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Abstract
In recent years, diffusion models have risen to
prominence as the foremost technique for distri-
bution learning. This paper focuses on structure-
preserving diffusion models (SPDM), a subset of
diffusion processes tailored to distributions with
inherent structures, such as group symmetries.
We complement existing sufficient conditions for
constructing SPDM by proving complementary
necessary ones. Additionally, we propose a new
framework that considers the geometric structures
affecting the diffusion process. Within this frame-
work, we propose a method of preserving the
alignment between endpoint couplings in bridge
models to design a novel structure-preserving
bridge model. We validate our findings over a va-
riety of equivariant diffusion models by learning
symmetric distributions and the transitions among
them. Empirical studies on real-world medical
images indicate that our models adhere to our the-
oretical framework, ensuring equivariance with-
out compromising the quality of sampled images.
Furthermore, we showcase the practical utility of
our framework by achieving reliable equivariant
image noise reduction and style transfer, irrespec-
tive of prior knowledge of image orientation, by
implementing an equivariant denoising diffusion
bridge model (DDBM).

1. Introduction

Diffusion models (Song & Ermon, 2019; Ho et al., 2020;
Song et al., 2021a;b; Rombach et al., 2022; Karras et al.,
2022; Song et al., 2023) have become the leading method
in a plethora of generative modelling tasks including image
generation (Song & Ermon, 2019; Ho et al., 2020; Song
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Figure 1: In DDBM (Zhou et al., 2024; Bortoli et al., 2023),
y = xT is the starting point of the backward process, a
blurry image of cells in the example. SPDM enables a
theoretically equivariant inference trajectory: if (xT ,y) un-
dergos a 90◦ rotation (via operator κ), the denoised output
precisely mirrors this rotation.

et al., 2021a), audio synthesis (Kong et al., 2021), image
segmentation (Baranchuk et al., 2022; Wolleb et al., 2022),
image editing, and style transfer (Meng et al., 2022; Zhou
et al., 2024).

In many generation tasks, the data involved often exhibit
inherent “structures” that result in their distributions re-
maining invariant – or the mappings between them being
equivariant – under a set of transformations. In tasks such as
image denoising or inpainting, where the orientation of an
image is not provided, it is natural to require the denoised
or inpainted image to retain the same orientation as the in-
put; i.e., the denoising or inpainting processes should be
equivariant (see Fig 1). For example, medical diagnostic
images, such as X-ray imaging, are captured from a variety
of different orientations (Lafarge et al., 2021; Shao et al.,
2023). It such applications is imperative that denoising tech-
niques obey equivariant properties to ensures consistent and
reliable disease detection, regardless of the angle at which
images are obtained.

This paper investigates structure-preserving diffusion mod-
els (SPDM), a family of diffusion processes that preserve the
group-invariant properties of distributions. Our framework
extends previous research (Yim et al., 2023; Xu et al., 2022;
Hoogeboom et al., 2022; Qiang et al., 2023; Martinkus et al.,
2023) on drift equivariance by incorporating additional fac-
tors that influence diffusion trajectories in both classical and
bridge diffusion models, establish an equivalence relation
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between the group equivariance of the drifts and the struc-
tural preservation of the distributions of induced flows, see
Sec 4. Fig 1 illustrates an example of this, for denoising
diffusion bridge models (DDBM) (Zhou et al., 2024; Bortoli
et al., 2023), where variables y correspond to starting point
xT of the backward sampling process. This extension al-
lows us to build a bridge model that captures the equivariant
coupling between xT and x0 where a rotation on xT results
in the same rotation on x0.

Our developments complement existing discussions around
structural diffusion models, which have predominantly fo-
cused on identifying sufficient conditions, by providing
necessary conditions. We exemplify the utility of our frame-
work by presenting two equivariant score-based models
that achieve theoretically guaranteed capabilities for in-
variant data generation and equivariant data editing: (1)
SPDM+WT, using a weight-tied implementation to reduce
training and sampling costs at the expense of image quality,
and (2) SPDM+FA, employing Framing-Averaging (Puny
et al., 2022) to combine outputs from conventionally trained
diffusion models, attaining the same theoretical guarantees
while achieving a sample quality comparable to that of a
standard diffusion model. Notably, unlike other equivariant
implementations of diffusion models that incorporate FA
into the initial training stage (Martinkus et al., 2023; Duval
et al., 2023), our method only applies FA during inference
time, significantly decreasing training cost. Additionally,
we propose a straightforward method to incorporate a reg-
ularization term into existing diffusion models to promote
invariant and equivariant properties, see Appx C. We con-
ducted empirical studies on artificial and practical medical
image datasets to support our theoretical claims.

2. Related work

The problem of conditioning neural networks to respect
group-invariant (or equivariant) distributions (Shawe-Taylor,
1993) has been a longstanding issue within the domains
of physical modelling, computer vision, and, more re-
cently, generative modelling. This is underscored by the
widespread utilization of diverse forms of data augmenta-
tion. However, achieving group invariance (or equivariance)
by data augmentation alone necessitates an infeasible many
training samples, with models often falling short of being
adequately conditioned through data augmentation alone
(Elesedy & Zaidi, 2021; Gao et al., 2022).

Equviariant VAEs have been constructed (Huang et al.,
2022; Visani et al., 2024) by conditioning the latent space
representation to be invariant. This is done by employing
techniques similar to those used for conditioning CNNs
(e.g., Cohen & Welling, 2016; Ravanbakhsh et al., 2017;
Esteves et al., 2018; Kondor & Trivedi, 2018; Knigge et al.,
2022; Yarotsky, 2022), such as formulating convolutional

kernels and layer pooling operations that preserve the de-
sired equivariance between layers of the network.

Recently, work has appeared on conditioning GANs (Good-
fellow et al., 2014; Goodfellow, 2016) to obey generalized
group equivariant properties inherent within the data dis-
tribution (Dey et al., 2021; Birrell et al., 2022). Initial
approaches intuitively replaced all CNN layers within the
GAN with group equivariant ones proposed in (Cohen &
Welling, 2016). The resulting model was later argued to be
incomplete by (Birrell et al., 2022; Duval et al., 2023), who
addressed this issue and also proposed a family of invariant
divergence measures.

Flow-based frameworks, which are inherently related to
diffusion, such as those proposed in (Köhler et al., 2019;
Köhler et al., 2020; Rezende et al., 2019; Liu et al., 2019;
Biloš & Günnemann, 2021; Satorras et al., 2021; Albergo
& Vanden-Eijnden, 2023; Albergo et al., 2023) make use
of equivariant normalizing flows to push-forward a group-
invariant prior to the target distribution, which ensures that
the learned distribution is invariant.

The study of group invariance within diffusion models (Song
& Ermon, 2019; Song et al., 2021a; Ho et al., 2020; Karras
et al., 2022; Kim et al., 2023; Yim et al., 2023), and now dif-
fusion bridge models (Bortoli et al., 2021; Liu et al., 2023b;
Zhou et al., 2024; Lee et al., 2024), has been primarily
applied to molecular generation (i.e., molecular conforma-
tion, and protein backbone generation) (Shi et al., 2021;
Xu et al., 2022; Hoogeboom et al., 2022; Yim et al., 2023;
Jing et al., 2022; Corso et al., 2023; Martinkus et al., 2023).
Most approaches focus on conditioning the diffusion pro-
cess on a graph prior and employ a transformation (applied
to the inner molecular atomic distances - such as the rela-
tive torsion angle coordinates) that elevates the graph into
a group-invariant form (or one that is more robust to the
selected group transformations). Thereby, resulting in a rep-
resentation that is sufficient to ensure the diffusion process
is equivariant. More generally, the works (De Bortoli et al.,
2022; Mathieu et al., 2023), and (Yim et al., 2023), investi-
gate distribution invariance over more general geometries
(e.g., Riemannian manifolds generated by Lie groups). The
study of distribution invariance comes about naturally as a
result of finding a limiting probability distribution over the
geometry in these settings, a requirement for the diffusion
process to be well-defined. The latter is the most similar to
the work presented herein.

3. Preliminary

3.1. The diffusion processes and diffusion bridges

Let {xt}Tt=0 denote a set of time-indexed random variables
in Rd such that xt ∼ pt(xt), where pt(xt) are the marginal
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distributions of an underlying diffusion process defined by
a stochastic differential equation (SDE):

dxt = u(xt, t) dt+ g(t) dwt, x0 ∼ p0(x0). (1)

Here, u : Rd × [0, T ]→ Rd is the drift, g : [0, T ]→ R is a
scalar diffusion coefficient, and wt ∈ Rd denotes a Wiener
process. In generative diffusion models, we take p0 = pdata
and pT = pprior; thereby, the diffusion process constructs a
path pt from pdata to pprior.

In practice, u and g are chosen to accelerate the sampling
of xt in (1). Table 1 lists two popular choices of f and g,
respectively corresponding to the variance preserving (VP)
(Ho et al., 2020; Song et al., 2021a) and variance explod-
ing (VE) SDEs (Song et al., 2021b). For these selections,
p(xt|x0) is an easy-to-sample spherical Gaussian, and the
sampling of xt is carried out by first picking x0 ∼ p0(x0)
and sampling from p(xt|x0).

For any SDE, there is a corresponding reverse SDE with the
same marginal distribution pt for all t ∈ [0, T ] (Anderson,
1982). In fact, the forward SDE in (1) has a family of
reverse-time SDEs (Zhang & Chen, 2023):

dxt =
[
u(xt, t)− 1+λ2

2 g2(t)∇xt
log pt(xt)

)]
dt

+ λg(t) dwt for all λ ≥ 0.
(2)

Setting λ = 1 in (2) simplifies the equation to the orig-
inal reverse SDE as derived in (Anderson, 1982). For
λ = 0, the process transforms into a deterministic ODE
process, known as the probability flow ODE (PF-ODE)
(Song et al., 2021b). Here, the only unknown term is the
score ∇x log pt(x), which can be estimated using a neu-
ral network sθ(x, t) trained through score matching (Song
et al., 2021b) or an equivalent denoising loss (Karras et al.,
2022). Subsequently, from xT ∼ pT (xT ), one can sample
x0 ∼ pdata(x0) by solving the SDE (or ODE if λ = 0)
given in (2).

Instead of building path pt from a data distribution to a
prior, given qdata(x,y), diffusion bridges (DBs) create path
qt such that q0(x) = qdata(x) and qT (y) = qdata(y). For
(x,y) ∼ qdata(x,y), DBs leverage the distribution pt in-
duced by (1) with x0 = x and xT = y to sample xt. In this
way, qt(xt) = E(x,y)∼qdata(x,y)

[
pt(xt|x0 = x,xT = y)

]
and admits the forward SDE:

dxt = u(xt, t) + g(t)2h(x,xT , t) + g(t) dwt, (3)

given xT = y and h(x,xT , t) = ∇xt
log p(xT |x) is the

gradient of the log transition kernel induced by (1). For u
and g in Table 1, pt(xt|x0,xT ) can be sampled efficiently.
Thus, xt ∼ qt(xt) can be obtained by first sampling (x,y)
and then xt. DBs can be broadly categorized into those that
condition on xT and those that do not. Bortoli et al. show

that conditioned implementation is necessary for effectively
learning the coupling encoded in qdata. This is crucial
for many practical tasks, such as image denoising, where
the denoised image should match the blurry input. For
the conditioned DBs (Zhou et al., 2024), the family of the
backward SDE, conditioned on xT = y, is

dxt =u(xt, t) + g(t)2h(x,xT , t)

− 1+τ2

2 g(t)2s(xt|xT , t) + τg(t) dwt,
(4)

for all τ ≥ 0, where s(xt|xT , t) = ∇xt log qt(xt|xT ) is
the score of the DB’s distribution qt given that xT = y.

Notably, in addition to the noisy sample xt, the drift terms
in (3) and (4) also depend on y = xT , motivating us to
consider a more general diffusion process

dxt = f(xt,y, t) dt+ g(t) dwt x0 ∼ p(x0|y), (5)

where y represents other factors affecting the process and
does not need to have the same shape as xt.

3.2. Group invariance and equivariance

A set of functions G = {κ : X → X} equip with a associa-
tive binary operation ◦ : G × G → G, composition in this
case, is called a group if (1) for any κ1, κ2 ∈ G, κ1◦κ2 ∈ G;
(2) G has an identity operator e with e ◦ κ = κ ◦ e = κ;
and (3) for any κ ∈ G, there exists an inverse operator κ−1

such that κ−1 ◦κ = κ ◦κ−1 = e. For instance, let fx be the
operator that flips images horizontally. Then G = {fx, e} is
a group where f−1

x = fx.

In this paper, we are interested in the κ that do not alter the
distributions of Wiener processes, which have a standard
Gaussian increment. As the density of a standard Gaussian
is fully determined by the distance from the sample to the
origin, we hereafter assume that G consists of isometries κ
that fix zero; i.e., ∥κx∥2 = ∥x∥2 and ∥κx−κy∥2 = ∥x−y∥
for all x,y ∈ Rd. Under this assumption, we can show that
κ is linear isometry. (Proof in Appx A.1.) Therefore, κ ∈ G
can be written as

κx = Aκx (6)

for some orthogonal Aκ ∈ Rd×d. To explore the structure-
preserving property of the diffusion process in (5), which
depends on xt ∈ Rm and y ∈ Rn, we consider a
“stacked” linear isometry group G = {κ = (κ1, κ2)|κ1 :
Rm → Rm, κ2 : Rn → Rn} defined in Rm+n such that
κ(x,y) = (κ1x, κ2y) = (Aκ1

x, Aκ2
y) with orthogonal

Aκ1
∈ Rm×m and Aκ2

∈ Rn×n.

For a distribution with density p defined on Rd, we say p is
G-invariant if p(x) = p(κx) for all κ ∈ G. Likewise, for a
conditional distribution p(x|y) with x ∈ Rm and y ∈ Rn,
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Table 1: Choices of u(x, t) and g(x) where ηt =
α2

t

σ2
t

(Zhou et al., 2024). VE is a special case of VP that αt = 1
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Figure 2: The vector fields of score functions that are equivariant
under xy-flip (left) and (90 · k)◦ rotation for k = 0, 1, 2, 3 (right).
we say it is G-invariant if p(κ1x|κ2y) = p(x|y) for all
(κ1, κ2) ∈ G, x ∈ Rm and y ∈ Rn. The following lemma
shows if a distribution is G-invariant, the learned score has to
be G-equivariant. (All the proofs can be found in Appx A.)

Lemma 1. p(x|y) is G-invariant if and only if
s(κ1x|κ2y) = κ1 ◦ s(x|y) for all (κ1, κ2) ∈ G, x ∈ Rm
and y ∈ Rn. Likewise, p(x) is G-invariant if and only if
s(κx) = κ ◦ s(x) for all κ ∈ G.

To see how Lem 1 works, in Fig 2, we illustrate this com-
mutative relationship for unconditional distributions when
subject to xy-flips and rotations. In Fig 2a, it is evident that
when we select symmetric points relative to the diagonal
x = y, the score at these two points also exhibits symmetry.
This implies that we can obtain an identical score vector by
either flipping a point and then computing its score or by
evaluating its score first and subsequently applying the flip
operation. Similarly, in Fig 2b, we can derive the score vec-
tor by rotating a point about the origin and then evaluating
its score or by evaluating its score first and then applying
the rotation operation.

4. Structure preserving diffusion processes

In this section, we discuss explore the sufficient and nec-
essary configurations of diffusion processes that preserve
a distributions invariance throughout the entire diffusion
trajectory. These insights will serve as a foundation for the
design of the corresponding equivariant neural networks in
Sec 5. We present our main theoretical results in Prop 1:

Proposition 1. Given a diffusion process in (5) with G-

Figure 3: A distribution preserving drift of N (0, I) in R2.

invariant p0(x0|y), let [0]pt be the set of ODE drifts pre-
serving the distribution pt. Then pt(xt|y) is G-invariant
for all t ≥ 0 if and only if

κ−1
1 ◦ f(κ1x, κ2y, t)− f(x,y, t) ∈ [0]pt (7)

for all t > 0, x ∈ Rm, y ∈ Rn and κ ∈ G.

This proposition tells us that a diffusion process retains the
G-invariance property of the data distribution p0 through-
out the trajectory if and only if κ−1

1 ◦ f(κ1x, κ2y, t) −
f(x,y, t) = 0 up to some terms δ(x,y, t) satisfying
Louisville equation (Oksendal, 2003; Ehrendorfer, 2006):

0 = ∂
∂tpt(x|y) = −∇x ·

(
pt(x|y)δ(x,y, t)

)
. (8)

Note, δ is not necessarily zero; .e.g., Fig 3 presents a non-
zero drift that does not change N (0, I) in R2. (More dis-
cussions are given in Appx A.3)

Moreover, while Prop 1 is presented based on the condi-
tional distribution pt(xt|y), by setting n = 0 we recover the
unconditional case, as pt(xt|y) reduces to pt(xt), G simpli-
fies to G consisting of κ1, and (7) becomes κ−1

1 ◦f(κ1x, t)−
f(x, t) ∈ [0]pt . Existing structure-preserving diffusion mod-
els (Yim et al., 2023; Xu et al., 2022; Hoogeboom et al.,
2022; Qiang et al., 2023; Martinkus et al., 2023) are based
on the special case that κ−1

1 ◦ f(κ1x, t)− f(x, t) = 0.

To gain an intuitive understanding of why (7) results in the
G-invariance of pt(x|y), we illustrate how the proposition
works in DB models where the stacked group G = {κ =
(κ, κ)|κ ∈ G}. For simplicity, we assume f(κx, κy, t) −
κ ◦ f(x,y, t) = 0, which implies f is equivariant. When f
is equivariant, it essentially says for an infinitesimal step δ,
the transition probability induced by the SDE in (5) satisfies

p(xt−δ|xt,xT ) = p(κxt−δ|κxt, κxT ). (9)
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As pT (xT |xT ) = pT (κxT |κxT ), which is G-invariant, ap-
plying this relationship recursively from t = T to 0 implies
p(xt|xT ) = p(κxt|κxT ) for t ∈ [0, T ]. (Since the SDE is
solved reversely, the base case becomes the invariance of
pT instead of p0.) In Fig 4 (Left), we visualize the evolu-
tion of conditional pt when the conditioned end point xT is
flipped w.r.t. x = 0. As we can see when xT is flipped, the
trajectory from xT to xt is also flipped, which corresponds
to the invariance of p(xt|xT ). In Fig 4 (Right), we also
present an example of unconditional pt in Prop 1 by setting
m = 0. In this case, to ensure that pt is invariant, it suffices
that f(κ1x, t) − κ1 ◦ f(x, t) = 0. Here, we visualize the
evolution of pt driven by two different diffusion processes
with p0 invariant to flipping with respect to x = 0 (that is,
κ1(x) = −x). Specifically, for the upper plot, we have drift
f(x, t) = 1−x

1−t that pushes x to 1 and is not flip-equivariant
for t ≥ 0. As we observe, for all t > 0, pt is no longer
flip-invariant, which corroborates Prop 1. For the second
plot, we select the VP-SDE (see Table 1) with αt = 1−t for
t ∈ (0, 1). Then its drift f(x, t) = − x

2(1−t) is equivariant
to flipping as f(−x, t) = −f(x, t). As suggested in the
plot, pt has a symmetric density for all t ≥ 0, which is also
aligned with Prop 1.

In summary, Prop 1 shows for conditional pt, (7) ensures
the coupling relationship between condition y and the noise
sample xt is G-invariant. In contrast, for unconditional pt,
it ensures the sample x ∼ pt follows the same distribution
when transformed by κ ∈ G. This result can be generalized
to all possible groups consisting of linear isometries and
linear drifts where u(x, t) = xu(t):

Proposition 2. Assume u(x, t) = u(t)x for some scalar
function u : R→ R. Given any group G (or G) composed
of linear isometries, if the unconditional pt induced by (1)
is G-invariant at t = 0, then it is G-invariant for all t ≥ 0.
Likewise, if the conditional qt(xt|xT ) induced by (3) is G-
invariant at t = 0 then it is G-invariant for all t ≥ 0.

Since the drift terms of both VP and VE-SDE in Table 1
take the form u(t)x, Prop 2 indicates that the induced
diffusion process and the corresponding diffusion bridges
are structure-preserving for any group composed of linear
isometries.

5. Structure preserving diffusion models

In this section, we apply the insights from Sec 4 to ensure
the data generated by SPDM adheres to a G-invariant distri-
bution. As mentioned in Sec 3, sampling a diffusion model
involves solving the SDE in (2) or (4) by estimating the
score using a neural network sθ. We will discuss several
effective methods to design and train sθ so that it meets
the properties outlined in Prop 1, achieving theoretically
guaranteed structure-preserving sampling.

5.1. Structure preserving sampling

Unconditioned distribution sampling. By Prop 1, when a
diffusion process is structure preserving, pt is G-invariant for
all t ≥ 0. So given the prior distribution pT is G-invariant
and by Lem 1, for all t ≥ 0, the score ∇x log pt(x) is
G-equivariant. As a result, as long as the score estimator
sθ(x, t) perfectly learns the G-equivariant property and sat-
isfies (7), the drift of reverse-time SDE (2):

⃗fθ,λ(xt, t) = f(xt, t)− 1
2 (1 + λ2)g2(t) sθ(x, t) (10)

also satisfies (7) as [0]pt is closed under addition (see
Appx A.3). Applying Prop 1 with reversed t, we can
then conclude that the generated samples must follow a
G-invariant distribution.

Equivariant style-transfer through diffusion bridges con-
ditioned on xT . When the drift u(x, t) of original SDE in
(1) satisfies (7), given stacked group G = {(κ, κ)|κ ∈ G},
we can show that the drift u(xt, t) + g(t)2h(xt,xT , t) in
(3) also satisfies (7) (see Lem 13 in Appx A.5 for the proof).
As a result, by Prop 1, pt(xt|xT ) is G-invariant for all
t ∈ [0, T ] and thus by Lem 1, its score is equivariant
and thus satisfies (7). In this way, if the score estimator
sθ(xt,xT , t) perfectly learns the equivariant property such
that sθ(κxt, κxT , t) = κsθ(xt,xT , t), the drift of reverse-
time SDE (4):

dxt =u(xt, t) + g(t)2h(xt,xT , t)

− 1+τ2

2 g(t)2sθ(xt,xT , t)
(11)

satisfies (7); therefore, the invariant coupling between y =
xT and xt is preserved for all t ∈ [0, T ] during the sampling
process.

Due to this observation, to ensure the generated data pre-
serve the necessary geometric structure, it is sufficient to
train a group equivariant score estimator sθ. Here, we
present two theoretically guaranteed G-equivariant imple-
mentations of sθ, SPDM+WT and SPDM+FA.

Weight Tying (SPDM+WT). Currently, almost all exist-
ing diffusion models are based on the U-Net backbone
(Salimans et al., 2017; Ronneberger et al., 2015). As the
only components that are not equivariant are CNNs, we re-
place them with group-equivariant CNNs (Cohen & Welling,
2016; Ravanbakhsh et al., 2017; Esteves et al., 2018; Kon-
dor & Trivedi, 2018; Knigge et al., 2022; Yarotsky, 2022)
to make the entire network equivariant.

In particular, as we only consider linear isometry groups,
we can make CNNs equivariant by tying the weights of the
convolution kernels k, which will also reduce the total num-
ber of parameters and improve the computation efficiency
(Ravanbakhsh et al., 2017). (For more general groups, refer
to (Cohen & Welling, 2016; Knigge et al., 2022) for meth-
ods to make CNNs G-equivariant.) We provide more details
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Figure 4: Left: The evolution of pt driven by DB processes induced by the VE-SDE in Table 1 conditioned on the end point
xT = −1 (upper) and xT = 1 (lower). Right: The upper plot has f(x, t) = 1−x

1−t and g(t) = 1. The lower is the VP-SDE in
Table 1 with αt = 1− t.

on our selections of weight-tied kernels for empirical study
in Appx B.

Output Combining (SPDM+FA). When G contains finite
elements, we can achieve G-equivariance through frame
averaging (FA) (Puny et al., 2022), leveraging the following
fact: for any function r : Rd → Rd,

r̃(x) =
1

|G|
∑
κ∈Gκ

−1 r(κx, κy) (12)

is G-equivariant, where |G| denotes the number of elements
in G and the second argument of r can be discarded for the
approximation of the score not conditioned on y. Based
on this fact, we can obtain an equivariant estimator s̃θ(·, t)
of the score by setting r(·) = sθ(·, t). Note that unlike
other FA-based diffusion models (Martinkus et al., 2023;
Duval et al., 2023), our method trains sθ(·, t) using regular
score-matching and only adopts FA to build the theoretically
guaranteed equivariant score estimator during the inference
time. This design significantly saves training costs. To
see why FA is not necessary during training, we note that
our previous discussion has shown that the ground truth
score function is equivariant; therefore, when sθ is well
trained, estimator κ−1sθ(κ ·, t) for κ ∈ G will produce very
similar output, estimating the value of the score function at
xt (given y). Thus, their average is also a valid estimator.
To boost the model’s performance, additional regularizers
can be used to encourage κ−1sθ(κ ·, t) for κ ∈ G to have
the same output; we discuss this technique with extra details
in Appx C.

5.2. G-equivariant trajectory

The sampling trajectory of the SPDM is governed by the
SDE in (2) or (4), which can be collectively written as

dxt = ⃗fθ,λ(xt,y, t) dt+ λg(t) dwt (13)

Figure 5: Equivariant DB trajectories with/without equivari-
ant noises.

where y can be optionally discarded. In practice, the sam-
pling process solves (13) through:

xi−1← ⃗fθ,λ(xi,y, ti)(ti−1− ti)+λg(t)
√
ti−ti−1 ϵi (14)

with preset time steps {ti}ni=1 and ϵi ∼ N (0, I). While the
techniques discussed in Sec 5.1 ensure the equivariance of
⃗fθ,λ, they do not guarantee the equivariance of the sampled

noise sequence {ϵi}ni=1. As a result, the sample trajectory
xt may not be equivariant. This is visualized in Fig 5 with
green curves, where the drifts of DBs are equivariant to the
flip about x = 0 but the trajectory is not.

Due to this asymmetry, the output of the SPDM will not be
theoretically equivariant. One option to address this problem
is to adopt ODE sampling by setting λ = 0. However,
this method is not always preferred as SDE sampling can
significantly improve image quality (Karras et al., 2022;
Song et al., 2021b; Zhou et al., 2024). For λ > 0, we also
need {ϵi}ni=1 to be "equivariant" such that for κ ∈ G, if the
starting point xn is updated to κxn, then {ϵi}ni=1 is also
updated to {ϵ̃i}ni=1 with ϵ̃i = κϵi. In this way, the trajectory
becomes equivariant, as shown by the blue curves in Fig 5.
In Appx D, we present a simple technique to achieve this by
fixing the random seed and matching some artificial features
between xn and ϵn. In our empirical study, we use this
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method to inject noise into xt as shown in Fig 1 so that the
rotation of the input results in a precise output rotation.

6. Empirical study

In this section, we present experiments demonstrating the
effectiveness of the methods from Sec 5. The results support
our theoretical work in Sec 4 and offer additional insights.

Datasets. Our study adopts, rotated MNIST (Larochelle
et al., 2007), LYSTO (Jiao et al., 2023), and ANHIR
(Borovec et al., 2020a) that have been used in the past to
evaluate the equivaraince of generative models. We also
validate our models effectiveness on denoinsing LYSTO
images, and style transfer from CT scan images to PET
scan images of the same patients from the CT-PET dataset
(Gatidis et al., 2022).

Rotated MNIST dataset (Larochelle et al., 2007) contains
random 90◦ rotations of MNIST images (Deng, 2012), re-
sulting in a C4-invariant distribution. This dataset is com-
monly used to evaluate group-invariant CNN models, as
seen in (Dey et al., 2021; Birrell et al., 2022), with exper-
iments on 1% (600), 5% (3000), and 10% (6000) of the
dataset. The LYSTO dataset (Jiao et al., 2023) includes
20,000 image patches from breast, colon, and prostate can-
cer samples stained with CD3 or CD8 dyes, exhibiting
D4 invariance due to natural rotational and mirror invari-
ance. Following (Birrell et al., 2022), models are trained
on randomly selected 64x64x3 crops from the scaled-down
(128x128x3) LYSTO dataset. ANHIR dataset (Borovec
et al., 2020b) provides 15kx15k images of lesions, lung-
lobes, and mammary-glands, from which we extract random
64x64x3 patches from lung-lobes according to the method
used in (Dey et al., 2021).

For the denoising and style-transfer tasks, LYSTO 64x64x3
patches are downscaled to 1/4 resolution and then upscaled
back to form training pairs. The CT-PET dataset (Gatidis
et al., 2022) includes 1014 annotated whole-body paired
FDG-PET/CT scans of patients with malignant lymphoma,
melanoma, and non-small cell lung cancer. This dataset
is flipping invariant. The style-transfer task transforms a
patient’s CT scan into a PET scan.

6.1. Models

We implement regular diffusion models and bridge models
(DDBM) (Zhou et al., 2024) based on VP-SDEs (Ho et al.,
2020; Song et al., 2021a), which are structure-preserving
with respect to C4, D4, and flipping, as per Prop 2. Except
for SPDM-WT, all models are trained with data augmenta-
tion using randomly selected operators from their respective
groups. For generation tasks, we present the performance
of the standard diffusion model, VP-SDE, as a baseline,

along with SP-GAN (Birrell et al., 2022), the only GAN-
based model with theoretical group invariance guarantees.
We also report the mean performance of GE-GAN (Dey
et al., 2021). The tested models and their invariance and
equivariance properties are summarized in Table 5. To boost
performance, we apply non-leaky augmentation as in EDM
(Karras et al., 2022) and self-conditioning (Chen et al., 2023)
to improve sample quality.

For style-transfer tasks, in addition to the original DDBM
implementation (Zhou et al., 2024), we report the perfor-
mance of the popular style-transfer method Pix2Pix (Isola
et al., 2017) and the unconditional diffusion bridge model
I2SB (Liu et al., 2023a). For the denoising task on LYSTO,
all models use pixel-level implementation. For the CT-PET
dataset, all models except Pix2Pix are trained in the latent
space, with images first encoded by a fine-tuned pretrained
VAE from Stable Diffusion (Rombach et al., 2022). FA was
applied during fine-tuning and inference to ensure equivari-
ance. Detailed configurations are provided in Appx F.

6.2. Image generation

We report the FID score (Heusel et al., 2017) of each model
in Table 2 and Table 3. To ensure consistency, we repro-
duced the results of SP-GAN and GE-GAN and computed
the FID using the standard InceptionV3 model. We note
that the reproduced FID of GE-GAN is significantly higher
than reported by Dey et al., as their score is based on a
customized InceptionV3 finetuned on LYSTO and ANHIR.
While included in the table for reference, these scores are not
comparable with other FIDs (details on our FID calculation
are provided in Appx G). All FIDs are based on 50,000 ran-
domly generated images. Sample images from each model
are presented in Appx H. Table 2 and Table 3 shows that
diffusion-based models consistently outperform SP-GAN
across all datasets. Notably, SPDM+WT and SPDM+FA
provide the same invariance guarantee. In addition, we pro-
pose two metrics to measure model invariance conditioning.

Invariant sampling distribution. To measure the degree
of G-invariance of the sampling distribution, we propose
a metric called Inv-FID. Given a set of generated images
Ds, Inv-FID computes the maximum FID between κ1(Ds)
and κ2(Ds) for κ1, κ2 ∈ G. If Ds is perfectly G-invariant,
κ ∈ G does not change the distribution of Ds, and Inv-FID
is zero; otherwise, the score is strictly greater than zero.
As shown in Table 2 and Table 3, diffusion models with
theoretical guarantees have lower scores, and the equivari-
ance regularizer further improves invariance. Notably, the
differences in Inv-FID scores among diffusion models are
relatively small, suggesting that diffusion models inherently
learn invariant properties. Therefore, in scenarios where
sampling distribution invariance is not critical, regular diffu-
sion models may suffice.
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Table 2: Model Comparison on Rotated MNIST.

FID↓ Inv-FID↓ ∆x̂0 ↓

Model 1% 5% 10% 100% 100% 100%

VP-SDE 5.97 3.05 3.47 2.81 2.21 0.2997
SPDM+WT 5.80 3.34 3.57 3.50 2.20 0.0004
SPDM+FA 5.42 3.09 2.83 2.64 2.07 0.0002
SP-GAN 149 99 88 81 – –
SP-GAN (Reprod.) 16.59 11.28 9.02 10.95 19.92 –
GE-GAN – – 4.25 2.90 – –
GE-GAN (Reprod.) 15.82 7.44 5.92 4.17 58.61 –

Table 3: Model Comparison on LYSTO and ANHIR.

LYSTO ANHIR

Model FID↓ Inv-FID↓ ∆x̂0 ↓ FID↓ Inv-FID↓ ∆x̂0 ↓

VP-SDE 7.88 0.66 0.0845 8.03 0.57 0.3123
SPDM+WT 12.75 0.59 0.0002 11.73 0.43 0.0002
SPDM+FA 5.31 0.6 0.0001 7.57 0.31 0.0001
SP-GAN 192 – – 90 – –
SP-GAN (Reprod.) 16.29 0.66 – 17.12 0.28 –
GE-GAN 3.90 – – 5.19 – –
GE-GAN (Reprod.) 23.20 27.84 – 14.16 6.87 –

Validating equivariant sampling trajectory. To empiri-
cally validate our methods’ theoretical guarantees for equiv-
ariant sampling trajectories, we implemented an image-
denoising task using SDEdit (Meng et al., 2022), as shown
in Fig 1. Given a low-resolution (or corrupted) image x̃0,
we add equivariant noise to obtain xt using the technique
from Sec 5.2. This technique is also applied when solv-
ing backward SDEs to obtain the denoised image dn(x̃0),
where dn represents the denoising process. As discussed
in Sec 5.2, if a diffusion model is G-equivariant, we should
have dn(κ x̃0) − κdn(x̃0) ≈ 0 for all κ ∈ G. In Table 2
and Table 3, we report the average maximum pixel-wise
distance ∆x0 between dn(κ x̃0) and κdn(x̃0) over 16 ran-
domly sampled corrupted x̃0 images. κ is randomly picked
for each x̃0. The results show that theoretically equivariant
models consistently have nearly zero ∆x0, while models
without theoretical guarantees produce significantly differ-
ent outputs, which could be problematic in applications like
medical image analysis. Likewise, in Table 4, for a model
mθ, we adopt a similar idea to measure its equivariance
∆x̂0 by reporting the average maximum pixel-wise distance
between mθ(κ ỹ) and κmθ(ỹ), where y is the input.

Sampling quality of SPDM Among models with
theoretically guaranteed structure-preserving properties,
SPDM+WT struggles to achieve FID scores comparable
to FA methods on complex datasets like LYSTO. This is
likely due to the weight-tying technique limiting the model’s
expressiveness and optimization. In contrast, SPDM+FA
maintains sample quality and achieves the best performance
on most datasets. This result corroborates our discussion

Table 4: Model Comparison on LYSTO denoising and CT-
PET style transfer datasets.

LYSTO CT-PET

Model FID↓ L1 ↓ SSIM↑ ∆x̂0 ↓ FID↓ L1 ↓ SSIM↑ ∆x̂0 ↓

DDBM 17.28 0.076 0.696 0.8884 18.13 0.041 0.861 0.9233

SPDM+FA 16.21 0.071 0.721 0.0001 17.74 0.042 0.860 0.0000
Pix2Pix 78.43 0.087 0.654 0.8629 20.26 0.043 0.862 1.3196

I2SB 20.45 0.073 0.722 0.8683 27.51 0.051 0.832 1.2123

made in Sec 5.1: it is sufficient to train a score-based model
using regular score-matching and combine the score-based
model’s outputs during the inference time to ensure equiv-
ariance without compromising the model’s performance.

6.3. Equivariant image style transfer

We compare the performance of Pix2Pix (Isola et al., 2017),
I2SB (Liu et al., 2023a), and our SPDM+FA models in two
style-transfer tasks. SPDM+FA is based on DDBM, with
its score-based model combined through FA to ensure the-
oretically guaranteed group equivariance. In addition to
FID for measuring sample quality and ∆x̂0 for measuring
the model’s equivariance, we report the L1 loss between
the output and ground truth for local structure similarity
and SSIM (Wang et al., 2004) for global feature alignment.
SPDM+FA achieves nearly perfect group equivariance for
both tasks, the best scores in most measures, and close-to-
the-best scores in the rest. These results corroborate the ef-
fectiveness of the techniques presented in Sec 5 and suggest
that our framework covers the setting of diffusion bridges,
guiding the construction of equivariant bridge models.

7. Discussion

In this paper, we investigated structure-preserving diffu-
sion models (SPDM), an extended diffusion framework that
accounts for the geometric structure of additional factors
influencing the diffusion process. This extension allows
us to effectively characterize the structure-preserving prop-
erties of a broader range of diffusion processes, including
diffusion bridges used by DDBM (Zhou et al., 2024). Build-
ing upon this more general framework, we presented an
equivalent condition on the drift term necessary to achieve a
structure-preserving process, complementing existing work
that primarily focuses on sufficient conditions. Based on
the developed theoretical insights, we discussed several ef-
fective techniques to ensure the invariant distributions of
samples and the equivariant properties of diffusion bridges.
Empirical results on image generation and style-transfer
tasks support our theoretical claims and demonstrate the ef-
fectiveness of the proposed methods in achieving structure-
preserving sampling while maintaining high image quality.
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A. Derivation details of the theoretical results

In this section, we provide detailed derivations of our theoretical results. For conciseness, we complete most of the proofs in
measure theory notation and show their equivalence to those presented in the main text.

In Appx A.1, we demonstrate that the isometry assumption on group operators results in their linearity. In Appx A.2, we
briefly review the Liouville equations, which play a crucial role in characterizing the distribution evolution of particles
driven by an ODE drift. In Appx A.3, we discuss a special family of ODE drifts that preserve distributions, characterizing
the equivalence of various drifts by inducing the same evolution of pt. This result helps derive the equivalent conditions on
drifts to achieve structure-preserving ODE and SDE processes. Appx A.4 discusses the structure-preserving conditions for
ODE processes, and we extend the results to SDE processes in Appx A.5.

A.1. Isometries

The groups G involved in our discussions from Sec 3.2 are assumed to consist of isometries κ satisfying ∥κx∥ = ∥x∥. Then,
for κ ∈ G and x,y ∈ Rd, we have ∥κx− κy∥2 = ∥x− y∥2. Since κ ∈ G is bijective, by the Mazur–Ulam theorem (Nica,
2012), κ is affine and thus can be written as

κ(x) = Ax+ b (15)

for some Aκ ∈ Rd×d and bκ ∈ Rd. Besides, Aκ is orthogonal:

Lemma 2. If κ(x) = Aκx+ bκ is an isometry, then A⊤
κAκ = I.

Proof. As κ is an isometry, then for x,y ∈ Rd,

∥Aκx−Aκy∥ = ∥κx− κy∥ = ∥x− y∥. (16)

In addition,

⟨Aκx, Aκy⟩ =
1

4

[
∥Aκx−Aκ(−y)∥2 − ∥Aκx−Aκy∥2

]
= ⟨x,y⟩ (17)

That is
〈
A⊤
κAκx,y

〉
= ⟨x,y⟩, which implies A⊤

κAκ = I.

Remark 1. Lem 2 suggests that Dκ(x) = Aκ for all x ∈ Rd.

In addition, since ∥κx∥2 = ∥x∥2, we have ∥Aκx+b∥ = ∥x∥ for all x. Setting Aκx = −b yields ∥b∥ = 0, or equivalently,
b = 0.

Therefore, for all the group operators κ appearing in our discussion, we can write:

κx = Aκx (18)

for some orthogonal Aκ ∈ Rd×d.

The following lemma can significantly simplify the discussion on the geometric properties of diffusion processes in Appx A.2
and Appx A.5:

Lemma 3. Let C∞
c (Rd) be the set of compactly supported functions. Then for κ ∈ G,

{ϕ ◦ κ|ϕ ∈ C∞
c (Rd)} = C∞

c (Rd) (19)

Proof. If ϕ ∈ C∞
c (Rd) has a compact support C, then ϕ ◦ κ has a support κ−1C, which is also compact because

κ−1 ∈ G is also affine (thus continuous) and a continuous image of a compact set is compact. Moreover, since ϕ is
infinitely differentiable, so is ϕ ◦ κ. Thus, {ϕ ◦ κ|ϕ ∈ C∞

c (Rd)} ⊆ C∞
c (Rd). In addition, for ψ ∈ C∞

c (Rd), we have
ϕ = ψ ◦ κ−1 ∈ C∞

c (Rd) such that ϕ ◦ κ = ψ. Hence, C∞
c (Rd) ⊆ {ϕ ◦ κ|ϕ ∈ C∞

c (Rd)}.
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A.2. Liouville equation

Our proof relies on the Liouville equation in measure theory notation. We provide an intuitive and easy-to-follow proof here
and show its equivalence to the popular version in the probability density notation in Remark 2.

Consider N non-interacting particles moving according to a deterministic ODE in Rd:

dxt = u(xt, t) dt. (20)

Then their distribution is characterized by a measure µ(N)
t such that for any compactly supported function ϕ ∈ C∞

c (Rd) we
have ∫

ϕ(x) dµNt (x) =
1

N

N∑
i=1

ϕ(xit). (21)

Then

∂

∂t

∫
ϕ(x) dµNt (x) =

1

N

d

dt

N∑
i=1

ϕ(xit) =
1

N

N∑
i=1

∇ϕ(xit) · u(xit, t) (22)

=

∫
∇ϕ(x) · u(x, t) dµNt (x). (23)

Then if we suppose the initial distribution

µN0 (x, 0)→⋆ µ0(x) as N →∞ (24)

in a sense that
∫
ϕ(x) dµ0(x)→

∫
ϕ(x) dµ0(x) for any ϕ ∈ C∞

c (Rd). Then we can establish the limit µNt (x)→⋆ µt(x)
and µt satisfies

∂

∂t

∫
ϕ(x) dµt(x) =

∫
∇ϕ(x) · u(x, t) dµt(x). (25)

Notably, the setting we consider in the main text assume that the drift could optionally depend on some additional (fixed)
term y such that

dxt = f(xt,y, t) dt, (26)

where xt ∈ Rm and y ∈ Rn with m > 0 and n ≥ 0.1 In this case, the process can be rewritten as

d

[
xt
y

]
=

[
f(xt,y, t)

0

]
dt = u

(
[xt,y]

⊤, t
)
dt. (27)

Applying (25), we obtain

∂

∂t

∫
ϕ(x,y) dµt(x|y) =

∫
∇1ϕ(x,y) · f(xt,y, t) dµt(x|y) (Liouville eq. meas.) (28)

where∇1ψ(x,y, . . .) :=
∂ψ(x,y,...)

∂x denote the gradient with respect to the first argument.
Remark 2. Let λ denote the Lebesgue measure. When the probability measure µt(x|y) has density pt(x|y) ∈ C1(Rm ×
Rn × [0, T ]) with respect to x, we have

∂

∂t

∫
c

ϕ(x,y)pt(x|y) dλ(x) =
∂

∂t

∫
c

ϕ(x,y) dµt(x|y)

=

∫
c

∇1ϕ(x,y) · f(x,y, t) dµt(x|y) =
∫
c

∇1ϕ(x,y) · f(x,y, t)pt(x|y) dλ(x)

= [pt(x|y)f(x,y, t) · ϕ(x,y)]∂c −
∫
c

ϕ(x,y)∇x ·
(
pt(x|y)f(x,y, t)

)
dλ(x)

= −
∫
c

ϕ(x,y)∇x ·
(
pt(x|y)f(x,y, t)

)
dλ(x).

1We use n = 0 to indicate the case that f does not depend on y. Unless otherwise stated, we will continue to use this convention.
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As this holds for all ϕ ∈ C∞
c (Rm+n), we obtain the regular Liouville equation (Oksendal, 2003; Ehrendorfer, 2006):

∂

∂t
pt(x|y) = −∇x ·

(
pt(x|y)f(x,y, t)

)
. (Liouville eq. density) (29)

A.3. Distribution-preserving Drifts.

While a zero drift implies pt = p0 for all t > 0, the converse is not necessarily true:
Example 1. Let p0 be the density of a spherical Gaussian N (0, I) in R2. For f(x, t) = [y,−x]⊤, by the Liouville equation,
at t = 0

∂

∂t
pt(x, y) = −∇ ·

[ 1
Z

exp(−x
2 + y2

2
) [y,−x]⊤

]
(30)

=
∂

∂x

[
1

Z
exp(−x

2 + y2

2
)y

]
− ∂

∂y

[
1

Z
exp(−x

2 + y2

2
)x

]
(31)

=
1

Z

[
− exp(−x

2 + y2

2
)xy + exp(−x

2 + y2

2
)xy

]
= 0. (32)

As a result, f does not change p0, although is not zero.

In general,
Lemma 4. Given a measure µ, drift f does not change the distribution if for all ϕ ∈ C∞

c (Rd)

0 =

∫
∇ϕ(x) · f(x, t) dµ(x) (33)

for all x and t. We use [0]µ(x) to denote the set of drifts that do not alter distribution µ. That is, if f satisfies (33), we have
f ∈ [0]µ.

Proof. This is an immedate result of (28) by setting the left-hand side zero.

Remark 3. For any µ, 0 ∈ [0]µ.

Remark 4. If f ,g ∈ [0]µ, then αf + βg ∈ [0]µ, for α, β ∈ R.

Remark 5. In the main text, we use the notation [0]p instead of [0]µ to represent distribution-preserving drifts that maintain
a distribution with density p, which corresponds to the distribution measure µ.

A.4. Structural preserving ODE processes

In this section, we discuss the sufficient and necessary condition of structurally preserved ODE processes. Here, we consider
ODE process:

dxt = f(xt,y, t) dt (34)

with xt ∈ Rm, and y ∈ Rn denote additional conditions of the process. Here, we assume m > 0 and n ≥ 0, where n = 0
denote the case when f does not depend on y. We note that for a similar setting with discrete time step and drift f that does
not depend on y, a sufficient condition on G-invariance of µt for t ≥ 0 has been discussed by (Papamakarios et al., 2021)
and (Köhler et al., 2020).

Let µt(xt|y) be the probability measure of xt induced by the ODE process (34) conditioned on y. Let G = {κ =
(κ1, κ2)|κ1 : Rm → Rm, κ2 : Rn → Rn} be a group of isometries defined in Rm+n such that κ(x,y) = (κ1x, κ2y). It
is easy to see that the sets of κ1 and κ2 are also groups of isometries. We will respectively denote them as G1 and G2. In
addition, by Lem 2, we have

κ(x,y) =

[
Aκ1 0
0 Aκ2

] [
x
y

]
+

[
bκ1

bκ2

]
, (35)
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where Aκ1
∈ Rm×m and Aκ2

∈ Rn×n are orthogonal.

Furthermore, by Remark 1, we have

Dκ = Aκ =

[
Aκ1

0
0 Aκ2

]
. (36)

We say µt(xt|y) is G-invariant if for all κ ∈ G, µt(κ1xt|κ2y) = µt(xt|y). Lem 5 shows that this definition is equivalent
to the one given in Sec 3.2.

Lemma 5. Assume µ(·|·) has density p(x|y). Then µ(·|·) is G-invariant if and only if the density p(x|y) = p(κ1x|κ2y)
for all κ ∈ G, x ∈ Rm and y ∈ Rn.

Proof. µ(·|·) is G-invariant if and only if for all κ ∈ G, ϕ ∈ C∞
c (Rm+n),∫

ϕ(x,y) dµ(x|y) =
∫
ϕ(κ−1(x,y)) dµ(x|y). (37)

That is, ∫
ϕ(x,y)p(x|y) dλ(x) =

∫
ϕ(κ−1(x,y)) dµ(x|y) =

∫
ϕ(x,y) dµ(κ1x|κ2y)

=

∫
ϕ(x,y)p(κ1x|κ2y) dλ(κ1x)

(Lem 8)
=

∫
ϕ(x,y)p(κ1x|κ2y) dλ(x).

Therefore, p(x|y) = p(κ1x|κ2y). Since every step is reversible, the proof is completed.

Then we give the equivalent conditions on the drift terms to ensure the structure-preserving property of ODE flows.

Lemma 6. Consider the ODE process in (34) with G-invariant µ0(·|·). Then, µt is G-invariant for all t ≥ 0 if and only if

A⊤
κ1
f(κ1x, κ2y, t)− f(x,y, t) ∈ [0]µt . (38)

for all t ≥ 0, x ∈ Rm, y ∈ Rn and κ = (κ1, κ2) ∈ G.

Proof. (⇒) Assume that µt is G-invariant for all t ≥ 0. For all ϕ ∈ C∞
c (Rm+n) and κ ∈ G, let ψ = ϕ ◦ κ. We note that

by Lem 3, ψ ∈ C∞
c (Rm+n). Then, for t ≥ 0, we have

0 =
d

dt

∫
ϕ(x,y) dµt(x|y)−

d

dt

∫
ϕ(x,y) dµt(κ

−1
1 x|κ−1

2 y)

=
d

dt

∫
ϕ(x,y) dµt(x|y)−

d

dt

∫
ϕ(κ1x, κ2y) dµt(x|y)

(28)
=

∫
∇1ϕ(x,y)

⊤f(x,y, t) dµt(x|y)−
∫
∇1ψ(x,y)

⊤f(x,y, t) dµt(x|y)

(G−inv)
=

∫
∇1ϕ(κ1x, κ2y)

⊤f(κ1x, κ2y, t) dµt(x|y)−
∫
∇1ψ(x,y)

⊤f(x,y, t) dµt(x|y)

=

∫
∇1ψ(κ1x, κ2y)

⊤Dκ1(x)
⊤f(κ1x, κ2y, t) dµt(x|y)−

∫
∇1ψ(x,y)

⊤f(x,y, t) dµt(x|y)

=

∫
∇1ψ(κ1x, κ2y)

⊤
(
A⊤
κ1
f(κ1x, κ2y, t)− f(x,y, t)

)
dµt(x|y).

By Lem 3, ψ can be any functions in C∞
c (Rm+n). Thus, (38) follows.
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(⇐) Assume (38) holds and µ0 is G-invariant. For all ϕ ∈ C∞
c (Rm+n) and κ ∈ G, let ψ = ϕ ◦ κ. Then we have

d

dt

∫
ϕ(x,y) dµt(κ

−1
1 x|κ−1

2 y) =
d

dt

∫
ϕ(κ1x, κ2y) dµt(x|y) =

d

dt

∫
ψ(x,y) dµt(x|y)

(28)
=

∫
(∇1ψ)(x,y)

⊤f(x,y, t) dµt(x|y)
(A)
=

∫
(∇1ϕ) (κ1x, κ2y)

⊤f(κ1x, κ2y, t) dµt(x|y)

=

∫
(∇1ϕ) (x,y)

⊤ f(x,y, t) dµt(κ
−1
1 x|κ−1

2 y), (39)

where (A) is due to:

0
(38)
=

∫
∇1ψ(κ1x, κ2y)

⊤
(
A⊤
κ1
f(κ1x, κ2y, t)− f(x,y, t)

)
dµt(x|y)

=

∫
∇1ψ(κ1x, κ2y)

⊤Dκ1(x)
⊤f(κ1x, κ2y, t) dµt(x|y)−

∫
∇1ψ(x,y)

⊤f(x,y, t) dµt(x|y)

=

∫
∇1ϕ(κ1x, κ2y)

⊤f(κ1x, κ2y, t) dµt(x|y)−
∫
∇1ψ(x,y)

⊤f(x,y, t) dµt(x|y)

Besides, we have

d

dt

∫
ϕ1(x,y) dµt(x|y)

(28)
=

∫
∇ϕ1(x,y)⊤f(x,y, t) dµt(x|y). (40)

As µ0(x|y) = µ0(κ
−1
1 x|κ−1

2 x), (39) and (40) together suggest that µt(x|y) and µt(κ−1
1 x|κ−1

2 y) share the same Liouville’s
equation. Therefore, µt(x|y) = µt(κ

−1
1 x|κ−1

2 y) for all t ≥ 0.

A.5. Structural preserving SDE processes

In this section, we assume all the measures involved have densities. We first show that Lebesgue measure is G-invariant,
where G is a group of isometries.
Lemma 7. For all κ ∈ G, detDκ(x) = detAκ = 1 or −1 for all x ∈ Rd.

Proof. For κ ∈ G, by Lem 2 and Remark 1, we have Dκ(x)⊤Dκ(x) = A⊤
κAκ = I . Then det(Dκ(x))2 = (detAκ)

2 = 1,
which implies detDκ(x) = detAκ = ±1

Lemma 8. The Lebesgue measure λ is G-invariant.

Proof. For all ϕ ∈ C∞
c (Rd) and κ ∈ G, we have∫

ϕ(x) dλ(x) =

∫
ϕ(κx) dλ(κx)

(Lem 8)
=

∫
ϕ(κx) |detDκ(x)|dλ(x)

=

∫
ϕ(κx) dλ(x) =

∫
ϕ(x) dλ(κ−1x)

Therefore, λ = κ#λ.

To deal with the invariance property associated with the diffusion term, we prove a lemma similar to Lem F.4 of (Yim et al.,
2023). The lemma basically says Laplacian is invariant with respect to isometries:
Lemma 9. For κ ∈ G and v : Rm+n → R, we have

∆1(v ◦ κ)(x,y) = (∆1v) ◦ κ(x,y), (41)

where

(∆1u) (x,y) =

m∑
k=1

∂2

∂x2k
u(x,y) = (∇1 · ∇1u)(x,y), (42)

(∇1u) (x,y) =
∂u

∂x
(x,y). (43)
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Proof. Let

M =

[
Im 0
0 0

]
(44)

where 0 denotes a zero matrix of a proper size. Then it is easy to see

∆1v(x,y) = ∇ ·
(
M ∇v(x,y)

)
. (45)

As a result, for all ϕ ∈ C∞
c (Rm+n), we have∫

ϕ(x,y)(∆1v) ◦ κ(x,y) dλ(x,y) =
∫
ϕ(κ−1

1 x, κ−1
2 y) (∆1v)(x,y) dλ(x,y)

=

∫
ϕ(κ−1

1 x, κ−1
2 y)∇ ·

(
M ∇v(x,y)

)
dλ(x,y)

=
[
ϕ(κ−1

1 x, κ−1
2 y)M∇v(κ−1

1 x, κ−1
2 y)

]
∂c
−
∫
M∇v(x,y) · ∇(ϕ ◦ κ−1)(x,y) dλ(x,y)

= −
∫
M∇v(x,y) ·

(
(∇ϕ)(κ−1(x,y))⊤Dκ−1(x,y)

)
dλ(x,y)

= −
∫
M∇v(x,y) ·

(
∇ϕ(κ−1(x,y))⊤A⊤

κ

)
dλ(x,y)

= −
∫
M∇v(κ1x, κ2y) ·

(
∇ϕ(x,y)⊤A⊤

κ

)
dλ(x,y)

(Lem 8)
= −

∫
∇v(κ1x, κ2y)⊤M⊤Aκ∇ϕ(x,y) dλ(x,y)

= −
∫
∇v(κ1x, κ2y)⊤

[
Aκ1

0
0 0

]
∇ϕ(x,y) dλ(x,y)

= −
∫ [
∇1(v ◦ κ)(x,y)⊤ 0

]
∇ϕ(x,y) dλ(x,y)

= −
∫ [
∇1(v ◦ κ)(x,y)⊤ 0

]
∇ϕ(x,y) dλ(x,y) +

[
ϕ(x,y)

[
∇1(v ◦ κ)(x,y)⊤ 0

]]
∂c

=

∫
ϕ(x,y) ∇ ·

[
∇1(v ◦ κ)(x,y)⊤ 0

]
dλ(x,y) =

∫
ϕ(x,y) ∆1(v ◦ κ)(x,y) dλ(x,y).

Thus, (∆1v) ◦ κ(x,y) = ∆1(v ◦ κ)(x,y).

Lemma 10. µ(·|·) is G-invariant if and only if

s(κ1x|κ2y) = Aκ1
s(x|y) (46)

for all κ ∈ G, x ∈ Rm and y ∈ Rn, where s(x) denotes the score function∇x log p(x|y).

Proof. (⇒) By Lem 5, if µ is G-invariant, its density p(x|y) = p(κ1x|κ2y). Taking log on both sides, followed by taking
the derivative with respect to x yields

A⊤
κ1

s(κ1x|κ2y) = s(x|y), (47)

as Dκ1(x) = Aκ1 .

(⇐) Conversely, (46) yields

p(x|y) = p(κ1x|κ2y) + C, (48)

where C must be zero so that p(x|y) and p(κ1x|κ2y) are valid densities.
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Then we prove the following Lemma presented in the Sec 3.2.

Lemma 1. p(x|y) is G-invariant if and only if s(κ1x|κ2y) = κ1 ◦ s(x|y) for all (κ1, κ2) ∈ G, x ∈ Rm and y ∈ Rn.
Likewise, p(x) is G-invariant if and only if s(κx) = κ ◦ s(x) for all κ ∈ G.

Proof. The conditional density case is immediate given Lem 5 and Lem 10 while the unconditional one is the special case
that n = 0.

Lemma 11 ((Song et al., 2021b)). Let pt be the marginal distribution of xt that satisfies SDE:

dxt = f(xt,y, t) dt+ g(t) dwt, x0 ∼ p0(x0|y). (49)

Besides, let st(·|y) = ∇ log pt(·|y). Then, the ODE

dx = f̃(x,y, t) dt (50)

with

f̃(x,y, t) = f(x,y, t)− 1

2
g(t)2 st(x|y) (51)

also has the same marginal distribution pt for all t ≥ 0.

Proof. The marginal distribution pt(x|y) evolution is characterized by the Fokker-Planck equation (Oksendal, 2003):

∂pt(x|y)
∂t

= −∇ ·
(
f(x,y, t)pt(x|y)

)
+

1

2
∇ · ∇

(
g(t)2pt(x|y)

)
(52)

= −
d∑
i=1

∂

∂xi
[fi(x,y, t)pt(x|y)] +

1

2

d∑
i=1

∂2

∂x2i
[g(t)2 pt(x|y)] (53)

= −
d∑
i=1

∂

∂xi

{
[fi(x,y, t)pt(x|y)]−

g(t)2

2

[
pt(x|y)

∂

∂xi
log pt(x|y)

]}
(54)

= −
d∑
i=1

∂

∂xi

[
fi(x,y, t)−

g(t)2

2

∂

∂xi
log pt(x|y)

]
pt(x|y), (55)

where the last line is the Fokker-Planck equation of

dx = f̃(x,y, t) dt (56)

with f̃(x,y, t) given in (51).

Now we are ready to give the if and only if statement on the structurally preserving property of the distributions induced by

dxt = f(xt,y, t) dt+ g(t) dwt (57)

Notably, a sufficient condition given by (58) with the left-hand side equal to zero is firstly discussed by (Yim et al., 2023).

Then we give the equivalent conditions on the drift terms to ensure the structure-preserving property of SDE flows and its
equivalence to the Prop 1 presented in the main text.

Proposition 3. Given a diffusion process in (57) with G-invariant µ0(·|·), µt(·|·) is G-invariant for all t ≥ 0 if and only if

A⊤
κ1
f(κ1x, κ2y, t)− f(x,y, t) ∈ [0]µt

. (58)

for all t > 0, x ∈ Rm, y ∈ Rn and κ ∈ G.
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Proof. (⇒) Let f̃ denote the corresponding ODE drift shown in (51). Assume µt(·|·) is G-invariant for all t ≥ 0. Then by
Lem 6, for all κ ∈ G, the ODE drift f̃ satisfies

A⊤
κ1
f(κ1x, κ2y, t)− f(x,y, t) ∈ [0]µt . (59)

That is,

A⊤
κ1

(
f(κ1x, κ2y, t)−

1

2
g(t)2st(κ1x|κ2y)

)
−
(
f(x,y, t)− 1

2
g(t)2st(x|y)

)
∈ [0]µt . (60)

By Lem 10, G-invariance of µt implies that A⊤
κ1
st(κ1x|κ2y) = st(x|y). Thus, (58) follows.

(⇐) Assume (58) holds. For ϕ ∈ C∞
c (Rm+n) and κ ∈ G, let ψ = ϕ ◦ κ, and then we have

d

dt

∫
ϕ(x,y) dµt(κ

−1
1 x|κ−1

2 y) =
d

dt

∫
ψ(x,y) dµt(x,y)

(28)
=

∫
∇1ψ(x,y)

⊤f̃(x,y, t) dµt(x|y) =
∫
∇1ψ(x,y)

⊤
(
f(x,y, t)− 1

2
g2(t)st(x|y)

)
dµt(x|y)

=

∫
∇1ψ(x,y)

⊤f(x,y, t) dµt(x|y)︸ ︷︷ ︸
I

−1

2
g2(t)

∫
∇1ψ(x,y)

⊤st(x|y) dµt(x|y)︸ ︷︷ ︸
II

. (61)

By (58) and applying the same argument to derive (A) in the proof of Lem 6. We have∫
∇1ϕ(κ1x, κ2y)

⊤f(κ1x, κ2y, t) dµt(x|y) =
∫
∇1ψ(x,y)

⊤f(x,y, t) dµt(x|y) = I

Then,

I =

∫
∇1ϕ(x,y)

⊤f(x,y, t) dµt(κ
−1
1 x|κ−1

2 y)

=−
∫
ϕ(x,y) ∇x ·

(
pt(κ

−1
1 x|κ−1

2 y)f(x,y, t)
)
dλ(x).

In addition,

II =

∫
∇1ψ(x,y)

⊤pt(x|y) dλ(x) = −
∫
ψ(x,y)∆1pt(x|y) dλ(x)

= −
∫
ϕ(x,y)∆1pt(κ

−1
1 x|κ−1

2 y) dλ(x)
(Lem 9)

= −
∫
ϕ(x,y) ∆1(pt ◦ κ−1)(x|y) dλ(x)

As a result, by Eq (61), we have

d

dt

∫
c

ϕ(x,y)pt(κ
−1
1 x|κ−1

2 y) dλ(x) =
d

dt

∫
ϕ(x,y) dµt(κ

−1
1 x, κ−1

2 y)

=−
∫
c

ϕ(x,y)

[
∇x ·

(
pt(κ

−1
1 x|κ−1

2 y)f(x,y, t)
)
− 1

2
g2(t)∆1(pt ◦ κ−1)(x,y)

]
dλ(x)

Hence,

d

dt
pt(κ

−1
1 x|κ−1

2 y) = −∇x ·
(
pt(κ

−1
1 x|κ−1

2 y)f(x,y, t)
)
− 1

2
g2(t)∆1(pt ◦ κ−1)(x,y). (62)

By the Fokker-Planck equation, we also have

d

dt
pt(x|y) = −∇x · (pt(x|y)f(x,y, t)) +

1

2
g2(t) (∆1pt)(x|y). (63)

Therefore, pt = pt ◦ κ−1, which, by Lem 5, implies µt is G-invariant.
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Proposition 1. Given a diffusion process in (5) with G-invariant p0(x0|y), let [0]pt be the set of ODE drifts preserving the
distribution pt. Then pt(xt|y) is G-invariant for all t ≥ 0 if and only if

κ−1
1 ◦ f(κ1x, κ2y, t)− f(x,y, t) ∈ [0]pt (7)

for all t > 0, x ∈ Rm, y ∈ Rn and κ ∈ G.

Proof. Prop 1 is equivalent to Prop 3 but in probability density notations by Lem 5.

Finally, we show how our theoretical results can be applied to characterize the structure-preserving properties of the diffusion
bridges. The main results are given in Lem 13 and are collectively presented with the counterparts for the regular diffusion
processes in Prop 2.

Lemma 12. Let pt denote the distribution of xt generated by SDE:

dxt = u(xt, t) dt+ g(t) dwt. (64)

Then p(κxT |κxt) = p(xT |xt) for all κ ∈ Gr and T ≥ t if

A⊤
κ u(κx, t)− u(x, t) ∈ [0]µt

, (65)

for all κ ∈ G.

Proof. Without loss of generality, it is sufficient to show

p(κxt|κx0) = p(xt|x0) (66)

for all κ ∈ G and t ≥ 0. Then let y = x0, f(xt,y, t) = u(x, t) and G = {(κ, κ)|κ ∈ Gr}. As (65) implies A⊤
κ u(κx, t)−

u(x, t) ∈ [0]µt
. Then, combined with (65), Prop 3 shows µt(xt|y) is G-invariant. By Lem 5, we have p(κxt|κx0) =

p(xt|x0), which completes the proof.

Lemma 13. Assume the two ends (x0,xT ) ∈ Rd×Rd of the diffusion bridges follow a G-invariant conditional distribution
µ0|T (x0|xT ), where G = {(κ, κ)|κ ∈ G}. Let µt|T denote the measure of (xt,xT ) induced by diffusion bridge:

dxt =
(
u(xt, t) + g(t)2h(xt, t,xT , T )

)
dt+ g(t) dwt, (67)

where h(xt, t,xT , T ) = ∇xt log p(xT |xt) is the gradient of the log transition kernel from t to T generated by the original
SDE:

dxt = u(xt, t) dt+ g(t) dwt. (68)

If

A⊤
κ u(κx, t)− u(x, t) = 0 (69)

for all κ ∈ G, then u(x, t) + g(t)2h(x, t,y, T ) satisfies (58) and µt|T is G-invariant for all t ∈ [0, T ].

Proof. By Lem 12, we have p(κxT |κxt) = p(xT |xt) for all κ ∈ G. As a result,

Aκ∇xt
log p(xT |xt) = ∇κxt

log p(κxT |κxt). (70)

Or equivalently,

h(xt, t,xT , T ) = A⊤
κ h(κxt, t, κxT , T ). (71)

As a result,

f(x,y, t) = u(x, t) + g(t)2h(x, t,y, T ). (72)

satisfies (58), and thus Prop 3 implies µt|T is G-invariant.
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Proposition 2. Assume u(x, t) = u(t)x for some scalar function u : R → R. Given any group G (or G) composed of
linear isometries, if the unconditional pt induced by (1) is G-invariant at t = 0, then it is G-invariant for all t ≥ 0. Likewise,
if the conditional qt(xt|xT ) induced by (3) is G-invariant at t = 0 then it is G-invariant for all t ≥ 0.

Proof. The the part of the proposition regarding the unconditional pt follows Prop 3 while the second part basically restates
Lem 13 in density notation where their equivalence can be seen by Lem 5.

B. Group invariant weight tied convolutional kernels

As stated in Sec 5, we currently limit our attention to linear groups GL. In this setting, we can directly impose GL-equivariance
into the diffusion model by constructing specific CNN kernels.

In particular, for a given linear group GL we can construct a group equivariant convolutional kernel k ∈ Rd×d, of the form

k =

k1,1 k1,2 · · · k1,d
...

...
. . .

...
...

...
...

kd−1,1 kd−1,2 · · · kd−1,d

kd,1 kd,2 · · · kd,d

, (73)

such that

h(k ∗ x) = k ∗ h(x)

for any h ∈ GL and x ∼ pdata by constraining the individual kernel values to obey a system of equalities set by the group
invariance condition

h(k) = k. (74)

Example: Vertical flipping. A concrete example, which was discussed Sec 3.2, is to consider the group G = {fx, e}
where fx is a vertical flipping operation with f−1

x = fx. A convolutional kernel k ∈ R3×3 constrained to be equivariant to
actions from this group would take the form:

k =

d a d
e b e
f c f

(75)

It should be clear given the form of k that

fx(k ∗ x) = k ∗ fx(x)

and consequently also for f−1
x , as desired. Likewise, we also present the weight-tied kernels for C4 and D4.

Example: The C4 cyclic and D4 dihedral group. Recall that the C4 cyclic group is composed of planar 90 deg
rotations about the origin, and can be denoted as C4 = {e, r1, r2, r3} where ri represents a rotation of i× 90 deg. Taking a
convolutional kernel k ∈ R5×5 and constraining it to be C4-equivariant results in k being of the form:

k =

a b c d a
d e f e b
c f g f c
b e f e d
a d c b a

. (76)
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The D4 dihedral group can then be “constructed” from C4 by adding the vertial flipping operation from the past example;
that is, D4 = {e, r1, r2, r3, fx, fx ◦ r1, fx ◦ r2, fx ◦ r3}. This requires further constraints to k so that

k =

a b c b a
b e f e b
c f g f c
b e f e b
a b c b a

. (77)

Naturally, constraining convolutional kernels in this fashion has the advantage of reducing the number of model parameters –
with a possible loss in expressiveness when the kernel size is relatively small in comparison to the size of the group and
structure of the data. For a more general discussion on G-equivariant convolutional kernels in the context of CNNs we refer
the reader to Cohen & Welling (2016) and Knigge et al. (2022).

C. Equivariance regularization

Instead of achieving G-equivalence by adopting specific model architectures, as described in Sec 5, or by frame averaging
(Puny et al., 2022), we can also directly add a regularizer to the score-matching loss to inject this preference. Specifically,
according to Lem 1, the estimated score sθ(·, t) is equivariant if

sθ(κx, κy, t) = κsθ(x,y, t), (78)

for all κ ∈ G. (For the unconditional distribution, similar techniques can be applied by omitting the second argument of sθ .)
Thus, we propose the following regularizer to encourage the two terms to match for all x and t:

R(θ, θ̄)=E

[
1

|G|
∑
κ∈G

∥∥sθ(κx, κy, t)− κsθ̄(x,y, t)∥∥2
]

(79)

where the expectation is taken over the same variables in the regular score-matching loss and θ̄ denotes the exponential
moving average (EMA) of the model weights

θ̄ ← stopgrad(µθ̄ + (1− µ)θ) with µ ∈ [0, 1), (80)

which helps improve training stability. In practice, iterating over all elements in G may be intractable. Thus, for each
optimization step,R(θ, θ̄) is one-sample approximated by:

R(θ, θ̄) ≈ E
[∥∥sθ(κx, κy, t)− κsθ̄(x,y, t)∥∥2] , (81)

with randomly picked κ ∈ G.

D. Constructions of equivariant noisy sequence

In this section, we present a method to construct an equivariant noisy sequence {ϵi}ni=1 with respect to some xn ∼ q(x)
without knowing the “true” orientation of xn.

Let q denote the distribution of xn. Construct a function ϕ : Rd → Rd such that: (1) for all κ ∈ G, x ∼ q or x ∼ N (0, I),
ϕ(κx) = κϕ(x) almost surely; (2) for all x,y ∈ Rd, there exists a unique κ ∈ G such that ϕ(x) = κϕ(y). For example, for
R2 with G consisting of element-swapping operators, ϕ can be the function that outputs one-hot vector indicating the max
element of the input. We will present some selections of ϕ for common G below.

Given starting point xn and a noise sequence {ϵi}ni=1, choose κ ∈ G such that ϕ(xn) = κϕ(ϵn). Then we use the noise
sequence ϵ̃i = κϵi for the evaluation of (14). To see why this approach works, assume that xn is updated to rxn for some
r ∈ G. Then, ϕ(rxn) = rϕ(xn) = (r ◦ κ)ϕ(ϵn), and thus the sequence becomes {r ◦ κ ϵi}ni=1 = {rϵ̃i}ni=1. Note that this is
a general method to create an equivariant noise sequence with respect to any input.

Below, we present some choices of ϕ for some common linear operator groups for 2D images.
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Example: Vertical flipping. The function ϕv can be chosen to output either of two images:

Specifically, if the input image x has the max value on the upper half of the image, ϕ returns the left plot; otherwise, the
right one. (Here, we assume that it is almost surely that the max value cannot appear in both halves.)

It is obvious that if the input is flipped vertically, the output will be flipped in the same way. Therefore, the first condition is
satisfied. For the second, if ϕv(x) and ϕv(y) have the same output, κ is the identity operator; otherwise, κ is the vertical
flipping. For multichannel input, ϕ can be applied independently to each channel.

Applying the same idea, we can derive the corresponding ϕh for horizontal flipping.

Example: C4 cyclic group. We can use a similar idea to derive ϕC4 for C4 cyclic that is composed of planar 90 deg
rotations about the origin. In this case, ϕC4 has four possible outputs

such that ϕC4 assigns the quadrant white if the input has the max value in that quadrant. (Here, we assume it is almost
surely that the max value cannot appear in multiple quadrants.) Then, it is straightforward to see that ϕC4 satisfies the two
conditions of ϕ.

Example: D4 dihedral group. As we have mentioned in Appx B, the D4 dihedral group can be “constructed” from C4

by adding the vertial flipping operation. As a result, we can combine ϕv and ϕC4 to construct the corresponding ϕD4 for
D4. Assume that ϕv assigns one to the elements corresponding to the white pixels and zero to the ones associated with
the black. Likewise, let ϕC4 assign two to the elements corresponding to the white pixels and zero to the rest. Then we
define ϕD4 = ϕv + ϕC4. It is easy to check that both ϕv and ϕD4 satisfy the first condition of ϕ for all κ ∈ D4 (i.e., vertical
flipping, rotation, and their composition). We also note that the range ϕD4 contains eight distinct elements. Starting from
one element, we get all the elements by applying one of the eight operators in D4 = {e, r1, r2, r3, fx, fx ◦ r1, fx ◦ r2, fx ◦ r3},
which suggests ϕD4 satisfies the second condition.

E. Dataset details

This section contains detailed discussion on the contents and preprocessing of each dataset mentioned in Sec 6.

E.1. Rotated MNIST

Rotated MNIST dataset (Larochelle et al., 2007) contains random 90◦ rotations of MNIST images (Deng, 2012), resulting in
a C4-invariant distribution. This was dataset was generated following the description in (Knigge et al., 2022), but modified
to only perform random 90◦ rotations opposed to the arbitrary angles used in the forgoing reference.

E.2. LYSTO

The LYSTO dataset (Jiao et al., 2023) consists of 20,000 labeled image patches at a resolution of 299x299x3 extracted at 40X
magnification from breast, colon, and prostate cancer samples stained with CD3 or CD8 dyes. This data was preprocessed
by first scaling all the images to 128x128x3 before randomly sampling 64x64x3 image patches for the data. The data was
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first scaled to increase the feature density within each randomly sampled patch. The resulting data exhibits D4 invariance
due to natural rotational and mirror invariance.

E.3. LYSTO denosing

To construct the LYSTO denosing dataset, we take the LYSTO 64x64x3 patches, generated as described above, and
downscale them to 1/4 the resolution and then upscaled back using LANCZOS interpolation to form conditional training
pairs.

E.4. ANHIR

The ANHIR dataset (Borovec et al., 2020b) provides whole-slide images of lesions, lung-lobes, and mammary-glands at a
variety of different resolutions, from 15kx15k to 50kx50k. We only make use of the lung images. This data was processed
following the method outlined in (Dey et al., 2021) from which random 64x64x3 image patches are extracted.

E.5. CT-PET

The CT-PET dataset (Gatidis et al., 2022) includes 1014 (501 positives and 512 controls) annotated whole-body paired
FDG-PET/CT scans, comprised of 3D voxels, of patients with malignant lymphoma, melanoma, and non-small cell lung
cancer. This data is restricted under TCIA restricted lience. Formal access must be filed for and granted before the data can
be made available to practitioners from the Caner Imaging Archive (CIA). Scripts for processing this data, such as into
slices, are provided by CIA on the dataset page.

The style-transfer dataset was constructed by first slicing the 3D voxel volumes of the patients in to 2D images of the middle
of the patients. These images were then cropped to just contain the torso and head and then scaled to 256x256x3. A patient’s
CT scan slice was then paired with the matching PET scan image slice to form the final dataset.

F. Model details
Table 5: Model summary. VP-SDE denotes the regular diffusion model with variance preservation configuration in Table 1.
✓: Theo. guaranteed ✗: Not theo. guaranteed –: Not Applicable

Model Arch. GL-inv Smpl Eqv Traj

VP-SDE U-Net ✗ ✗
SPDM+WT U-Net (WT) ✓ ✓
SPDM+FA U-Net ✓ ✓
DDBM U-NET ✗ ✗
SPDM+FA (Bridge) U-NET ✓ ✓
SP-GAN CNN ✓ –
GE-GAN CNN ✗ –
Pix2Pix U-NET & CNN ✗ –
I2SB U-NET ✗ ✗

The implementation details and hyperparamters used while training the models presented in Sec 6 over the listed datasets
are given below. Table 5 provides a summary of all the models discussed within the paper and their theoretical invariance
(equivariance) guarantees.

We refer the reader to the reader to Appx.G. of Birrell et al. (2022) for a more in-depth discussion of the implementation
details and training parameters used to produce the results of SP-GAN reported in Sec 6. We will only summarize the
training parameters we changed from the defaults given in the forgoing reference.

All Diffusion models (VP-SDE, SPDM+WT, SPDM+FA, SPDM+FA(Bridge) ) are trained using the Adam optimizer
(Kingma & Ba, 2015) with learning rate η = 0.0001 0.0002, and weight decay rate of γ = 0.0; separately, we make use of
the exponential moving average (EMA) of the model weights (80) with µ = 0.999, 0.9999, 0.9999432189950708, which
are the values commonly used when training this style of diffusion model.
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F.1. Rotated MNIST

For the Rotated MNIST datasets, the diffusion models are configured using the following model parameters: dropout rate
d = 0.1.

Model Loss Batch Cond. Aug Attn. res. Num. Ch. Num. Heads Ch. Scal. Scale Shift

SPDM L2 32 True True 8 128 16 1,2,2 True
SPDM+WT L2 32 True False 8 128 16 1,2,2 True
SPDM+FA L2 + FA 32 True True 8 128 16 1,2,2 True

The GAN based methods were trained using the scripts provided by (Dey et al., 2021) and (Birrell et al., 2022) with the
following settings:

Model Loss Batch Cond. Aug latent dim gp weight lr alpha

SP-GAN DL
2 64 True True 64 10.0 1e−4 2

GE-GAN RA 64 True True 64 10.0 1e−4 –

F.2. LYSTO

For the LYSTO dataset, the diffusion models are configured using the following model parameters: dropout rate d = 0.1.

Model Loss Batch Cond. Aug Attn. res. Num. Ch. Num. Heads Ch. Scal. Scale Shift

VP-SDE L2 32 True True 32,16,8 128 64 1,2,2,2 True
SPDM+WT L2 32 True False 32,16,8 128 64 1,2,2,2 True
SPDM+FA L2 + FA 32 True True 32,16,8 128 64 1,2,2,2 True

The GAN based methods were trained using the scripts provided by (Dey et al., 2021) and (Birrell et al., 2022) with the
following settings:

Model Loss Batch Cond. Aug latent dim gp weight lr alpha

SP-GAN DL
2 32 True True 128 10.0 1e−4 2

GE-GAN RA 32 True True 128 10.0 1e−4 –

F.3. ANHIR

For the ANHIR dataset, the diffusion models are configured using the following model parameters: dropout rate d = 0.1.

Model Loss Batch Cond. Aug Attn. res. Num. Ch. Num. Heads Ch. Scal. Scale Shift

VP-SDE L2 32 True True 32,16,8 128 64 1,2,2,2 True
SPDM+WT L2 32 True False 32,16,8 128 64 1,2,2,2 True
SPDM+FA L2 + FA 32 True True 32,16,8 128 64 1,2,2,2 True

The GAN based methods were trained using the scripts provided by (Dey et al., 2021) and (Birrell et al., 2022) with the
following settings:

F.4. LYSTO denoising task

For the LYSTO denoising dataset, the diffusion models are configured using the following model parameters:

The entries in the above table are left empty for both Pix2Pix and I2SB as their architectures differ from the other models.
In particular, Pix2Pix being a GAN makes use of a U-NET for the generator and custom discriminator architecture. The
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Model Loss Batch Cond. Aug latent dim gp weight lr alpha

SP-GAN DL
2 32 True True 128 10.0 1e−4 2

GE-GAN RA 32 True True 128 10.0 1e−4 –

Model Loss Batch Cond. Aug Attn. res. Num. Ch. Num. Heads Ch. Scal. Scale Shift

VP-SDE L2 32 True True 32,16,8 128 64 1,2,2,2 True
SPDM+FA L2 + FA 32 True True 32,16,8 128 64 1,2,2,2 True
Pix2Pix GAN 32 True True – – – – –
I2SB L2 64 True True – – – – –

model comes with several predefined U-NET architecture configurations that can be selected; however, it is lacking a
configuration for 64x64 images. We defined a suitable configuration by modifying that provided for 128x128 by reducing
the number of down-sampling layers from 7 to 4. All other settings are left as default. The I2SB model by default it make
use of a preconfigured U-NET architecture which it downloads from openai. For this task we simply make use of the default
configuration settings without any modification.

F.5. CT-PET style transfer task

For the CT-PET dataset, all models except Pix2Pix are trained in latent space, where the original images are first encoded
by a fine-tuned pretrained VAE from stable diffusion (Rombach et al., 2022). FA was applied during the fine-tuning and
inference to ensure equivariance. The VAE takes the 256x256x3 images and encodes them into a 32x32x4 latent space
representation.

Models are configured using the following model parameters:

Model Loss Batch Cond. Aug Attn. res. Num. Ch. Num. Heads Ch. Scal. Scale Shift

DDBM L2 32 True True 32,16,8 128 64 1,2,2,2 True
SPDM+FA L2 + FA 32 True True 32,16,8 128 64 1,2,2,2 True
Pix2Pix GAN 32 True True – – – – –
I2SB L2 64 True True 32,16,8 128 64 1,2,2,2 True

The entries in the above table are left empty for both Pix2Pix as the architecture differs from the other models. Pix2Pix
makes use of a U-NET for the generator and custom discriminator architecture. The model comes with a predefined U-NET
architecture for 256x256x3 images which we use. All other settings are left as default. As discussed above the I2SB model
by default it make use of a preconfigured U-NET architecture. We can’t make use of the default architecture for this task as
it is incompatible with the latent space embedding produced by the VAE. Instead we configure the U-NET architecture in an
identical fashion to SPBM.

F.6. Computational resources

All the model results reported within Sec 6 were trained using 4xNVIDIA A40 (or equivalent). All experiments required on
the order of 5-20 days of training time.

G. FID Computation

In Sec 6.2 we report the Fréchet intercept distance (FID) (Heusel et al., 2017) score of the various models on the datasets
described in Sec 6 and Appx E, respectively under C4 and D4 groups. In order to make the FID score robust to changes
in image orientation, meaning the features the underlying InceptionV3 model extracts from the reference dataset can be
compared to those extracted from the generated samples, we average the reference statistics over all actions within the group
considered. In particular, suppose Dref is a reference dataset (e.g., all the images within the rotated MNIST dataset) and Ds
is a collection of samples generated from the model being evaluated with respect to group G. Let T(·) denote the operation
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that returns the mean and covariance statistics of the features extracted from a dataset; i.e., T (D∫ ) = (µs,Σs). Moreover,
recall that FID is computed using the expression:

FID = d2(T(Dref ,T(Ds)) = ∥µref − µs∥22 +Tr(Σref +Σs − 2(ΣrefΣs)
1/2). (82)

Then the calculation of the FID with respect to the group G is done by first computing

TG(D) =
1

|D|
∑
h∈G

T (AhD) = (µ̂, Σ̂), (83)

where AhD = {Ahx | x ∈ D}. Then we compute the final FID score as

FIDG = d2(TG(Dref ),T(Ds)). (84)

This formulation ensures that the reference statistics used in computing the FID score of a model conditioned to be equivalent
are not biased. All FID values reported in Table 2 and Table 4, potentially excluding those reported by other authors, were
calculated in this fashion.

29



Diffusion Models with Group Equivariance

H. Sample images

Here, we include a collection of generated image samples from the models discussed within the paper across the various
datasets in Section 6.

(a) Reference C4 rotated MNIST images. (b) Images generated from SP-GAN.

(c) Images generated from VP-SDE. (d) Images generated from SPDM+WT

(e) Images generated from SPDM+FA

Figure 6: Sample comparison between models trained on the Rotated MNIST 28x28x1 dataset as described in Sec 6.
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(a) Reference images.

(b) Images generated from SP-GAN.

(c) Images generated from VP-SDE

(d) Images generated from SPDM+WT.

(e) Images generated from SPDM+FA

Figure 7: Sample comparison between models trained on the LYSTO 64x64x3 dataset from Sec 6.
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(a) Reference images of CT and PET images.

(b) Images generated from DDBM.

(c) Images generated from SPDM+FA

(d) Images generated from Pix2Pix.

(e) Images generated from I2SB

Figure 8: Sample comparison between models trained on the CT-PET 256x256x3 dataset from Sec 6 and Appx E.
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