Under review as a conference paper at ICLR 2021

MULTI-LEVEL GRAPH MATCHING NETWORKS FOR
DEEP AND ROBUST GRAPH SIMILARITY LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

While the celebrated graph neural networks yield effective representations for in-
dividual nodes of a graph, there has been relatively less success in extending to
graph similarity learning. Recent works have considered either global-level graph-
graph interactions or low-level node-node interactions, ignoring the rich cross-
level interactions (e.g., between nodes of a graph and the other whole graph). In
this paper, we propose a Multi-level Graph Matching Network (MGMN) for com-
puting the graph similarity between any pair of graph-structured objects in an end-
to-end fashion. The proposed MGMN model consists of a node-graph matching
network for effectively learning cross-level interactions between nodes of a graph
and the other whole graph, and a siamese graph neural network to learn global-
level interactions between two graphs. Furthermore, to bridge the gap of the lack
of standard graph similarity learning benchmark, we have created and collected
a set of datasets for both graph-graph classification and regression tasks with dif-
ferent sizes in order to evaluate the robustness of models. Our comprehensive
experiments demonstrate that MGMN consistently outperforms state-of-the-art
baselines on these graph similarity learning benchmarks.

1 INTRODUCTION

Learning a general similarity metric between arbitrary pairs of graph-structured objects is one of
the key challenges in machine learning. Conceptually, graph matching can be broadly categorized
into exact and error-tolerant graph matching techniques (Riesen et al.| 2010; Dwivedi & Singhl
2018)). For exact graph matching, a strict one-to-one correspondence is required between nodes and
edges of two graphs, whereas error-tolerant graph matching techniques try to compute a similarity
between two graphs. In some real-world applications, the constraint of exact graph matching is
too rigid (i.e., no need for strict correspondences), and thus we focus on the error-tolerant graph
matching — the graph similarity problem to learn a similarity score between a pair of graph inputs.

Although graph neural networks (GNN5s) have recently demonstrated to be a powerful class of neural
networks for learning node embeddings of graphs on tasks ranging from node classifications, graph
classifications to graph generations (Kipf & Welling, 2017;[Ying et al., 2018;|You et al., 2018} Chen
et al., 2020), there is relatively less study on learning graph similarity using GNNs. A simple yet
straightforward way is to use GNN to encode each graph as a vector and combine the vectors of two
graphs to make a decision. This simple approach can be effective as the graph-level vector contains
important information of a pair of graphs, but one obvious limitation is that this approach ignores
finer-grained interactions among multi-level embeddings of two graphs.

Very recently, a few attempts have been made to take into account low-level interactions either by
considering the histogram information or spatial patterns (with CNNs) of the node-wise similarity
matrix of node embeddings (Bai et al., 2019; 2020), or by improving the node embeddings of one
graph by incorporating the implicit attentive neighbors of another graph (L1 et al., 2019). However,
there are two significant challenges making these graph matching networks potentially ineffective:
i) how to effectively learn richer cross-level interactions between nodes of a graph and the other
whole graph; ii) how to integrate multi-level granularity (cross-level and global-level) of interactions
between a pair of graphs for computing graph similarity in an end-to-end fashion;

Inspired by these observations, in this paper, we propose a Multi-level Graph Matching Network
(MGMN) for computing the graph similarity between any pair of graph-structured objects in an end-

Under review as a conference paper at ICLR 2021

::::—l Oig/'\@

s I fgm W L20] = [sistm] =
EEE \\\\\\ [P hi
\\\‘\\

I]

" i Z) Cosine(*)
ai,j—fs(hl hZ)l' W) G avg = @i 1y —) or

Ow GCN
! N jevz . .
. Sigmoid(FC(*))
v]
GCN

/", .

I
2

:::: —) |(BiLSTM| —) |:|
|:| Predicted
Similarity Score
1 02
Aggregate s(G%6%)

Node Embedding Matching and Aggregation Prediction

up ‘~\~P

Figure 1: Overall architecture of the full model MGMN, consisting of two components: SGNN and
NGMN. At the final prediction layer, we concatenate a total of 6 aggregated graph-level embedding
vectors where the middle 4 (pink) are from NGMN and the other 2 (blue) are from SGNN.

to-end fashion. MGMN consists of a novel node-graph matching network (NGMN) for effectively
learning cross-level interaction features between nodes of a graph and the other whole graph, and
a siamese graph neural network (SGNN) for learning global-level interaction features between two
graphs. Our final small prediction network leverage these feature vectors that are learned from both
cross-level and global-level interactions to perform either graph-graph classification tasks or graph-
graph regression tasks, respectively. Fig. [T|shows overall architecture of the proposed MGMN.

Furthermore, to bridge the gap of the lack of standard graph similarity learning benchmark, we have
created and collected a set of datasets for both graph-graph classification and regression tasks with
different sizes in order to evaluate the robustness of models. Our open graph similarity learning
benchmark is partially inspired by the Open Graph Benchmark (Hu et al., |2020) and partially moti-
vated by that existing works only consider either graph-graph classification taskﬂ (Li et al., |2019),
or graph-graph regression task (Bai et al.,[2019; 2020). One important aspect is previous work does
not consider the impact of the size of input graphs, which often plays an important role in deter-
mining the performance of graph similarity learning. Motivated by this observation, we consider
three different ranges of graph sizes to evaluate the robustness of models. To demonstrate the ef-
fectiveness of our model, we systematically evaluate MGMN on these graph similarity benchmarks
for both the graph-graph classification and regression tasks. Our code and data are available for
research purposes at https://github.com/tinker467/mgmnl In brief, we highlight our main
contributions as follows:

e We propose a multi-level graph matching network (MGMN) for computing deep and ro-
bust graph similarity between any pair of graph-structured objects in an end-to-end fashion.
In particular, our MGMN takes into account both cross-level and graph-level interactions
between a pair of graphs.

e We present a novel node-graph matching network (NGMN) for effectively capturing the
cross-level interactions between a node embedding of a graph and a corresponding attentive
graph-level embedding of the other graph.

e Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-
the-art baselines for different tasks (i.e., classification and regression) and also exhibits
stronger robustness as the sizes of the two input graphs increase.

2 PROBLEM FORMULATION

In this section, we briefly introduce the problem formulation. Given a pair of graph inputs (G*, G?),
the aim of graph similarity learning in this paper is to produce a similarity score y = s(G', G?) €).

"Noted that, the graph-graph classification tasks here are different from the general graph classification
tasks (Ying et al.,|2018; Ma et al., 2019) that only assign each graph with a label. Our graph-graph classification
tasks learn a binary label (i.e., similar or dissimilar) for pairs of two graphs instead of one graph.

https://github.com/tinker467/mgmn

Under review as a conference paper at ICLR 2021

The graph G' = (V1 E1) is represented as a set of N nodes v; € V! with a feature matrix X' €
RN*d edges (v;,v;) € E (binary or weighted) formulating an adjacency matrix A! € RV*¥,
and a degree matrix Dj; = 3. Aj;. Similarly, the graph G* = (V?,£?) is represented as a set of
M nodes v; € V? with a feature matrix X2 € RM*4, edges (v;,v;) € 2 (binary or weighted)
formulating an adjacency matrix A* € R and a degree matrix D7, = 3, A?;. Note that, when
performing the graph-graph classification tasks y is the class label y € {—1, 1}; when performing the
graph-graph regression tasks y is the similarity score y € (0, 1]. We train our model based on a set
of training triplet of structured input pairs and scalar output score (G1,G%,y1), ..., (GL, G2, y,,) €
G x G x)Y drawn from some fixed but unknown probability distribution in real applications.

3 MULTI-LEVEL GRAPH MATCHING NETWORKS

In this section, we detail the proposed Multi-level Graph Matching Network (MGMN), which
consists of both Node-Graph Matching Network (NGMN) and Siamese Graph Neural Network
(SGNN). The overall model architecture of MGMN is shown in Fi gure

3.1 NGMN FOR CROSS-LEVEL INTERACTION LEARNING

Existing work has considered either global-level graph-graph interactions or low-level node-node in-
teractions, ignoring the rich cross-level interactions between two graphs. Inspired by these observa-
tions, we propose a novel node-graph matching network (NGMN) to effectively learn the cross-level
node-graph interaction features between nodes of one graph and the other whole graph.

Node Embedding Layer. We use ¢-layer graph convolution networks (GCN) with the siamese

network architecture (Bromley et al., [1994) to generate node embeddings H' = {ﬁﬁ}file} €
RAN.M}xd’ of hoth graphs G* and G2,
H — U(Al . ..U(Al U(AZXIW(O))W(I)) ...W(t‘l)), I ={1,2} (1)

where [= {1,2} in the superscript of H', A!, X! indicates it belongs to graph G' or G2, N and
M denote the number of nodes for both graphs G' and G2, ¢ is the activation function, A' =
(DY)~2 AY(D')~% is the normalized Laplacian matrix for A" = Al + T (~,m} depending on G or
G?, and W i = {0,1,...,t — 1} are hidden weighted matrices of the i-th GCN layer.

Node-Graph Matching Layer. This layer is the key part of NGMN, which can effectively learn
the cross-level interactions between nodes of a graph and the other whole graph. To build more
tight interactions between the two graphs for learning the graph-level embedding of each other, we
first calculate the cross-graph attention coefficients between the node v; € V! in G! and all other
nodes v; € V2 in G2. Similarly, we calculate the cross-graph attention coefficients between the node
vj € V2 in G? and all other nodes v; € V! in G'. These two cross-graph attention coefficients can
be computed with an attention function f independently,

Q5 = fs(ﬁl 52), vj € V2 and ﬁjﬂ‘ = fs(ﬁ?,f_ill), V; € Vl (2)

0%
where f, is the attention function for computing the similarity score. For simplicity, we use cosine
function in our experiments but other similarity metrics can be adopted as well. Then, from the view
of the node in one graph, we try to learn the attentive graph-level embeddings of another graph.

?;’i(wg of G2 from the view of the
node v; € V! in G! by weighted averaging all node embeddings of G2 with attentions. Thus, we

compute these two attentive graph-level embeddings as follow.

P2 72 P15 _ ol
hG,avg - Z O[%th and hG,(wg - Z 6]-,7/hi' 3)

jev? PIS%

Specifically, we compute the attentive graph-level embeddings h

Next, we define a multi-perspective matching function f,,, to compute the similarity feature vector
by comparing two vectors as follows,

~

E(k) = fin(Z1, T2, Wk) = fr(T1 O W, T2 O W), k=1,...,d 4)

Under review as a conference paper at ICLR 2021

where 1 € R? is a d-dimension similarity feature vector, W, = {w;}{_, € R¥*d is a trainable
weight matrix and each ; represents a perspective with a total d number of perspectives. Notably,
fm could be any similarity function and we use the cosine similarity metric in our experiments.
It is worth noting that the proposed f,, essentially shares a similar spirit with multi-head atten-

tion (Vaswani et al.,[2017), with the difference that multi-head attention uses d number of weighted
matrices instead of vectors.

Thus, we use f,,, to compare the i-th or j-th node embedding of a graph with the corresponding
attentive graph-level embedding to capture the cross-level node-graph interactions. The resulting

similarity feature vectors ﬁl or f_L? e R4 (w.r.t node v; in either G* or G2) can thus be computed by,

W), vie V! and h% = fu(h2, Bl

21
=fm(h1 heg G,avg’

G,avg’ Wm>7 v € V2 (5)

After performing node-graph matching over all nodes for both G' and G?, the newly produced

interaction feature matrices A = {h!}Y | € RN*d and % = {hQ}M e RM*d gre ready to be
fed into the following aggregation layer.

Aggregation Layer. To aggregate interaction features from the node-graph matching layer, we em-
ploy BiLSTM (Hochreiter & Schmidhuber, |1997)) to aggregate the unordered feature embeddings,

! —B1LSTM({hl}{NM}), 1= {1,2}. ©6)

where hl e R is computed by concatenating the last hidden vectors of two directions and repre-
sents the aggregated graph-level embedding for each graph G* and G. Although other aggregators
can also be used, our extensive experiments show that the BILSTM aggregator achieved consistent
better performance over other aggregators (see Appendix [A.5|for details). Similar LSTM-type ag-
gregators have also been employed in the previous work (Hamilton et al.l 2017} Zhang et al.|[2019).

Prediction Layer. After the aggregated graph-level embeddings l_i and th are obtained, we then
use these two graph -level embeddings to compute the similarity score of s(G*, G?). As itis common
to employ cosine similarity in the classification tasks (Xu et al., |2017; |Gu et al., 2018)), we directly
compute the cosine similarity of two graph-level embeddings,

7 = s(G',G?) = cosine(hl, h%) 7

Differently, the results of the regression tasks are continuous and are set in a range of (0,1]. Thus, for

the regression tasks, we first concatenate the two graph embeddings into [ﬁé7 Eé], employ standard
fully connected layers to gradually project the dimension of resulting vector down to 1, and finally
perform the sigmoid function to enforce the similarity score in the range of (0,1],

7= s(GY,G?) = sigmoid(MLP([ﬁgﬁg])) (8)

For both tasks, we train the NGMN model with the mean square error loss function to compare the
computed similarity score y with the ground-truth similarity score y, i.e., £ = % S -y

3.2 SGNN FOR GLOBAL-LEVEL INTERACTION LEARNING

The graph-level embeddings contain important information of a graph. Therefore, learning graph-
level interactions between two graphs could be an important component for learning the graph simi-
larity of two graphs, and we propose the Siamese Graph Neural Network (SGNN) for that. Although
Bai et al.[(2019) also learned the graph-level embedding interaction, our SGNN is different from it
in three aspects. 1) We apply a siamese network to learn node embeddings rather than independent;
2) SGNN only employs a simple aggregator to learn graph-level embedding while Bai et al.|(2019)
use a context-aware attention method; 3) SGNN directly employs the cosine function to learn the
graph-graph interactions, whereas|(Bai et al.|(2019) use a more sophisticated Neural Tensor Network.

Node Embedding Layer. Similar as described in Section we also employ GCN to generate
node embeddings H* = {h1}N | € RVN*? and H? = {h2 T, e RM* for graphs G' and G2.

Under review as a conference paper at ICLR 2021

Conceptually, the node embedding layer of SGNN could be chosen to be an independent or shared
node embedding layer (i.e., GCN) with NGMN. As shown in Figure [I} our SGNN shares the same
node embedding layer with NGMN due to two reasons: i) it reduces the number of parameters
by half, which helps mitigate possible overfitting; ii) it maintains the consistency of the resulting
node embeddings for both NGMN and SGNN, potentially leading to more aligned cross-level and
graph-level interaction features.

Graph-level Embedding Aggregation Layer. With the computed node embeddings H' for each
graph, we need to aggregate them to formulate a corresponding graph-level embedding hl.,

Rl = Ageregation (R} M), 1 = {1,2). ©)

We employ different aggregators such as element-wise max/mean pooling (Max/Avg), element-wise
max/mean pooling following a fully connected layer (FCMax/FCAvg), and the BILSTM aggregator.

Prediction Layer. After the aggregated graph embeddings i_i% and f_% are obtained, we then use

these two embeddings to compute the similarity score of s(G', G?). Just like the prediction layer
in NGMN, we use Equations and to predict the similarity score for both classification and
regression tasks. We also use the same mean square error loss function to train the model.

3.3 DISCUSSIONS ON THE FULL MODEL — MGMN

The full model MGMN combines the advantages of both NGMN and SGNN to capture both the
cross-level node-graph interaction features and global-level graph-graph interaction features be-
tween two graphs. For the final prediction layer of MGMN, we have a total of 6 aggregated graph

embedding vectors where 4 are i_ié and l_% from NGMN, and another 2 are }_% and i_% from SGNN.

Complexity. The computation complexity of SGNN is O((|E| + |£2])dd’), where the most dom-
inant computation is the sparse matrix-matrix operations in Equation (I). Similarly, the computa-
tional complexity of NGMN is O(NMd+ (N + M)d'+ (N + M)dd’), where the most computation-
ally extensive operations are in Equations (3), (), and (5). Compared to recently proposed work (Bai
et al.,[2019; 2020 IL1 et al., 2019), their computational complexities are highly comparable.

4 EXPERIMENTS

4.1 DATASETS, EXPERIMENTAL SETUP, AND BASELINES

Classification Datasetsﬂ we evaluate our model on the task of detecting a similarity score (i.e.,
y € {—1, 1}) between two binary functions, which is the heart of many binary security problems (Xu
et al.|[2017;|Ding et al.,2019). As we represent binary with the control flow graph (CFG), detecting
the similarity between two binaries can be cast as learning a similarity s(G*, G?) between two
CFGs: G* and G. We prepare two datasets from two popular open-source softwares: FFmpeg and
OpenSSL. Besides, existing work does not consider the impact of the graph size on the performance.
However, we find the larger the graph size is, the worse the performance is. Therefore, it is important
to evaluate the robustness of graph similarity networks in this setting. We thus further split each
dataset into 3 sub-datasets ([3, 200], [20,200], [50,200]) according to the range of graph sizes.

Regression Datasets: we evaluate our model on learning the graph edit distance (GED) (Gao et al.,
2010; Riesen, 2015)), which measures the structural similarity between two graphs. Formally, GED
is defined as the cost of the least sequence of edits that transform one graph into another, where an
edit can be an insertion/deletion of a node/edge. In our experiments, we normalize GED as Y =

GED(G!,G?)
e~ 1 e (0,1], and evaluate models on two datasets AIDS700 and LINUX1000 from (Bai
et al.,[2019). Table shows the statistic for all datasets. We follow the standard train/validation/test
split as previous work (Bai et al.|[2019; [Li et al., |2019) with more details in Appendix@

Implementation Details. We implement our models using PyTorch 1.1 (Paszke et al., 2017) and
train them with Adam optimizer (Kingma & Ba, |2015). In fact, the number of GCN layers required

2Although there are many benchmarks for the general graph classification tasks, these cannot be directly
used in our graph-graph classification tasks as we cannot treat two graphs with the same labels as “similar”.

Under review as a conference paper at ICLR 2021

Table 1: Summary statistics of datasets for both graph-graph classification & regression tasks.

Task Dataset Sub- # of # of AVG # AVG # Init Feature
asks atasets datasets ~ Graphs Functions of Nodes of Edges Dimensions
[3.200] 83,008 10,376 18.83 27.02
FFmpeg [20,200] 31,696 7,668 51.02 75.88 6
Classif- [50,200] 10,824 3,178 90.93 136.83
cation [3,200] 73,953 4,249 15.73 21.97
OpenSSL [20,200] 15,800 1,073 44.89 67.15 6
[50,200] 4,308 338 83.68 127.75
Regre- AIDS700 - 700 - 8.90 8.80 29
SSIO0 LINUX1000 - 1000 - 7.58 6.94 1

usually depends on real applications. To isolate the effect of over-tuning on different datasets and
tasks, we choose the 3-layer GCN after examining how the number of GCN layers affect the perfor-
mance (see Appendleor details). The output dimension of each GCN and d are both set to 100.
For classification tasks, we train the model by running 100 epochs with 0.5e-3 learning rate. At each
epoch, we build the pairwise training data as follows. For each graph G in the training subset, we
obtain one positive pair {(G, GP°?), +1} and a corresponding negative pair {(G, G"*9), —1}, where
GP°% is randomly selected from all control flow graphs that compiled from the same source function
as G, and G™%Y is selected from other graphs. By default, each batch includes 5 positive and 5 nega-
tive pairs. For regression tasks, we train the model by running 10,000 iterations with a batch of 128
graph pairs with 5e-3 learning rate. Each pair is a tuple of {(G', G?), s}, where s is the ground-truth
GED between G* and G2. Other implementation details can be found in Appendix

Baselinesﬂ 1) SimGNN (Bai et al.,2019) adopts GCN and applies 2 strategies to model the similarity
between two graphs: one based on interactions between two graph-level embeddings, another based
on histogram features from two sets of node embeddings; ii)) GMN (Li et al. 2019) employs a
variant of message passing neural networks and improves the node embeddings of one graph via
incorporating the information of attentive neighborhoods of another graph; iii) GraphSim (Bai et al.,
2020) extends SimGNN by turning the two sets of node embeddings into a similarity matrix and
then processing the matrix with CNNs. Detailed experimental settings are given in Appendix

Note that we have two variants of the full model MGMN: MGMN (FCMax) and MGMN (BiL-
STM), whose SGNN uses either the FCMax or BiLSTM aggregator, respectively. We repeat all
experiments 5 times and report the mean and standard deviation of results, with the best in bold.

4.2 COMPARISON WITH BASELINE METHODS

Comparison of Graph-Graph Classification Tasks. For graph-graph classification tasks, we mea-
sure AUC (Bradley, |1997) of different models. As shown in Table @, our models (both full model
MGMN or the key component NGMN) clearly achieve state-of-the-art performance on all 6 sub-
datasets for both FFmpeg and OpenSSL. Particularly when the graph size increases, both MGMN
and NGMN show better and more robust performance than state-of-the-art baselines. In addition,
compared with SGNN (Max), NGMN shows superior performance by a large margin, demonstrating
the benefits of the proposed node-graph matching operation that captures the cross-level interaction
features between node embeddings of a graph and the graph-level embedding of the other graph (see
SGNN with other aggregators in Appendix [A.3). MGMN (i.e., NGMN+SGNN) further improves
the performance of NGMN together with global-level interaction features learned from SGNN.

Comparison of Graph-Graph Regression Tasks. For graph-graph regression tasks, we evaluate
the models using Mean Square Error (mse), Spearman’s Rank Correlation Coefficient (p) (Spear-
man, |1904), Kendall’s Rank Correlation Coefficient (7) (Kendall, [1938)), and precision at k (p@k).
All results of both datasets are summarized in Table [3] Although GraphSim shows better perfor-
mance than the other two baselines, our models (MGMN and its key component NGMN) out-
perform all baselines on both datasets in terms of most evaluation metrics. Moreover, compared
with SGNN (Max), NGMN achieves much better performance (see more in Appendix [A.3). It also
highlights the importance of our proposed node-graph matching network, which could effectively

3 As the three baselines only consider either graph-graph classification or regression tasks, we slightly adjust
the last layer of the model or loss function of each baseline to make fair comparisons on both tasks.

Under review as a conference paper at ICLR 2021

Table 2: Summary of classification results in terms of AUC scores (%).

Model FFmpeg OpenSSL
[3,200] [20, 200] [50, 200] [3,200] [20, 200] [50, 200]

SimGNN 95.384£0.76 94.31£1.01 93.45+0.54 95.96+0.31 93.58+0.82 94.25+0.85
GMN 94.15+£0.62 95.92+1.38 94.76£0.45 96.43£0.61 93.03+3.81 93.91%1.65
GraphSim 97.46+0.30 96.49+0.28 94.48+0.73 96.84+0.54 94.97+0.98 93.66+1.84
SGNN 93.92+£0.07 93.82+0.28 85.15+1.39 91.07+0.10 88.94+0.47 82.10+0.51
NGMN 97.73£0.11 98.29+0.21 96.81£0.96 96.56+0.12 97.60+0.29 92.89+1.31
MGMN (FCMax) 98.07+0.06 98.29+0.10 97.83+£0.11 96.87+0.24 97.59+0.24 95.58+1.13
MGMN (BIiLSTM) 97.56+0.38 98.12+0.04 97.16+0.53 96.90+0.10 97.31£1.07 95.87+0.88

capture cross-level node-graph interactions. MGMN (i.e., SGNN+NGMN) further improves the
performance of NGMN together with global-level interaction features learned from SGNN.

Table 3: Summary of regression results on AIDS700 and LINUX1000.

Datasets Model mse (1073) P T p@10 p@20
SimGNN 1376+0.066 0.824-0.009 0.665+0.011 0.400-0.023 0.489+0.024
GMN 4.610£0365 0.67240.036 0497+0.032 0.20040.018 0.263+0.018
GraphSim 1.919+0.060 0.849+-0.008 0.693+0.010 0.446+0.027 0.525+0.021
AIDS700 SGNN 2.822+0.149 0.765+0.005 0.588-0.004 0.289+0.016 0.373+0.012
NGMN 1.191+0.048 0.904+0.003 0.749+0.005 0.465-0.011 0.538+0.007
MGMN (FCMax) 1.205+0.039 0.904+0.002 0.749+0.003 0457+0.014 0.532+0.016
MGMN (BiLSTM) 1.169+0.036 0.905+0.002 0.751-0.003 0456+0.019 0.539-0.018
SimGNN 24791038 0.912+0.031 0.791+0.046 0.635:0.328 0.650+0.283
GMN 257140519 0.906+0.023 0.763+0.035 0.888+0.036 0.856+0.040
LINUX GraphSim 0.471£0.043 0.976+0.001 0.931+0.003 0.956-0.006 0.942+0.007
1000 SGNN 11.832+0.698 0.566-0.022 0.404+0.017 0.226+0.106 0.492+0.190
NGMN 1.561£0.020 0.945+0.002 0.814+0.003 0.743+0.085 0.741+0.086
MGMN (FCMax) 1.575+0.627 0.946+0.019 0.817+0.034 0.807+0.117 0.784+0.108
MGMN (BiLSTM) 0.439+0.143 0.985+0.005 0.919+0.016 0.955+0.011 0.943+0.014

4.3 ABLATION STUDIES

Different Attention Functions. As discussed in Section[3.1} the proposed multi-perspective match-
ing function shares similar spirits with the multi-head attention mechanism (Vaswani et al., |2017),
which makes it interesting to compare them. Therefore, we investigate the impact of these two dif-
ferent mechanisms for NGMN with classification results showed in Table [d] In our evaluation, the
number of heads K is set to 6 because of the substantial consumption of resources of multi-head at-
tention. Interestingly, our proposed multi-perspective attention mechanism consistently outperforms
the results of the multi-head attention by quite a large margin. We suspect that our proposed multi-
perspective attention uses vectors attention weights which may reduce the potential overfitting.

Table 4: Classification results of multi-perspectives versus multi-heads in terms of AUC scores(%).
OpenSSL
[20, 200]

FFmpeg
[20, 200]

Model

[3,200] [50, 200] [3,200] [50, 200]

Multi-Perspectives (J = 100) 97.73£0.11 98.29+0.21 96.81+0.96 96.56+0.12 97.60+0.29 92.89+1.31
Multi-Heads (K = 6) 91.18+591 77.49+5.21 68.15+£6.97 92.81+5.21 85.43+£5.76 56.87+7.53

Different Numbers of Perspectives. We further investigate the impact of different numbers of
perspectives adopted by the node-graph matching layer of the NGMN model. Following the

same settings of previous experiments, we only change the number of perspectives (i.e., d =
50/75/100/125/150) of NGMN. From Table [5] it is clearly seen that the AUC score of NGMN
does not increase as the number of perspectives grows for classification tasks. Similar results of
regression tasks can be found in Appendix [A.6] We thus conclude that our model performance is
not sensitive to the number of perspective d (from 50 to 150) and we make d = 100 by default. Dif-
ferent GNNs. We investigate the impact of different GNNs including GraphSAGE (Hamilton et al.,
2017), GIN (Xu et al., 2019), and GGNN (L1 et al., 2016) adopted by the node embedding layer

Under review as a conference paper at ICLR 2021

Table 5: Classification results of different numbers of perspectives in terms of AUC scores(%).
FFmpeg OpenSSL
[3,200] [20, 200] [50, 200] [3,200] [20, 200] [50, 200]

NGMN (d = 50) 98.11+0.14 97.76+0.14 96.93+0.52 97.38+0.11 97.03+0.84 93.38+3.03
NGMN (d = 75) 97.99+0.09 97.94+0.14 97.41+0.05 97.09+0.25 98.66+0.11 92.10+4.37
NGMN (d = 100) 97.73+0.11 98.29+0.21 96.81+0.96 96.56+0.12 97.60+0.29 92.89+1.31
NGMN (d~= 125) 98.10£0.03 98.06+0.08 97.26+0.36 96.73+0.33 98.67+0.11 96.03+2.08
NGMN (d = 150) 98.32+0.05 98.11+0.07 97.92+0.09 96.50+0.31 98.04+0.03 97.13+0.36

Model

of NGMN for both classification and regression tasks. Table [6] presents the results of classification
tasks (see the results of regression tasks in Appendix [A.7). In general, the performance of different
GNN:ss is quite similar for all datasets of both classification and regression tasks, which indicates that
NGMN is not sensitive to the choice of GNNSs in the node embedding layer. An interesting observa-
tion is that NGMN-GGNN performs even better than our default NGMN-GCN on both FFmpeg and
OpenSSL datasets. This shows that our model can be further improved by adopting more advanced
GNN models or choosing the most appropriate GNNs according to different application tasks.

Table 6: Classification results of different GNNs in terms of AUC scores (%).

FFmpeg OpenSSL
[3, 200] [20, 200] [50, 200] [3, 200] [20, 200] [50, 200]
NGMN-GCN (Our) 97.73£0.11 98.29+0.21 96.81£0.96 96.56+0.12 97.60+0.29 92.89+1.31

NGMN-GraphSAGE 97.31£0.56 98.21+0.13 97.88+£0.15 96.13+0.30 97.30+0.72 93.66+3.87
NGMN-GIN 97.97+0.08 98.06+0.22 94.66+4.01 96.98+0.20 97.42+0.48 92.29+2.23
NGMN-GGNN 98.42:0.41 99.77+0.07 97.93+1.18 99.35+0.06 98.51+1.04 94.17+7.74

Model

5 RELATED WORK

Conventional Graph Matching. As introduced in Section [T} graph matching can be categorized
into exact and error-tolerant graph matching. In real-world applications, the constraint of exact
graph matching is too rigid, and thus an amount of work has been proposed to solve the error-
tolerant graph matching problem, which is usually quantified by a specific similarity metric, such as
GED, maximum common subgraph (Bunke, |1997), or even more coarse binary similarity, according
to different real applications. Particularly for GED, it is a well-studied NP-hard problem and suffers
from exponential computational complexity and huge memory requirements for exact solutions in
practice (McGregor, |1982} [Zeng et al., 2009; Blumenthal & Gamper, 2018)).

Graph Similarity Computation. Considering the great significance and challenge of computing
the graph similarity, various approximation methods have been proposed for better accuracy and
efficiency, including traditional heuristic methods (Gao et al., [2010; Riesen, [2015; Wu et al.| 2019
Yoshida et al., [2019) and recent data-driven graph matching networks (Bai et al., [2019; 20205 [Li
et al.,|2019), as detailed in the baselines of Section Our work belongs to the graph matching
networks, but differs from prior work in two main aspects: 1) unlike prior work only consider either
graph-level or node-level interactions, our model successfully captures multi-level richer interac-
tions between two graphs; 2) our work is the first one to systematically evaluate the performance on
both graph-graph classification and regression tasks as well as the size of input graphs.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel multi-level graph matching network (MGMN) for computing the
graph similarity between any pair of graph-structured objects in an end-to-end fashion. In particular,
we further proposed a new node-graph matching network for effectively learning cross-level inter-
actions between two graphs beyond low-level node-node and global-level graph-graph interactions.
Our extensive experimental results correlated the superior performance and robustness compared
with state-of-the-art baselines on both graph-graph classification and regression tasks. One interest-
ing future direction is to adapt our MGMN model for solving different real-world applications such
as malware detection, text matching and entailment, and knowledge graph question answering.

Under review as a conference paper at ICLR 2021

REFERENCES

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A neu-
ral network approach to fast graph similarity computation. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, pp. 384-392. ACM, 2019.

Yunsheng Bai, Hao Ding, Ken Gu, Yizhou Sun, and Wei Wang. Learning-based efficient graph sim-
ilarity computation via multi-scale convolutional set matching. In Thirty-Forth AAAI Conference
on Artificial Intelligence, 2020.

David B Blumenthal and Johann Gamper. On the exact computation of the graph edit distance.
Pattern Recognition Letters, 2018.

Andrew P Bradley. The use of the area under the roc curve in the evaluation of machine learning
algorithms. Pattern Recognition, 1997.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Séckinger, and Roopak Shah. Signature verifi-
cation using a” siamese” time delay neural network. In Advances in neural information processing
systems, pp. 137744, 1994.

Horst Bunke. On a relation between graph edit distance and maximum common subgraph. Pattern
Recognition Letters, 18(8):689-694, 1997.

Yu Chen, Lingfei Wu, and Mohammed J Zaki. Iterative deep graph learning for graph neural net-
works: Better and robust node embeddings. NeurIPS, 2020.

Steven HH Ding, Benjamin CM Fung, and Philippe Charland. Asm2vec: Boosting static represen-
tation robustness for binary clone search against code obfuscation and compiler optimization. In
1IEEE Symposium on Security and Privacy (S&P), 2019.

Shri Prakash Dwivedi and Ravi Shankar Singh. Error-tolerant graph matching using node contrac-
tion. Pattern Recognition Letters, 116:58-64, 2018.

Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit distance. Pattern
Analysis and applications, 13(1):113-129, 2010.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pp. 933-944. IEEE, 2018.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, 2017.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100-107,
1968.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 1997.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 1938.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. International Conference on Learning Representations, 2016.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching net-
works for learning the similarity of graph structured objects. ICML, 2019.

Under review as a conference paper at ICLR 2021

Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. Graph convolutional networks with
eigenpooling. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 723-731, 2019.

James J McGregor. Backtrack search algorithms and the maximal common subgraph problem.
Software: Practice and Experience, 12(1):23-34, 1982.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch, 2017.

Kaspar Riesen. Structural pattern recognition with graph edit distance. In Advances in computer
vision and pattern recognition. Springer, 2015.

Kaspar Riesen, Xiaoyi Jiang, and Horst Bunke. Exact and inexact graph matching: Methodology
and applications. In Managing and Mining Graph Data, pp. 217-247. Springer, 2010.

Kaspar Riesen, Sandro Emmenegger, and Horst Bunke. A novel software toolkit for graph edit
distance computation. In International Workshop on Graph-Based Representations in Pattern
Recognition, pp. 142—151. Springer, 2013.

C Spearman. The proof and measurement of association between two things. American Journal of
Psychology, 1904.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Xiaoli Wang, Xiaofeng Ding, Anthony KH Tung, Shanshan Ying, and Hai Jin. An efficient graph
indexing method. In 2012 IEEE 28th International Conference on Data Engineering, 2012.

Lingfei Wu, Ian En-Hsu Yen, Zhen Zhang, Kun Xu, Liang Zhao, Xi Peng, Yinglong Xia, and Charu
Aggarwal. Scalable global alignment graph kernel using random features: From node embedding
to graph embedding. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1418-1428, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. Neural network-based
graph embedding for cross-platform binary code similarity detection. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, 2017.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hi-
erarchical graph representation learning with differentiable pooling. In Advances in Neural Infor-
mation Processing Systems, pp. 4800-4810, 2018.

Tomoki Yoshida, Ichiro Takeuchi, and Masayuki Karasuyama. Learning interpretable metric be-
tween graphs: Convex formulation and computation with graph mining. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
1026-1036. ACM, 2019.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In ICML, 2018.

Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou. Comparing stars:
On approximating graph edit distance. Proceedings of the VLDB Endowment, 2(1):25-36, 20009.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V. Chawla. Heteroge-
neous graph neural network. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2019.

10

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 DATASETS

A.1.1 CLASSIFICATION DATASETS

In our evaluation, two binary functions that are compiled from the same source code but under dif-
ferent settings (architectures, compilers, optimization levels, etc) are considered to be semantically
similar to each other. It is noted that one source code function, after compiled with different settings
(architectures, compilers, optimization levels, etc), can generate various binary functions. To learn
the similarity scores from pairs of binary functions, we represent those binary functions with control
flow graphs, whose nodes represent the basic blocks (a basic block is a sequence of instructions
without jumps) and edges represent control flow paths between these basic blocks. Thus, detecting
the similarity between two binary functions can be cast as the problem of learning the similarity
score (G, G?) between two control flow graphs G* and G2, where s(G', G?) = +1 indicates G*
and G? are similar; otherwise s(G', G?) = —1 indicates dissimilar. We prepare two benchmark
datasets generated from two popular open-source softwares: FFmpeg and OpenSSL, to evaluate
our model on the graph-graph classification tasks.

For FFmpeg, we prepare the corresponding control flow graph (CFG) dataset as the benchmark
dataset to detect binary function similarity. First, we compile FFmpeg 4.1.4 using 2 different com-
pilers gcc 5.4.0 and clang 3.8.0, and 4 different compiler optimization levels (00-03), and generate
8 different binary files. Second, these 8 generated binaries are disassembled using IDA Pro/’|which
can produce CFGs for all disassembled functions. Finally, for each basic block in CFGs, we extract 6
block-level numeric features as the initial node representation based on IDAPython (a python-based
plugin in IDA Pro).

OpenSSL is built from OpenSSL (v1.0.1f and v1.0.1u) using gcc 5.4 in three different architectures
(x86, MIPS, and ARM), and four different optimization levels (O0-O3). The OpenSSL dataset
that we evaluate is previously released by |Xu et al.[(2017) and publicly availabkf] with prepared 6
block-level numeric features.

Overall, for both FFmpeg and OpenSSL datasets, each node in the CFGs are initialized with 6
block-level numeric features: # of string constants, # of numeric constants, # of total instructions, #
of transfer instructions, # of call instructions, and # of arithmetic instructions.

A.1.2 REGRESSION DATASETS

Instead of directly computing the graph edit distance (GED) between two graphs G and G2, we try
to learn a similarity score s(G*, G?), which is the normalized exponential of GED in the range of

(0,1]. To be specific, s(G*, G2) = exp ormGED(G .G pormGED(GY, G?) = %,

where |G| or |G?| denotes the number of nodes of G or G2, and normGED(G*,G?) or
GED(G', G?) denotes the normalized/un-normalized GED between G and G2.

We employ both AIDS700 and LINUX1000 released by |Bai et al.|(2019), which are publicly avail-
ableE] Each dataset contains a set of graph pairs as well as their ground-truth GED scores, which
are computed by exponential-time exact GED computation algorithm A* (Hart et al.l {1968} [Riesen
et al., 2013). As the ground-truth GEDs of another dataset IMDB-MULTT are provided with in-
exact approximations, we thus do not consider this dataset in our experiments.

AIDS700 is a subset of the AIDS dataset, a collection of AIDS antiviral screen chemical compounds
from the Development Therapeutics Program (DTP) in the National Cancer Institute (NCI))’| Origi-
nally, AIDS contains 42687 chemical compounds, where each of them can be represented as a graph
with atoms as nodes and bonds as edges. To avoid calculating the ground-truth GED between two
graphs with a large number of nodes, Bai et al.|(2019) create the AIDS700 dataset that contains 700

“IDA Pro disassembler, https://www.hex—rays.com/products/ida/index.shtmll
Shttps://github.com/xiaojunxu/dnn-binary-code-similarityl
®https://github.com/yunshengb/SimGNN,
"https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data

11

https://www.hex-rays.com/products/ida/index.shtml
https://github.com/xiaojunxu/dnn-binary-code-similarity
https://github.com/yunshengb/SimGNN
https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data

Under review as a conference paper at ICLR 2021

Table 7: Summary statistics of datasets for both classification & regression tasks.

Task Dataset Sub- # of #of # of Nodes # of Edges # of Degrees
asks atasets datasets Graphs Functions (Min/Max/AVG) (Min/Max/AVG) (Min/Max/AVG)
[3,200] 83,008 10,376 (3/200/18.83) (2/332/27.02) (1.25/4.33/2.59)

FFmpeg [20,200] 31,696 7,668 (20/200/51.02) (20/352/75.88) (1.90/4.33/2.94)

classif- [50,200] 10,824 3,178 (50/200/90.93) (52/352/136.83) (2.00/4.33/3.00)
ication [3,200] 73,953 4249 (3/200/15.73) (1/376/21.97) (0.12/3.95/2.44)
OpenSSL [20, 200] 15,800 1,073 (20/200/44.89) (2/376/67.15) (0.12/3.95/2.95)
[50,200] 4,308 338 (50/200/83.68) (52/376/127.75) (2.00/3.95/3.04)

regre- AIDS700 - 700 - (2/10/8.90) (1/14/8.80) (1.00/2.80/1.96)
SSION ¥ INUX1000 - 1000 - (4/10/7.58) (3/13/6.94) (1.50/2.60/1.81)

graphs with 10 or fewer nodes. For each graph in AIDS700, every node is labeled with the element
type of its atom and every edge is unlabeled (i.e., bonds features are ignored).

LINUX1000 is also a subset dataset of Linux that was introduced in Wang et al.| (2012). The
original Linux dataset is a collection of 48747 program dependence graphs generated from Linux
kernel. In this case, each graph is a static representation of data flow and control dependency within
one function, with each node assigned to one statement and each edge describing the dependency
between two statements. For the same reason as above that avoiding calculating the ground-truth
GED between two graphs with a large number of nodes, the LINUX1000 dataset used in Bai et al.
(2019) is randomly selected and contains 1000 graphs with 10 or fewer nodes. For each graph in
LINUX1000, both nodes and edges are unlabeled.

For both classification and regression datasets, Table [/| provides more detailed statistics. In our
evaluation, for the classification tasks, we split each dataset into three disjoint subsets of binary
functions for training/validation/testing. In the regression tasks, we first split graphs of each dataset
into training, validation, and testing sets, and then build the pairwise training/validation/testing data
as the previous work (Bai et al.; 2019).

A.2 MORE EXPERIMENTAL SETUP

A.2.1 OTHER EXPERIMENTAL SETTINGS FOR OUR MODELS

For SGNN, we use three GCN layers in the node embedding layer and each of the GCNs has an
output dimension of 100. We use ReLU as the activation function along with a dropout layer after
each GCN layer with the dropout rate being 0.1. In the graph-level embedding aggregation layer
of SGNN, we can employ different aggreatlon functions (i,e., Max, FCMax, Avg, FCAvg, and
BiLSTM) as stated previously in Section For NGMN, We set the number of perspectives dto
100. We also employed different aggregatlon functions similar to SGNN and found that BiLSTM
consistently performs better than others (see Appendix [A.5). Thus, for NGMN, we take BILSTM
as the default aggregation function and we make its hidden size equal to the dimension of node
embeddings. For each graph, we concatenate the last hidden vector of two directions of BiLSTM,
which results in a 200-dimension vector as the graph embedding.

Noted that all experiments are conducted on a PC equipped with 8 Intel Xeon 2.2GHz CPU and one
NVIDIA GTX 1080 Ti GPU.

A.2.2 DETAILED EXPERIMENTAL SETTINGS FOR BASELINE MODELS

In principle, we follow the same experimental settings as the baseline methods of their original
papers and adjust a few settings to fit specific tasks. For instance, SImGNN is originally used for
graph-graph regression tasks, we modify the final layer of model architecture so that it can be used
to evaluate graph-graph classification tasks fairly. Thus, detailed experimental settings of all three
baseline methods for both classification and regression tasks are given as follows.

SimGNN: SimGNN firstly adopts three-layer GCN to encode each node of a pair of graphs into
a vector. Then, SimGNN employs a two-stage strategy to model the similarity between the two

12

Under review as a conference paper at ICLR 2021

graphs: 1) it uses Neural Tensor Network (NTN) module to interact two graph-level embeddings that
are aggregated by a node attention mechanism; ii) it uses the histogram features extracted from the
pairwise node-node similarity scores. Finally, the features learned from the two-stage strategy are
concatenated to feed into multiple fully connected layers to obtain a final prediction.

For the graph-graph regression tasks, the output dimensions for the three-layer GCNs are 64, 32,
and 16, respectively. The number of K in NTN and the number of histogram bins are both set to
16. Four fully connected layers are employed to reduce the dimension of concatenated results from
32to 16, 16 to 8, 8 to 4, 4 to 1. As for training, the mean square error (MSE) loss function is used
to train the model with Adam optimizer. The learning rate is set to 0.001 and the batch size is set
to 128. We set the number of iterations to 10,000 and select the best model based on the lowest
validation loss.

To fairly compare our model with SimGNN in evaluating graph-graph classification tasks, we adjust
the settings of SImMGNN as follows. We follow the same architecture of SimGNN in regression tasks
except that the output dimension of the last connected layer is set to 2. We apply a softmax operation
over the output of SInGNN to get the predicted binary label for the graph-graph classification tasks.
As for training, we use the cross-entropy loss function to train our model and set the number of
epochs to 100. Other training hyper-parameters are kept the same as the regression tasks.

GMN: The spirit of GMN is improving the node embeddings of one graph by incorporating the
implicit neighbors of another graph through a soft attention mechanism. GMN follows a similar
model architecture of the neural message passing network with three components: an encoder layer
that maps the node and edge to initial vector features of node and edge, a propagation layer further
update the node embeddings through proposed strategies, and an aggregator that compute a graph-
level representation for each graph.

For the graph-graph classification tasks, we use 1-layer MLP as the node/edge encoder and set
the number of rounds of propagation to 5. The dimension of the node feature is set to 32, and
the dimension of graph-level representation is set to 128. The Hamming distance is employed to
compute the distance of two graph-level representation vectors. Based on the Hamming distance,
we train the model with the margin-based pairwise loss function for 100 epochs in which validation
is carried out per epoch. Adam optimizer is used with the learning rate of 0.001 and batch size 10.

In order to enable fair comparisons with GMN for graph-graph regression tasks, we adjust the GMN
architecture by concatenating the graph-level representation of two graphs and feeding it into a four-
layer fully connected layers like SimGNN so that the final output dimension is reduced to 1. As for
training, we use mean square loss function with batch size 128. Other settings remain the same as
the classification tasks.

GraphSim: The main idea of GraphSim is to convert the graph similarity computation problems
into pattern recognition problems. GraphSim first employs GCN to generate node embeddings of
the pair of graphs, then turns the two sets of node embedding into a similarity matrix consisting of
the pairwise node-node interaction similarity scores, feeds these matrics into convolutional neural
networks (CNN), and finally concatenates the results of CNN to multiple fully connected layers to
obtain a final predicted graph-graph similarity score.

For the graph-graph regression tasks, three layers of GCN are employed with each output dimen-
sion being set to 128, 64, and 32, respectively. The following architecture of CNNs is used:
Conv(6,1,1,16), maxpool(2), Conv(6, 1,16, 32), mazxpool (2), Conv(5, 1, 32,64), maxpool (2),
Conwv(5,1,64,128), maxpool(3), Conv(5,1,128,128), maxrpool(3). Numbers in Conv() and
mazxpool() indicates Conv(window_size, kernel_stride,input_channels, output_channels)
and maxpool(pooling_size). Eight fully connected layers are used to reduce the dimension of
the concatenated results from CNNs, from 384 to 256, 256 to 128, 128 to 64, 64 to 32, 32 to 16,
16 to 8, 8 to 4, 4 to 1. As for training, the mean square error (MSE) loss function is used to train
the model with Adam optimizer. The learning rate is set to 0.001 and the batch size is set to 128.
Similar to SImMGNN, we set the number of iterations to 10,000 and select the best model based on
the lowest validation loss.

To make a fair comparison of our model with GraphSim in our evaluation, we also adjust Graph-
Sim to solve the graph-graph classification tasks. We follow the same architecture of GraphSim in
regression tasks except that seven connected layers are used instead of eight. The output dimension

13

Under review as a conference paper at ICLR 2021

of final connected layers is set to 2, and we apply a softmax operation over it to get the predicted
binary label for the classification tasks. As for training, we use the cross-entropy loss function to
train our model and set the number of epochs to 100. Other training hyper-parameters are kept the
same as the regression tasks.

A.2.3 DETAILED EXPERIMENTAL SETUP FOR DIFFERENT GNNS

When performing experiments to see how different GNNs affect the performance of NGMN, we
only replace GCN with GraphSAGE, GIN, and GGNN using the geometric deep learning library
- PyTorch Geometricﬂ More specifically, for GraphSAGE, we used a 3-layer GraphSAGE GNN
with their output dimensions all set to 100. For GIN, we used 3 GIN modules with a 1-layer MLP
with output dimension 100 as the learnable function. For GGNN, we used 3 one-layer propagation
models to replace the 3 GCNs in our original setting and also set their output dimensions to 100.

A.3 SGNN WITH DIFFERENT AGGREGATION FUNCTIONS FOR BOTH CLASSIFICATION &
REGRESSION TASKS

To further compare our models with the SGNN models, we train and evaluate several SGNN models
with different aggregation functions, such as Max, FCMax, Avg, FCAvg, and BiLSTM. The classi-
fication results and regression results are summarized in Table[8]and Table [0} respectively. For both
classification and regression tasks, our models (the full model MGMN and key component NGMN)
show statistically significant improvement over all SGNN models with different aggregation func-
tions, which indicates the advantage of the proposed node-graph matching network.

Table 8: Classification results of SGNN models with different aggregation functions VS. NGMN
and MGMN in terms of AUC scores (%).

FFmpeg OpenSSL
[3, 200] [20, 200] [50, 200] [3,200] [20, 200] [50, 200]
SGNN (BiLSTM) 96.92+0.13 97.62£0.13 96.35+0.33 95.24+0.06 96.30+0.27 93.99+0.62

Model

SGNN (Max) 93.92+0.07 93.82+0.28 85.15+£1.39 91.07+0.10 88.94+0.47 82.10+0.51
SGNN (FCMax) 95.37+0.04 96.29+£0.14 95.98+0.32 92.64+0.15 93.79+0.17 93.21+0.82
SGNN (Avg) 95.61+0.05 96.09+0.05 96.70+0.13 92.89+0.09 93.90+0.24 94.12+0.35
SGNN (FCAvg) 95.18+0.03 95.74£0.15 96.43+£0.16 92.70+0.09 93.72+0.19 93.49+0.30
NGMN 97.73+0.11 98.29+0.21 96.81+0.96 96.56+0.12 97.60+0.29 92.89+1.31
MGMN (Max) 97.44+0.32 97.84+0.40 97.22+0.36 94.77+1.80 97.44+0.26 94.06+1.60

MGMN (FCMax) 98.07+0.06 98.29+0.10 97.83+0.11 96.87£0.24 97.59+0.24 95.58+1.13
MGMN (BiLSTM) 97.56+0.38 98.12+0.04 97.16+£0.53 96.90+0.10 97.31+1.07 95.87+0.88

A.4 NGMN WITH DIFFERENT NUMBER OF GNN LAYERS FOR BOTH CLASSIFICATION &
REGRESSION TASKS

We also examine how the number of GNN (i.e., GCN) layers would affect the performance of our
models for both graph-graph classification and regression tasks. Follow the same default exper-
imental settings (see Section for details), we only change the number of GCN layers in the
node embeddings layer of NGMN. Specifically, we change the number of layers form 1, 2, 3, to 4,
and summarize the experimental results in Table |10 for graph-graph classification tasks as well as
Table [TT]for regression tasks.

It can be observed from Table [I0] that the NGMN model with more GCN layers (i.e., 3-layer and
4-layer) provides better and comparatively stable performance for all sub-datasets for both FFmpeg
and OpenSSL, while NGMN with less GCN layers (i.e., 1-layer or 2-layer) show inferior perfor-
mance on some sub-datasets. For instance, NGMN with 1-layer performs extremely poorly on the
[20, 200] and [50, 200] sub-datasets of both FFmpeg and OpenSSL, and NGMN with 2-layer runs
poorly on the [20, 200] and [50, 200] sub-datasets of FFmpeg as well as [50, 200] sub-dataset of
OpenSSL. From Table[TT, NGMN with different number of layers exhibits similar results and none

8https ://pytorch-geometric.readthedocs.io

14

https://pytorch-geometric.readthedocs.io

Under review as a conference paper at ICLR 2021

Table 9: Regression results of SGNN models with different aggregation functions VS. NGMN and
MGMN on AIDS700 and LINUX1000.

Datasets Model mse (1073) p T p@10 p@20
SGNN (BiLSTM) 1.422+0.044 0.881+0.005 0.718+0.006 0.376+0.020 0.472+0.014
SGNN (Max) 2.822+0.149 0.765+0.005 0.588+0.004 0.289+0.016 0.373+0.012
SGNN (FCMax) 3.11420.114 0.735+0.009 0.554+0.008 0.278+0.021 0.364+0.017
AIDS700 SGNN (Avg) 1.453+0.015 0.876+0.002 0.712+0.002 0.353+0.007 0.444+0.012
SGNN (FCAvg) 1.658+0.067 0.857+0.007 0.689+0.008 0.305+0.018 0.399+0.021
NGMN 1.191£0.048 0.904=0.003 0.749+0.005 0.465+0.011 0.538+0.007
MGMN (Max) 1.210+0.020 0.900+0.002 0.743+0.003 0.461+0.012 0.534+0.009
MGMN (FCMax) 1.205+0.039 0.904+0.002 0.749+0.003 0.457+0.014 0.532+0.016
MGMN (BiLSTM) 1.169+0.036 0.905+0.002 0.751+0.003 0.456+0.019 0.539+0.018
SGNN (BiLSTM) 2.140+1.668 0.935+0.050 0.825+0.100 0.978+0.012 0.965+0.007
SGNN (Max) 11.83240.698 0.566+0.022 0.404+0.017 0.226+0.106 0.492+0.190
LINUX SGNN (FCMax) 17.795+0.406 0.362+0.021 0.252+0.015 0.239+0.000 0.241+0.000
1000 SGNN (Avg) 2.343+0.453 0.933+0.012 0.790+0.017 0.778+0.048 0.811+0.050
SGNN (FCAvg) 3.211£0.318 0.909+0.004 0.757+0.008 0.831%0.163 0.813=0.159
NGMN 1.561+0.020 0.945+0.002 0.814+0.003 0.743+0.085 0.741+0.086
MGMN (Max) 1.054+0.086 0.962+0.003 0.850+0.008 0.877+0.054 0.883+0.047
MGMN (FCMax) 1.575+0.627 0.946+0.019 0.817+0.034 0.807+0.117 0.784+0.108
MGMN (BiLSTM) 0.439+0.143 0.985+0.005 0.919+0.016 0.955+0.011 0.943+0.014

of them runs particularly better than the others on both AIDS700 and LINUX1000 datasets in terms
of all evaluation metrics for graph-graph regression tasks.

These observations indicate that the number of GCN layers that are required in our models depends
on the different graph datasets i.e., different real applications. Thus, to avoid over-tuning this hyper-
parameter (i.e., number of GCN layers) on different datasets and different tasks as well as take the
resource consumption of training models, we choose the three-layers GCN as the default for the
node embedding layers in our models.

Table 10: Classification results of NGMN models with different numbers of GNN layers in terms of
AUC scores (%).

Model FFmpeg OpenSSL
[3, 200] [20, 200] [50, 200] [3, 200] [20, 200] [50, 200]
NGMN-(1 layers) 97.84+0.08 71.05+2.98 75.05+17.20 97.51+0.24 88.87+4.79 77.72+7.00
NGMN-(2 layers) 98.03+0.15 84.72+12.60 90.58+10.12 97.65+0.10 95.78+3.46 86.39+8.16
NGMN-(3 layers) 97.73+0.11 98.29+0.21 96.81£0.96 96.56+0.12 97.60+0.29 92.89+1.31
NGMN-(4 layers) 97.96+0.22 98.06+0.13 97.94£0.15 96.79+0.21 98.21+0.31 93.40+1.78

Table 11: Regression results of NGMN models with different numbers of GCN layers on AIDS700
and LINUX1000.

Datasets Model mse (1073) p T p@10 p@20
NGMN-(1 layers) 1.297+0.025 0.895+0.001 0.737+0.002 0.414+0.011 0.498+0.006
AIDS NGMN-(2 layers) 1.127£0.015 0.908+0.001 0.755+0.002 0.479+0.009 0.555+0.006
700 NGMN-(3 layers) 1.191+£0.048 0.904+0.003 0.749+0.005 0.465+£0.011 0.538+0.007
NGMN-(4 layers) 1.345+0.098 0.887£0.009 0.727+0.012 0.401£0.034 0.491+0.029
NGMN-(1 layers) 1.449+0.234 0.943+0.013 0.817+£0.018 0.750+£0.070 0.786:0.065
LINUX NGMN-(2layers) 1.525+0.119 0.948+0.003 0.818+0.005 0.706+0.076 0.736+0.039
1000 NGMN-(3layers) 1.561+0.020 0.945£0.002 0.814+0.003 0.743+0.085 0.741+0.086
NGMN-(4 layers) 1.677+0.248 0.943+0.008 0.810+0.013 0.758+0.063 0.765+0.071

15

Under review as a conference paper at ICLR 2021

A.5 NGMN WITH DIFFERENT AGGREGATION FUNCTIONS FOR BOTH CLASSIFICATION &
REGRESSION TASKS

We investigate the impact of different aggregation functions adopted by the aggregation layer of
NGMN model for both classification and regression tasks. Following the default and same settings
of previous experiments, we only change the aggregation layer of NGMN and use five possible
aggregation functions: Max, FCMax, Avg, FCAvg, LSTM, and BiLSTM. As can be observed from
Table [12] and Table T3] BiLSTM offers superior performance on all datasets for both classification
and regression tasks in terms of most evaluation metrics. Therefore, we take BiLSTM as the default
aggregation function for NGMN, and fix it for the NGMN part in MGMN models.

Table 12: Classification results of NGMN models with different aggregation functions in terms of
AUC scores (%).

Model FFmpeg OpenSSL
[3, 200] [20, 200] [50, 200] [3, 200] [20, 200] [50, 200]
NGMN (Max) 73.74+8.30 73.85+1.76 77.72+2.07 67.14+2.70 63.31£3.29 63.02+2.77
NGMN (FCMax) 97.2840.08 96.61+£0.17 96.65+0.30 95.37+£0.19 96.08+0.48 95.90+0.73
NGMN (Avg) 85.92+1.07 83.29+4.49 85.52+1.42 80.10t4.59 70.81£3.41 66.94+4.33

NGMN (FCAvg) 95.93+0.21 73.90£0.70 94.22+0.06 93.38+0.80 94.52+1.16 94.71+0.86
NGMN (LSTM) 97.16£0.42 97.02+0.99 84.65+6.73 96.30+0.69 97.51+£0.82 89.41+8.40

NGMN (BiLSTM) 97.73£0.11 98.29+0.21 96.81+0.96 96.56+0.12 97.60+0.29 92.89+1.31

Table 13: Regression results of NGMN models with different aggregation functions on AIDS700
and LINUX1000.

Datasets Model mse (1073) p T p@10 p@20
NGMN (Max) 2.378+0.244 0.813+£0.015 0.642+0.013 0.578+0.199 0.583+0.169
NGMN (FCMax) 2.220+1.547 0.808+0.145 0.656+0.122 0.425+0.078 0.504+0.064
AIDS NGMN (Avg) 1.524+0.161 0.880+0.010 0.717+0.012 0.408+0.044 0.474+0.027

NGMN (FCAvg) 1.281+£0.075 0.895+0.006 0.737£0.008 0.453+0.015 0.527+0.016

700 NGMN (LSTM) 1.290+£0.037 0.895+0.004 0.737+0.005 0.448+0.007 0.520+0.012
NGMN (BiLSTM) 1.191+0.048 0.904+0.003 0.749+0.005 0.465+0.011 0.538+0.007

NGMN (Max)" 16.921+0.000 - - - -
NGMN (FCMax) 4.793+0.262 0.829+0.006 0.665+0.011 0.764+0.170 0.767+0.166
LINUX NGMN (Avg) 4.050+0.594 0.888+0.008 0.719+0.012 0.501+0.093 0.536+0.112
1000 NGMN (FCAvg) 6.953+£0.195 0.897+£0.004 0.736+0.005 0.499+0.126 0.509+0.129

NGMN (LSTM) 1.535£0.096 0.945+0.004 0.813+0.007 0.695+0.064 0.698+0.081
NGMN (BiLSTM) 1.561+0.020 0.945+0.002 0.814+0.003 0.743+0.085 0.741+0.086

" As all duplicated experiments running on this setting do not converge in their training processes, their
corresponding result metrics cannot be calculated.
A.6 NGMN WITH DIFFERENT NUMBER OF PERSPECTIVES ON REGRESSION TASKS

As a supplement to Table[5)in Section[4.3] Table[T4]here shows the experimental results of different
number of perspectives adopted by the node-graph matching layer of the NGMN model for the
classification tasks.

A.7 NGMN wWITH DIFFERENT GNNS ON REGRESSION TASKS.

As a supplement to Table [6] in Section Table [T3] here shows the experimental results of GCN
versus GraphSAGE/GIN/GGNN in NGMN for the regression tasks.

16

Under review as a conference paper at ICLR 2021

Table 14: Regression results of different number of perspectives on AIDS700 and LINUX1000.

Datasets Model mse (107°) p T p@10 p@20
NGMN (d = 50) 1.133£0.044 0.909:0.001 0.756+0.002 0.487-0.006 0.563::0.007
AIDS NGMN (d= 75 1.181£0.053 0.905+0.005 0.750+0.007 0.468+0.026 0.547+0.025
700 NGMN (d = 100) 1.191+0.048 0.904+0.003 0.749+0.005 0.465+£0.011 0.538+0.007
NGMN (d = 125) 1.235+0.062 0.900+0.007 0.743+0.010 0.456+0.021 0.531+0.014
NGMN (d = 150) 1.301+£0.059 0.893+0.005 0.734+0.007 0.435+0.021 0.511+0.022
NGMN (d = 50) 1.260£0.070 0.954+0.004 0.829+0.007 0.825+0.021 0.823+0.025
LINUX NGMN (d= 75) 1.330+0.108 0.952+0.003 0.826+0.006 0.833£0.029 0.843:+0.035
1000 NGMN (d = 100) 1.561+0.020 0.945+0.002 0.814+0.003 0.743+0.085 0.741+0.086
NGMN (d = 125) 1.406+0.184 0.950+0.006 0.823+0.015 0.799+0.111 0.803+0.068
NGMN (d = 150) 1.508+0.083 0.946+0.003 0.815+0.005 0.756+0.033 0.758+0.027

Table 15: Regression results of different GNNs on AIDS700 and LINUX1000.

Datasets Model mse (1073) p T p@10 p@20
NGMN-GCN (Our) 1.191£0.048 0.904-0.003 0.749:0.005 0.465-0.011 0.538-0.007

A%(’)S NGMN-(GraphSAGE) 1.275:0.054 0.901+0.006 0.745:0.008 04480016 0.533+0.014
NGMN-(GIN) 1.367+0.085 0.889+0.008 0.729:0.010 0.400+0.022 0.492+0.021
NGMN-(GGNN) 1.870+0.082 0.871+0.004 0.706+0.005 0.388+0.015 0.457+0.017
NGMN-GCN (Our) 1.561£0.020 0.9450.002 0.814+0.003 0.743£0.085 0.741+0.086

L{lgg)x NGMN-GraphSAGE 2.784+0.705 0.915-0.019 0.767+0.028 0.682+0.183 0.693+0.167
NGMN-GIN 1.126-0.164 0.963-0.006 0.858-0.015 0.792:0.068 0.821+0.035
NGMN-GGNN 2.068+0.991 0.938+0.028 0.815+0.055 0.628+0.189 0.654+0.176

17

	Introduction
	Problem Formulation
	Multi-level Graph Matching Networks
	NGMN for Cross-level Interaction Learning
	SGNN for Global-level Interaction Learning
	Discussions on the Full Model – MGMN

	Experiments
	Datasets, Experimental Setup, and Baselines
	Comparison with Baseline Methods
	Ablation Studies

	Related Work
	Conclusion and Future Work
	Appendix
	Datasets
	Classification Datasets
	Regression Datasets

	More Experimental Setup
	Other experimental settings for our models
	Detailed experimental settings for baseline models
	Detailed experimental setup for different GNNs

	SGNN with different aggregation functions for both classification & regression tasks
	NGMN with different number of GNN layers for both classification & regression tasks
	NGMN with different aggregation functions for both classification & regression tasks
	NGMN with Different Number of Perspectives on Regression Tasks
	NGMN with Different GNNs on Regression Tasks.

