
Published as a conference paper at ICLR 2023

A GRAPH NEURAL NETWORK APPROACH TO AUTO-
MATED MODEL BUILDING IN CRYO-EM MAPS

Kiarash Jamali, Dari Kimanius, & Sjors H.W. Scheres
MRC Laboratory of Molecular Biology
Cambridge, UK
{kjamali,dari,scheres}@mrc-lmb.cam.ac.uk

ABSTRACT

Electron cryo-microscopy (cryo-EM) produces three-dimensional (3D) maps
of the electrostatic potential of biological macromolecules, including proteins.
Along with knowledge about the imaged molecules, cryo-EM maps allow de novo
atomic modeling, which is typically done through a laborious manual process.
Taking inspiration from recent advances in machine learning applications to pro-
tein structure prediction, we propose a graph neural network (GNN) approach for
the automated model building of proteins in cryo-EM maps. The GNN acts on
a graph with nodes assigned to individual amino acids and edges representing
the protein chain. Combining information from the voxel-based cryo-EM data,
the amino acid sequence data, and prior knowledge about protein geometries, the
GNN refines the geometry of the protein chain and classifies the amino acids for
each of its nodes. Application to 28 test cases shows that our approach outper-
forms the state-of-the-art and approximates manual building for cryo-EM maps
with resolutions better than 3.5 Å 1.

1 INTRODUCTION

Following rapid developments in microscopy hardware and image processing software, cryo-EM
structure determination of biological macromolecules is now possible to atomic resolution for
favourable samples (Nakane et al., 2020; Yip et al., 2020). For many other samples, such as large
multi-component complexes and membrane proteins, resolutions around 3 Å are typical (Cheng,
2018). Transmission electron microscopy images are taken of many copies of the same molecules,
which are frozen in a thin layer of vitreous ice. Dedicated software, like RELION (Scheres, 2012)
or cryoSPARC (Punjani et al., 2017), implement iterative optimization algorithms to retrieve the
orientation of each molecule and perform 3D reconstruction to obtain a voxel-based map of the
underlying molecular structure.

Provided the cryo-EM map is of sufficient resolution, it is interpreted in terms of an atomic model
of the corresponding molecules. Many samples contain only proteins; other samples also contain
other biological molecules, like lipids or nucleic acids. Proteins are linear chains of amino acids or
residues. There are twenty different canonical amino acids that make up proteins. All of these amino
acids have four heavy (non-hydrogen) atoms that make up the protein’s main chain. The different
amino acids have different numbers, types, and geometrical arrangements of their side-chain atoms.
The smallest amino acid, glycine, has no heavy side chain atoms; the largest amino acid, tryptophan,
has ten heavy side chain atoms. Typical proteins range in size from tens to more than a thousand
residues. Typically, the electron microscopist knows which protein sequences are present in the
sample. The task at hand is to build the atomic model, which identifies the positions of all atoms for
all proteins that are present in the cryo-EM map. For each residue, there are two rotational degrees
of freedom in the conformation of its main chain, the Φ and Ψ angles. Distinct orientations of the
side chains provide additional conformational possibilities, the number of which depends on the
type of amino acid (figure 1).

1Code and weights are open-source and can be accessed at https://github.com/3dem/
model-angelo

1

https://github.com/3dem/model-angelo
https://github.com/3dem/model-angelo

Published as a conference paper at ICLR 2023

Figure 1: (A) shows a peptide backbone where the chain is ordered from left to right. Arrows mark
the peptide bonds between the C atom of one residue and the N atom of the next. (B) shows six
amino acids, pointing out the differences in the side chains, marked by the outline. (C) shows the Φ
and Ψ angles of the backbone and the additional rotatable bond of the side chain for threonine.

Atomic model building in cryo-EM maps is typically done manually using 3D visualisation software,
(e.g. Emsley et al., 2010; Pettersen et al., 2021), followed by refinement procedures that optimize
the fit of the models in the map, (e.g. Murshudov et al., 2011; Croll, 2018; Liebschner et al., 2019).
Often, in areas of weak density in the map, one cannot discern the amino acid identity of residues
from the map alone and sequence information has to be used to make an accurate assessment. Man-
ually building a reliable atomic model de novo in the reconstructed cryo-EM map is considered to
be difficult for maps with resolutions worse than 4 Å. Although the task is more straightforward for
maps with resolutions better than 3 Å, it still typically requires large amounts of time and a high
level of expertise.

Machine learning has recently achieved a major step forward in structure prediction for individual
proteins (Jumper et al., 2021; Baek et al., 2021). In these approaches, the sequence information of
proteins and their evolutionary related homologues is used to predict their atomic structure without
the use of experimental data. In addition, protein language models, which are trained in an unsu-
pervised fashion on the amino acid sequences of many proteins, have also provided useful results
in protein structure prediction (Lin et al., 2022; Wu et al., 2022a). Although these techniques are
not yet capable of reliably predicting structures of the larger complexes that are typically studied by
cryo-EM, their success for individual proteins inspired us to explore similar approaches for auto-
mated model building in cryo-EM maps.

In this paper, we present a single integrated GNN that combines the voxel-based information from
the cryo-EM map with information from the protein sequence through a protein language model, and
information from the topology of the graph through invariant point attention (IPA) (Jumper et al.,
2021). For 28 test cases, we demonstrate that our approach approximates the accuracy of manual
model building for maps with resolutions better than 3.5 Å.

2 PRIOR WORK

Automated model building. Automated approaches for atomic modeling in the related experimen-
tal technique of X-ray crystallography have existed for many years (for example, Perrakis et al.,
1999; Cowtan, 2006; Terwilliger et al., 2008). Some of these approaches have also been applied to
cryo-EM maps. For example, the PHENIX package builds models that are on average 47% com-
plete for cryo-EM maps with resolutions worse than 3 Å (Terwilliger et al., 2018). For similar maps,
MAINMAST, an approach that was designed to build Cα main-chain traces in cryo-EM maps, often
produces models with root mean squared deviations (RMSDs) in the range of tens of Å (Terashi &
Kihara, 2018). Relatively incomplete models, with large residuals, have limited the impact of these
techniques on automated model building in the cryo-EM field thus far.

More recently, Deeptracer (Pfab et al., 2021), the first deep-learning approach for automated atomic
modeling in cryo-EM maps, was reported to outperform these earlier approaches. Deeptracer uses
U-Nets (Ronneberger et al., 2015) to construct an atomic model de novo in the cryo-EM map. In
contrast to our work, Deeptracer does not integrate the sequence information with the U-Net, and
it does not use a graph representation of the protein chain during model refinement. Instead, Deep-
tracer treats the entire problem as a segmentation and classification problem. Thereby, it also does

2

Published as a conference paper at ICLR 2023

not have support for refining already built models or performing multiple recycling steps. Although
Deeptracer predicts amino acid types for each residue, it only builds atoms for the main chains.

There have also been reports to dock and morph the output from protein structure prediction pro-
grams, like AlphaFold2 (Jumper et al., 2021), to fit cryo-EM maps (He et al., 2022; Terwilliger et al.,
2022). Such approaches suffer when proteins change their conformation in complex with others and
are likely to propagate errors in the structure prediction. Thus, it seems sensible to design a neu-
ral network approach that integrates both the cryo-EM map and the sequence and protein structure
primitives to produce a more reliable structure. This is the essence of our approach.

GNNs for proteins. A number of different approaches to modeling proteins with GNNs have been
proposed recently. This includes modeling the protein with torsion angles (Jing et al., 2022), SE(3)
equivariant graph neural networks (Ganea et al., 2022), and SE(3) invariant GNNs (Dauparas et al.,
2022). In our approach, the ordering and connectivity of residues are unknown and have to be
inferred, hence representations that require this to be known a priori, such as the torsion angle
representation, are inappropriate. Furthermore, the relative orientation of the model and the cryo-
EM map is important in model building, which makes SE(3) invariant representations ill-suited.
Thus, the most natural graph representation is an SE(3) equivariant one. In this project, we choose
the backbone frame representation that was first introduced in AlphaFold2, but is now also used in
other protein prediction networks (e.g. Wu et al., 2022a; Lin et al., 2022).

3 METHODS

3.1 GRAPH INITIALIZATION

We start by identifying the positions of the Cα atoms 2 of all residues in the map, which will form
the nodes of our graph. This part of the pipeline is formulated as a straightforward segmentation
problem, similar to prior work discussed in section 2. That is, the cryo-EM map V ∈ RN , where
N is the number of voxels, has an associated binary target T ∗ ∈ {0, 1}N , where 1 represents the
existence of a Cα atom in the voxel and 0 the lack of it. Since the minimum distance of two Cα

atoms is 3.8 Å, resampling the cryo-EM voxel maps with a pixel size of 1.5 Å ensures that there is
no voxel that contains more than one such atom. The goal then becomes to train a neural network
fθ(V) ≈ T ∗.

3.1.1 NETWORK ARCHITECTURE

We implemented fθ(V) as a residual network (He et al., 2016) inspired by the Feature Pyramid
Network (Lin et al., 2017a). First, we changed all convolutions to 3D convolutions and changed
batch normalization layers (Ioffe & Szegedy, 2015) to instance normalization layers (Ulyanov et al.,
2016), as the statistics should not be averaged across instances of a batch since local boxes of cryo-
EM density might be from different sections of the map with large differences in scale. No noticeable
effects on performance were observed between ReLU and LeakyReLU (Xu et al., 2015), so ReLU
was selected due to its improved computational efficiency. We also shifted the network parameters
from the low-resolution part of the model to the high-resolution part, and we changed the order of
operations so that global information about the structure is more directly integrated into the model
at an early stage (for detailed pseudo-code that contains the exact number of parameters and order
of operations, see algorithm 1 in A.3.1). In this manner, large-scale structural features, which are
recognized at lower resolutions, become easier to integrate with the classification task.

3.1.2 TRAINING DATASET

The dataset starts with 6351 cryo-EM maps with a resolution higher than 4 Å, downloaded from the
EMDB (Lawson et al., 2016) on 01/04/2022, and the corresponding PDB files that were downloaded
from RCSB PDB (Burley et al., 2021). A portion of these was manually checked for orientation is-
sues, large unmodelled regions, and the existence of large modeled regions that do not correspond
to the cryo-EM map. This led to ∼700 manually curated pairs for the first round of training. Then,

2Atom names in this document follow the PDB (Protein Data Bank) naming convention. See the PDB
atomic coordinate and bibliographic entry format description

3

https://cdn.rcsb.org/wwpdb/docs/documentation/file-format/PDB_format_1992.pdf
https://cdn.rcsb.org/wwpdb/docs/documentation/file-format/PDB_format_1992.pdf

Published as a conference paper at ICLR 2023

Figure 2: (A) shows the schematic of the GNN and how the 8 layers iteratively refine the feature
vectors. (B) illustrates how the Backbone Frame module updates the positions of the backbone
atoms. Finally, (C) contains two examples of high confidence (dark blue colour) and low confidence
(yellow and red) predicted backbone regions for PDB entry 7Z1M. The confidence measure is a
good predictor of fit to the deposited backbone model (shown in outline).

using the first trained model, we were able to automatically detect issues with the rest of the map-
structure pairs and prune them to ∼3200 structures. The pruning was based on a cutoff of 70%
precision and 70% recall of the model output Cα positions compared to the ground-truth PDB coor-
dinates, at a cutoff of 3 Å. This produced the dataset that was used for training the model.

3.1.3 TRAINING

We define the true number of the Cα atoms, or residues, in a map as M∗. To ameliorate the issue
with class imbalance between the number of Cα atoms and the number of voxels (M∗ ≪ N), we
chose focal loss (Lin et al., 2017b) over binary cross entropy loss. Additionally, we up-weighted the
loss of voxels with Cα atoms and used a combination of auxiliary loss functions to get an acceptable
trade-off between precision and recall. We up-weight the Cα containing voxels in the focal loss with
the ratio between the true negatives and true positives, using the following formula:

wx =
N −M∗

M∗ χ(x) + (1− χ(x)) (1)

where wx is the weight for voxel x and χ is the characteristic function of whether the voxel x
contains a Cα atom. This formula ensures that half of the loss of a map comes from empty voxels
and half from the Cα atom containing voxels. We found that also using Tversky loss (Hashemi
et al., 2018) in the later parts of training allowed higher recall at the expense of precision. Lastly,
to improve generalization to variations in experimental and data acquisition settings, we applied
data augmentation schemes to the cryo-EM maps. We added random colored noise to every map
and performed random sharpening/dampening by sampling a B-factor (see Rosenthal & Henderson,
2003) from a uniform distribution between -30 Å2 and 30 Å2. Lastly, we applied random rotations
that are integer multiples of 90° to both the cryo-EM map and the targets in order to have the model
learn different orientations while avoiding interpolation effects.

3.2 GRAPH REFINEMENT

Next, we define a GNN gϕ that is trained to refine the position of all Cα atoms in the graph, to map
each of them to an individual residue in the user-provided input sequence, and to provide coordinates
for all the atoms in the residues:

gϕ

(
X(n−1), F (n−1), V, S

)
=

(
X(n), F (n), G(n), P (n), O(n)

)
(2)

4

Published as a conference paper at ICLR 2023

In the above, X(n) ∈ RM×3 are the Cα positions at iteration n, F ∈ RM×3×4 are the affine frames
defined by the Cα, C, and N atoms of the backbone, G ∈ RM×4×2 are the torsion angles of the
side chains, P ∈ RM×20 is a probability vector for all twenty amino acids for each residue, and
S ∈ RM×1280 are protein sequence embeddings of all residues in the input sequence, and O ∈ RM

is a per-residue confidence prediction. The backbone affine frames (F) and the side-chain torsion
angles (G) are similar to what is used in AlphaFold2 (Jumper et al., 2021), see figure 2. Together
(X,F,G, P) provide enough information to calculate all-atom coordinates for the proteins in the
cryo-EM map.

The overall training objective is to acquire gϕ
(
X(n), F (n), V, S

)
≈ (X∗, F ∗, G∗, P ∗), where X∗ is

the set of Cα positions in the training data, F ∗ and G∗ are calculated from the atom coordinates for
every residue in the training data, and P ∗ ∈ {0, 1}M∗×20 is a one-hot encoding of the amino acid
classes in the training data. At iteration n = 0, the graph is initialized with M nodes with random
F (0), and with X(0) set to the coordinates of those voxels predicted to contain Cα atoms by the
graph initialization step in section 3.1.

3.2.1 NETWORK ARCHITECTURE

The GNN consists of eight consecutive layers, each of which contains three main modules that are
based on the attention algorithm (Bahdanau et al., 2014). Each module extracts information relevant
to its modality and updates the feature encoding of the graph nodes with a residual connection, (see
figure 2A and algorithm 9 in A.4.2).

The first module is the Cryo-EM Attention module, which allows the GNN to look at the density
around each Cα atom with convolutional neural networks (CNN), as well as the density linking it
to its neighbouring nodes, to update its representation. This is accomplished with a mix of a graph-
based attention module and feature extraction using CNNs. The edge features that determine the
attention keys are calculated based on CNN embeddings of cuboids (elongated cubes in the direction
of the neighbour) extracted from the cryo-EM map spanning each edge that connect a node with each
of its neighbours. These regions of the cryo-EM map capture the connectivity between residues, e.g.
peptide bond or side-chain:side-chain interactions, and inform the attention scores. The query and
value vectors are generated by the feature vector of each node. Additionally, a cube centered at each
node is extracted from the cryo-EM density with an orientation defined by the backbone affine frame
of each node and passed through a convolutional feature extraction network. Finally, the extracted
features from the centered cubes are concatenated with the attention output and projected to create
the new feature representation. For precise details about the algorithm, see algorithm 10 in A.4.2.

The second module is the Sequence Attention module, where each node searches against the input
sequence embedding to find the relevant entries that best fit its features. This is a conventional
encoder-only transformer module, similar to that used in Devlin et al. (2018). The user-provided
sequence is embedded using a pre-trained protein language model (ESM-1b) (Rives et al., 2021;
Lin et al., 2022), which only uses the primary sequence, instead of multiple sequence alignments
(MSAs). Generally, MSAs improve the results of protein prediction algorithms by giving them
access to co-evolutionary information (Jumper et al., 2021), and they need less learnable parameters
than algorithms that rely on a single sequence only (Rao et al., 2021; Lin et al., 2022; Wu et al.,
2022b). However, because the cryo-EM map already provides sufficient information about the global
fold of the proteins, we chose not to use MSAs, as their calculation would have made using our
approach more difficult. For additional details about this module, see algorithm 11 in A.3.2.

The third module is the Spatial Invariant Point Attention (IPA) module, which allows the network to
update its representation based on the geometry of the nodes in the graph. This module is inspired
by the module with the same name in AlphaFold2 (Jumper et al., 2021), although simplifications
have been made to better fit the problem at hand. Each node predicts query points based on its
current representation in its own local affine frame; these points are transformed into the global
affine frame (by application of F to the predicted point); the distance is calculated between each
node’s query points and its neighbours; and based on the sum of the distances of the query points to
the neighbouring nodes, each of these nodes get an attention score that is used to update the central
node’s representation (see algorithm 12 in A.3.2). Essentially, this module queries parts of the graph
where it expects specific nodes to be and then uses the distance of the neighbouring nodes to its
query point to collect information from the other nodes.

5

Published as a conference paper at ICLR 2023

Since the three main modules are applied sequentially in eight layers, the representations from each
module allow the other modules to gradually extract more information from their inputs. For ex-
ample, using the cryo-EM density, the network is able to find a better orientation for its backbone
as well as a more accurate set of probabilities for its amino acid identity, which lets it search the
sequence more accurately with the sequence attention module. This process of improvement con-
tinues while the positions of the atoms also get optimized using these representations through the
application of the Backbone Frame module.

The Backbone Frame module (seen in figure 2B) takes as input the representation of each graph node
that is the result of the sequential operation of the three main modules described above and outputs
three vectors that describe the change in position of the Cα, C, and N atom positions with respect to
the network’s current backbone affine frame. The shift in position is applied to the backbone atoms
and the new backbone affine frame is calculated using Gram-Schmidt, similar to Algorithm 21 in
AlphaFold2 (Jumper et al., 2021). Because the three shifts may distort the geometry of the peptide
plane, the new coordinates for the backbone are calculated by aligning a peptide plane with ideal
geometry (from literature bonds) with the shifted positions (see algorithm 16 in A.3.2).

3.2.2 TRAINING

Multiple loss functions define the tasks of the different modules and the resulting losses are opti-
mized jointly with gradient descent. Most losses are calculated at each intermediate layer of the
GNN so that it is able to learn the correct structure as early in the layers as possible. The most
important losses are Cα root mean squared deviation (RMSD) loss; backbone RMSD loss; amino-
acid classification loss; local confidence score loss; torsion angles loss; and full atom loss. A full
definition of all losses is given in Appendix A.1.

The main training loop consists of taking a PDB structure, extracting just the Cα atoms, distorting
them with noise, initializing the backbone frames for each node randomly, and then having the
network predict the original PDB structure. Cryo-EM maps are augmented with the addition of noise
and sharpening/dampening, similar to the training of the graph initialization network as described in
section 3.1.3. Because the initial Cα positions are noisy, with an RMSD to the deposited model of
0.9 Å on average, one important loss function is

LCα =
1

N

∑
i

RMSD(xi, gϕ(xi + ei)) (3)

where xi ∈ R3 are the true Cα positions from the dataset, gϕ is the graph neural network, and
ei ∼ N (0, 1√

3
). Note that E||ei||2 ≈ 0.9 (this comes from the average norm of a Gaussian distributed

vector). Denoising node positions has been shown to be a powerful training paradigm in other use
cases as well (e.g. Godwin et al., 2021). In addition to noise added to the Cα positions, sometimes
the graph initialization step misses some residues or adds extra ones. In order to have the GNN be
able to deal with these scenarios, during training 10% of the residues are randomly removed and
replaced with randomly generated peptides that are between 2-5 residues long. The network is then
also trained to be able to predict whether or not a node actually exists in the model, or if it is extra.
All classification losses use focal loss (Lin et al., 2017b). This includes the amino acid classification
loss, the sequence match loss, and the edge prediction loss.

An important feature of this network is that it also gives a measure of its confidence in its output
per residue. This is trained by having the network predict its backbone loss per residue. This output
(referred to in 3.2 as O) is then normalized and saved in the B-factor section of the mmCIF file it
outputs. This output is useful in pruning regions of the model where the network is not confident in
the postprocessing step (see section 3.3). Generally, we observe that well-ordered, high-resolution
parts of the cryo-EM map have higher confidence values than regions with disordered and lower
resolution (see figure 2C).

The side chain atoms are generated through the prediction of their rotatable torsion angles with
respect to the backbone frame (for an example, see figure 1C). We noticed better results if the
network predicted torsion angles for all 20 possible amino acid assignments for each residue. Then,
we index into the torsion angle predictions for each residue and pick the set of angles that correspond
to the predicted amino acid. To train this part of the model, for each layer, the mean squared loss
of the torsion angles of the target amino acid against the true torsion angles is calculated, and at the
last layer, the all-atom RMSD to the target structure is also calculated.

6

Published as a conference paper at ICLR 2023

3.2.3 RECYCLING

The output of one round of the GNN denoises the positions of the Cα nodes and gives better orienta-
tions for the backbone frames, and we observed that a subsequent round of the GNN, starting from
the output of the previous round, improved the results further. We, therefore, train the GNN with
recycling. For every training step, we randomly pick an integer r ∈ {1, 2, 3} and run the GNN r−1
times with gradients turned off, and then use the output to run the GNN one more time with gradi-
ents. This allows the GNN to learn to keep the input approximately unchanged when the positions
are correct. We do not recycle the GNN features so they are recalculated with the corrected positions
and orientations. The same recycling scheme, but with r = 3, is also used during inference.

3.3 POSTPROCESSING

The GNN processes the Cα atoms into a set of unordered residues. Next, we connect the residues
into chains that define the full atomic model. In the strictest sense, not even the direction of the
chains is defined by the GNN. However, using the fact that ||Ct−1 − Nt||2 < 1.4 Å (known as
peptide bonds, see figure 1A), we can combine the atomic coordinates predicted by the network as
well as the edge prediction probabilities as a heuristic to connect residues. More concretely, the
residues are tied so that the sum of peptide bond lengths across all nodes is minimized, ignoring
links where the edge prediction is below a threshold of 0.5.

After the chains are connected, we use the amino acid prediction probabilities to construct an HMM
profile. We then perform a sequence search using HMMER (Mistry et al., 2013) against the given
set of sequences of the model. The uncertainty of the predicted amino-acid probabilities P can vary
due to several factors, e.g. map resolution or characteristics of the sequence itself, which can limit
an accurate mapping of the sequence onto the structure by the GNN. Due to this uncertainty, doing a
probabilistic search against the sequence after postprocessing gives superior performance over just
assigning the highest probability amino acid. After alignment with the sequence search, residues
that correspond to a “match” state (as defined in Krogh et al., 1994) are mutated to the amino acids
that exist in the sequence. Based on the sequence search, we also connect separate chains that should
be connected depending on both the matched sequence gap and the proximity of the chains.

Lastly, chains shorter than 4 residues are pruned and the resulting coordinates are used as the input
to the GNN network again. This process continues for 3 recycling iterations and the end result
undergoes a final “relaxation” step that uses physical restraint-based losses to optimize the positions
of the model atoms using an L-BFGS optimizer (Liu & Nocedal, 1989). This step mainly alleviates
unnatural side chain distance violations and does not noticeably affect the distance metrics in section
4, which are all based on main chain atoms.

4 RESULTS

Figure 3: (A) shows sequence recall for all residues in the test dataset as a function of B-factor labels
for final model outputs (after postprocessing), for Deeptracer (black) and ModelAngelo (before
pruning in orange; after pruning in purple). (B) shows the same results but averaged for each PDB
entry, with ModelAngelo’s pruned prediction (y-axis) versus Deeptracer (x-axis). The dotted line
marks the identity line. The orange marker represents PDB entry 8DTM, which is shown in figure
4. (C) shows the result of the ablation experiment, similar in format to (A).

7

Published as a conference paper at ICLR 2023

Here we report results for a test dataset of 28 map-model pairs that were deposited to the PDB and
EMDB after the cutoff date for training. Results on a smaller test set without protein chains with
more than 30 % sequence similarity with any model in the training set are described in A.5. We
implemented our approach in an open-source software package called ModelAngelo. Generally, the
atomic models built by ModelAngelo are close to the deposited PDB structures and they degrade
with the resolution of the cryo-EM map. The overall resolution of the 28 test maps ranges from 2.1 to
3.8 Å. However, flexibility in parts of the protein structures also leads to local variations in resolution
across the maps. The latter is reflected in the refined B-factors of the individual residues in the
deposited PDB coordinate files, where higher B-factors indicate lower local resolution. We compare
our results against the current state-of-the-art method for automated model building, Deeptracer
(Pfab et al., 2021). A comparison with results obtained with the Phenix software (Terwilliger et al.,
2018), which performs worse than DeepTracer, is available in table 4 of A.2.

Our main metric is sequence recall: the percentage of residues for which the Cα atom is within 3 Å
of the deposited model, and the amino acid prediction is correct. Figure 3 compares the performance
of ModelAngelo and Deeptracer for each of the structures in the test dataset, and as a function of
B-factor averaged over all residues. A more comprehensive list of metrics, for each of the 28 map-
model pairs, is shown in Appendix A.2. Over the entire test dataset, there is little difference in
sequence recall between the unpruned and the pruned model from ModelAngelo, which implies that
pruning removes incorrectly built parts of the model.

Ablation studies (figure 3C) show that the improved results of ModelAngelo versus Deeptracer are
because ModelAngelo is able to combine different modalities of information to build the model,
rather than just the cryo-EM map. Removing the sequence module or the IPA module results in
worse results that are still better than Deeptracer. However, removing both of these modules, such
that the GNN only relies on the Cryo-EM module, results in predictions that are worse than Deep-
tracer.

Figure 4 illustrates the quality of the built models from ModelAngelo and Deeptracer for one ex-
ample from the test dataset (PDB entry 8DTM); more examples are given in A.6. Because of its
increased complexity, ModelAngelo is considerably slower than Deeptracer. Still, execution times
for the test dataset are in the range of several minutes to one hour and a half, depending on the size
of the structure (see A.4.3). Given that manual de novo model building takes on the order of weeks,
we do not believe this to be a serious drawback.

5 DISCUSSION

Our results illustrate that combining the voxel-based information from the cryo-EM map with se-
quence information and graph topology is useful for automating the intensive task of atomic mod-
elling in cryo-EM maps. Below, we consider the limitations of the current implementation of Mod-
elAngelo, and outline lines of future research to overcome them.

Sensitivity to resolution. Even though the network has multiple different modalities of input, rel-
atively low resolutions of the cryo-EM map will affect the results. The graph initialization by the
CNN, and the amino acid classification that provides the information for mapping the sequence onto
the main chain, are obvious examples that benefit from higher-resolution maps. Poor amino acid
classifications may also lead to errors in the sequence assignment in the postprocessing step, which
may then feed into the subsequent HMM sequence alignment and lead to incorrect chain assign-
ments. This is more likely to happen for complexes with many similar sequences. In practice, we
observe that ModelAngelo’s performance starts degrading at resolutions worse than 3.5 Å, see Ap-
pendix A.3. A similar trend is also typical for manual model building. It may be possible to combine
the embedding of information from relatively low-resolution cryo-EM maps (e.g 10 Å) with meth-
ods for protein structure prediction, such as AlphaFold2 (Jumper et al., 2021), which would extend
beyond what is possible for manual building. Despite the observation that ModelAngelo already
uses some ideas from AlphaFold2, such an approach for building in low-resolution maps, which
would blur the boundaries between experimental structure determination and prediction, would re-
quire major changes to the approaches outlined in this paper.

Nucleic acids. Many large complexes that are solved with cryo-EM comprise nucleic acids as well
as proteins, e.g. ribonucleic acids (RNA) in spliceosomes and ribosomes, or deoxyribonucleic acids

8

Published as a conference paper at ICLR 2023

Figure 4: Comparison of the deposited model for PDB entry 8DTM (C), Deeptracer’s prediction (D)
and ModelAngelo’s pruned model (E). The deposited model is coloured according to the refined B-
factor. Meanwhile, the predictions are coloured orange where their amino acid prediction is different
from the deposited structure, and purple where it is the same. (A) shows an iso-surface of the cryo-
EM map and the deposited model for a high B-factor region, with correspondingly poor density. (B)
shows the same for a low B-factor region, where side chains are well resolved in the density.

(DNA) in replication or transcription machinery. The backbone of DNA or RNA strands is made
from alternating phosphate and sugar groups. The phosphorus atoms have high contrast in the cryo-
EM map, which makes the segmentation problem of nucleic acids easier than that of protein residues.
However, the main difficulty lies in identifying the correct sequence for the nucleobases that make
up the equivalent of side chains for RNA or DNA strands. There are four typical bases for both
RNA and DNA: two purines and two pyrimidines. At resolutions around 3.5 Å, one can distinguish
the purines from the pyrimidines, but not the two purines or pyrimidines from each other. This
makes sequencing DNA or RNA strands in 3.5 Å cryo-EM maps difficult. Yet, already the ability
to automatically model nucleotide backbones, together with a classifier to distinguish purines from
pyrimidines, would alleviate the task of manual model building. Therefore, we plan to add support
for building RNA or DNA to ModelAngelo in the near future.

Unknown sequences. Because cryo-EM can be performed on samples that are extracted from na-
tive cells or tissues, it is not always obvious which proteins are present in a cryo-EM map, (for an
example, see Schweighauser et al., 2022). Our current implementation depends on a user-provided
sequence file that defines all proteins present in the map. Recently, semi-automated tools to iden-
tify proteins in cryo-EM maps have been reported. For example, findMySequence (Chojnowski
et al., 2022) can search protein sequence databases, using amino acid classifications after a back-
bone model has been built in the cryo-EM map. We plan to extend our approach with a sequence-free
model to fully automate this process, by combining automated model building with searches through
large sequence databases like Uniclust (Mirdita et al., 2017) using our HMM search procedure com-
bined with tools such as HHblits (Remmert et al., 2012).

6 ACKNOWLEDGEMENTS

We thank Johannes Schwab, Joe Greener, Sofia Lövestam, David Li, Keitaro Yamashita, Garib Mur-
shudov, Carola-Bibiane Schönlieb, Tanmay Bharat, Zo Ford, and Rafael Fernández Leiro for helpful
discussions, and Jake Grimmett, Toby Darling, and Ivan Clayson for help with high-performance
computing. This work was supported by the Medical Research Council (MC UP A025 1013 to
S.H.W.S.).

9

Published as a conference paper at ICLR 2023

REFERENCES

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of
protein structures and interactions using a three-track neural network. Science, 373(6557):871–
876, 2021.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Stephen K Burley, Charmi Bhikadiya, Chunxiao Bi, Sebastian Bittrich, Li Chen, Gregg V Crichlow,
Cole H Christie, Kenneth Dalenberg, Luigi Di Costanzo, Jose M Duarte, et al. Rcsb protein data
bank: powerful new tools for exploring 3d structures of biological macromolecules for basic and
applied research and education in fundamental biology, biomedicine, biotechnology, bioengineer-
ing and energy sciences. Nucleic acids research, 49(D1):D437–D451, 2021.

Yifan Cheng. Single-particle cryo-em—how did it get here and where will it go. Science, 361(6405):
876–880, 2018.

Grzegorz Chojnowski, Adam J Simpkin, Diego A Leonardo, Wolfram Seifert-Davila, Dan E Vivas-
Ruiz, Ronan M Keegan, and Daniel J Rigden. findmysequence: a neural-network-based approach
for identification of unknown proteins in x-ray crystallography and cryo-em. IUCrJ, 9(1), 2022.

Kevin Cowtan. The buccaneer software for automated model building. 1. tracing protein chains.
Acta crystallographica section D: biological crystallography, 62(9):1002–1011, 2006.

Tristan Ian Croll. Isolde: a physically realistic environment for model building into low-resolution
electron-density maps. Acta Crystallographica Section D: Structural Biology, 74(6):519–530,
2018.

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning
based protein sequence design using proteinmpnn. bioRxiv, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Paul Emsley, Bernhard Lohkamp, William G. Scott, and Kevin Cowtan. Features and development
of coot. Acta Crystallographica Section D - Biological Crystallography, 66:486–501, 2010.

Octavian-Eugen Ganea, Xinyuan Huang, Charlotte Bunne, Yatao Bian, Regina Barzilay, Tommi S.
Jaakkola, and Andreas Krause. Independent SE(3)-equivariant models for end-to-end rigid protein
docking. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=GQjaI9mLet.

Jonathan Godwin, Michael Schaarschmidt, Alexander Gaunt, Alvaro Sanchez-Gonzalez, Yulia
Rubanova, Petar Velickovic, James Kirkpatrick, and Peter W. Battaglia. Very deep graph neu-
ral networks via noise regularisation. CoRR, abs/2106.07971, 2021. URL https://arxiv.
org/abs/2106.07971.

Seyed Raein Hashemi, Seyed Sadegh Mohseni Salehi, Deniz Erdogmus, Sanjay P. Prabhu, Simon K.
Warfield, and Ali Gholipour. Tversky as a loss function for highly unbalanced image segmentation
using 3d fully convolutional deep networks. CoRR, abs/1803.11078, 2018. URL http://
arxiv.org/abs/1803.11078.

Jiahua He, Peicong Lin, Ji Chen, Hong Cao, and Sheng-You Huang. Model building of protein
complexes from intermediate-resolution cryo-em maps with deep learning-guided automatic as-
sembly. Nature Communications, 13(1):1–16, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

10

https://openreview.net/forum?id=GQjaI9mLet
https://openreview.net/forum?id=GQjaI9mLet
https://arxiv.org/abs/2106.07971
https://arxiv.org/abs/2106.07971
http://arxiv.org/abs/1803.11078
http://arxiv.org/abs/1803.11078

Published as a conference paper at ICLR 2023

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional diffu-
sion for molecular conformer generation. arXiv preprint arXiv:2206.01729, 2022.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Anders Krogh, Michael Brown, I Saira Mian, Kimmen Sjölander, and David Haussler. Hidden
markov models in computational biology: Applications to protein modeling. Journal of molecular
biology, 235(5):1501–1531, 1994.

Catherine L Lawson, Ardan Patwardhan, Matthew L Baker, Corey Hryc, Eduardo Sanz Garcia,
Brian P Hudson, Ingvar Lagerstedt, Steven J Ludtke, Grigore Pintilie, Raul Sala, et al. Emdata-
bank unified data resource for 3dem. Nucleic acids research, 44(D1):D396–D403, 2016.

Dorothee Liebschner, Pavel V Afonine, Matthew L Baker, Gábor Bunkóczi, Vincent B Chen, Tris-
tan I Croll, Bradley Hintze, L-W Hung, Swati Jain, Airlie J McCoy, et al. Macromolecular struc-
ture determination using x-rays, neutrons and electrons: recent developments in phenix. Acta
Crystallographica Section D: Structural Biology, 75(10):861–877, 2019.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2117–2125, 2017a.

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. CoRR, abs/1708.02002, 2017b. URL http://arxiv.org/abs/1708.
02002.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos San-
tos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, and Alexander Rives. Language mod-
els of protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv,
2022. doi: 10.1101/2022.07.20.500902. URL https://www.biorxiv.org/content/
early/2022/07/21/2022.07.20.500902.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

Valerio Mariani, Marco Biasini, Alessandro Barbato, and Torsten Schwede. lddt: a local
superposition-free score for comparing protein structures and models using distance difference
tests. Bioinformatics, 29(21):2722–2728, 2013.

Milot Mirdita, Lars Von Den Driesch, Clovis Galiez, Maria J Martin, Johannes Söding, and Martin
Steinegger. Uniclust databases of clustered and deeply annotated protein sequences and align-
ments. Nucleic acids research, 45(D1):D170–D176, 2017.

Jaina Mistry, Robert D Finn, Sean R Eddy, Alex Bateman, and Marco Punta. Challenges in homol-
ogy search: Hmmer3 and convergent evolution of coiled-coil regions. Nucleic acids research, 41
(12):e121–e121, 2013.

Garib N Murshudov, Pavol Skubák, Andrey A Lebedev, Navraj S Pannu, Roberto A Steiner,
Robert A Nicholls, Martyn D Winn, Fei Long, and Alexei A Vagin. Refmac5 for the refinement
of macromolecular crystal structures. Acta Crystallographica Section D: Biological Crystallog-
raphy, 67(4):355–367, 2011.

Takanori Nakane, Abhay Kotecha, Andrija Sente, Greg McMullan, Simonas Masiulis, Patricia MGE
Brown, Ioana T Grigoras, Lina Malinauskaite, Tomas Malinauskas, Jonas Miehling, et al. Single-
particle cryo-em at atomic resolution. Nature, 587(7832):152–156, 2020.

Anastassis Perrakis, Richard Morris, and Victor S Lamzin. Automated protein model building com-
bined with iterative structure refinement. Nature structural biology, 6(5):458–463, 1999.

11

http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
https://www.biorxiv.org/content/early/2022/07/21/2022.07.20.500902
https://www.biorxiv.org/content/early/2022/07/21/2022.07.20.500902

Published as a conference paper at ICLR 2023

Eric F Pettersen, Thomas D Goddard, Conrad C Huang, Elaine C Meng, Gregory S Couch, Tris-
tan I Croll, John H Morris, and Thomas E Ferrin. Ucsf chimerax: Structure visualization for
researchers, educators, and developers. Protein Science, 30(1):70–82, 2021.

Jonas Pfab, Nhut Minh Phan, and Dong Si. Deeptracer for fast de novo cryo-em protein structure
modeling and special studies on cov-related complexes. Proceedings of the National Academy
of Sciences of the United States of America, 118, 1 2021. ISSN 10916490. doi: 10.1073/PNAS.
2017525118/SUPPL FILE/PNAS.2017525118.SAPP.PDF.

Ali Punjani, John L Rubinstein, David J Fleet, and Marcus A Brubaker. cryosparc: algorithms for
rapid unsupervised cryo-em structure determination. Nature methods, 14(3):290–296, 2017.

Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu,
and Alexander Rives. Msa transformer. In International Conference on Machine Learning, pp.
8844–8856. PMLR, 2021.

Michael Remmert, Andreas Biegert, Andreas Hauser, and Johannes Söding. Hhblits: lightning-fast
iterative protein sequence searching by hmm-hmm alignment. Nature methods, 9(2):173–175,
2012.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences. Proceedings of the National
Academy of Sciences, 118(15):e2016239118, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Peter B Rosenthal and Richard Henderson. Optimal determination of particle orientation, absolute
hand, and contrast loss in single-particle electron cryomicroscopy. Journal of molecular biology,
333(4):721–745, 2003.

Sjors HW Scheres. Relion: implementation of a bayesian approach to cryo-em structure determina-
tion. Journal of structural biology, 180(3):519–530, 2012.

Manuel Schweighauser, Diana Arseni, Mehtap Bacioglu, Melissa Huang, Sofia Lövestam, Yang Shi,
Yang Yang, Wenjuan Zhang, Abhay Kotecha, Holly J Garringer, et al. Age-dependent formation
of tmem106b amyloid filaments in human brains. Nature, 605(7909):310–314, 2022.

Genki Terashi and Daisuke Kihara. De novo main-chain modeling for em maps using mainmast.
Nature communications, 9(1):1–11, 2018.

Thomas C Terwilliger, Ralf W Grosse-Kunstleve, Pavel V Afonine, Nigel W Moriarty, Peter H
Zwart, L-W Hung, Randy J Read, and Paul D Adams. Iterative model building, structure refine-
ment and density modification with the phenix autobuild wizard. Acta Crystallographica Section
D: Biological Crystallography, 64(1):61–69, 2008.

Thomas C Terwilliger, Paul D Adams, Pavel V Afonine, and Oleg V Sobolev. A fully automatic
method yielding initial models from high-resolution cryo-electron microscopy maps. Nature
methods, 15(11):905–908, 2018.

Thomas C. Terwilliger, Billy K. Poon, Pavel V. Afonine, Christopher J. Schlicksup, Tristan I. Croll,
Claudia Millán, Jane. S. Richardson, Randy J. Read, and Paul D. Adams. Improved alphafold
modeling with implicit experimental information. bioRxiv, 2022. doi: 10.1101/2022.01.07.
475350. URL https://www.biorxiv.org/content/early/2022/01/30/2022.
01.07.475350.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

12

https://www.biorxiv.org/content/early/2022/01/30/2022.01.07.475350
https://www.biorxiv.org/content/early/2022/01/30/2022.01.07.475350

Published as a conference paper at ICLR 2023

Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan
Wu, Qi Xie, Bonnie Berger, Jianzhu Ma, and Jian Peng. High-resolution de novo structure pre-
diction from primary sequence. bioRxiv, 2022a. doi: 10.1101/2022.07.21.500999. URL https:
//www.biorxiv.org/content/early/2022/07/22/2022.07.21.500999.

Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan
Wu, Qi Xie, Bonnie Berger, et al. High-resolution de novo structure prediction from primary
sequence. bioRxiv, 2022b.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. arXiv preprint arXiv:1505.00853, 2015.

Ka Man Yip, Niels Fischer, Elham Paknia, Ashwin Chari, and Holger Stark. Atomic-resolution
protein structure determination by cryo-em. Nature, 587(7832):157–161, 2020.

A APPENDIX

A.1 LOSSES

This is a full description of all the losses used for training the GNN. These losses can be divided into
two groups: one-step losses and auxiliary losses. One-step losses are losses that are only defined
once for the final step of the GNN. However, auxiliary losses are summed over each step of the
GNN, though the last step has a higher weighting.

A.1.1 AUXILIARY LOSSES

These losses are as follows: Cα RMSD loss, backbone frame loss, amino-acid classification loss,
edge classification loss, local confidence score loss, and existence loss.

The Cα RMSD loss is just the RMSD of the Cα atoms only. That is

LCα =
1

N

∑
i

RMSD(xi, gθ(xi + ei))

=
1

N

∑
i

√√√√1

3

3∑
d=1

∣∣[xi]d − [gθ(xi + ei)]d
∣∣2

The backbone frame loss is the RMSD of the three backbone atoms that define the backbone frame:
Cα, C, and N atoms. The over-representation of the RMSD of the Cα atoms, through its contribution
to two losses, is intended.

The amino-acid classification loss is the focal loss between the amino-acid classification logits and
the target amino-acid recorded for each node. We have observed that even after the convergence of
the GNN, the auxiliary loss of this classification task is relatively high, meaning that earlier layers
are not well capable of distinguishing amino acids. This could be because the Cα positions are still
noisy or that the network needs to pool neighbouring information more before it can be confident
about the classification.

The edge classification loss is based on whether two ground truth Cα nodes are within 3.9 Å of
each other. If they are, then we expect both nodes a and b to classify each other as a neighbour.
Otherwise, both need to classify the other as not a neighbour.

The local confidence score loss is a simple regression loss that tries to predict the backbone frame
loss described above for each residue. This gives a good measure of how confident the network is in
the position of the residue. This measure is then normalized between 0 and 100 based on a simple
heuristic so that larger expected losses lead to lower confidence values.

Finally, the existence loss is a focal loss that classifies whether a residue is an artificially added
residue or it actually exists.

13

https://www.biorxiv.org/content/early/2022/07/22/2022.07.21.500999
https://www.biorxiv.org/content/early/2022/07/22/2022.07.21.500999

Published as a conference paper at ICLR 2023

A.1.2 ONE-STEP LOSSES

The full-atom loss is the same RMSD loss defined above for the Cα atom, except that it is calculated
for all atoms, including side chain atoms.

The torsion angles loss is defined as the L2 distance between the torsion angles of the network
output and the torsion angles of the deposited model. A small loss is added to make sure the norm
of the torsion angles is equal to 1. This is similar to the loss defined in section 1.9.1 of Jumper et al.
(2021).

The sequence attention loss is a classification loss defined over the length of the given sequence for
each residue, designed to match the position of the graph node. It is calculated for the last attention
head of the sequence attention module as a focal loss over the calculated attention score.

The violation loss is meant to constrain the network to output models that are more in line with ideal
bond lengths and angles. This loss is the same as defined in section 1.9.11 in Jumper et al. (2021).

A.2 DETAILED METRICS PER PDB ENTRY IN THE TEST DATASET

The tables below contain the resolution (in Å) and various metrics for each of the 28 PDB entries in
the test dataset. Backbone RMSD and sequence recall are defined in the main text. Cα recall is the
percentage of residues for which the Cα atom is within 3 Å of the deposited model; Cα precision is
the percentage of Cα atoms predicted that are within 3 Å of a Cα atom in the deposited map; lDDT
is the Cα local distance difference test as described in Mariani et al. (2013); and sequence match
is the percentage of matching amino-acids for the corresponding residues. Table 1 describes the
results obtained by Deeptracer; tables 2 and 3 describe the results obtained by ModelAngelo, after
and before pruning, respectively.

14

Published as a conference paper at ICLR 2023

PDB Reso- backbone Cα Cα lDDT Sequence Sequence
lution RMSD recall precision match recall

7tu5 2.1 0.591 94.3 99.4 96.7 90.0 84.8
7unl 2.45 0.496 97.3 98.2 97.4 95.0 92.4
7q1u 2.7 0.546 99.3 99.2 96.2 99.2 98.5
7szi 2.7 0.635 98.3 99.0 94.2 96.3 94.6
7txv 2.7 0.837 76.3 97.8 91.2 77.3 58.9
7uck 2.8 0.866 87.8 49.0 93.6 85.5 75.1
7ode 2.84 0.960 66.6 29.0 93.1 69.9 46.5
7sba 2.9 0.829 88.4 93.9 92.2 75.2 66.5
7ugg 3.16 0.896 93.0 98.7 93.2 82.3 76.5
7pt6 3.2 0.750 92.4 99.0 93.3 91.1 84.1
7xpx 3.2 0.762 82.0 58.8 96.1 92.2 75.6
7px8 3.27 0.637 97.6 99.2 94.0 94.7 92.5
7sr8 3.3 1.026 95.4 95.3 86.6 78.8 75.1

7wug 3.3 0.778 97.1 95.8 92.5 82.5 80.0
7y9u 3.3 0.739 82.9 98.7 94.3 84.5 70.0
7u50 3.4 0.734 76.6 88.3 92.9 88.3 67.6
7sjn 3.4 1.213 70.5 95.5 85.7 53.1 37.4

7z1m 3.4 0.954 92.9 97.7 89.2 74.6 69.3
7rzy 3.5 1.544 71.4 94.2 79.7 17.9 12.8
7w9l 3.5 0.977 80.6 96.1 90.2 72.8 58.7
8dtm 3.5 1.420 95.9 81.6 87.1 46.8 44.9
8a3t 3.5 1.380 76.5 96.6 81.1 50.8 38.8
8a2q 3.53 1.260 74.0 96.6 85.2 55.5 41.1
7yzk 3.57 1.293 94.8 88.4 82.7 53.2 50.5
7oix 3.6 1.339 95.1 77.9 82.0 45.7 43.4
7tvz 3.6 1.261 91.8 96.3 85.9 59.6 54.7
7pt7 3.8 1.202 86.3 96.4 86.5 57.5 49.6

7um0 3.8 1.102 86.2 98.1 86.7 67.8 58.5

Table 1: Deeptracer Results

15

Published as a conference paper at ICLR 2023

PDB Reso- backbone Cα Cα lDDT Sequence Sequence
lution RMSD recall precision match recall

7tu5 2.1 0.287 96.3 99.7 98.7 99.9 96.2
7unl 2.45 0.310 99.2 94.7 98.9 99.7 98.9
7q1u 2.7 0.268 99.6 99.3 99.2 99.9 99.6
7szi 2.7 0.398 97.2 99.4 98.4 99.3 96.5
7txv 2.7 0.686 89.5 91.5 92.3 90.5 81.0
7uck 2.8 0.385 97.6 99.5 97.4 99.8 97.3
7ode 2.84 0.418 81.5 99.2 96.7 95.7 78.0
7sba 2.9 0.444 86.1 98.2 96.1 97.4 83.9
7ugg 3.16 0.468 96.3 98.6 95.9 97.7 94.1
7pt6 3.2 0.435 95.7 99.1 96.6 98.9 94.7
7xpx 3.2 0.343 85.4 97.1 97.6 99.5 85.0
7px8 3.27 0.368 99.0 98.2 97.7 99.1 98.1
7sr8 3.3 0.537 92.7 98.0 93.5 96.9 89.8

7wug 3.3 0.396 96.2 94.1 97.0 99.3 95.5
7y9u 3.3 0.388 77.9 99.0 97.7 99.1 77.2
7u50 3.4 0.396 73.7 97.7 97.0 97.6 71.9
7sjn 3.4 0.740 68.3 96.3 90.5 93.1 63.6

7z1m 3.4 0.472 90.4 99.3 95.3 97.9 88.5
7rzy 3.5 0.746 47.2 99.2 90.1 97.2 45.8
7w9l 3.5 0.447 74.0 98.7 96.2 97.2 71.9
8dtm 3.5 0.557 92.0 90.9 93.8 97.3 89.5
8a3t 3.5 0.706 66.9 98.6 90.4 95.6 63.9
8a2q 3.53 0.644 74.1 94.8 90.8 94.4 70.0
7yzk 3.57 0.811 81.0 94.4 88.5 88.9 72.0
7oix 3.6 0.636 75.1 96.4 91.2 89.6 67.3
7tvz 3.6 0.563 86.5 98.3 93.3 97.7 84.5
7pt7 3.8 0.476 78.2 99.5 95.0 95.9 74.9

7um0 3.8 0.618 89.8 99.0 92.2 97.7 87.8

Table 2: ModelAngelo Pruned Results

16

Published as a conference paper at ICLR 2023

PDB Reso- backbone Cα Cα lDDT Sequence Sequence
lution RMSD recall precision match recall

7tu5 2.1 0.307 99.7 98.1 98.3 96.7 96.5
7unl 2.45 0.311 99.9 84.8 98.8 98.9 98.8
7q1u 2.7 0.273 100.0 97.7 99.1 99.6 99.6
7szi 2.7 0.406 99.1 98.2 98.3 97.8 96.9
7txv 2.7 0.710 92.3 87.0 91.9 88.4 81.6
7uck 2.8 0.401 99.0 98.2 97.2 98.4 97.4
7ode 2.84 0.549 96.9 93.5 94.6 84.2 81.7
7sba 2.9 0.516 97.4 91.5 94.7 87.6 85.3
7ugg 3.16 0.495 98.9 97.1 95.4 95.4 94.3
7pt6 3.2 0.466 98.1 97.7 96.1 96.6 94.9
7xpx 3.2 0.563 98.2 90.3 93.7 88.1 86.5
7px8 3.27 0.371 99.9 96.5 97.7 98.5 98.4
7sr8 3.3 0.574 99.0 93.7 92.7 92.0 91.1

7wug 3.3 0.420 99.8 82.0 96.5 96.1 95.9
7y9u 3.3 0.719 99.1 86.0 91.7 82.8 82.1
7u50 3.4 0.848 99.1 67.2 89.6 76.3 75.6
7sjn 3.4 1.071 98.6 78.7 85.8 70.2 69.2

7z1m 3.4 0.546 98.0 97.6 93.9 91.4 89.6
7rzy 3.5 1.122 95.3 85.9 82.8 57.2 54.5
7w9l 3.5 0.646 90.2 89.2 92.6 83.0 74.9
8dtm 3.5 0.649 99.5 74.8 92.1 90.5 90.0
8a3t 3.5 0.960 86.5 94.3 85.9 77.7 67.3
8a2q 3.53 0.923 98.3 82.7 86.6 74.7 73.5
7yzk 3.57 0.935 99.4 75.4 86.2 74.4 73.9
7oix 3.6 0.843 99.4 74.9 87.6 71.1 70.7
7tvz 3.6 0.661 98.5 93.2 91.5 87.8 86.5
7pt7 3.8 0.583 88.9 97.4 93.2 86.2 76.6

7um0 3.8 0.727 98.6 93.8 90.5 90.5 89.2

Table 3: ModelAngelo Unpruned Results

17

Published as a conference paper at ICLR 2023

PDB backbone Cα Cα lDDT Sequence Sequence
RMSD recall precision match recall

7tu5 0.841 60.5 95.6 85.1 58.8 35.5
7unl 0.692 88.1 96.4 89.5 80.7 71.1
7q1u 0.862 89.5 94.5 84.7 70.5 63.1
7szi 0.843 85.7 96.4 88.1 81.7 70.0
7txv 1.028 44.6 94.3 83.5 62.8 28.0
7ode 1.103 8.0 51.9 84.9 25.7 2.0
7sba 1.127 64.7 93.6 80.8 28.4 18.4
7ugg 1.277 59.5 94.6 79.1 36.7 21.9
7xpx 0.889 69.6 86.5 83.5 40.8 28.4
7px8 1.055 83.0 90.4 80.5 60.5 50.3
7sr8 1.833 45.4 94.0 74.6 7.7 3.5

7wug 1.027 82.7 95.4 83.5 57.7 47.7
7y9u 1.068 67.5 95.7 81.8 40.8 27.5
7u50 1.049 56.5 79.1 81.0 36.6 20.7
7sjn 1.580 33.0 95.8 78.3 19.6 6.5
7rzy 2.103 24.0 92.1 70.1 8.8 2.1
7w9l 1.177 53.3 95.7 80.5 47.6 25.4
8dtm 1.808 48.8 87.5 74.8 11.3 5.5
8a2q 1.503 53.0 95.3 75.1 34.5 18.3
7yzk 1.575 56.8 92.1 77.3 27.0 15.4
7oix 1.933 60.2 95.4 71.6 7.2 4.3
7tvz 1.474 39.1 95.2 76.2 31.4 12.3

7um0 1.611 54.1 95.2 75.7 16.5 9.0

Table 4: PHENIX Results

18

Published as a conference paper at ICLR 2023

A.3 NETWORK DETAILS

A.3.1 GRAPH INITIALIZATION NETWORK

Algorithm 1 Segmentation Forward Pass. The fully convolutional segmentation model described in
section 3.1.1.

1: function SEGMENTATION FORWARD(V)
2: V = (V −mean(V))/std(V)
3: ds 0, ds 1, ds 2, ds 3, ds 4← downsample forward(V)
4: tl4← conv building block(ds 4, input channels=512, output channels=256)
5: ll4← conv building block(ds 3, input channels=256, output channels=256)
6: c4← main layer(upsample add(tl4, ll4), input channels=256, expansion=4, num layers=2)
7: tl3← conv building block(c4, input channels=1024, output channels=128)
8: ll3← conv building block(ds 2, input channels=128, output channels=128)
9: c3 ← main layer(upsample add(tl3, ll3), input channels=128, expansion=4,

num layers=20)
10: tl2← conv building block(c3, input channels=512, output channels=64)
11: ll2← conv building block(ds 1, input channels=64, output channels=64)
12: c2← main layer(upsample add(tl2, ll2), input channels=64, expansion=4, num layers=50)
13: tl1← conv building block(c2, input channels=256, output channels=64)
14: ll1← conv building block(ds 0, input channels=64, output channels=64)
15: c1← main layer(upsample add(tl1, ll1), input channels=64, expansion=4, num layers=10)
16: pred← multi scale conv(c1, input channels=256, mid channels=64, output channels=1)
17: return pred

Algorithm 2 Convolutional Building Block
1: function CONV BUILDING BLOCK(f , input channels, output channels)
2: f ← conv3d(f , input channels, output channels, kernel size=3, stride=1, padding=1)
3: f ← instance norm 3d(f , output channels, affine=True)
4: f ← relu(f)
5: return f

Algorithm 3 Bottleneck
1: function BOTTLENECK(i, input channels, hidden channels, expansion)
2: f ← conv building block(i, input channels, hidden channels)
3: f ← conv building block(f , hidden channels, hidden channels)
4: f ← conv3d(f , hidden channels, hidden channels × expansion, kernel size=1, stride=1,

padding=1)
5: f ← instance norm 3d(f , output channels, affine=True)
6: f ← relu(f + i)
7: return f

19

Published as a conference paper at ICLR 2023

Algorithm 4 Downsample Layer. Factor-two downsampling with strided convolutions.
1: function DOWNSAMPLE(input channels, output channels, f)
2: f ← conv3d(f , input channels, output channels, kernel size=3, stride=2, padding=1)
3: f ← instance norm 3d(f , output channels, affine=True)
4: f ← relu(f)
5: return f

Algorithm 5 Downsample Forward Pass
1: function DOWNSAMPLE FORWARD(V)
2: ds 0← conv building block(V , 1, 64, kernel size=5, padding=2)
3: ds 1← downsample(ds 0, input channels=64, output channels=64)
4: ds 2← downsample(ds 1, input channels=64, output channels=128)
5: ds 3← downsample(ds 2, input channels=128, output channels=256)
6: ds 4← downsample(ds 3, input channels=256, output channels=512)
7: return ds 0, ds 1, ds 2, ds 3, ds 4

Algorithm 6 Main Layer
1: function MAIN LAYER(f , input channels, expansion, num layers)
2: hidden channels← input channels
3: for i in range(num layers) do
4: f ← bottleneck(f , input channels, hidden channels, expansion)
5: input channels← hidden channels × expansion
6: return f

Algorithm 7 Upsample then add
1: function UPSAMPLE ADD(f , g)
2: H,W,D← return shape(g)
3: upsampled← trilinear interpolation(f , H,W,D)
4: return upsampled + g

Algorithm 8 Multi Scale Convolution
1: function MULTI SCALE CONV(f , input channels, mid channels, output channels)
2: f3 ← conv3d(f , input channels, mid channels, kernel size=3, stride=1, padding=1)
3: f5 ← conv3d(f , input channels, mid channels, kernel size=5, stride=1, padding=2)
4: f7 ← conv3d(f , input channels, mid channels, kernel size=7, stride=1, padding=3)
5: f ← concatenate(f3, f5, f7)
6: f ← instance norm 3d(f , mid channels × 3, affine=True)
7: f ← relu(f)
8: f ← conv3d(f , mid channels × 3, output channels, padding=1, kernel size=3)
9: return f

20

Published as a conference paper at ICLR 2023

A.3.2 GRAPH NEURAL NETWORK

Algorithm 9 GNN Forward Pass
1: function GNN FORWARD PASS(x,F,V ,S, num recycling steps)
2: for k in range(num recycling steps) do
3: f ← zeros(batch size, 256)
4: for i in range(num layers=8) do
5: f ← cryo em attention(x, f ,F,V)
6: f ← sequence attention(f ,S)
7: f ← spatial ipa(x, f ,F)
8: f ← transition layer(f)
9: P← amino acid classification(f)

10: O← local confidence prediction(f)
11: x,F← backbone frame module(f ,F)
12: G← torsion angle network(f)
13: return x,F,P,O,G

Algorithm 10 CryoEM Attention Module
1: function CRYO EM ATTENTION(x, z,F,V)
2: C ← get cubes centered on nodes(x,F,V)
3: R← get rectangles between nodes(x,F,V)
4: d← generate distance based features(x)
5: ne ← [z,d]e
6: k← get cryo key vectors(R)
7: q,v← get cryo query value vectors(ne)
8: zc ← softmax(qTk) · v
9: zp ← get cryo point features(C)

10: z′ ← linear layer([zc, zp], output dim=256)
11: z′ ← dropout(z′, probability=0.5)
12: z← layer norm(z+ z′/

√
2)

13: return z

Algorithm 11 Sequence Attention Module
1: function SEQUENCE ATTENTION(f ,S)
2: Q← linear layer(f , output dim=8× 256)
3: Q← reshape(Q, shape=(batch size, attention heads=8, feature dim=256))
4: V← linear layer(S, output dim=8× 256)
5: V← reshape(V, shape=(sequence len, attention heads=8, feature dim=256))
6: K← linear layer(K, output dim=8× 256)
7: K← reshape(K, shape=(sequence len, attention heads=8, feature dim=256))
8: z← softmax(QTK) ·V
9: z← reshape(z, shape=(batch size, 8× 256))

10: z← layer norm(z)
11: z← linear layer(z, output dim=256)
12: z← dropout(z, probability=0.5)
13: f ← layer norm(f + z/

√
2)

14: return f

21

Published as a conference paper at ICLR 2023

Algorithm 12 Spatial IPA Module
1: function SPATIAL IPA(x, z,F)
2: d← generate distance based features(x)
3: e← get nearest twenty neighbours(x)
4: ne ← [z,d]e
5: v← get value vector(ne)
6: q← get query vector in local frame(ne)
7: q← F ◦ q ▷ Bring to global frame
8: xn ← get neighbour positions(x) ▷ Shape: M × k × 3
9: z′ ← softmax(−

∑
i∈[p] ||qi − xn||2) · v ▷ Sum is over query points

10: z′ ← linear layer(z′, output dim=256)
11: z′ ← dropout(z′, probability=0.5)
12: z← layer norm(z+ z′/

√
2)

13: return z

Algorithm 13 Cubes Centered on Nodes
1: function GET CUBES CENTERED ON NODES(x,F,V)
2: affine grid← torch.nn.functional.affine grid(F, shape=(17, 17, 17))
3: C ← torch.nn.functional.grid sample(V , affine grid)
4: return C

Algorithm 14 Rectangles Between Nodes
1: function GET RECTANGLES BETWEEN NODES(x,V)
2: v← get vectors to nearest neighbours(x)
3: M← rotation matrix point z axis to vector(v)
4: F← concatenate(M,x, dim=1)
5: affine grid← torch.nn.functional.affine grid(F, shape=(5, 1, 1))
6: R← torch.nn.functional.grid sample(V , affine grid)
7: return R

Algorithm 15 Distance Based Features
1: function GENERATE DISTANCE BASED FEATURES(f ,F)
2: x← F[...,−1]
3: e← get k nearest neighbours(x, k = 20) ▷ Shape: M × k
4: neighbour positions in local frame← F−1 ◦ x[e] ▷ Shape: M × k × 3
5: neighbour distances← ||neighbour positions in local frame||2 ▷ Shape: M × k
6: NCaC pos← backbone frame to pos(F) ▷ See AlphaFold2 sup. 1.8.4
7: CatoNCaC distances← ||NCaC pos[e] - x||2
8: NtoC distances← ||NCaC pos[e][..., 2] - NCaC pos[..., 0]||2
9: CtoN distances← ||NCaC pos[e][..., 0] - NCaC pos[..., 2]||2

10: distances← [CatoNCaC distances, NtoC distances, CtoN distances]
11: n← sinusoidal positional encoding(distances, dim=20, freq=1/50)
12: n← reshape(n, shape=(batch size, 20 * 5 * 20))
13: n← linear layer(n, output dim=64)
14: f ← [f ,n]
15: return f

Algorithm 16 Fully Connected Residual Block
1: function FC RES BLOCK(f , output dim)
2: y← linear layer(f , output dim)
3: f ← f + y/

√
2

4: f ← relu(f)
5: f ← layer norm(f)
6: return f

22

Published as a conference paper at ICLR 2023

Algorithm 17 Backbone Frame Module
1: function BACKBONE FRAME MODULE(f ,F)
2: f ← fc res block(f , output dim=256)
3: f ← fc res block(f , output dim=256)
4: f ← fc res block(f , output dim=256)
5: NCaC shift← linear layer(f , output dim=9)
6: NCaC shift← reshape(NCaC shift, shape=(batch size, 3, 3))
7: NCaC new← F◦ NCaC shift
8: F′ ← affine from 3 points(NCaC new) ▷ See algorithm 21 in AlphaFold2 sup.
9: F′ ← mirror x and z axis(F′) ▷ Same convention in AlphaFold2

10: x← F′[..., 1]
11: return x,F′

Algorithm 18 Transition Layer
1: function TRANSITION LAYER(f)
2: f ← fc res block(f , output dim=256)
3: f ← fc res block(f , output dim=256)
4: f ← fc res block(f , output dim=256)
5: return f

Algorithm 19 Cryo Key Vectors
1: function GET CRYO KEY VECTORS(R)
2: f ← conv3d(R, in channels=1, out channels=256, kernel size=(1,3,3))
3: f ← reshape(f , (batch size, num neighbours, -1))
4: f ← relu(layer norm(f))
5: f ← linear layer(f , output dim=attention heads × 256)
6: f ← dropout(f , probability=0.5)
7: f ← reshape(f , (batch size, num neighbours, attention heads, 256))
8: return f

Algorithm 20 Cryo Query and Value Vectors
1: function GET CRYO QUERY VALUE VECTORS(f , e)
2: q← linear layer(f , output dim=attention heads × 256)
3: q← reshape(q, (batch size, attention heads=8, 256))
4: v← linear layer(f , output dim=8 × 256)
5: v← v[e]
6: v← reshape(v, (batch size, num neighbours=20, attention heads=8, 256))
7: return q,v

Algorithm 21 Cryo Point Features
Require: global variables

1: attention heads← 8
2: num features← 256
3: function GET CRYO POINT FEATURES(C)
4: f ← bottleneck(C, input channels=1, hidden channels, num features / 4, expansion=4,

stride=2)
5: f ← bottleneck(f , input channels=num features, hidden channels=num features / 4, expan-

sion=4, stride=2)
6: f ← bottleneck(f , input channels=num features, hidden channels=num features / 4, expan-

sion=4, stride=2)
7: f ← bottleneck(f , input channels=num features, hidden channels=num features / 4, expan-

sion=4, stride=2)
8: f = reshape(batch size, num features, x, y, z)
9: f ← spatial mean(f)

10: f ← linear layer(f , output dim= attention heads × num features)
11: f ← reshape(batch size, attention heads, num features)
12: return f

23

Published as a conference paper at ICLR 2023

A.4 COMPUTATIONAL CHARACTERISTICS

A.4.1 NUMBER OF PARAMETERS

Segmentation network: 61,158,147

GNN total: 192,090,873

- Spatial IPA module: 9,659,904 (× 8 layers)

- Cryo-EM module: 7,722,581 (× 8 layers)

- Sequence attention module: 6,499,348 (× 8 layers)

- Torsion angle predictor: 240,806

- Backbone update module: 200,457

- Local confidence predictor: 198,401

- Existence mask predictor: 198,401

- Transition layer: 198,144

A.4.2 TRAINING TIME AND COMPUTE

The training was carried out on 8 NVIDIA A100 GPUs. We trained the segmentation network for
400,000 steps with a batch size of 16. Each step took 0.99 seconds on average, for a total training
time of 4.6 days. We trained the GNN for 300,000 steps with a batch size of 16. Each step took 1.73
seconds on average, for a total training time of 6 days.

A.4.3 INFERENCE TIME AND COMPUTE

Inference time depends on the size of the structure and its sequence length. Below, we report the
total time (in minutes) that it took to run inference on a single NVIDIA A100 GPU for all structures
in the test set.

7ode: 19.5 7oix: 7.0 7pt6: 104.2 7pt7: 88.9
7q1u: 8.8 7rzy: 9.9 7sba: 132.7 7sjn: 7.5
7szi: 4.2 7tu5: 8.3 7tvz: 14.2 7txv: 15.6
7uck: 283.5 7ugg: 9.1 7um0: 17.0 7unl: 5.0
7wug: 21.1 7xpx: 4.8 7px8: 11.4 7y9u: 5.2
7z1m: 58.0 7sr8: 5.8 8a2q: 17.8 8a3t: 105.3
8dtm: 7.5 7u50: 7.4 7w9l: 11.2 7yzk: 5.5

24

Published as a conference paper at ICLR 2023

A.5 SEQUENCE SIMILARITY CUTOFF DATASET

To test whether overfitting to structures that are similar to those used for training affected our results,
we also analyzed the relative performance of ModelAngelo and DeepTracer on a new test set. For
this, we chose 15 recent structures from the PDB that did not contain a single protein with a sequence
similarity of more than 30% to any of the chains in the training set. As shown in figure A.5 and tables
5 and 6, the relative performance of DeepTracer and ModelAngelo does not change for this smaller,
more unique test set. We note that structure 7e1e is only partially built in the PDB deposition, which
impacts its Cα recall.

Figure 5: Scatter plot of results of the new sequence identity cutoff dataset, ModelAngelo pruned
compared to Deeptracer. We note that the results are similar to the main dataset presented in the
paper.

25

Published as a conference paper at ICLR 2023

PDB Reso- backbone Cα Cα lDDT Sequence Sequence
lution RMSD recall precision match recall

8e2l 3.51 0.663 59.8 97.3 90.6 96.0 57.4
7vt0 3.40 0.719 75.4 96.5 90.7 95.0 71.6
7uab 3.70 0.610 54.8 98.5 92.6 95.4 52.3
7tnx 3.50 0.577 94.6 98.9 93.2 99.3 94.0
7u58 3.10 0.484 87.3 96.7 95.1 97.9 85.4
8dze 2.99 0.535 96.8 98.5 94.1 98.6 95.4
7e1e 3.34 0.619 88.3 4.7 92.7 97.2 85.8
8aa5 2.46 0.410 73.6 99.5 97.1 96.4 71.0
7yer 3.00 0.489 94.6 98.4 95.1 96.0 90.8
7ufg 3.28 0.653 66.0 96.7 91.2 96.2 63.5
7uqx 3.30 0.533 50.5 99.5 93.8 90.2 45.6
7uwq 3.05 0.399 90.8 97.9 97.4 98.8 89.7
7uws 3.47 0.599 80.9 79.0 91.7 97.6 79.0
7wjm 3.30 0.426 98.0 99.6 96.6 98.9 96.9
7usc 3.00 0.290 98.6 98.5 98.6 99.4 98.0

Table 5: ModelAngelo sequence similarity cutoff results

PDB Reso- backbone Cα Cα lDDT Sequence Sequence
lution RMSD recall precision match recall

8e2l 3.51 1.404 66.9 93.7 82.7 54.5 36.5
7vt0 3.40 1.130 80.9 90.2 83.2 51.4 41.6
7uab 3.70 1.231 83.1 95.7 84.8 31.5 26.2
7tnx 3.50 0.975 95.2 88.0 89.0 79.1 75.3
7u58 3.10 0.807 85.7 96.8 91.8 88.7 76.0
8dze 2.99 0.719 96.4 97.5 92.0 96.2 92.7
7e1e 3.34 1.324 96.2 4.9 86.6 71.6 68.8
8aa5 2.46 1.010 72.8 87.8 91.1 56.8 41.4
7yer 3.00 0.795 91.0 98.3 91.8 87.9 80.0
7ufg 3.28 1.193 71.8 96.3 85.3 64.3 46.2
7uqx 3.30 1.505 75.5 96.9 82.9 10.9 8.2
7uwq 3.05 0.904 91.8 98.8 93.0 83.6 76.7
7uws 3.47 1.157 87.9 72.9 85.4 66.0 58.0
7wjm 3.30 0.685 97.6 99.6 92.7 95.6 93.2
7usc 3.00 0.580 95.5 99.3 96.6 94.0 89.7

Table 6: Deeptracer sequence similarity cutoff results

26

Published as a conference paper at ICLR 2023

A.6 EXPANDED MODEL COMPARISON

Figure 6: Additional results showing comparisons between Deeptracer (left) and ModelAngelo
(right). Both models are viwed in color over the outline of the ground truth (deposited) model.
The percentages show respective sequence recall for each model. Close-up on 7SJN highlights the
incorrect chain connections made by Deeptracer. A global view of the models for 7TXV and 7U50
are shown.

27

	Introduction
	Prior Work
	Methods
	Graph initialization
	Network Architecture
	Training dataset
	Training

	Graph refinement
	Network Architecture
	Training
	Recycling

	Postprocessing

	Results
	Discussion
	Acknowledgements
	Appendix
	Losses
	Auxiliary Losses
	One-step Losses

	Detailed metrics per PDB entry in the test dataset
	Network details
	Graph initialization network
	Graph Neural Network

	Computational Characteristics
	Number of parameters
	Training time and compute
	Inference time and compute

	Sequence similarity cutoff dataset
	Expanded Model Comparison

