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Abstract

Accurate road extraction from remote sensing images
is a critical step for many applications, including naviga-
tion, environmental monitoring, and disaster response. In
remote sensing images, roads appear as thin curvilinear
structures and are very prone to fragmentation due to chal-
lenges such as low-contrast materials and occlusions by
surrounding vegetation or buildings. Although deep learn-
ing has greatly advanced image segmentation techniques,
pixel-level loss functions are insufficient for preserving con-
nectivity and topology of thin curvilinear structures such as
roads. Small pixel-level errors can disrupt the extraction
of accurate road graphs, complicating subsequent charac-
terizations and analysis tasks. In this paper, we propose
a novel, adaptive, structure-aware, connectivity-preserving
loss function SAC-Loss. This loss function combines global
and local processing to improve structure awareness and
uses a proximity-based weighting scheme with asymmet-
ric penalties to fill gaps in the road structures while lim-
iting spurious detections elsewhere. Experimental results
demonstrate improved road segmentation in terms of visual
quality and quantitative performance.

1. Introduction

Automated road segmentation from remote sensing im-
ages is a critical first step for various applications, in-
cluding improved navigation and mapping, traffic moni-
toring and management, environmental monitoring, urban
planning, and disaster management and response. This
task has gained significant importance for two key rea-
sons: first, manual road extraction is time-consuming
and labor-intensive, and second, aerial imaging at various
scales—from drones to satellites has become increasingly
affordable and accessible. Furthermore, advances in deep
learning techniques for image analysis now present a wealth
of opportunities to tackle this challenge more efficiently,

Figure 1. Sample images from the DeepGlobe dataset with road
masks (ground truths) highlighting discontinuities and false de-
tections challenges in road extraction caused by: (a) dense urban
areas and varying road widths, (b-c) similar textures in agricultural
fields, and (d) occlusions from trees or shadows.

more accurately, and with greater automation.
Road segmentation in remote sensing presents signifi-

cant challenges due to the diverse characteristics of roads,
such as variations in color and texture resulting from ma-
terials like asphalt, concrete, clay, and gravel; occlusions
caused by tall buildings in off-nadir imagery, vegetation,
shadows, and cloud cover; and the presence of similar struc-
tures like rivers and field boundaries (Figure 1).

Although deep learning has greatly advanced image seg-
mentation techniques [1–5], segmentation of thin, curvilin-
ear structures remains difficult due to their sensitivity to
small pixel-level errors. Classical pixel-level segmentation
loss functions, such as binary cross-entropy (BCE) or the
Dice coefficient, treat all pixels equally, failing to priori-
tize topological accuracy. Depending on the location, even
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small pixel-level errors can cause discontinuities in thin
road structures, leading to significant inaccuracies in road
graph extraction. These topological errors are particularly
problematic for applications that depend on accurate road
network data for decision-making, planning, and analysis.

In recent years, deep learning techniques have demon-
strated considerable promise in road segmentation and ex-
traction from remote sensing images [6, 7]. Tao et al. [6]
proposed a new transformer-based architecture equipped
with CNN layers to capure both local and long-range global
features. They have also integrated a pixel connectivity
structure (PCS) to more effectively preserve the connectiv-
ity of the roads. Recent studies [8–10] have demonstrated
that modifying the loss functions alone, without altering
the network architecture, can significantly enhance both the
accuracy and connectivity of narrow and curvilinear struc-
tures. Yuan et al. [11] introduced a local loss function called
GapLoss, which focuses on addressing the gaps between
road segments. Nanni et al. [10] built upon previous work
by incorporating both gaps and road direction in their ap-
proach. While both GapLoss [11] and its extension [10]
demonstrated improvements in connectivity and accuracy,
their final loss calculations are based solely on the mean er-
ror, which may overlook local details. Additionally, [10]
requires four times more computational resources than the
original GapLoss [11] to capture road direction, making
it computationally expensive. Batra et al. [12] introduced
an orientation learning task inspired by how humans trace
roads, and developed a stacked multi-branch convolutional
module to harness the mutual information between orien-
tation learning and segmentation tasks. Bandara et al. [13]
proposed an integrated network that combines multi-scale
convolutional features with graph-based long-range spatial
reasoning. Li et al. [14] extracted road features at the pixel,
edge, and region levels, with each level being supervised
by its mask. However, preparing these masks for each cat-
egory adds significant labor, increases network complexity,
and extends training time. Despite these advances, accurate
road network extraction remains challenging.

In this paper, we propose a novel structure-aware,
connectivity-preserving loss function for semantic road seg-
mentation in remote sensing images. The proposed loss
function aims to reconnect disconnected road segments by
locally penalizing gaps in the predicted road areas. This
loss function can be integrated into other object segmen-
tation networks with similar goals, such as the segmenta-
tion of rivers in remote sensing images. Unlike the previous
works inspired by the GapLoss, our approach takes advan-
tage of the structural characteristics of roads both locally
and globally. We achieve this by incorporating a weight
map to penalize local gaps, which is then integrated into the
Focal Tversky Loss to address global penalties. The main
contributions of this paper can be summarized as follows:

1. We introduce a new structure-aware connectivity-
preserving loss function, SAC-Loss, for segmenting
curvilinear structures that are susceptible to connec-
tivity errors. This function combines both global
(gap identification) and local (adaptive weighting) pro-
cessing to improve structure awareness. Distance-
based weighting enables shape-aware, precise, and ad-
justable segmentation, improving accuracy.

2. The proposed loss function is adaptable and can be
integrated into other currently available segmentation
networks to analyze various curvilinear structures. Un-
like computationally expensive local topology losses,
such as the Betti loss [15], this function is efficient
enough to be trained on less advanced hardware.

3. We evaluate the segmentation results using two base
network architectures with several different loss func-
tions across three road datasets: 1) the Massachusetts
Road Dataset, 2) the DeepGlobe Road Dataset, and
3) the SpaceNet Challenge Road Dataset. Our results
show that the proposed SAC-Loss function improves
network performance, enabling it to outperform other
CNN-based methods in road segmentation.

2. The Proposed Method
In this study, we introduce SAC-Loss, a novel adaptive

structure-aware connectivity-preserving loss function, de-
signed to improve road segmentation, particularly in terms
of connectivity. The following sections describe the formu-
lation of SAC-Loss, its integration into model architectures,
the training procedures, and the evaluation metrics used in
our experiments.

2.1. Conventional Binary-Cross Entropy Loss

Binary Cross Entropy (BCE) is a widely used and highly
effective loss function for classification and segmentation
tasks. It is defined as a measure of the difference between
two probability distributions for a given random variable
[16]. BCE loss is formulated as follows:

BCE Loss = − 1

N

N∑
i=0

yi · log (ŷi)+ (1− yi) · log (1− ŷi)

(1)
where N represents the number of pixels in the image and
yi and ŷi denotes the pixel values at position i in the ground
truth and predicted masks respectively.

As a result of using the BCE loss, a segmentation net-
work learns to assign probabilities closer to 1 for the fore-
ground and closer to 0 for the background pixels marked in
the ground truth. This allows the network to focus on pixel-
level differences, leading to more accurate binary masks.
While the BCE loss is commonly used in segmentation due
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Figure 2. SAC-Loss calculation procedure: a) Binary skeleton extracted from the prediction/ground truth, b) Endpoints detected from
skeleton S, c) Adding 9 × 9 weight window around the endpoints, d) Keeping the overlapped windows to generate gap matrix G, e)
Inverted saturated distance transform of skeleton S, f) Distance transform P and the gap Map G multiplication as the final weight map W .

to its effectiveness and simplicity, it has limitations such as
poor performance with highly imbalanced data and equal
treatment of false positive (FP) and false negative (FN) er-
rors. The BCE loss also suffers from the lack of struc-
tural awareness. It focuses on pixel-level classification and
does not account for the spatial or structural relationships
between pixels. In tasks where the connectivity or spatial
continuity of features is important such as road segmen-
tation, BCE may not capture long-range dependencies be-
tween pixels, leading to fragmented predictions.

2.2. Conventional Focal Tversky Loss

Tversky loss is a generalization of the Dice coefficient. It
introduces asymmetric penalties for false positive (FP) and
false negative (FN) errors, which is particularly useful in
cases of class imbalance where the foreground class is rare
compared to the background (as in road segmentation) or
when one type of error may be more critical than the other.
Tversky loss is formulated as below:

Tversky Score(GT,Pred) =
TP

TP + αFP + βFN
(2)

Where TP , α, and β are True Positives, the parameters con-
trolling the importance of false positives and false negatives,
respectively. Focal Tversky Loss combines the Tversky loss
with the concept of focal loss to penalize harder-to-classify
pixels more than easier ones. It is formulated as:

Focal Tversky Loss = (1− Tversky Loss)γ (3)

Where γ is the parameter controlling the aggressiveness of
the loss function on hard-to-classify pixels. Larger γ biases
the model to learn from difficult examples, which is help-
ful when the dataset is highly imbalanced or the boundaries
between foreground and background are challenging.

2.3. Adaptive Structure Aware Connectivity Pre-
serving Loss (SAC-Loss)

Road segmentation in remote sensing imagery suffers
from class imbalance since roads occupy only a small por-

tion of the images. Road segmentation in remote sens-
ing imagery also suffers from fragmentation since roads
are thin curvilinear structures and few false negative pix-
els can convert a single connected road into multiple dis-
connected road segments. Factors such as occlusions (i.e.
due to vegetation cover), low contrast (i.e. due to road sur-
face material), or shadows (i.e. shadow of tall buildings or
other structures surrounding the roads) lead to weak net-
work responses, false negatives, and subsequent gaps in
road masks. While the focal Tversky loss enables asym-
metric penalties for false positive and false negative pixels
and helps with class imbalance, the α and β parameters are
set globally for the entire image before training. Increas-
ing penalties for false negatives reduces gaps in road masks
but raises false positives, causing spurious detections and
inaccurate road networks.

We propose a new adaptive loss function to reduce frag-
mentation in thin curvilinear structures. Unlike the focal
Tversky loss or GapLoss, the proposed loss function al-
ters the penalties (α and β parameters in the focal Tver-
sky loss) locally based on local structure. The main pro-
cessing steps of the proposed structure-aware connectivity-
preserving loss are as follows:

1. Preliminary segmentation and road structure analysis:
Using the likelihood map L predicted by the segmentation
network, we first generate a preliminary binary segmenta-
tion maskM using thresholding:

M(x, y) =

{
0 if L(x, y) < 0.5

1 otherwise
(4)

We then generate the skeleton S (Figure 2a) of the binary
mask M using mathematical morphology operations. Us-
ing saturated distance transform, we compute a proximity
map P (Figure 2e) :

D = DistanceTransform(1− S) (5)

D(x, y) = {dmax|D(x, y) ≥ dmax} (6)
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P(x, y) = 1− D(x, y)

dmax
(7)

Where dmax is the upper bound of the pixel distance in
D (set to 10 pixels in our experiments). P indicates the
proximity of the background pixels to the object of interest
(roads) and acts like an attention map.

2. Gap detection: To detect the endpoints of road seg-
ments (potential gap boundaries), we convolve the skeleton
S, with a 3 × 3 kernel, where all the values are set to one
except for the center. We then locate all foreground pix-
els (S(x, y) = 1) with a single neighbor (pixels where the
output of the convolution is one). The process results in a
binary matrix E (Figure 2b), the same size as the original
image, where ones indicate the skeleton endpoints.

A gap matrix G, the same size as the original image is
initialized with the predicted mask. For each endpoint in
E , a w × w window (w empirically set to 9) in G centered
around the endpoint is increased with a value of K. The
process is cumulative, if a pixel (x, y) is covered by n end-
point windows, G(x, y) is assigned n × K, increasing the
probability of a gap in the region.

3. Adaptive structure-aware connectivity-preservation:
Gap matrix G as the likelihood of gap presence, and proxim-
ity matrix P as proximity to a road structure are fused using
element-wise multiplication to generate a locally adaptive
structure-aware weighted maskW (Figure 2f):

W(x, y) = G(x, y) · P(x, y) (8)

Finally, SAC-Loss is computed by feeding the above local
structure-aware weighted mask to the Focal Tversky Loss.

SAC-Loss = FocalTversky(GT,W) (9)

Where GT is the ground truth binary mask. The pseudo-
code for the proposed SAC-Loss is shown in Algorithm 1.
This method can be easily implemented without adding any
significant complexity to the training procedure or increas-
ing the training time. The final weighted maskW is calcu-
lated outside the body of the network and only changes the
weight coefficients of each pixel in the gradient loss calcu-
lation. Finally, our proposed structure-aware loss function
–locally and globally– propagates through the network and
optimizes the weights.

2.4. Network Architecture

We integrated the proposed SAC-Loss into two deep
learning networks, the classical U-Net [17], and the more
recent SemSeg [18] segmentation networks. U-Net em-
ploys a symmetric encoder-decoder structure with skip con-
nections, enabling precise localization and context preser-
vation. Its ability to perform well even with limited training

Algorithm 1 SAC-Loss Computation

Require: Binary segmentation maskM, dmax, K, w
Ensure: SAC-Loss values

1: // Step-1: Road Structure Analysis
2: S ← GenerateSkeleton(M)
3: D = DistanceTransform(1−S) // distance to skeleton
4: for each pixel (x, y) do
5: D(x, y) = {dmax|D(x, y) ≥ dmax} //saturate dist
6: P(x, y) = 1− D(x,y)

dmax
// proximity to roads

7: end for
8: // Step-2: Gap Detection
9: G ← 0 // Gap score

10: E ← DetectEndpoints(S)
11: for each pixel (x, y) where E(x, y) == 1 do
12: // Increase G around the skeleton endpoints
13: //Window size around endpoints w and K as hyper-

parameters
14: j = Floor[w2 ]
15: G(x− j : x+ j, y − j : y + j) += K
16: end for
17: // Step-3: SAC-Loss Computation
18: // Proximity to roads and road endpoints increases the

structure-aware weight
19: W(x, y) = G(x, y) · P(x, y)
20: // Feeding the weighted maskW to Focal Tversky Loss
21: Z ← FocalTversky(GT,W)
22: return Z

data makes it particularly suitable for our application. The
SemSeg segmentation network [18] also consists of an en-
coder and a decoder. The encoder structure features two
spatial and two receptive blocks that utilize dilated convo-
lution layers which significantly expand the receptive field
without increasing the number of parameters. To further
enlarge the receptive field, max-pooling layers are incor-
porated in receptive blocks, as they increase the actual re-
ceptive field compared to dilated convolutions alone more
effectively and help mitigate latency issues associated with
high spatial dimensions. Transposed convolution layers re-
store the spatial dimensions after the receptive blocks. At-
tention blocks generate a 2D attention map to prioritize in-
fluential pixels in the image, which is crucial for accurate
road segmentation in high-resolution satellite images. Both
networks were trained using a weighted sum of the con-
ventional binary-cross entropy (BCE) [16] and the proposed
structure-aware connectivity preserving (SAC-Loss) losses:

LTotal = k1 LBCE +k2 × LSAC-Loss (10)

where k1 = 0.8 and k2 = 0.2 control the weights of BCE
and SAC-Loss losses, respectively.
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3. Experimental Results
3.1. Datasets

We evaluated the performance of our loss function using
three well-established remote sensing datasets. The exper-
iments conducted on these datasets demonstrate the effec-
tiveness of our approach, regardless of the unique charac-
teristics of each dataset. The details about the datasets used
in this study are as follows:

• The Massachusetts Road Dataset [7] collected
from Massachusetts, USA, contains 1171 RGB images
(1108 for training, 14 for validation, and 49 for test-
ing) with binary ground truth masks. Each image has
a size of 1500 × 1500 pixels with a resolution of 1 me-
ter per pixel. The road labels are consistently 7 pixels
thick with no smoothing, regardless of road type. The
dataset covers 2600 square kilometers, encompassing
rural, urban, and suburban areas.

• The DeepGlobe Road Dataset [19] has been intro-
duced in the DeepGlobe Road Extraction Challenge in
2018. The images were captured from various loca-
tions such as Thailand and India. These images have a
resolution of 50 cm per pixel and the total area covers
1716 square kilometers. The dataset consists of 6226
images (80% for training, 10% for validation, and 10%
for testing). All the images are in RGB format with an
image size of 1024× 1024 pixels.

• The Spacenet Road Dataset [20] as part of the
SpaceNet challenges, consists of high-resolution RGB
satellite images from various global locations. The im-
ages range from 30 to 70 cm per pixel, with a res-
olution of 400 × 400 pixels. The dataset is divided
into training, validation, and test sets, each with corre-
sponding ground truth masks.

3.2. Evaluation Metrics

3.2.1 Topology-Aware Metrics

Conventional pixel-level segmentation metrics like recall,
precision, and F1 score, which rely on the exact pixel-by-
pixel overlap, face limitations when applied to thin curvi-
linear structures such as roads. These metrics are overly
sensitive to minor pixel misalignments (e.g., small posi-
tion shifts) and shape variations (e.g., small width changes);
while being insufficiently sensitive to structural integrity-
related changes (e.g., fragmentation).

Topology-aware metrics Completeness, Correctness, and
Quality [21] have been introduced to address these issues.
These metrics evaluate the global structure of the segmented
objects, tolerating small pixel-level errors, which makes
them more suitable for thin curvilinear structures. The
computation of topology-aware metrics generally involves

three steps: (1) skeletonization, (2) buffer setting for mis-
alignment, and (3) distance-based matching. These metrics
compare the skeletons extracted from the predicted and the
ground truth masks using a tolerance buffer set around the
skeleton pixels. Matches are established using a distance-
based criterion instead of the exact overlap of points. Figure
3 illustrates the matching process and computation of com-
pleteness and correctness metrics. In this work, we used a
5-pixel buffer around the skeletons. The evaluation metrics
used in this paper are described below:

• Completeness: This metric calculates the fraction of
the reference (ground truth) foreground that is within
the buffer area of the skeletonized predicted fore-
ground, as shown in Figure 3a. Completeness is a more
flexible version of the conventional Recall measure.

Completeness =
Length(Matched Reference)

Length(Reference)
(11)

• Correctness: This metric computes the fraction of
predicted foreground that is within the buffer area of
the skeletonized reference (ground truth) foreground,
as shown in Figure 3b. Correctness is a more flexible,
relaxed version of the conventional Precision measure.

Correctness =
Length(Matched Extracted)

Length(Extracted)
(12)

• Quality: The Quality metric corresponds to the re-
laxed Intersection of Union (IoU), which is obtained
from the Correctness and the Completeness metrics.

Quality =
Compl.× Correct.

Compl.+ Correct.− Compl.× Correct.
(13)

• Relaxed F1-score: The relaxed F1-score is also calcu-
lated based on the Correctness and the Completeness.

RelaxedF1 =
2× Compl.× Correct.

Compl.+ Correct.
(14)

3.2.2 Graph-level Metrics

To assess the connectivity and the accuracy of the resulting
road graphs, we also employed the Average Path Length
Similarity (APLS) metric [20]. This graph-level metric is
based on the dissimilarity of the shortest paths between all
pairs of nodes within the road graph. For this evaluation,
the ground truth and the prediction graphs are extracted and
matched for comparison. The SP→T calculates the average
shortest path between each pair of nodes in the ground truth
graph G = (V,E) and the prediction graph Ĝ = (V̂ , Ê).

SP→T = 1− 1

|V |
∑

min(1,
|L(a, b)− L(â, b̂)|

L(a, b)
) (15)
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(a) Matched Reference: GT to Pred. Mask-with-Buffer

(b) Matched Extraction: Pred. Mask to GT-with-Buffer

Figure 3. Relaxed matching protocol of the ground-truth skeleton
(reference) and prediction skeleton (extracted) to compute com-
pleteness (a) and correctness (b) metrics [21].

where a, b ∈ V and â, b̂ ∈ V̂ , denote pairs of nodes in
ground truth and prediction graphs; and |V | is the number of
nodes in the ground truth graph. The operators L(a, b) and
L(â, b̂) calculate the path lengths from a → b and â → b̂,
respectively. To account for penalties from false positives,
the APLS is symmetrically calculated by adding the ST→P ,
where the ground truth and prediction graphs are swapped.

APLS =
1

N

∑
y,ŷ

(
1

1
SP→T (G,Ĝ)

+ 1
ST→P (Ĝ,G)

) (16)

Where y and ŷ are ground truth and prediction masks, and
N is the number of images in the test set.

3.3. Implementation Details

For both network architectures, UNet [17] and Sem-
Seg [18], we started the training process in each experiment
with only the BCE loss, then added the various state-of-
the-art losses. In all experiments, the UNet and SemSeg
networks were trained for 20 and 200 epochs, respectively.
The weighted sum of the individual loss functions (Eq. 10),
has been used for training. In the experiments with two
losses, the weights of the BCE loss (k1) and SAC-Loss (k2)
were set to 0.8 and 0.2 respectively. For the Focal Tversky
loss (Eq. 3), we have set the parameters α to 1.0 and β to

0.4. This configuration penalizes the false positives more
than the false negatives. To place greater emphasis on more
complex samples, we have set the parameter γ to 4

3 . Dur-
ing training and testing, the input images were resized to
512×512 before being fed to the networks. We used Adam
optimizer [22] with a learning rate of 10−4 and weight de-
cay of 10−3. In our evaluations, we used a buffer of 5 pixels
to calculate topology-level metrics.

3.4. Quantitative Results

3.4.1 Comparison of Loss Functions

We compared the performance of the proposed SAC-Loss
to the other loss functions using the topology-aware and
graph-level metrics described above. The results are sum-
marized in Table 1. Out of six experiments (involving two
network architectures and three datasets) and three eval-
uation metrics (relaxed F1, Quality (Relaxed IoU), and
APLS), the proposed SAC-Loss was ranked highest 14 out
of 18 cases and second highest 3 out of 18 cases. In terms of
the graph-based APLS metric that measures the connectiv-
ity and accuracy of the predicted graph, the proposed SAC-
Loss was ranked highest 5 out of 6 cases corresponding to
two networks and three datasets with considerable increases
in score ranging from 0.02 to 0.17 points.

For the Massachusetts dataset, adding the proposed
SAC-Loss to the UNet architecture resulted in the highest
scores for relaxed F1, Quality (Relaxed IoU), and graph-
based APLS, with values of 0.9004, 0.8193, and 0.7289,
respectively (over 0.02, 0.03, and 0.09 points increase over
second-highest scores). When integrated into the SemSeg
architecture, the proposed SAC-Loss resulted in the highest
scores for relaxed F1 and Quality with values of 0.8899 and
0.8026 respectively, but fell slightly short in terms of APLS
score with a value of 0.7036 (0.04 points lower compared
to the best score of 0.7454 by BCE only).

For the DeepGlobe dataset, adding the proposed SAC-
Loss to the UNet architecture resulted in the second-highest
scores for relaxed F1 and Quality, with values of 0.8161 and
0.6835 respectively. While these results were slightly lower
in terms of relaxed F1 and Quality scores (0.01 and 0.02
points lower compared to the highest scores respectively),
they considerably improved the connectivity and accuracy
of the predicted graph indicated by a 0.06 points increase in
the APLS score. When integrated into SemSeg architecture,
the proposed SAC-Loss resulted in the highest scores for all
three metrics, relaxed F1, Quality, and APLS, with values of
0.8058, 0.6729, and 0.5796, respectively (over 0.02 points
increase per metric compared to the second highest scores
by BCE + FocalTversky).

For the SpaceNet dataset, adding the proposed SAC-Loss
to the UNet network resulted in the highest scores for the re-
laxed F1 with a value of 0.7674 and the second highest score
for Quality with a value of 0.6284 (only 0.0122 points lower
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Table 1. Quantitative comparison of the various loss functions integrated to the UNet and the SemSeg networks tested on three remote
sensing road datasets. Bold and underlined numbers represent the highest and the second-highest performance per category, respectively.

Dataset Selected Loss Function Compl. Corr. Rlx. Qual.
(Rlx. Rec.) (Rlx. Pre.) F1-Score (Rlx. IoU) APLS

UNet Network Results

Massachusetts

BCE 0.9635 0.4808 0.6415 0.4719 0.5601
BCE + FocalTversky 0.9590 0.7195 0.8221 0.6983 0.6282
BCE + GapLoss 0.8047 0.9697 0.8795 0.7857 0.6353
BCE + SAC-Loss (proposed) 0.9318 0.8710 0.9004 0.8193 0.7289

DeepGlobe

BCE 0.9413 0.3648 0.5258 0.3560 0.4573
BCE + FocalTversky 0.7334 0.8551 0.7896 0.6433 0.2754
BCE + GapLoss o.7983 0.8600 0.8280 0.7035 0.4456
BCE + SAC-Loss (proposed) 0.8283 0.8042 0.8161 0.6835 0.5169

SpaceNet

BCE 0.6399 0.8853 0.7429 0.6017 0.2315
BCE + FocalTversky 0.8868 0.6253 0.7334 0.5859 0.2637
BCE + GapLoss 0.6958 0.8532 0.7665 0.6406 0.3186
BCE + SAC-Loss (proposed) 0.8336 0.7109 0.7674 0.6284 0.4904

SemSeg Network Results

Massachusetts

BCE 0.9282 0.8466 0.8849 0.7959 0.7454
BCE + FocalTversky 0.9374 0.8247 0.8781 0.7822 0.7392
BCE + GapLoss 0.8316 0.9144 0.8710 0.7726 0.7136
BCE + SAC-Loss (proposed) 0.9189 0.8628 0.8899 0.8026 0.7036

DeepGlobe

BCE 0.9005 0.6437 0.7507 0.6001 0.5138
BCE + FocalTversky 0.8999 0.6957 0.7847 0.6441 0.5593
BCE + GapLoss 0.6763 0.8281 0.7445 0.5904 0.3105
BCE + SAC-Loss (proposed) 0.8766 0.7455 0.8058 0.6729 0.5796

SpaceNet

BCE 0.9066 0.6086 0.7283 0.5738 0.5677
BCE + FocalTversky 0.9129 0.5813 0.7103 0.5539 0.5359
BCE + GapLoss 0.7865 0.6845 0.7363 0.5832 0.2177
BCE + SAC-Loss (proposed) 0.8737 0.7175 0.7879 0.6552 0.5910

compared to the best score of BCE + GapLoss). This inte-
gration resulted in considerable improvement in connectiv-
ity and accuracy of the predicted graph indicated by a 0.17
points increase in the APLS. When integrated into SemSeg,
the proposed SAC-Loss resulted in the highest scores for
all three metrics, relaxed F1, Quality, and APLS, with val-
ues of 0.7879, 0.6552, and 0.5910 respectively (increase of
0.0516, 0.0720, 0.0233 points compared to the second best).

3.4.2 Comparison to Road Segmentation Networks

To further evaluate the performance of the proposed SAC-
Loss function, we have compared its performance to re-
cent state-of-the-art road detection approaches from [6] in
terms of standard IoU metric. The proposed SAC-Loss
function integrated into the SemSeg convolutional neural
network (CNN) architecture outperforms other CNN-based

networks. It has a comparable IoU to Seg-Road-s as a more
complex transformer-based architecture and with more sim-
ilar model size (memory size required for transformer-based
networks and SemSeg in Mb: SemSeg: 5.75, Seg-Road-s:
4.18, Seg-Road-m: 14.12, Seg-Road-l: 28.67) [6].

3.5. Qualitative Results

Figure 4 illustrates the impact of each loss function on
the predicted road masks from the Massachusetts and Deep-
Globe Road Datasets. The figure shows two sample repre-
sentative patches from the test set of these datasets along
with segmentation results using BCE, BCE + GapLoss, and
the proposed BCE + SAC-Loss approaches.

In the first row of Figure 4, we can observe that the BCE
loss resulted in over-detection, high numbers of false pos-
itives, and lower precision; addition of the GapLoss to the
BCE loss decreased the number of false positives but re-
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Figure 4. Sample predictions: 1-5) From Deepglobe dataset and SemSeg Network, 6-10) From Massachusetts dataset and UNet Network.

Table 2. State-of-the-art segmentation methods results on Mas-
sachusetts dataset [6].

Network type Approach IoU

CNN-based

SemSeg: BCE + SAC (Ours) 64.10

D-LinkNet [23] 61.45
DeepRoadMapper [2] 59.66

RoadCNN [3] 62.54
PSPNet [24] 58.91

LinkNet34 [25] 61.35
CoANet [4] 61.67

Transformer-
based

Seg-Road-s [6] 64.78
Seg-Road-m [6] 66.29
Seg-Road-l [6] 68.38

sulted in under-detection, high number of false negatives,
lower recall, and higher levels of fragmentation; whereas
addition of the proposed SAC-Loss to the BCE loss resulted
in accurate prediction the roads with a low number of false
positives while still preserving connectivity.

In the second of Figure 4, the results from BCE + Fo-
cal Tversky loss have resulted in over-prediction and hav-
ing more false positives. In contrast, the BCE + GapLoss
has underpredictions with various fragmentation within the
road network. However, the most significant improvement
is observed when the BCE + SAC-Loss is used with hav-
ing the most connected road network while minimizing the
false positives, as expected from the quantitative results
with the highest F1-score, Quality, and APLS metric.

4. Conclusion

In this paper, we proposed a novel adaptive, structure-
aware, connectivity-preserving loss function designed to
improve road segmentation in remote sensing images. This
loss function combined a locally adaptive, structure-aware,
weighting scheme based on gap evidence and proximity to
road structures with Focal Tversky loss formulation that al-
lows asymmetric penalties for false positives and false neg-
atives to fill the gaps in the road structures while limiting
spurious detections. When integrated into two segmenta-
tion networks, the proposed loss function improved the seg-
mentation of thin curvilinear road structures that are prone
to fragmentation. The resulting network reduced false posi-
tives while maintaining the topology and connectivity of the
road networks, leading to more accurate road graphs that are
critical for follow-up road network analysis tasks.
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