg Risdal. Introducing kaggle game arena. <https://www.kaggle.com/blog/introducing-game-arena>, August 2025. On behalf of the Kaggle Benchmarks & Competitions teams.

753 Michael Roshholm, Mai Bjørnskov Mikkelsen, and Kamilla Gumedé. Your move: The effect of chess
 754 on mathematics test scores. *PLoS one*, 12(5):e0177257, 2017.

756 Andreas Ruoss, Guillaume Delétang, Sainadh Medapati, Chi Zang, and Igor Mordatch. Amortized
 757 planning with large-scale transformers: A case study on chess. *arXiv preprint arXiv:2402.04494*,
 758 2024. URL <https://arxiv.org/abs/2402.04494>.

759 Giovanni Sala and Fernand Gobet. Does chess instruction improve mathematical problem-solving
 760 ability? Two experimental studies with an active control group. *Learning & Behavior*, 45(4):
 761 414–421, December 2017. ISSN 1543-4508. doi: 10.3758/s13420-017-0280-3. URL <https://doi.org/10.3758/s13420-017-0280-3>.

762 Giovanni Sala, Alexander P. Burgoyne, Brooke N. Macnamara, David Z. Hambrick, Guillermo
 763 Campitelli, and Fernand Gobet. Checking the “Academic Selection” argument. Chess players out-
 764 perform non-chess players in cognitive skills related to intelligence: A meta-analysis. *Intelligence*,
 765 61:130–139, March 2017. ISSN 0160-2896. doi: 10.1016/j.intell.2017.01.013. URL <https://www.sciencedirect.com/science/article/pii/S0160289616301635>.

766 Claude E. Shannon. XXII. Programming a computer for playing chess. *The London, Edinburgh,
 767 and Dublin Philosophical Magazine and Journal of Science*, 41(314):256–275, March 1950.
 768 ISSN 1941-5982. doi: 10.1080/14786445008521796. URL <https://doi.org/10.1080/14786445008521796>. Publisher: Taylor & Francis.

769 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 770 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
 771 mathematical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

772 David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
 773 Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
 774 by self-play with a general reinforcement learning algorithm. *arXiv preprint arXiv:1712.01815*,
 775 2017.

776 Herbert Simon and William Chase. Skill in chess. In *Computer chess compendium*, pp. 175–188.
 777 Springer, 1988.

778 Herbert A. Simon and Jonathan Schaeffer. Chapter 1 The game of chess. In *Handbook of Game
 779 Theory with Economic Applications*, volume 1, pp. 1–17. Elsevier, 1992. ISBN 978-0-444-88098-
 780 7. doi: 10.1016/S1574-0005(05)80004-9. URL <https://linkinghub.elsevier.com/retrieve/pii/S1574000505800049>.

781 Andreas Stöckl. Watching a language model learning chess. In *Proceedings of the International
 782 Conference on Recent Advances in Natural Language Processing (RANLP 2021)*, pp. 1369–1379,
 783 2021. URL <https://aclanthology.org/2021.ranlp-1.153>.

784 Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
 785 Tan, and Daniel Shu Wei Ting. Large language models in medicine. *Nature Medicine*, 29
 786 (8):1930–1940, August 2023. ISSN 1546-170X. doi: 10.1038/s41591-023-02448-8. URL
 787 <https://www.nature.com/articles/s41591-023-02448-8>. Publisher: Nature
 788 Publishing Group.

789 Shubham Toshniwal, Sam Wiseman, Karen Livescu, and Kevin Gimpel. Chess as a testbed for
 790 language model state tracking, 2022. URL <https://arxiv.org/abs/2102.13249>.

791 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 792 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
 793 Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation Language
 794 Models, February 2023. URL <https://arxiv.org/abs/2302.13971>. arXiv:2302.13971
 795 [cs].

796 Alan M. Turing. Chess. In David Levy (ed.), *Computer Chess Compendium*, pp. 14–17. Springer
 797 New York, New York, NY, 1988. ISBN 978-1-4757-1968-0. doi: 10.1007/978-1-4757-1968-0_2.
 798 URL https://doi.org/10.1007/978-1-4757-1968-0_2.

799 Chi Wang, Qingyun Wu, and AG2 Contributors. Ag2: Open-source framework for building ai agents.
 800 <https://docs.ag2.ai/latest/docs/home/>, 2025.

810 Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-Agents Enhances
 811 Large Language Model Capabilities, June 2024. URL <http://arxiv.org/abs/2406.04692> [cs].
 812 arXiv:2406.04692 [cs].

813 Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 814 Andrew M. Dai, and Quoc V. Le. Finetuned Language Models Are Zero-Shot Learners, February
 815 2022. URL <http://arxiv.org/abs/2109.01652>. arXiv:2109.01652 [cs].

816 Norbert Wiener. *Cybernetics or control and communication in the animal and the machine*.
 817 The MIT Press, October 2019. ISBN 978-0-262-35590-2. doi: 10.7551/mitpress/11810.001.
 818 0001. URL <https://doi.org/10.7551/mitpress/11810.001.0001>. tex.eprint:
 819 https://direct.mit.edu/book-pdf/2254528/book_9780262355902.pdf.

820 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
 821 Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
 822 Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023a.
 823 URL <https://arxiv.org/abs/2308.08155>.

824 Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabrowski, Mark Dredze, Sebastian Gehrmann,
 825 Prabhanjan Kambadur, David Rosenberg, and Gideon Mann. BloombergGPT: A Large Lan-
 826 guage Model for Finance, December 2023b. URL <http://arxiv.org/abs/2303.17564>.
 827 arXiv:2303.17564 [cs].

828 Yuxiang Wu, Zhengyao Jiang, Akbir Khan, Yao Fu, Laura Ruis, Edward Grefenstette, and Tim
 829 Rocktäschel. Chatarena: Multi-agent language game environments for large language models.
 830 <https://github.com/chatarena/chatarena>, 2023c.

831 Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Adrian de Wynter, Yan Xia, Wenshan Wu, Ting
 832 Song, Man Lan, and Furu Wei. Llm as a mastermind: A survey of strategic reasoning with large
 833 language models. *arXiv preprint arXiv:2404.01230*, 2024. URL <https://arxiv.org/abs/2404.01230>.

834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864

A DESIGN CHOICE JUSTIFICATION

865
 866 We acknowledge that our benchmark includes settings that deviate from what you would find in
 867 the real-world. However, our goal was not to perfectly mimic humans playing chess but instead
 868 to use chess as a testbed to evaluate different aspects of LLMs including instruction-following and
 869 measuring the abilities of reasoning models beyond simple move completion settings. The main
 870 deviation was our introduction of tools, i.e., the ability to see the current board or legal moves with a
 871 tool call. While it may seem unorthodox, the results show that introducing such an agentic approach
 872 is useful in measuring instruction-following, a central goal of the benchmark: of the 44 models
 873 we tested vs a random opponent with positive performance, we see instruction-following errors are
 874 responsible for 71.9% of all games ending for non-reasoning models and 24.4% for reasoning models,
 875 on average. Even more powerful models we might not expect to have such errors, e.g., Deepseek-R1
 876 or o3-mini (low), show non-negligible problems with instruction following.

877 The main design choices we made beyond the agentic setting was supplying the current board and
 878 legal moves but not providing the previous moves. We justify our other choices below, which we will
 879 add to the limitations section of our paper:

880
 881 **Board State** We assume that the model is able to see the full board at any time, differing from
 882 some models that see only the previous moves or a pgn description of the game. We chose this to be
 883 more similar to what a human player or chess engine would see.

884
 885 **Legal Moves** We decided to provide legal moves to simplify the benchmark, as current capabilities
 886 of models are not yet enough to play consistently without providing the legal moves. See Table
 887 6 in Appendix B, where not including legal moves causes a decrease in Win/Loss of 30% for
 888 grok-3-mini-low and 10% for o4-mini (low) compared to the baseline (note for legal moves and
 889 its comparison we use the FEN setting as without legal moves, we cannot know castling rights or
 890 en passant). Essentially, including the legal moves was a practical concern: it allows us to have
 891 more granularity between models by boosting their performance and preventing clustering at low
 892 performance due to move failures.

893
 894 **Previous Moves** We chose not to include previous moves to increase similarity with existing AI
 895 approaches for playing chess. Chess engines like Stockfish can evaluate the best move given a board
 896 state alone without any move history. If LLMs are to reach the level of other AI systems in chess, we
 897 believe it is helpful to see them perform under these same constraints. So, we decided not including
 898 previous moves would result in a more challenging and ideal goal for LLMs. This decision not to
 899 include previous moves was made during the initial trials of the benchmark during its creation, while
 900 experimenting with different prompts across a subset of models. During these experiments, including
 901 the history bloated the prompt and made some of the models struggle more with instruction-following,
 902 so we also chose this setting as a practical concern. Moreover, in our paper, we analyzed performance
 903 of including previous moves in our ablations in Table 6. We found that while including previous
 904 moves in the prompt did improve performance, the change was varied and altogether not drastic,
 905 suggesting that if anything, the previous moves can help reduce complexity and blunders, not increase
 906 them.

907

B EXPERIMENTAL SETTINGS

908
 909 We ran all LLMs with a default temperature of 0.3 and Top P of 1.0 for the models that took them as
 910 parameters (some models like OpenAI’s reasoning models don’t take a temperature). If models like
 911 Deepseek-R1 have a recommended temperature (0.6), we try to use that instead. We define “rea-
 912 soning-enhanced” models as those that are specifically advertised/characterized by their developers
 913 as “reasoning” (e.g. OpenAI) or “thinking” (e.g. Anthropic, Google) without going into detail as to
 914 how those models are built (generally RL and test-time compute are mentioned, yet the detail and
 915 disclosure varies). On the surface the reasoning enhanced models manifest their nature by splitting
 916 the response into two sections: 1) reasoning/thinking intermediary, delimited via a special section in
 917 the chat template (such as a think tag) or residing in a separate API response section (e.g. thinking
 918 block in Anthropic API), and 2) the final answer. E.g., aligned with their advertised functionalities,

918 we designate as reasoning the following: all “o” family of models (e.g., o1, o3, o4-mini), Claude 3.7
 919 Thinking, Grok 3 Mini, Gemini 2.5 Pro, and Deepseek-R1.
 920

921 B.1 CENTIPAWN CALCULATION USING STOCKFISH 922

923 We ran Stockfish v17 (path configurable via `stockfish_path`) in UCI mode with the following
 924 settings: fixed analysis depth of 20 plies, no time limit per move, a single thread, 128 MB hash
 925 size, MultiPV=1, and skill level of 20. We convert the engine’s Cp or Mate score to centipawns
 926 via a standardized function: centipawn values directly for Cp evaluations, and ± 1000 for any mate
 927 score: positive for winning mates, negative for losing mates. Blunder, Mistake, and Inaccuracy
 928 thresholds are based on Lichess’s Win% cutoffs: 30%, 20%, and 10% respectively (Lichess, 2023).
 929 These hyperparameters provide consistent, interpretable per-ply metrics while keeping analysis costs
 930 tractable.

931 B.2 DRAGON 1 SETTINGS 932

933 All Dragon 1 experiments were run on the following computer: Windows 11, WSL 2, Core i5
 934 13600KF, 64GB DDR5 RAM, RTX4090. As we use it, the Dragon chess engine is stochastic: to
 935 verify this, we ran 1000 games between Dragon skill 1 vs skill 2. We found that game metrics such
 936 as player material count and game duration variate significantly (standard deviation is 10-40% of the
 937 mean).

938 B.3 MODEL INFORMATION 939

940 In Table 4 we map all the API model names and additional settings (e.g., quantization) to their cleaned
 941 name used in the paper. Note that all open source models not run through an API (e.g., groq) were
 942 run with quantization on a RTX 4090.

943 In Table 5 we show the average cost per game across models on our leaderboard where cost was
 944 tracked, across all games.
 945

946 B.4 ELO CALCULATIONS 947

948 To calculate Elo, we played at least 33 total games against varying skill levels in Dragon 1 with
 949 the following models: o3 (low), Grok 3 Mini (high), o4-mini, o3-mini. We provide Win/Loss and
 950 number of games against each skill level in Table 7. Note that we played o3 (low) and Grok 3 Mini
 951 (high) against skills 1-5 (each ≥ 169 games), o3-mini (high) and o4-mini (high) against skills 1-2
 952 (each ≥ 49 games), and the rest of the models against skill 1 (each ≥ 33 games). We also played o3
 953 (low) against skill 10 because we found that it performed quite well against skill 5 (71.9% Win/Loss).
 954 However, we found that against skill 10, o3 (low) only achieved a 3.0% Win/Loss, meaning even the
 955 most powerful model we thoroughly tested still has a ways to go.

956 Pseudocode for the Elo calculations resulting in the values in Figure 3 is in Algorithm 1, which takes
 957 in a list of opponents with their Elo and corresponding win (1), draw (0.5), loss (0) and calculates an
 958 estimate for the LLM’s Elo and a 95% confidence interval. Notably, when calculating Elo we add a
 959 correction of 35 points to correct for the fact that the LLMs always play as black. We base this on
 960 analysis finding that white empirically wins about 54% of games when facing an opponent of the
 961 same rating, which equates to 35 points⁴.

962 B.5 ELO COMPARISONS 963

964 We base our Elo scores on Dragon 1, which has different skill levels each paired with a chess.com
 965 Elo estimate. Due to this, we can compare the LLMs with players on chess.com. Chess world champion
 966 Magnus Carlsen has an active profile at chess.com as the player with the highest Elo rating of
 967 2839 (Chess.com, 2025c). Additionally, on average, a chess.com user has an Elo rating of 611.10
 968 based on 63,120,101 total players (Chess.com, 2025b). Of our evaluated models, only o3 (low) is

971 ⁴<https://en.chessbase.com/post/the-sonas-rating-formula-better-than-elo>

Algorithm 1 Estimate True Elo Rating

Require: Records $R = \{(R_i, S_i)\}_{i=1}^n$ ▷ R_i opponent Elo, $S_i \in \{0, 0.5, 1\}$
Require: White-advantage W ▷ 35 Elo

Ensure: Estimated rating \hat{R} and 95% CI half-width ME

- 1: **function** EXPECTEDSCORE($r, (R_i)_{i=1}^n$)
- 2: **for** $i \leftarrow 1$ **to** n **do**
- 3: $\hat{S}_i \leftarrow 1 / (1 + 10^{(R_i - r)/400})$ ▷ i.e., $E_i(r)$
- 4: **end for**
- 5: **return** $(\hat{S}_i)_{i=1}^n$
- 6: **end function**
- 7: **function** SCOREDIFF(r)
- 8: $\hat{S} \leftarrow$ EXPECTEDSCORE($r, (R_i)_{i=1}^n$)
- 9: **return** $\sum_{i=1}^n (S_i - \hat{S}_i)$
- 10: **end function**
- 11: // 1) Solve for the black rating of the LLM
- 12: $R_{\text{black}} \leftarrow \text{FINDZERO}(\text{ScoreDiff}, [\min_i R_i - 400, \max_i R_i + 400])$ ▷ find r such that
 $\text{ScoreDiff}(r) = 0$ and is within 400 Elo of the min and max opponent Elos
- 13: // 2) Compute Fisher information at R_{black}
- 14: $\hat{S} \leftarrow$ EXPECTEDSCORE($R_{\text{black}}, (R_i)_{i=1}^n$)
- 15: $\mathcal{I} \leftarrow \sum_{i=1}^n \hat{S}_i (1 - \hat{S}_i) (\ln 10/400)^2$
- 16: $\text{SE} \leftarrow 1/\sqrt{\mathcal{I}}$
- 17: // 3) Adjust for white-advantage and form 95% CI
- 18: $\hat{R} \leftarrow R_{\text{black}} + W$
- 19: $\text{ME} \leftarrow 1.96 \times \text{SE}$
- 20: **return** (\hat{R}, ME)

able to perform better when compared to the average chess.com player, with all models significantly far away from the upper bound of the top player, showing significant room for improvement.

While human comparison is important, we also include the random agent for additional context, which is used in the first phase of our evaluation. A random agent has an Elo rating of -122.3, calculated when played against 1000 games each of skills 1-4. As expected with their performance against a random agent directly, all players have a higher Elo, though the worst player, o3-mini (low), does not perform much better, as expected. This signifies that the engine can beat the random agent easily and that there are no unexpected effects.

C ADDITIONAL RESULTS

C.1 ABLATIONS

We present full results on all our ablations for Grok 3 Mini (low) and o4-mini (low) in Table 3. We always play 30 games against a random agent with the LLM as black except for the LLM as white setting, where the roles are reversed. We also use the default unicode board in all settings except the No Legal Moves setting. Because the default unicode board does not have all board information (e.g., castling rights), we provide a FEN for No Legal Moves instead, meaning we are comparing to the FEN setting as the No Legal Moves baseline. We also note that each time the LLM fails to select a valid move in `make_move`, it is provided a message with the board state in FEN like Failed to make move: illegal uci: 'd5e4' in 1k3b2/1p2pp1r/p7/3p4/3r4/8/PKb5/8 b -- 3 35. So note when we change the board state in our ablations, regardless of what we change it to we still always see this FEN when an illegal move is made.

Implementation Details For Always Board State we remove `get_current_board` from the list of actions and instead always provide the board state in the prompt. For Always Legal Moves we do the same but for `get_legal_moves`. For Only `make_move` we remove both

1026 get_current_board and get_legal_moves from the list of actions and instead include the
 1027 board state and legal moves in the prompt, leaving make_move as the only action. This mimics a
 1028 non-agentic scenario since there is only one action needed in every conversation, so each should only
 1029 have one turn unless a mistake is made in making a move. We present examples of ASCII and FEN
 1030 (Forsyth–Edwards Notation) boards below:

1031 Example of ASCII board

```
1032 rnbqkbnr
1033 pppppppp
1034 .....
1035 .....
1036 .P.....
1037 .....
1038 P.PPPP
1039 RNBQKBNR
```

1042 Example of FEN board

```
1043 rnbqkbnr/pppppppp/8/8/6P1/8/PPPPP1P/RNBQKBNR b KQkq - 0 1
```

1046 For No Legal Moves, we simply remove get_legal_moves and replace the unicode board with a
 1047 FEN board. For Previous Moves, we include all previous moves in an ordered list in UCI notation
 1048 before the Game Loop Prompt. Here, it is black's turn and there have been 10 full moves and 21 plies:
 1049

1050 Previous Moves Prompt

```
1051 Previous moves (UCI): 1. e2e3 g8f6, 2. a2a4 e7e5, 3. e1e2 b8c6, 4. b1a3 f8e7, 5. a3b1 e5e4,
1052 6. b2b3 e8g8, 7. c1a3 d7d5, 8. g2g4 f6g4, 9. a3d6 e7d6, 10. d1e1 g4e5, 11. b1a3
```

1055 For Previous Moves + Only make_move, we use the Only make_move setting but prepend the
 1056 Previous Moves Prompt in the same way as for Previous Moves.
 1057

1058 **Analysis** Overall, we see for our Actions ablations, performance always increases for both models
 1059 when we choose to remove actions and include their information in the prompt instead, suggesting
 1060 that the models still struggle to choose the actions they need in the agentic system.

1061 For Board Representation, we see Grok 3 Mini (low) performance is robust to changes from unicode
 1062 to ASCII or FEN, while for o4-mini (low) ASCII is 15% better than unicode and FEN is 6.7% better
 1063 than ASCII. We also see that when the LLM is the white player performance increases as expected,
 1064 but still remains below 90% for both models.

1066 When Changing Information, we see removing the ability to query for legal moves decreases
 1067 performance by almost 30% for Grok 3 Mini (low) and almost 10% for o4-mini (low) compared
 1068 to the FEN baseline. This shows that o4-mini (low) has a better grasp of the legal moves, but both
 1069 models struggle, as expected. We see that while including previous moves improves the Win/Loss of
 1070 both models, it also decreases the average Blunder rate (Table 8). In fact, while o4-mini (low) only
 1071 improves by 3.4% in Win/Loss over the baseline, there is a large drop in blunders of 9.6%, meaning
 1072 that including previous moves helps the model avoid larger mistakes during play. When including
 1073 previous moves in the Only make_move setting, we see similar but slightly worse performance than
 1074 in Only make_move, suggesting when the model is only focused on making the next move without
 1075 needing to call other actions for information, the previous moves either don't help or slightly harm
 1076 performance.

1077 C.2 MOA EXPERIMENTS

1078 The Mixture-of-Agents (MoA) approach is defined by a set of proposer (worker) models that are
 1079 each prompted to provide an answer, then a synthesizer model meant to combine them. For the

1080 latter, there is an aggregator that works by independently querying the list of proposer models and
 1081 concatenating their outputs into a single message. This context is fed to the synthesizer model, which
 1082 uses the following system prompt:
 1083

1084 MoA Synthesizer System Prompt
 1085

1086 You will be provided with a set of responses from various open-source models to the latest
 1087 user query.

1088 Your task is to synthesize these responses into a single, high-quality response in British
 1089 English spelling.

1090 It is crucial to critically evaluate the information provided in these responses, recognizing
 1091 that some of it may be biased or incorrect.

1092 Your response should not simply replicate the given answers but should offer a refined,
 1093 accurate, and comprehensive reply to the instruction.

1094 Ensure your response is well-structured, coherent and adheres to the highest standards of
 1095 accuracy and reliability.

1096 In the main experiments we presented MoA results for only o4-mini. However, we now include
 1097 additional experiments with different ensembles of reasoning and non-reasoning models. We found
 1098 that none of the tested non-reasoning models when used as both the proposer and synthesizer (Claude
 1099 Haiku 3.5, GPT-4.1-mini) improved on game proficiency (0 win rate vs random agent) while also
 1100 improving on instruction following (100% game duration, meaning all of the games completed
 1101 naturally, i.e. they were not interrupted due to problems like hallucinated moves). We also tried to
 1102 use o4-mini (low) as the synthesizer instead of o4-mini (medium) as in the main results but it failed,
 1103 not providing a valid action and instead commenting on the quality of the proposers' responses.
 1104 Furthermore, we ran experiments using reasoning models with instruction-following issues (Deepseek
 1105 R1, Gemini 2.5 Pro) among the proposers and a synthesizer strong in instruction-following but weaker
 1106 in reasoning (GPT-4.1-mini). We found this setup significantly boosted win rates compared to using
 1107 the reasoning models alone due to recovered instruction following, achieving 100% game duration.
 1108 Results with the Win/Loss vs a random agent and the game duration are in Table 9.

1109 C.3 LLMs WITH 0% WIN/LOSS
 1110

1111 In Table 6, we include all models we ran with 0% Win/Loss (35 models) versus a random opponent
 1112 that attempted to complete 30 games. We excluded any games with timeout or API errors. For these
 1113 models, all losses are due to instruction-following failures with models making too many invalid
 1114 actions or conversation turns.

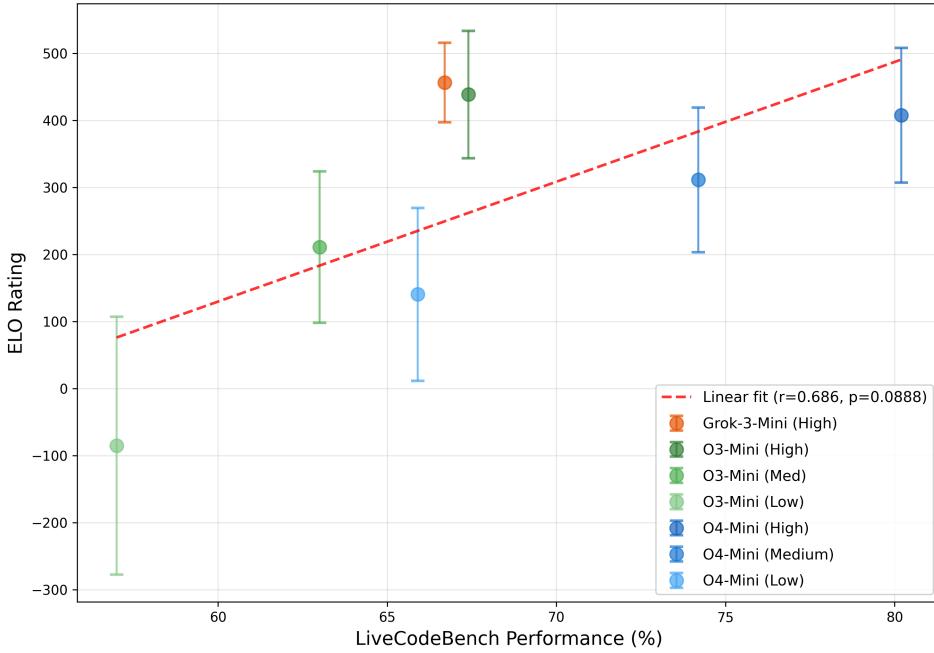
1115 C.4 FULL RESULTS
 1116

1117 For direct comparisons, in the main body we presented results for LLMs vs Random on 30 games.
 1118 However, to increase the reliability of our evaluation, we ran an increased amount of games on a
 1119 variety of models. We include results for all games we ran along with the number of games for each
 1120 result in Table 10. We see that even with more games, the general ranking of models and pattern
 1121 remains the same: reasoning models perform best, while non-reasoning models struggle to reach over
 1122 50% Win/Loss.
 1123

1124 C.5 COMPARISON WITH OTHER REASONING BENCHMARKS
 1125

1126 Large language models excel on standard reasoning benchmarks: for instance, OpenAI's o1 model
 1127 achieves 11.1 out of 15 (74%) on the AIME with a single sample per problem, 12.5 out of 15 (83%)
 1128 using self-consistency over 64 samples, and 13.9 out of 15 (93%) after re-ranking 1000 samples via
 1129 a learned scorer (OpenAI, 2024). These scores exceed the performance of the majority of AIME
 1130 participants; for comparison, scoring 10 or above typically places a student in the top 5% of test-takers
 1131 nationally. On programming contests like Codeforces, o1 attains an Elo of 1258 (62nd percentile) in
 1132 its preview release and 1673 (89th percentile) in its main version, surpassing most active competitors
 1133 on the platform.

1134 To compare our performance directly with a real task, we calculate the correlation between our Elo
 1135 scores versus LiveCodeBench (Jain et al., 2025) performance on the intersection of all models in
 1136 our chess engine experiments and the LiveCodeBench leaderboard. LiveCodeBench is a popular
 1137 benchmark for competitive programming where reasoning models perform well. We take the available
 1138 Pass@1 scores on the benchmark website for comparison. We find that the scores have a Pearson
 1139 correlation coefficient of 0.686 (p-value: 0.0888), indicating a moderately strong positive correlation
 1140 between scores on either benchmark. The performance comparison is visualized in Figure 5.
 1141



1164 Figure 5: LiveCodeBench Pass@1 scores vs. LLM Chess Elo estimates.
 1165

1166 In stark contrast to performance on code and math tasks, when evaluated on our interactive chess
 1167 benchmark, the LLM we evaluated peaked at Elo 758 against an engine calibrated to chess.com,
 1168 corresponding to a skill level similar to that of an average online chess player. This contrast un-
 1169 dercores a key insight: while LLMs can exceed the abilities of most humans in math and coding
 1170 competitions, they exhibit a striking weakness in real-time, multi-step strategic environments like
 1171 chess. Our benchmark surfaces these limitations by requiring not only domain knowledge but also
 1172 agentic consistency, planning, and game state awareness.
 1173

1176 C.6 ERROR ANALYSIS

1177 During games, we observe various instruction-following issues. These consist primarily of models
 1178 responding with non-parsable text, where an action can't be identified by simple string matching (i.e.,
 1179 wrong actions), or models requesting illegal moves when issuing a parseable `make_move` action (i.e.,
 1180 wrong moves). Evaluation of conversation traces shows that wrong moves are typically attributed to
 1181 models' inability to respond with relevant actions, filling the response with verbosity and failing to
 1182 recognize the desired response format. Wrong moves can be attributed to hallucinations; e.g., even
 1183 with prior `get_legal_moves` requests and a list of available legal moves in the context, the model
 1184 can still fail to request a legal move, choosing one not allowed or not listed in the previous message
 1185 instead.
 1186

1187 All games interrupted due to issues can be categorized as one of the following:

1188 1. **Too many wrong actions:** The model produced more than two responses that the game bot
 1189 failed to parse or make a valid move
 1190

1191 2. **Max turns reached:** While deciding on a next move, the chat completions dialog lasted for
 1192 more than 10 turns. This typically indicates repetitive loops, such as going in circles with
 1193 actions like `get_current_board` and `get_legal_moves`.
 1194

1195 3. **Model Errors:** These consist of errors such as timeouts when a model failed to respond
 1196 within a reasonable amount of time or when a specific API code was returned. Connectivity
 1197 and infrastructure issues are discarded (log deleted) and the corresponding games are rerun.
 1198

1199 On a subset of our benchmark with 76 evaluated models, 54 out of 76 (71.1%) models experienced
 1200 abnormal finishes. Table 11 shows the average breakdown of failure reasons, and Table 12 presents
 1201 the average mistake rates per 1000 moves. The primary driver of failure is making too many wrong
 1202 actions, responsible for 64.79% of the failures. Per move, wrong actions occur 62.1% of the time as
 1203 opposed to wrong moves occurring 37.9% of the time. These results indicate that most failures are
 1204 from models unable to call the correct tools rather than making illegal moves or getting stuck in a
 1205 repetitive interaction loop.
 1206

D IMPLEMENTATION DETAILS

1208 Here we include all prompts supplied to the model, as well as a sample dialog for a single move.
 1209 Below is the prompt that initiates the conversation with the LLM:
 1210

Game Loop Prompt

1213 You are a professional chess player and you play as black. Now is your turn to make a move.
 1214 Before making a move you can pick one of the following actions:
 1215 - `'get_current_board'` to get the schema and current status of the board
 1216 - `'get_legal_moves'` to get a UCI formatted list of available moves
 1217 - `'make_move <UCI formatted move>'` when you are ready to complete your turn (e.g.,
 1218 `'make_move e2e4'`)
 1219 Respond with the action.

1220 Reflection prompt for when the chess environment can't parse an action in the LLM response:
 1221

Reflection Prompt for Unparseable Action

1224 Invalid action. Pick one, reply exactly with the name and space delimited argument:
 1225 `get_current_board`, `get_legal_moves`, `make_move <UCI formatted move>`
 1226

1227 Reflection prompt for illegal move request by LLM:
 1228

Reflection Prompt for Illegal Move

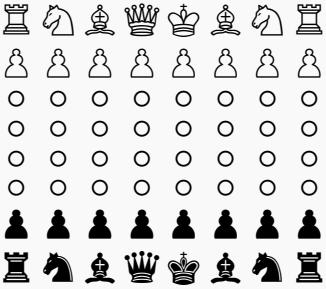
1231 Failed to make move: illegal uci: `'b6c5'` in
 1232 `r1bqk2r/pppp1ppp/1N2n1P1/4pKb1/8/P4Q1N/1PPPP1R1/R1B2B2 b kq -`
 1233 `12 25`

1234 Sample dialog of a conversation the LLM has in the agentic environment to output a single move (the
 1235 board is encoded in Unicode characters and provided to the LLM):
 1236

Sample Dialog for Single Move

1239 Proxy (to Player_Black):
 1240 You are a professional chess player and you play as black.
 1241 Now is your turn to make a move. Before making a move you can

```

1242
1243     pick one of the following actions:
1244     - 'get_current_board' to get the schema and current status of
1245     the board
1246     - 'get_legal_moves' to get a UCI formatted list of available
1247     moves
1248     - 'make_move <UCI formatted move>', when you are ready to
1249     complete your turn (e.g., 'make_move e2e4')
1250     Respond with the action.
1251
1252     Player_Black (to Proxy):
1253     get_current_board
1254
1255     Proxy (to Player_Black):
1256     
1257
1258
1259
1260
1261
1262
1263
1264
1265     Player_Black (to Proxy):
1266     get_legal_moves
1267
1268     Proxy (to Player_Black):
1269     a7a6, b7b6, c7c6, d7d6, e7e6, f7f6, g7g6, h7h6, a7a5, b7b5,
1270     c7c5, d7d5, e7e5, f7f5, g7g5, h7h5
1271
1272     Player_Black (to Proxy):
1273     make_move e7e5
1274
1275     Proxy (to Player_Black):
1276     Move made, switching player
1277
1278
1279     E OPENAI REASONING MODEL TIMEOUTS
1280
1281     OpenAI reasoning models exhibited occasional timeout errors at higher levels of reasoning effort.
1282     They were the only models we tested that often failed to return a response within the default AG2
1283     client timeout of 10 minutes, throwing the following error:
1284
1285     TimeoutError: OpenAI API call timed out. This could be due to
1286     congestion or too small a timeout value. The timeout can be
1287     specified by setting the 'timeout' value (in seconds) in the
1288     llm_config (if you are using agents) or the OpenAIWrapper
1289     constructor (if you are using the OpenAIWrapper directly).
1290
1291     In all cases, no retries were made. For random opponents these games were excluded, but against
1292     Dragon 1 they were treated as losses for the LLM. As we focus on real-world chess performance,
1293     it is reasonable to enforce consistent time limits and thus assigning a loss should a player fail to
1294     make a move. We note that these issues are likely due to OpenAI's server or the way it handles high
1295     reasoning efforts. Timeout issues are the reason for the lower ranking of some OpenAI reasoning

```

1296 Increasing the timeout did not solve the issue. We suspect that some of the game prompts triggered
1297 failure modes in models, just like some games states and corresponding prompts provoked hallucinated
1298 moves in non-reasoning models.

1299 The the statistics on timeout errors observed while testing Dragon 1 vs o3-mini, o3, and o4-mini are
1300 in Table 13.
1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352 Table 4: API name and settings (e.g., quantization, reasoning effort) mapped to the clean model name
1353 used in the paper. If quantized, we ran locally.

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

API Name and Settings	Cleaned Model Name
gpt-4-0613	GPT-4
qwen2.5-7b-instruct-1m	Qwen2.5-7B-Instruct
internlm3-8b-instruct	InternLM3-8B-Instruct
qwen-max-2025-01-25	Qwen2.5-Max
qwen2.5-14b-instruct@q8_0	Qwen2.5-14B-Instruct (Q8)
qwq-32b	QWQ-32B
o3-2025-04-16-low	o3 (low)
gpt-4o-2024-08-06	GPT-4o (2024-08-06)
mistral-nemo-12b-instruct-2407	Mistral-Nemo-Instruct-2407
gpt-35-turbo-1106	GPT-3.5 Turbo (11/06)
o1-preview-2024-09-12	o1-preview
grok-3-mini-beta-high	Grok 3 Mini (high)
claude-v3-5-sonnet-v1	Claude 3.5 Sonnet
amazon.nova-lite-v1	Amazon Nova Lite
gemini-2.0-flash-exp	Gemini 2.0 Flash (exp)
o4-mini-2025-04-16-low	o4-mini (low)
llama-3-70b-instruct-awq	Llama-3-70B-Instruct
gpt-4.5-preview-2025-02-27	GPT-4.5
deeplearn-chat-v3	DeepSeek-V3
gemma-2-27b-it@q6_k_l	Gemma 2 27B
llama3.1-8b	Llama 3.1-8B
claude-v3-5-haiku	Claude 3.5 Haiku
qwen2.5-72b-instruct	Qwen2.5-72B-Instruct
gpt-4.1-nano-2025-04-14	GPT-4.1 Nano
granite-3.1-8b-instruct	Granite-3.1-8B-Instruct
llama3-8b-8192	Llama-3-8B
gemma2-9b-it-groq	Gemma 2 9B
qwen-turbo-2024-11-01	Qwen Turbo
gpt-4o-2024-11-20	GPT-4o (2024-11-20)
amazon.nova-pro-v1	Amazon Nova Pro
o1-2024-12-17-low	o1 (low)
qwen-plus-2025-01-25	Qwen Plus
gpt-35-turbo-0301	GPT-3.5 Turbo (03/01)
mercury-coder-small	Mercury Coder Small
deephermes-3-llama-3-8b-preview@q8	DeepHermes-3-Llama-3-8B-Preview
o4-mini-2025-04-16-high	o4-mini (high)
gpt-4o-mini-2024-07-18	GPT-4o Mini
gpt-4-turbo-2024-04-09	GPT-4 Turbo
o4-mini-2025-04-16-medium	o4-mini (medium)
gemini-2.5-pro-preview-03-25	Gemini 2.5 Pro Preview
gpt-4-32k-0613	GPT-4 32K
phi-4	Phi-4
gemini-2.0-flash-thinking-exp-1219	Gemini 2.0 Flash Thinking
mistral-small-instruct-2409	Mistral-Small-Instruct-2409
mistral-small-24b-instruct-2501@q4_k_m	Mistral-Small-24B-Instruct-2501
llama-2-7b-chat	Llama-2-7B-Chat
gemma-3-12b-it@iq4_xs	Gemma 3 12B (iq4)
claude-v3-7-sonnet-thinking_10000	Claude 3.7 Sonnet Thinking
gemini-1.5-flash-001	Gemini 1.5 Flash
deeplearn-chat-v3-0324	DeepSeek-V3 (0324)
deeplearn-reasoner-r1	DeepSeek-R1
llama-4-scout-cerebrus	Llama 4 Scout
chat-bison-32k@002	Chat-Bison-32K
qwen2.5-14b-instruct-1m	Qwen2.5-14B-Instruct
o1-2024-12-17-medium	o1 (medium)
claude-v3-haiku	Claude 3 Haiku
grok-3-mini-beta-low	Grok-3 Mini (low)
o3-mini-2025-01-31-low	o3-mini (low)
llama-3.1-tulu-3-8b@q8_0	Llama-3.1-Tulu-3-8B
gpt-4o-2024-05-13	GPT-4o (2024-05-13)
gpt-35-turbo-0125	GPT-3.5 Turbo (01/25)
claude-v3-7-sonnet	Claude 3.7 Sonnet
gemma-2-9b-it-8bit	Gemma 2 9B (8bit)
gpt-35-turbo-0613	GPT-3.5 Turbo (06/13)
gemini-2.0-flash-lite-preview-02-05	Gemini 2.0 Flash Lite (preview)
o3-mini-2025-01-31-medium	o3-mini (medium)
gpt-4.1-2025-04-14	GPT-4.1
gemini-2.0-flash-lite-001	Gemini 2.0 Flash Lite
o3-2025-04-16-medium	o3 (medium)
gemini-2.0-flash-001	Gemini 2.0 Flash
deeplearn-r1-distill-qwen-14b@q8_0	DeepSeek-R1-Distill-Qwen-14B
mistral-8b-instruct-2410	Mistral 8B Instruct
deeplearn-r1-distill-qwen-32b@q4_k_m	DeepSeek-R1-Distill-Qwen-32B
llama-3.3-70b	Llama-3.3-70B
grok-2-1212	Grok-2
gemma-3-12b-it@q8_0	Gemma 3 12B (q8)
gemma-3-27b-it@iq4_xs	Gemma 3 27B
claude-v3-5-sonnet-v2	Claude 3.5 Sonnet v2
gpt-4.1-mini-2025-04-14	GPT-4.1 Mini

1404
 1405
 1406 Table 5: Average tokens per move and cost per game for models where cost was tracked. Note that
 1407 some models are excluded, e.g., when run locally or token counting was handled differently. Note
 1408 that some costs are lower due to poor performance and resulting early termination.
 1409

Model	Avg. Tokens/Move	Avg. Cost/Game
o3 (low)	1927.5	\$8.1653
o4-mini (high)	5695.2	\$2.7146
o3 (medium)	5040.3	\$7.3626
o1 (medium)	3309.1	\$19.5655
o4-mini (medium)	2155.6	\$1.1091
o1 (low)	1638.9	\$13.4843
o4-mini (low)	680.23	\$0.5273
o3-mini (medium)	2337.8	\$1.6058
o1-preview	2660.1	\$22.5618
Claude 3.7 Sonnet Thinking	671.33	\$2.0754
Claude 3.7 Sonnet	262.81	\$0.8993
GPT-4 32K	6.66	\$2.2266
Claude 3.5 Sonnet v2	911.15	\$0.5590
Qwen2.5-Max	6.06	\$0.1336
GPT-4 Turbo	6.06	\$0.8482
GPT-4o (2024-11-20)	51.59	\$0.3165
GPT4.1	18.94	\$0.1976
GPT-4.5	8.03	\$6.4834
GPT-4	8.21	\$1.8986
Claude 3.5 Haiku	67.72	\$0.0465
GPT-4o (2024-08-06)	7.7	\$0.2081
Claude 3.5 Sonnet	88.13	\$0.5658
Gemini 2.5 Pro Preview	434.93	\$0.5570
GPT-4o (2024-05-13)	31.34	\$0.2669
o3-mini (low)	669.8	\$0.4827
Deepseek-R1	4585	\$0.9375
GPT-4.1 Mini	8.2	\$0.0172
GPT-4o Mini	104.64	\$0.0215
Llama-3-70B-Instruct	41.61	\$0.0205
Gemini 2.0 Flash	93.77	\$0.0147
Grok-2	66.23	\$0.1904
Gemini 1.5 Flash	19.91	\$0.0034
Gemma 2 27B	55.04	\$0.0199
Gemma 2 9B (8bit)	58.12	\$0.0014
DeepSeek-V3 (0324)	410.71	\$0.0470
Llama-3.3-70B	102.98	\$0.0140
Qwen Plus	440.41	\$0.0728
Qwen2.5-72B-Instruct	219.47	\$0.0110
Gemini 2.0 Flash (exp)	168.15	\$0.0115
Llama-3.1-8B	162.1	\$0.0009
Gemini 2.0 Flash Lite	150.15	\$0.0075
DeepSeek-V3	246.93	\$0.0258
Amazon Nova Lite	534.38	\$0.0000
Amazon Nova Pro	177.19	\$0.0000
Chat-Bison-32K	31.64	\$0.0000
Claude 3 Haiku	210.64	\$0.0000
DeepHermes-3-Llama-3-8B-Preview	101.36	\$0.0014
DeepSeek-R1-Distill-Qwen-14B	3073.1	\$0.0019
DeepSeek-R1-Distill-Qwen-32B	2173.8	\$0.0020
Gemini 2.0 Flash Lite (preview)	144	\$0.0044
Gemini 2.0 Flash Thinking	724.54	\$0.0010
Gemma 2 9B	20.22	\$0.0020
Gemma 3 12B (iq4)	111.14	\$0.0000
Gemma 3 12B (q8)	151.11	\$0.0000
Gemma 3 27B	115.84	\$0.0000
GPT-3.5 Turbo (01/25)	77.01	\$0.0020
GPT-3.5 Turbo (03/01)	67.06	\$0.0012
GPT-3.5 Turbo (06/13)	93.63	\$0.0027
GPT-3.5 Turbo (11/06)	48.32	\$0.0011
GPT-4.1 Nano	31.51	\$0.0010
Granite-3.1-8B-Instruct	469.13	\$0.0029
InternLM3-8B-Instruct	1543.9	\$0.0125
Llama-2-7B-Chat	116.31	\$0.0001
Llama-3.1-Tulu-3-8B	1996.3	\$0.0013
Llama-3-8B	57.02	\$0.0004
Mercury Coder Small	837.84	\$0.0327
Mistral 8B Instruct	72.11	\$0.0000
Mistral-Nemo-Instruct-2407	47.7	\$0.0000
Mistral-Small-24B-Instruct-2501	110.95	\$0.0000
Mistral-Small-Instruct-2409	88.24	\$0.0003
Phi-4	333.54	\$0.0006
Qwen Turbo	192.37	\$0.0016
Qwen2.5-14B-Instruct	235.27	\$0.0085
Qwen2.5-14B-Instruct (Q8)	150.63	\$0.0096
Qwen2.5-7B-Instruct	140.79	\$0.0001
QWQ-32B	8158	\$0.0433

1456
 1457

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469

Table 6: LLMs with a 0% Win/Loss on 30 games along with the reasons for their losses. Note that none of these models were able to complete games but instead always lost due to instruction-following failures. Reasoning models are shaded.

Model	Too Many Wrong Actions	Max Turns
Amazon Nova Lite	76.7	23.3
Amazon Nova Pro	100.0	0.0
Claude 3 Haiku	10.0	90.0
Chat-Bison-32K	100.0	0.0
DeepHermes-3-Llama-3-8B-Preview	96.7	3.3
DeepSeek-R1-Distill-Qwen-14B	100.0	0.0
DeepSeek-R1-Distill-Qwen-32B	73.3	26.7
Gemini 2.0 Flash Lite (preview)	100.0	0.0
Gemini 2.0 Flash Thinking	100.0	0.0
Gemma 2 9B	100.0	0.0
Gemma 3 12B (iq4)	100.0	0.0
Gemma 3 12B (q8)	100.0	0.0
Gemma 3 27B	100.0	0.0
GPT-3.5 Turbo (01/25)	100.0	0.0
GPT-3.5 Turbo (03/01)	100.0	0.0
GPT-3.5 Turbo (06/13)	100.0	0.0
GPT-3.5 Turbo (11/06)	100.0	0.0
GPT-4.1 Nano	100.0	0.0
Granite-3.1-8B-Instruct	60.0	40.0
InternLM3-8B-Instruct	60.0	40.0
Llama-2-7B-Chat	100.0	0.0
Llama-3.1-Tulu-3-8B	23.3	76.7
Llama-3-8B	90.0	10.0
Llama-3.1-8B	80.0	20.0
Mercury Coder Small	100.0	0.0
Mistral 8B Instruct	100.0	0.0
Mistral-Nemo-Instruct-2407	100.0	0.0
Mistral-Small-24B-Instruct-2501	100.0	0.0
Mistral-Small-Instruct-2409	100.0	0.0
Phi-4	100.0	0.0
Qwen Turbo	100.0	0.0
Qwen2.5-14B-Instruct	70.0	30.0
Qwen2.5-14B-Instruct (Q8)	96.7	3.3
Qwen2.5-7B-Instruct	100.0	0.0
QWQ-32B	93.3	6.7

1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

1512
 1513
 1514 Table 7: Total number of games played against each skill along with Win/Loss for all games playing
 1515 against that skill.

Model	Skill	Total Games	Win/Loss
o3 (low)	1	33	81.8
	2	33	72.7
	3	33	75.8
	4	33	68.2
	5	32	71.9
	10	33	3.0
Grok 3 Mini (high)	1	33	51.5
	2	34	48.5
	3	34	41.2
	4	34	38.2
	5	34	25.0
	o4-mini (high)	1	27
o3-mini (high)	2	22	61.1
	1	31	56.8
	2	26	67.7
	o4-mini (medium)	1	57.7
	o3-mini (medium)	1	40
	o4-mini (low)	1	39.5
o3-mini (low)	1	33	30.3
	1	33	10.6

1539
 1540
 1541 Table 8: Average Blunder rate (%) per ply when including previous moves vs baseline. Lower is
 1542 better.

Model	LLM CHESS	Previous Moves
Grok 3 Mini (low)	9.1	3.5
o4-mini (low)	11.2	1.6

1552
 1553 Table 9: Performance of different MoA configurations on game playing tasks. Win/Loss shows the
 1554 win rate against a random agent, and Game Duration shows the percentage of games that completed
 1555 naturally without interruption. We run with the following configurations: 1) Deepseek R1 MoA.
 1556 Workers: Deepseek-R1, GPT-4.1-mini (temp 0.3), GPT-4.1-mini (temp 1.0); Synthesizer: GPT-4.1
 1557 (temp 0.3), and 2) Gemini 2.5 Pro MoA. Workers: Gemini 2.5 Pro (preview version, 03-25), GPT-
 1558 4.1-mini (temp 0.3), GPT-4.1-mini (temp 0.0); Synthesizer: GPT-4.1 (temp 0.3).

Model	Win/Loss	Game Duration
Deepseek R1	32.3%	62.4%
Deepseek R1 MoA	62.9%	100%
Gemini 2.5 Pro	41.9%	73.6%
Gemini 2.5 Pro MoA	78.9%	100%

1566

1567

1568

1569

1570

Table 10: Full results for LLM vs. Random on variable number of ≥ 30 games. Reasoning models are shaded. The percentage of games ending due to checkmate from either side, instruction-following failures, and draws are also displayed.

1571

1572

1573

Player	Total Games	Win/Loss	Checkmate		Instruction			Draws		
			Checkmate	Checkmate	Wrong Actions	Max Turns	Stalemate	Insuff. Material	5x Repetition	Max Moves
o3 (medium)	48	100.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
o3 (low)	41	96.3	92.7	0.0	0.0	0.0	0.0	0.0	2.4	4.9
o4-mini (high)	38	96.1	92.1	0.0	0.0	5.3	2.6	0.0	0.0	0.0
o1 (medium)	40	91.2	82.5	0.0	0.0	10.0	2.5	0.0	5.0	
Grok 3 Mini (high)	44	86.4	72.7	0.0	0.0	4.5	4.5	0.0	18.2	
o4-mini (medium)	159	84.3	68.6	0.0	0.0	11.9	12.6	0.0	6.9	
o1 (low)	47	78.7	57.4	0.0	0.0	6.4	19.1	0.0	17.0	
o4-mini (low)	74	70.9	44.6	0.0	0.0	17.6	9.5	0.0	28.4	
o1-preview	30	68.3	46.7	10.0	0.0	3.3	20.0	0.0	20.0	
o3-mini (medium)	44	67.0	36.4	2.3	0.0	20.5	4.5	0.0	36.4	
Claude 3.7 Sonnet Thinking	37	62.2	24.3	0.0	0.0	0.0	18.9	0.0	56.8	
Grok 3 Mini (low)	52	58.7	21.2	0.0	0.0	13.5	1.9	0.0	63.5	
Gemini 2.5 Pro Preview	33	53.0	36.4	27.3	3.0	15.2	9.1	0.0	9.1	
GPT-4 32K	33	48.5	3.0	0.0	0.0	0.0	0.0	0.0	0.0	97.0
Qwen2.5-Max	60	48.3	3.3	0.0	0.0	0.0	0.0	0.0	0.0	96.7
GPT-4o (2024-11-20)	71	47.9	12.7	0.0	0.0	0.0	0.0	0.0	0.0	87.3
Claude 3.5 Sonnet v2	60	47.5	8.3	3.3	0.0	1.7	0.0	0.0	0.0	86.7
Claude 3.5 Sonnet	60	46.7	18.3	1.7	0.0	0.0	0.0	0.0	0.0	80.0
GPT-4 Turbo	30	46.7	6.7	0.0	0.0	0.0	0.0	0.0	0.0	93.3
GPT-4.5	44	46.6	6.8	0.0	0.0	0.0	0.0	0.0	2.3	90.9
GPT-4	33	45.5	9.1	0.0	0.0	0.0	0.0	0.0	0.0	90.9
GPT-4o (2024-08-06)	59	44.1	15.3	0.0	0.0	1.7	0.0	0.0	0.0	83.1
GPT-4.1	80	43.8	13.8	1.2	0.0	0.0	0.0	0.0	0.0	85.0
Claude 3.5 Haiku	42	42.9	7.1	2.4	4.8	2.4	0.0	0.0	0.0	83.3
Claude 3.7 Sonnet	42	40.5	16.7	11.9	0.0	2.4	0.0	0.0	0.0	69.0
GPT-4o (2024-05-13)	60	40.0	11.7	8.3	0.0	0.0	0.0	0.0	0.0	80.0
o3-mini (low)	56	37.5	7.1	19.6	8.9	3.6	0.0	0.0	0.0	60.7
Deepseek-R1	31	32.3	22.6	51.6	6.5	3.2	9.7	0.0	0.0	6.5
GPT-4.1 Mini	84	30.4	9.5	3.6	26.2	0.0	0.0	0.0	0.0	60.7
GPT-4o Mini	30	30.0	3.3	36.7	0.0	0.0	0.0	0.0	0.0	60.0
Llama-3-70B-Instruct	30	25.0	3.3	46.7	0.0	0.0	0.0	0.0	0.0	50.0
Gemini 2.0 Flash	67	21.6	10.4	55.2	0.0	0.0	0.0	0.0	0.0	34.3
Grok-2	49	19.4	6.1	63.3	0.0	0.0	0.0	0.0	0.0	30.6
Gemini 1.5 Flash	30	16.7	6.7	60.0	0.0	0.0	0.0	0.0	0.0	33.3
Gemma 2.27B	30	13.3	6.7	66.7	0.0	0.0	0.0	0.0	0.0	26.7
Llama 4 Scout	39	10.3	2.6	64.1	12.8	0.0	0.0	0.0	0.0	20.5
Gemma 2.9B (8bit)	30	6.7	3.3	83.3	0.0	0.0	0.0	0.0	0.0	13.3
DeepSeek-V3 (0324)	45	5.6	2.2	88.9	2.2	0.0	0.0	0.0	0.0	6.7
Llama-3.3-70B	42	4.8	9.5	73.8	7.1	0.0	0.0	0.0	0.0	9.5
Qwen Plus	33	4.5	0.0	90.9	0.0	0.0	0.0	0.0	0.0	9.1
Gemini 2.0 Flash (exp)	30	3.3	0.0	90.0	3.3	0.0	0.0	0.0	0.0	6.7
Qwen2.5-72B-Instruct	30	3.3	3.3	90.0	0.0	0.0	0.0	0.0	0.0	6.7
Gemini 2.0 Flash Lite	66	1.5	4.5	95.5	0.0	0.0	0.0	0.0	0.0	0.0
DeepSeek-V3	70	1.4	1.4	90.0	5.7	0.0	0.0	0.0	0.0	2.9

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

Table 11: Average breakdown of failure reasons across abnormal finishes.

Table 12: Average mistake rates per 1000 moves.

1611

1612

Failure Reason	Percentage
Too many wrong actions	64.79%
Max turns reached	13.96%
Error	21.25%

1613

1614

1615

1616

1617

1618

1619

Mistake Type	Per 1000 Moves	Percentage
Wrong actions	122.70	62.1%
Wrong moves	74.86	37.9%

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636

1637 Table 13: Number of timeout errors in OpenAI reasoning models when facing Dragon 1 opponents
 1638 with varying skill levels. The default timeout is 10 minutes.

1639

1640	Opponent Skill Level	LLM	Total logs	Errors
1641	1	o3 (low)	33	0
1642	1	o3-mini (low)	33	0
1643	1	o3-mini (medium)	38	0
1644	1	o3-mini (high)	33	2
1645	1	o4-mini (low)	33	0
1646	1	o4-mini (medium)	40	0
1647	1	o4-mini (high)	33	6
1648	2	o3 (low)	33	0
1649	2	o3-mini (high)	30	4
1650	2	o4-mini (high)	30	8
1651	2	o4-mini (high) w/ 20m timeout	29	7
1652	2	o4-mini (high) w/ 60m timeout	6	4
1653	3	o3 (low)	33	0
1654	4	o3 (low)	33	0
1655	5	o3 (low)	35	0
1656	10	o3 (low)	33	0
1657	10	o3 (medium) w/ 60m timeout	11	2

1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673