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Abstract—In this paper we consider the problem of ap-
proximating function evaluations f(xj) at given nonequispaced
points xj , j = 1, . . . N , of a bandlimited function from given
values f̂(k), k ∈ IM , of its Fourier transform. Note that if
a trigonometric polynomial is given, it is already known that
this problem can be solved by means of the nonequispaced fast
Fourier transform (NFFT). In other words, we introduce a new
NFFT-like procedure for bandlimited functions, which is based
on regularized Shannon sampling formulas.

I. INTRODUCTION

The nonequispaced fast Fourier transform (NFFT) is a fast
algorithm to evaluate a trigonometric polynomial

f(x) =
∑

k∈IM

f̂k e
2πikx, x ∈ Td,

with given Fourier coefficients f̂k ∈ C, k ∈ IM , at non-
equispaced points xj ∈ Td, j = 1, . . . , N , N ∈ N, where for
M ∈ 2N we define the index set IM := Zd ∩

[
−M

2 ,
M
2

)d
with cardinality |IM | =Md, and Td := Rd/Zd denotes the
d-dimensional torus with d ∈ N.

In this paper we focus on the analogous problem for
bandlimited functions, where we aim to approximate evalu-
ations f(xj), j = 1, . . . , N , of a function

f(x) =

∫
[−M

2 ,
M
2 )

d

f̂(v) e2πivx dv, x ∈ Rd, (1)

from given measurements f̂(k) ∈ C, k ∈ IM , of its Fourier
transform f̂ .

To do so, this paper is organized as follows. Firstly, in
Section II we review the NFFT for trigonometric polynomials.
Subsequently, in Section III we give an overview of the
regularized Shannon sampling formulas, which play the key
role in introducing the NFFT-like procedure for bandlimited
functions in Section IV. Finally, in Section V we compare this
new method to the classical NFFT.

II. THE NFFT

For given nonequispaced nodes xj ∈ Td, j = 1, . . . , N ,
and given coefficients f̂k ∈ C, k ∈ IM , we consider the
computation of the sums

f(xj) =
∑

k∈IM

f̂k e
2πikxj , j = 1, . . . , N, (2)

where the inner product of two vectors shall be defined
as usual as kx := k1x1 + · · ·+ kdxd. A fast approximate
algorithm, the so-called nonequispaced fast Fourier trans-
form (NFFT), can be summarized as follows, see e. g. [6],
[2], [29], [10], [13] or [22, pp. 413–417].

Algorithm II.1 (NFFT).

For d,N ∈ N and M ∈ 2N let xj ∈ Td, j = 1, . . . , N, be
given nodes as well as f̂k ∈ C, k ∈ IM , given Fourier
coefficients. Furthermore, we are given the oversampling
factor σ ≥ 1 with Mσ := 2⌈ ⌈σM⌉/2 ⌉ ∈ 2N, as well as the
window function φ, the truncated function φm with m≪Mσ ,
and their 1-periodic versions φ̃ and φ̃m.

0. Precomputation:

a) Compute the nonzero Fourier coefficients φ̂(k) for
k ∈ IM .

b) Compute the nonzero values φ̃m
(
xj − ℓ

Mσ

)
for

j = 1, . . . , N, and ℓ ∈ IMσ,m(xj), cf. (6).
1) Set O(|IM |)

ĝk :=

{
f̂k
φ̂(k) : k ∈ IM ,

0 : k ∈ IMσ \ IM .

2) Compute O(|IM | log(|IM |))

gℓ :=
1

|IMσ |
∑

k∈IM

ĝk e
2πikℓ/Mσ , ℓ ∈ IMσ ,

by means of a d-variate iFFT.
3) Compute the short sums O(N)

f̃j :=
∑

ℓ∈IMσ,m(xj)

gℓ φ̃m
(
xj − ℓ

Mσ

)
, j = 1, . . . , N.

Output: f̃j ≈ f(xj) Complexity: O(|IM | log(|IM |) +N)

Remark II.2. Note that Algorithm II.1 is part of the software
packages [12] and [1], respectively.

By defining the nonequispaced Fourier matrix

A = A|IM | :=
(
e2πikxj

)N
j=1,k∈IM

∈ CN×|IM |,



as well as the vectors f := (f(xj))
N
j=1 and f̂ := (f̂k)k∈IM

,
the computation of the sums (2) can be written as f = Af̂ .
By additionally defining the diagonal matrix

D := diag
(

1

|IMσ | · φ̂(k)

)
k∈IM

∈ C|IM |×|IM |, (3)

the truncated Fourier matrix

F :=
(
e2πikℓ/Mσ

)
ℓ∈IMσ ,k∈IM

∈ C|IMσ |×|IM |, (4)

and the (2m+ 1)d-sparse matrix

B :=

(
φ̃m
(
xj − ℓ

Mσ

))N
j=1, ℓ∈IMσ

∈ RN×|IMσ |, (5)

where by definition of the index set

IMσ,m(xj) :=
{
ℓ ∈ IMσ : ∃z ∈ Zd with (6)

−m · 1d ≤Mσ · (xj + z)− ℓ ≤ m · 1d}

each row of B contains at most (2m+ 1)d nonzeros, the
NFFT in Algorithm II.1 can be formulated in matrix-vector
notation as A ≈ BFD, cf. [22, p. 419]. This is to say,
using the definition of these matrices, the NFFT performs the
approximation

e2πikxj ≈
∑

ℓ∈IMσ,m(xj)

e2πikℓ/Mσ φ̃m
(
xj − ℓ

Mσ

)
|IMσ | · φ̂(k)

(7)

for k ∈ IM and xj ∈ Td, j = 1, . . . , N .

III. REGULARIZED SHANNON SAMPLING FORMULAS

A function f : Rd → C is said to be bandlimited with
bandwidth M ∈ N, if the support of its (continuous) Fourier
transform

f̂(v) :=

∫
Rd

f(x) e−2πivx dx, v ∈ Rd, (8)

is contained in
[
−M

2 ,
M
2

]d
. The space of all bandlimited

functions with bandwidth M shall be denoted by

BM/2(Rd) :=
{
f ∈ L2(Rd) : supp(f̂)⊆

[
−M

2 ,
M
2

]d}
,

which is also known as the Paley–Wiener space. Note that

BM/2(Rd) ⊆ L2(Rd) ∩ C0(Rd) ∩ C∞(Rd), (9)

cf. [14, Lemma 4.1]. Thus, the Fourier inversion theorem, see
e. g. [22, Theorem 2.23], guarantees that the inverse Fourier
transform of f can be written as given in (1).

By the famous Whittaker–Kotelnikov–Shannon
sampling theorem ([31], [17], [28]) any bandlimited
function f ∈ BM/2(Rd) can be recovered from its
samples f

(
ℓ
L

)
, ℓ ∈ Zd, with L ≥M , L ∈ N, in the

form

f(x) =
∑
ℓ∈Zd

f
(
ℓ
L

)
sinc

(
Lπ
(
x− ℓ

L

))
, x ∈ Rd, (10)

where the sinc function is given by sinc(x) :=
∏d
t=1 sinc(xt)

with

sinc(x) :=

{
sin x
x : x ∈ R \ {0},

1 : x = 0.

It is well known that the series in (10) converges absolutely
and uniformly on whole Rd.

Unfortunately, the numerical use of this classical Whittaker–
Kotelnikov–Shannon sampling series (10) is limited, since
it requires infinitely many samples, which is impossible in
practice, and its truncated version is not a good approximation
due to the slow decay of the sinc function, see [11]. In addition
to this rather poor convergence, it is known, see [8], [9], [5],
that in the presence of noise in the samples f

(
ℓ
L

)
, ℓ ∈ Zd, the

convergence of the Shannon sampling series (10) may even
break down completely.

Based on this observation, numerous approaches for nu-
merical realizations have been developed, where the Shannon
sampling series was regularized with a suitable window func-
tion. Note that many authors such as [4], [20], [26], [21], [30]
used window functions in the frequency domain, but the recent
study [16] has shown that it is much more beneficial to employ
a window function in the spatial domain, cf. [24], [25], [30],
[19], [18], [3], [15].

Therefore, for a given m ∈ N with 2m≪ L we introduce
the set Φm,L of all window functions φ : R → [0, 1] with the
following properties:

• φ is compactly supported on
[
−m
L ,

m
L

]
, belongs to

L1(R) ∩ C0(R) and is even.
• φ restricted to [0, ∞) is monotonously non-increasing

with φ(0) = 1.

Remark III.1. As examples of such window functions we
consider the sinh-type window function

φsinh(x) :=
1

sinhβ
sinh

(
β

√
1−

(
Lx
m

)2 )
χ[−mL ,

m
L ]

(x) (11)

with certain β > 0, and the continuous Kaiser–Bessel window
function

φcKB(x) :=

(
I0

(
β

√
1−

(
Lx
m

)2 )− 1

)
I0(β)− 1

χ[−mL ,
m
L ]

(x)

with certain β > 0, where I0 denotes the modified Bessel
function of first kind. Note that these window functions are
well-studied in the context of the NFFT, see e. g. [23].

Then, for a fixed window function φ ∈ Φm,L we study
the regularized Shannon sampling formula with localized
sampling

(Rφ,mf)(x) :=
∑
ℓ∈Zd

f
(
ℓ
L

)
sinc

(
Lπ
(
x− ℓ

L

))
φ
(
x− ℓ

L

)
,

x ∈ Rd. (12)

Note that this is an interpolating approximation of f on 1
L Zd,

i. e., we have

f
(
k
L

)
= (Rφ,mf)

(
k
L

)
, k ∈ Zd,



since by assumption φ(0) = 1 and sinc(π(k − ℓ)) = δk,ℓ for
all k, ℓ ∈ Z with the Kronecker symbol δk,ℓ. Then it is
known that the regularized Shannon sampling formula Rφ,mf
in (12) with suitable window function φ ∈ Φm,L yields a good
approximation of f , cf. [15], [16], [14].

IV. NFFT-LIKE PROCEDURE FOR BANDLIMITED
FUNCTIONS

Now assume we are given the values f̂(k), k ∈ IM ,
of the Fourier transform (1) of a bandlimited func-
tion f ∈ BM/2(Rd), and we are looking for function evalu-
ations f(xj) at given nonequispaced points xj , j = 1, . . . N .
Further we assume that the function f fulfills the condition∑

ℓ∈Zd

∣∣f( ℓ
L

)∣∣ <∞, (13)

such that the Fourier series

f̂(v) =
1

Ld

∑
ℓ∈Zd

f
(
ℓ
L

)
e−2πiℓv/L, v ∈

[
−L

2 ,
L
2

]d
,

converges absolutely and uniformly, see [16, p. 12], and thus
the considered problem is well-defined. Note that by [27,
Lemma 2] it is known that f ∈ L1(Rd) fulfill the condi-
tion (13). Moreover, f ∈ L1(Rd) directly implies f̂ ∈ C0(Rd).

Remark IV.1. Note that the recent work [7] derived error es-
timates for a familiar problem, where however for equispaced
points xj =

2j−N
2N , j = 1, . . . , N , and functions f ∈ C(R)

satisfying certain decay and smoothness conditions simply the
FFT can be used.

In order to compute the values f(xj), j = 1, . . . N , we aim
to make use of the regularized Shannon sampling formulas, see
Section III. Inserting the approximation (12) into the Fourier
transform (8) and using the definition of the regularized
sinc function

ψ(x) := sinc(Lπx)φ(x), (14)

we have

f̂(v) =

∫
Rd

f(x) e−2πivx dx ≈
∫
Rd

(Rφ,mf)(x) e
−2πivx dx

=

∫
Rd

∑
ℓ∈Zd

f
(
ℓ
L

)
ψ
(
x− ℓ

L

)
e−2πivx dx

=
∑
ℓ∈Zd

f
(
ℓ
L

)
e−2πivℓ/L

∫
Rd

ψ(y) e−2πivy dy

=

( ∑
ℓ∈Zd

f
(
ℓ
L

)
e−2πivℓ/L

)
· ψ̂(v), (15)

where summation and integration may be interchanged by the
theorem of Fubini–Tonelli. By defining

ν̂(v) :=
∑
ℓ∈Zd

f
(
ℓ
L

)
e−2πivℓ/L, v ∈ Rd, (16)

we recognize that this function ν̂ is L-periodic. Thus, due to
the fact that the Fourier transform of the bandlimited func-
tion f ∈ BM/2(Rd) is non-periodic, the approximation (15)
can only be reasonable for v ∈

[
− L

2 ,
L
2

]d
.

As the goal is to recover the nonequispaced samples f(xj),
j = 1, . . . , N , by means of a regularized Shannon sampling
formula (12), we need access to as many equispaced sam-
ples f

(
ℓ
L

)
as possible, i. e., we are looking for an inversion

formula for (16). To this end, note that (16) can be written as

ν̂(v) =
∑
ℓ∈IΘ

f
(
ℓ
L

)
e−2πivℓ/L

+
∑

r∈Zd\{0}

∑
ℓ∈IΘ

f
(
ℓ+rΘ
L

)
e−2πiv(ℓ+rΘ)/L, v ∈ Rd,

with the index set IΘ with Θ = Θ · 1d, Θ ∈ 2N.
Since f ∈ BM/2(Rd) ⊆ C0(Rd), see (9), the equispaced
samples f

(
ℓ
L

)
are negligible for all ∥ℓ∥∞ ≥ Θ

2 with suitably
chosen Θ. In order to avoid aliasing in the computation we
assume that Θ = L is sufficient. Hence, we consider

ν̂(v) ≈ ϑ̂(v) :=
∑
ℓ∈IL

f
(
ℓ
L

)
e−2πivℓ/L, v ∈ Rd, (17)

and thus by (15) the approximation

f̂(v) ≈ ϑ̂(v) · ψ̂(v), v ∈
[
− L

2 ,
L
2

]d
. (18)

Since it is additionally known that f̂(v) = 0 for all
v /∈

[
− M

2 ,
M
2

]d
and ψ̂(v) ̸= 0 for all v ∈

[
− L

2 ,
L
2

]d
, we

might use (18) and (17) for given f̂(k), k ∈ IM , to approxi-
mate the equispaced samples f

(
ℓ
L

)
, ℓ ∈ IL, by setting

ϑ̂(k) =

{
f̂(k)

ψ̂(k)
: k ∈ IM ,

0 : k ∈ IL \ IM ,

and subsequently computing

f
(
ℓ
L

)
≈ ϑℓ :=

1

|IL|
∑
k∈IL

ϑ̂(k) e2πikℓ/L, ℓ ∈ IL, (19)

by means of an iFFT.
To finally approximate the samples f(xj), j = 1, . . . , N ,

we make use of the regularized Shannon sampling for-
mula (12). Note that since we assumed that the win-
dow function φ ∈ Φm,L is compactly supported, the com-
putation of (Rφ,mf)(x) for fixed x ∈ Rd \ 1

L Zd requires
only (2m+ 1)d samples f

(
ℓ
L

)
. However, we have already

encountered that (19) can only be used to approximate f
(
ℓ
L

)
for ℓ ∈ IL in order to avoid aliasing in the computa-
tion of the inverse Fourier transform in (19). Thereby,
we are confronted with a limitation of the feasible points
to xj ∈ [− 1

2 + m
L ,

1
2 − m

L )
d, j = 1, . . . , N , since only in this

case exclusively the evaluations f
(
ℓ
L

)
, ℓ ∈ IL, are needed for

the computation. Hence, the final approximation is computed
by

(Rφ,mf)(xj) ≈ fj :=
∑
ℓ∈IL

ϑℓ ψ
(
xj − ℓ

L

)
=

∑
ℓ∈JL,m(xj)

ϑℓ ψ
(
xj − ℓ

L

)
,

where the index set of the nonzero entries

JL,m(xj) :=
{
ℓ ∈ Zd : −m+ Lxj ≤ ℓ ≤ m+ Lxj

}
(20)



contains at most (2m+ 1)d entries for each fixed xj , cf. (6).
Thus, the obtained algorithm can be summarized as follows,
cf. [14, Algorithm 5.16].

Algorithm IV.2 (NFFT-like procedure for bandlim. functions).

For d,m,N ∈ N, M ∈ 2N, and L =M(1 + λ) ∈ N with the
oversampling parameter λ ≥ 0 let xj ∈ [− 1

2 + m
L ,

1
2 − m

L )
d,

j = 1, . . . , N , be given nodes as well as f̂(k) ∈ C, k ∈ IM ,
given evaluations of the Fourier transform of the band-
limited function f ∈ BM/2(Rd). Furthermore, we are given
the window function φ ∈ Φm,L, the corresponding regularized
sinc function ψ in (14), and its Fourier transform ψ̂.

0. Precomputation:
a) Compute the nonzero values ψ̂(k) for k ∈ IM .
b) Compute the evaluations ψ

(
xj − ℓ

L

)
for

j = 1, . . . , N, and ℓ ∈ JL,m(xj), cf. (20).
1) Set O(|IM |)

ϑ̂(k) :=

{
f̂(k)

ψ̂(k)
: k ∈ IM ,

0 : k ∈ IL \ IM .

2) Compute O(|IM | log(|IM |))

ϑℓ :=
1

|IL|
∑
k∈IL

ϑ̂(k) e2πikℓ/L, ℓ ∈ IL,

by means of a d-variate iFFT.
3) Compute the short sums O(N)

fj :=
∑

ℓ∈JL,m(xj)

ϑℓ ψ
(
xj − ℓ

L

)
, j = 1, . . . , N.

Output: fj ≈ f(xj) Complexity: O(|IM | log(|IM |) +N)

Note that by defining the vector f̂ := (f̂(k))k∈IM
as well

as the diagonal matrix

Dψ̂
:= diag

(
1

|IL| · ψ̂(k)

)
k∈IM

∈ C|IM |×|IM | (21)

and the (2m+ 1)d-sparse matrix

Ψ :=

(
ψ
(
xj − ℓ

L

))N
j=1, ℓ∈IL

∈ RN×|IL|, (22)

the approximation of Algorithm IV.2 is given by

f = ΨFDψ̂f̂ , (23)

where F ∈ C|IL|×|IM | denotes the Fourier matrix (4)
with L =Mσ .

V. COMPARISON TO THE CLASSICAL NFFT

Note that one might also directly apply an equispaced
quadrature rule to the inverse Fourier transform (1), i. e.,
consider the approximation

f(x) =

∫
[−M

2 ,
M
2 ]d

f̂(v) e2πivx dv ≈
∑

k∈IM

f̂(k) e2πikx,

such that the function evaluations f(xj), j = 1, . . . , N , could
also be approximated efficiently by means of an NFFT. Since
this raises the question of which of the two methods, Al-
gorithm II.1 or Algorithm IV.2, is more advantageous, this
section deals with the comparison of the two approaches.

Considering the matrix notations BFD and ΨFDψ̂ ,
cf. (7) and (23), the first thing to realize is that
for B ∈ RN×|IL| in (5) the window function φm(x) is used,
while for Ψ ∈ RN×|IL| in (22) we consider the regularized
sinc function ψ(x) in (14). A similar remark can also be
made about the diagonal matrices D ∈ C|IM |×|IM | in (3)
and Dψ̂ ∈ C|IM |×|IM | in (21).

It is also important to note that the two methods can only be
compared for x ∈ [− 1

2 + m
L ,

1
2 − m

L )
d, as the approximation

by Algorithm IV.2 is only reasonable in this case. This implies
that the matrix B in (5) is, unlike usual, non-periodic, whereas
the matrix Ψ in (22) is inherently non-periodic by definition.

To study the quality of both approaches, note that by the
NFFT we are given the approximation

e2πikx ≈ 1

|IL| · φ̂(k)
∑
ℓ∈IL

e2πikℓ/L φ̃m
(
x− ℓ

L

)
, (24)

for x ∈ Td and k ∈ IM fixed, cf. (7) with L =Mσ ,
where φ̃m(x) =

∑
r∈Zd φm(x+ r) denotes the 1-periodic

version of the compactly supported window function φm.
Thus, we look for a comparable approximation of
the exponential function using our newly proposed
method in Algorithm IV.2. For this purpose, note
that g(x) := ψ̂(x) e2πikx with k ∈ Rd fixed possesses
the Fourier transform ĝ(v) = ψ(k − v). Therefore, we
have g ∈ BM/2(Rd) for all k ∈

[
− M

2 + m
L ,

M
2 − m

L

]d
, i. e.,

considering (12) for this function g yields

ψ̂(x) e2πikx ≈
∑
ℓ∈Zd

ψ̂
(
ℓ
L

)
e2πikℓ/L ψ

(
x− ℓ

L

)
, x ∈ Rd,

or rather

e2πikx ≈
∑
ℓ∈IL

ψ̂
(
ℓ
L

)
ψ̂(x)

e2πikℓ/L ψ
(
x− ℓ

L

)
for x ∈

[
− 1

2 + m
L ,

1
2 − m

L

)d
. Since numerical experiments

have shown that ψ̂(y) ≈ 1
|IL| , y ∈

[
− M

2 ,
M
2

)d
, for the win-

dow functions mentioned in Remark III.1, the above approxi-
mation simplifies to

e2πikx ≈
∑
ℓ∈IL

e2πikℓ/L ψ
(
x− ℓ

L

)
, (25)

which equals the approximation ΨFDψ̂ of Algorithm IV.2,
since |IL| ψ̂(k) ≈ 1, k ∈ IM . Therefore, we can compare the
quality of the two methods by considering the approxima-
tions (24) and (25) of the exponential function.

For simplicity we restrict ourselves to the one-dimensional
setting d = 1 for the visualization. To estimate the quality of
the approaches, we consider the approximation error

e(v) := max
xp,p=1,...,P

∣∣e2πivxp − h(xp)
∣∣, (26)



where the term h(xp) is a placeholder for the right-hand
sides of (24) and (25), respectively, evaluated at a fine grid
of P = 105 equispaced points xp, p = 1, . . . , P . This approx-
imation error (26) shall now be computed for several values

vs = −M
2 −m+ s

S ∈
[
− M

2 −m, M2 +m
]
,

s = 0, . . . , S(M + 2m), (27)
where S = 1 corresponds to integer evaluation, whereas we
use S = 32 to examine the approximation at non-integer
points as well. Note that (24) is expected to provide a good
approximation only for v ∈

[
− M

2 ,
M
2

]
, while (25) is expected

to do so only for v ∈
[
− M

2 + m
L ,

M
2 − m

L

]
. Nevertheless, we

test for v from a larger interval to confirm these assumptions.
The corresponding outcomes when computing the ap-

proximations (24) and (25) using the sinh-type window
function (11) as well as the parameters M = 20, λ = 1,
L = (1 + λ)M , and m = 5, are displayed in Figure 1.
For x ∈

[
− 1

2 ,
1
2

)
it is easy to see that our newly pro-

posed method (25) indeed does not provide reasonable re-
sults, while the approximation (24) by means of the NFFT
is only useful at integer points v. For the truncated in-
terval x ∈

[
− 1

2 + m
L ,

1
2 − m

L

)
, however, both approxima-

tions (24) and (25) are clearly beneficial for non-integer
points v as well, but as expected these methods only succeed
when |v| ≤ M

2 . Nevertheless, although also the approxima-
tion (24) by means of the NFFT yields better results in
this setting, the approximation (25) by means of our newly
proposed method easily outperforms the classical NFFT in
terms of the approximation error (26).

That is to say, Figure 1 demonstrates that the novel NFFT-
like approach in Algorithm IV.2 is better suited for bandlimited
functions, while this superiority is not limited to k ∈ IM but
extends to the entire domain v ∈

[
− M

2 ,
M
2

]
. Moreover, the

error of Algorithm IV.2 is bounded by the error estimates
of the regularized Shannon sampling formulas in Section III,
whereas the quadrature error of the NFFT remains unclear.

−M
2

0 M
2

10−5

10−3

10−1

101

103

105

v

BFD
ΨFDψ̂

(a) x ∈
[
− 1

2 ,
1
2

) −M
2

0 M
2

10−5

10−3

10−1

101

v

BFD
ΨFDψ̂

(b) x ∈
[
− 1

2 + m
L ,

1
2 − m

L

)
Fig. 1: Maximum approximation error (26) for P = 105

computed for (27) with S = 32 using the sinh-type window
function (11) as well as M = 20, λ = 1, L = (1 + λ)M ,
and m = 5 in the one-dimensional setting d = 1.

Example V.1. To finally examine the approximation quality
of the NFFT-like procedure in Algorithm IV.2 for bandlimited
functions we provide a function f with its corresponding
Fourier transform f̂ in (8), such that we have access to the
exact values f̂(k), k ∈ IM , as input for Algorithm IV.2, as

well as the exact function evaluations f(xj), j = 1, . . . , N .
In doing so, we can compare the result fj , j = 1, . . . , N ,
of Algorithm IV.2 to the exact function evaluations f(xj) by
computing the maximum approximation error

max
j=1,...,N

|fj − f(xj)|. (28)

For comparison we also compute the approximation error (28)
when fj is the result of the classical NFFT in Algorithm II.1.

We consider the one-dimensional setting d = 1 and for sev-
eral bandwidth parameters M ∈ {20, 40, . . . , 1000} we study
the function f(x) = sinc2

(
M
2 πx

)
with the Fourier transform

f̂(v) =
2

M
·
{
1−

∣∣ 2v
M

∣∣ : |v| ≤ M
2 ,

0 : otherwise.
Note that the function f is scaled such that maxx∈R f(x) = 1
independent of the bandwidth M and thereby the approxi-
mation errors (28) are comparable for all considered M . As
evaluation points xj ∈

[
− 1

2 + m
L ,

1
2 − m

L

]
, j = 1, . . . , N , we

choose the scaled Chebyshev nodes

xj = cos
(

(j−1)π
N

)
·
(
1
2 − m

L

)
, j = 1, . . . , N, (29)

with N = M
2 , m = 5, as well as Mσ = L =M(1 + λ)

with λ = 1, and we use the sinh-type window function (11).
The corresponding results are depicted in Figure 2. As

expected by Figure 1, the new NFFT-like procedure in Al-
gorithm IV.2 performs much better than the classical NFFT
in Algorithm II.1. While for M ≤ 80 both approaches exhibit
the same maximum approximation error (28), for larger band-
width M the approximation error (28) gets smaller only for
the NFFT-like procedure in Algorithm IV.2. That is to say,
when approximating the evaluations f(xj), j = 1, . . . , N , of
the bandlimited function f ∈ BM/2(R) by given samples f̂(k),
k ∈ IM , of the corresponding Fourier transform (8), reason-
able results can be obtained by the NFFT in Algorithm II.1,
yet evidence indicates that our newly proposed NFFT-like
procedure for bandlimited functions in Algorithm IV.2 yields
results that are at least as good, if not superior. Accordingly,
we conclude that the NFFT-like procedure in Algorithm IV.2
is the preferred approach in this context.

0 200 400 600 800 1000

10−5

10−4

10−3

M

BFD
ΨFDψ̂

Fig. 2: Maximum approximation error (28) of Algo-
rithms II.1 and IV.2 using the sinh-type window func-
tion (11) computed for the function f(x) = sinc2

(
M
2 πx

)
,

M ∈ {20, 40, . . . , 1000}, and the scaled Chebyshev nodes (29)
with N = M

2 , m = 5, Mσ = L = (1 + λ)M , as well as λ = 1
and d = 1.
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