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ABSTRACT

Image filtering aims to eliminate perturbations and textures while preserving dom-
inant structures, serving a pivotal role in various image processing tasks. More re-
cently, significant advances in filtering techniques have been developed. However,
existing approaches typically suffer from oversmoothing edges, gradient reversal,
and halos. Such issues originate from the difficulty in striking an optimal trade-
off between filtering multi-scale textures and preserving edges. Furthermore, deep
learning-based filtering frameworks lack modules designed to capture features of
different long-range dependence textures. Consequently, the task of filtering tex-
tures while maintaining edge integrity continues to pose a significant challenge.
To address these issues, we propose a novel residual pyramid atrous filtering net-
work (RPAFNet) that utilizes the error low-rank representation. Specifically, we
introduce a lightweight dilated spatial convolution (LDSC) module for effectively
extracting multi-scale texture features. To boost the reconstruction feature space,
we propose a difference residual layer (DRL) module for connecting the encoder
and decoder. Additionally, by employing low-rank approximation, we introduce
a new non-convex optimization model, termed gradient error low-rank represen-
tation model (GELR), which effectively suppresses textures and preserves edges.
This paper provides complete theoretical derivations for solving GELR and its
convergence. Extensive experiments demonstrate that the proposed approach out-
performs previous techniques in attaining an equilibrium between texture filtering
and edge retention, as validated by both visual comparison and quantitative eval-
uation across various smoothing and downstream applications.

1 INTRODUCTION
Texture filtering is a core technique in computer graphics and vision, with applications ranging from
detail enhancement (Zhong et al., 2023a) and compression artifact removal (Long et al., 2025) to
tone mapping (Zhu et al., 2019). Its main objective is to suppress texture while preserving struc-
tural edges. However, the diversity and complexity of textures make this a persistent challenge.
Existing methods fall into three main categories: local filtering (Gavaskar & Chaudhury, 2018),
global optimization (He et al., 2023), and deep learning-based approaches (Shang et al., 2024). Lo-
cal filters (Cho et al., 2014; Tomasi & Manduchi, 1998; Zhang et al., 2014a) use weighted pixel
relationships to achieve image smoothing. However, since they have a fixed filter size, they often
suffer from staircase artifacts, halo effects, and being unadaptive to multi-scale textures, like RGF
(Zhang et al., 2014b) and MuGIF (Guo et al., 2018). Global optimization methods (Gudkov & Moi-
seev, 2020; He et al., 2023) typically convert the filtering task into a global optimization problem,
which often has high computational costs. They struggle with multi-scale textures and also suffer
from gradient reversal and halo artifacts. Deep learning approaches (Lu et al., 2018; Shang et al.,
2024) leverage neural networks to learn feature representation from data to reconstruct smoothed
images. These networks are limited to local information in filtering tasks. This hampers their ability
to handle multi-scale textures. Figure 1 shows the case of handling multi-scale textures of existing
approaches.

To address the challenge of handling multi-scale textures and preserving edges, we propose a novel
residual pyramid atrous filtering network (RPAFNet) with the low-rank representation. Specifically,
to extract multi-scale features, we introduce a lightweight dilated spatial convolution (LDSC) mod-
ule to expand the receptive field, enabling the network to capture global and long-range texture infor-
mation. To enhance the reconstruction feature space, we propose a difference residual layer (DRL)
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(a) Input (b) L0 (c) MuGIF (d) RGF

(e) NTNN (f) S2DGNet (g) WTL1 (h) Ours

Figure 1: Comparison of handling multi-scale textures. (a) Input, smoothed results of (b) L0, (c)
MuGIF, (d) RGF, (e) NTNN, (f) S2DGNet, (g) WTL1, and (h) Ours. It is hard to balance multi-scale
texture removal and structural preservation for competing algorithms.

module in the proposed network. Finally, to overcome the over-smoothing edges and effectively
suppress textures, we introduce a novel non-convex optimization filtering model with the error low-
rank representation, which dynamically constrains the RPAFNet to preserve structural information.
In a nutshell, the primary contributions of this work are concluded as follows: (1) We introduce the
novel RPAFNet, including the proposed LDSC and DRL modules, which ensure effective handling
of multi-scale and enhance the feature space for the reconstruction stage. (2) We propose a non-
convex optimization model that utilizes a low-rank representation of the error map. The non-convex
model dynamically constrains the RPAFNet to achieve texture removal and edge preservation. (3)
Extensive experimental results demonstrate that our model outperforms state-of-the-art techniques
in both visual quality and numerical performance across diverse smoothing applications.

Theoretical convergence derivations and additional downstream smoothing application experiments
that have been omitted for space appear in the Appendix material.

2 RELATED WORK

Local Filters. Local filters smooth images by using nearby texture and structure information. Bilat-
eral filtering (Tomasi & Manduchi, 1998), which weights neighboring pixels with Gaussian kernels,
often causes gradient reversals and halo artifacts. Joint bilateral filtering (Cho et al., 2014) focus on
low-structure regions to better extract textures. Edge-aware techniques (Xu & Wang, 2018) enhance
structure preservation by incorporating edge weights. Recent advancements further refine window
design and feature modeling: edge-aware windows reduce boundary interference (Xu & Wang,
2019), dynamic windows prevent texture-structure overlap (Pradhan & Patra, 2024), and histogram-
based approaches improve texture-structure separation (Liu et al., 2020b). However, local filters rely
on nearby pixel information, they struggle with multi-scale textures.

Model Based Methods. These algorithms formulate image smoothing as a global optimization
problem, where data terms maintain similarity to the original image and regularization terms control
texture suppression. Total variation (TV) (Rudin et al., 1992) minimizes image gradients to achieve
smoothing but struggles with complex textures. Weighted least squares (WLS) (Farbman et al.,
2008a) reduce artifacts more effectively but can introduce color shifts. Gradient minimization (Xu
et al., 2011) controls non-zero gradients for improved smoothing. Relative total variation (RTV)
(Xu et al., 2012) separates texture and structure via relative variation. Various prior-guided itera-
tive methods have emerged. Locally adaptive models (Farbman et al., 2008a) and truncated Huber
penalties (Li & Li, 2023) offer greater control over smoothing behavior. However, these methods
still face challenges in balancing multi-scale texture smoothing and edge preservation, leading to the
suffering from gradient reversal and halo artifacts.

Learning Based Methods. These approaches utilize neural networks for filtering that are typically
categorized into two main types: supervised and unsupervised methods. Supervised models relied
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Figure 2: Main workflow of our proposed technique. (a) Main architecture of the Residual Pyramid
Atrous Filtering Network (RPAFNet). (b) Structure of LDSC module, (c) Structure of CTUM mod-
ule, (d) TransBlock module, (e) Structure of DRL module.

on ground truth data, such as attention-aware filters (Zhong et al., 2023b) and fully convolutional
networks with large receptive fields (Chen et al., 2017b). E2H (Feng et al., 2021) improves results
by jointly performing edge detection and structure-preserving smoothing using a tailored total vari-
ation loss. To reduce dependence on paired datasets, unsupervised methods emerged. Deep image
prior (Ulyanov et al., 2018) uses randomly initialized networks as implicit priors. Later methods
introduced input-dependent loss functions: bilateral texture loss in iterative networks (Jiang et al.,
2024), weighted least squares in Deepwls (Yang et al., 2024c), and truncated norm-based regulariza-
tion (Yang et al., 2024a). Despite progress, existing filtering networks lack modules for effectively
extracting multi-scale texture features, limiting their effectiveness in capturing long-range depen-
dencies.

3 METHODOLOGY

Problem Description. Given an input texture image g, and ground-truth x, we can consider the
texture image to consist of image x and texture layer image T , denoted as

g = x+ T. (1)

We aim to obtain the smoothed image u via the proposed network with the input texture image g,
denoted as:

u = fθ(g). (2)

fθ is the proposed residual pyramid atrous filtering network. However, image smoothing faces the
big challenge in handling multi-scale textures. Motivated by the well-known dilated convolution
(Chen et al., 2017a), we introduce a residual pyramid atrous filtering network to address this issue.
To make our network capable of capturing long-range dependencies, we propose a lightweight di-
lated spatial convolution module to expand the receptive field in the encoder. To enrich the different
levels of feature space for reconstruction, we introduce a difference residual layer module. The de-
tailed architecture of the proposed residual pyramid atrous filtering network is shown in Figure 2.
The following section introduces our designed network.

3.1 RESIDUAL PYRAMID ATROUS FILTERING NETWORK

To address the challenges posed by complex multi-scale textures, we propose a novel residual pyra-
mid atrous filtering network, shown in Figure 2(a). RPAFNet utilizes an U-shaped architecture with
a lightweight dilated spatial convolution module for encoding and a convolution transformer up-
sampling module for decoding. Skip connections between encoder and decoder layers are enhanced
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using a difference residual layer to enrich the feature space. Downsampling is performed via the
Interp module, which is a bilinear interpolation operator, progressively reducing feature size by a
factor of 0.8. Upsampling in CTUM uses a 3 × 3 convolution layer, BatchNorm, and ReLU acti-
vation. LDSC module process features from the Interp module. Output features of LDSC undergo
delta residual processing via the DRL module, which applies a subtraction operation and a L2Norm
to refine details.

Lightweight dilated spatial convolution module. This model is designed for efficient feature ex-
traction and enhanced texture awareness, as shown in Figure 2(b). The LDSC module is built based
on the atrous convolution (Chen et al., 2017a), we leverage the dilated convolution (Yu & Koltun,
2016) as its unit convolution operator, as shown in Figure 2(b). This module consists of convo-
lutional layers with varying dilation rates and scales, which is different from multi-scale dilated
convolution in (Wang et al., 2019a). The LDSC module is simpler and lighter since it removes the
BatchNorm and activation layers from these modules in (Chen et al., 2017a; Yu & Koltun, 2016;
Wang et al., 2019a). The main differences lie in the use of 3 × 3 convolutional layers with dilation
rates of 1, 2, and 4, followed by a concatenation operator and a 1×1 convolutional layer to unify the
feature dimensions. Notably, the 3×3 convolutional layers with different dilation rates facilitate the
extraction of features at different scales. This architecture allows the model to integrate multi-scale
textural information.

Convolution transformer upsampling module. We propose the CTUM module to better handle
image details. As shown in Figure 2(c), it processes features through two branches: a convolutional
path and a Transformer path. The convolutional path uses two 3×3 convolutional layers with ReLU
to extract local features. The Transformer path includes a TransBlock (Zhong et al., 2023b)(Figure
2(d)) made up of Layer Normalization (LN), Efficient Attention (EffAtten) (Shen et al., 2021), and a
Multi-Layer Perceptron (MLP), along with skip connections to reduce overfitting. After both paths,
features are refined using a 1× 1 convolution and an upsampling module.

Difference residual layer module. This module extracts the features’ differences from the previous
layer and the skip layer, the architecture of which is shown in Figure 2(e). The difference map is
passed to an L2Norm layer, which refers to the L2-norm normalization of input features. The DRL
module is designed to compensate for structural information during the decoding stage, thereby
reducing the loss of edges and dominant structures.

Figure 3: Pipeline of gradient error low-rank representation. The error map is the gradient error
from the GT and output. And then employing a low-rank approximation on the error map suppresses
textures.

3.2 GRADIENT ERROR LOW-RANK REPRESENTATION

To construct high-quality smoothed images, it needs to effectively filter textures and preserve edges.
We aim to recover a smooth image u from the textured image g. Ideally, u is infinitely closer to x.
Motivated by the merit of total variation L1 regularization (Rudin et al., 1992; Li et al., 2025; Liu
et al., 2024b) in edge preserving, we utilize ||∇u||1 regularization term to overcome the oversmooth-
ing issue. To effectively suppress textures, we observe that low-rank approximation performs well
in removing textures, which is inspired by low-rank approximation applied in denoising tasks, as
shown in Figure 3. Therefore, we introduce a gradient error low-rank representation (GELR) model
for integrated into the RPAFNet. It is worth noting that the gradient error is from between u and x.
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In a nutshell, the proposed gradient error low-rank representation model has two items, wirtten as

min
u

α||∇u||1 + β||∇u−∇x||r, s.t. g = u+ T. (3)

α, β are positive penalty parameters. The second item is the low-rank approximation representation
of the gradient error. r is the selected rank in approximating the gradient error map. In this study,
we can adjust values of α and β to balance texture filtering and edge preservation.

To solve model equation 3, we introduce the auxiliary variables ∇u = d and ∇u − ∇x = t. The
original problem equation 3 becomes

min
d,t

α||d||1 + β||t||r, s.t. g = u+ T, ∇u = d, ∇u−∇x = t. (4)

To address the proposed model effectively, we first introduce a key definition and a fundamental
theorem.

Definition 3.1 (Truncated Nuclear Norm (Chen et al., 2024)). Given a matrix Z ∈ Rm×n, the
truncated nuclear norm ||Z||r is defined as:

||Z||r =

min{m,n}∑
i=r+1

σi(Z), (5)

where r = ⌊θmin(m,n)⌋, ⌊·⌋ denotes the largest integer that is less than or equal to input value. θ
is the truncated rate, σi denotes the singular values.

The truncated nuclear norm cannot be solved directly due to its non-convexity. Based on the analysis
in (Xue et al., 2019), assuming that Z has a singular value decomposition Z = UΣV T , where
U = (u1, · · · , um) ∈ Rm×m, Σ ∈ Rm×n, and V = (v1, · · · , vn) ∈ Rn×n. Therefore, the
trunctated nuclear norm can become

||Z||r = ||Z||∗ −max
[
Tr(AZBt)

]
, s.t. AAT = I, BBT = I. (6)

A = (u1, · · · , ur)
T ∈ Rr×m and B = (v1, · · · , vr)T ∈ Rr×n. I ∈ Rr×r denotes the unit matrix.

Tr(·) is the trace. We present the detailed derivation process in appendix A.1.

Theorem 3.2. (Xue et al., 2019) For any given matrix Q ∈ Rm×n with rank r. Then, the following
problem has a unique closed-form solution, denoted as:

Z∗ = argmin
Z

µ||Z||∗ +
1

2
||Z −Q||22. (7)

It takes the form
Z∗ = SVTµ,r(Q) ∈ Rm×n, (8)

where SVTµ,r(·) is defined by

SVTµ,r(Q) = Udiag([max(σ − µ, 0)])V T , (9)

where U ∈ Rm×r, V ∈ Rr×n, and σ = (σ1, σ2, σ3, · · · , σr)
T ∈ Rr, which are obtained via the

Singular Value Decomposition of Q. That means Q = Udiag(σ)V T . The detailed proof, see (Xue
et al., 2019).

3.3 OPTIMIZATION ALGORITHM

In this work, we use an alternating direction method of multipliers (ADMM) to solve the proposed
model equation 4. The corresponding augmented Lagrange function is written as:

L(u, d, t, ηd, ηt, T ) =
1

2
||g − u− T ||22 + α||d||1 +

ρ1
2
||∇u− d+ ηd||22

+ β||t||r +
ρ2
2
||∇u−∇x− t+ ηt||22,

(10)

where ηd and ηt are Lagrange multipliers, ρ1, ρ2 are Lagrange parameters. We split objective
function equation 10 into the following subproblems, which means solving model equation 4 is
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equivalent to solving equation 10 via iterative scheme. The all subproblems are listed as follows:

uk+1 = argminu ||g − u− T k||22 +
ρ1

2 ||∇u− dk + ηkd ||22 +
ρ2

2 ||∇u−∇x− tk + ηkt ||22,
dk+1 = argmind α||d||1 +

ρ1

2 ||∇uk+1 − d+ ηkd ||22,
tk+1 = argmint β||t||r +

ρ2

2 ||∇uk+1 −∇x− t+ ηkt ||22,
ηk+1
d = ηkd + (∇uk+1 − dk+1),

ηk+1
t = ηkt + (∇uk+1 −∇x− tk+1),

T k+1 = g − uk+1,
(11)

where k denotes the iteration number. Each subproblem is discussed in appendix A.2.

To ensure our designed network to learning texture and edge features, we utilize the proposed model
to dynamically constrain RPAFNet training. Therefore, for solving the u-subproblem,

uk+1 = argmin
u

||g − u− T k||22 +
ρ1
2
||∇u− dk + ηkd ||22 +

ρ2
2
||∇u−∇x− tk + ηkt ||22. (12)

We exploit the output of the proposed neural network to update u, meaning that uk+1 = fθ(g). It is
evident that equation 12 can be rewritten as a loss function, denoted as

L1 = ||g − fθ(g)− T k||22 +
ρ1
2
||∇fθ(g)− dk + ηkd ||22 +

ρ2
2
||∇fθ(g)−∇x− tk + ηkt ||22, (13)

where fθ represent the proposed neural network. L1 is one part of our total loss function, we also
take the L2 loss, which is written as

L2 = ||fθ(g)− x||22 + SSIM(fθ(g), x), (14)

where the SSIM is the structural similarity index. The total loss function is

L = λ1L1 + λ2L2. (15)

λ1 and λ2 are two positive constants. The dynamic iterative strategy for constraining RPAFNet to
training ensures the flexibility of our network’s smoothing strength. The solution to each subprob-
lem, computational complexity, and detailed global convergence proof of the non-convex optimiza-
tion algorithm are presented in appendix A.4.

4 EXPERIMENTS

4.1 SETTINGS AND DATASETS

Setings. The proposed RPAFNet was driven to training via the proposed low-rank representation
model, whose loss function is defined in equation 15 with λ1 = 0.7, λ2 = 0.3. Initially, parameters
α, β are experimentally set to 0.4, 0.6, respectively. While ρ1, ρ2 are assigned to 1 theoretically.
Input images are resized into 512 × 512. We set the epoch number as 200, and batchsize is set to
4. The RPAFNet is updated via Adam optimizer with a learning rate 0.001. All experiments are
conducted using PyTorch on a Ubuntu 20.04 server with two RTX 4090 GPUs. Our code will be
available on github.

Datasets. We utilize the SPS (Feng et al., 2021) dataset to train RPAFNet, and compare performance
on NKS(Xu et al., 2020) and ECS (Qi et al., 2024) datasets, which all have paired ground-truth
smoothed images. Smoothing performance was assessed using PSNR and SSIM across the three
datasets. We also utilized no-reference metrics: BRISQE (Mittal et al., 2012a), NIQE (Mittal et al.,
2012b), PIQE (Venkatanath et al., 2015), ILNIQE (Zhang et al., 2015), and BLIINDS2 (Saad et al.,
2012) to further evaluate performance for test images without paired ground-truth.

4.2 RESULTS ANALYSIS

We present a comparative analysis against state-of-the-art filtering techniques, including ILS (Liu
et al., 2020a), L0 (Xu et al., 2011), L0L1 (Yang et al., 2022a), L1E (Yang et al., 2022b), PTF (Zhang
et al., 2023), QWLS (Liu et al., 2024a), SEMF (Huang et al., 2023), WLS (Farbman et al., 2008b),
CSGIS (Wang et al., 2022), E2H (Feng et al., 2021), Deepwls (Yang et al., 2024c), NTNN (Zhu
et al., 2024), S2DGNet (Qi et al., 2024), and WTL1 (Yang et al., 2024b). For non-deep traditional
methods, hyperparameters are configured according to the settings reported in their original papers

6
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(a) Input (b) Deepwls (c) NTNN (d) S2DGNet (e) WTL1 (f) Ours

Figure 4: Image filtering for competing approaches. Results of (a) input images, (b) Deepwls, (c)
NTNN, (d) S2DGNet, (e) WTL1, (f) Ours, respectively. It is evident that the proposed model obtains
the best visual effects.

and tuned to enhance performance. We utilize pre-trained models released by authors for deep
learning-based approaches.

Figure 4 and Table 1 show results of different methods on three real-world images. RPAFNet out-
performs current state-of-the-art methods in removing textures while preserving edges. In the first
row of Figure 4, Deepwls, NTNN, and WTL1 fail to remove textures effectively. S2DGNet per-
forms better, but our method produces the best visual results. In the second and third rows, Deepwls
over-smooths the images, and NTNN fails in these two cases. S2DGNet and WTL1 also struggle
to preserve edges. In contrast, our method achieves both effective smoothing and structure preser-
vation. Table 1 reports four no-reference quality metrics, where RPAFNet consistently achieves the
top scores.

Table 1: No-reference metric values on Figure 4.

Methods BRISQUE ↓ NIQE ↓ PIQE ↓ ILNIQE ↓ Mean ↓
L0L1 (2022) 60.899 7.916 75.196 58.167 50.545
PTF (2023) 40.235 6.128 72.312 27.167 36.461

QWLS (2024) 44.581 5.448 81.209 35.500 41.685
CSGIS (2022) 28.528 4.694 46.798 14.333 23.588

E2H (2021) 31.587 4.530 64.916 28.333 32.342
Deepwls (2023) 51.011 5.057 82.439 31.833 42.585
NTNN (2024) 43.225 5.021 80.325 42.000 42.643
WTL1 (2024) 50.419 7.583 81.208 52.667 47.969

Ours 19.725 4.491 46.768 12.333 20.829

To demonstrate RPAFNet strong edge-preservation ability, we present enlarged areas and their cor-
responding 1D smoothed signals in Figure 5. The blue line represents the input signal, and the red
line shows the smoothed result. Key areas are highlighted with red arrows. CSGIS and E2H fail
to remove textures cleanly. Deepwls, NTNN, and WTL1 overly filter edges, as seen in the peaks
marked by the first arrows. S2DGNet performs reasonably well but introduces staircase artifacts. In
contrast, our method effectively removes textures while preserving sharp and clean edges.

4.3 ABLATION STUDY

LDSC module. To evaluate the effectiveness of the LDSC module in handling multi-scale textures,
we perform an ablation study, as shown in Figure 6. Without the LDSC module, the baseline net-
work struggles to remove multi-scale textures as shwon in Figure 6(b). It still contains noticeable

7
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Figure 5: Texture removal comparisons. (a) The input image, results of (b) CSGIS, (c) E2H, (d)
Deepwls, (e) NTNN, (f) S2DGNet, (g) WTL1, and (h) Ours.The right-bottom part of each image is
the 1D signal smoothed result corresponding to the yellow line in the green marked box. The blue
line is the input 1D signal, while the red is the smoothed result. We note that our method has a
better-smoothed output than other techniques. Meanwhile, the proposed model keeps better edges.

(a) Input (b) w/o (c) w/ (Ours)

Figure 6: Ablation study on the LDSC module. (a) The input image, (b) w/o denotes the baseline
network without LDSC module, while (c) w/ denotes our full network. The significant effects of
the LDSC module on textures can be seen in these enlarged areas.

Table 2: No-reference metrics on the LDSC module ablation study.

Methods Metrics BRISQUE ↓ PIQE ↓ ILNIQE ↓
Baseline w/o 29.786 45.096 21.000

Ours w/ 27.086 35.568 17.500

textures, referring to highlighted and enlarged regions. In contrast, RPAFNet successfully removes
these textures, as illustrated in Figure 6(c). Meanwhile, Table 2 reports no-reference quality met-
rics corresponding to this ablation study. Both the visual results and metric values demonstrate the
LDSC module effectiveness in smoothing multi-scale textures.

DRL module. We conduct an ablation study to validate the capability of the DRL module in enrich-
ing the feature space for reconstruction, as shown in Figure 7. The output from RPANet retains more
fine details than that of the baseline network, achieving a PSNR of 27.43 and an SSIM of 0.9065.
Both the visual results and quantitative metrics indicate that the DRL module enhances the feature
space, allowing for the preservation of more content.
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(a) Input (PSNR/SSIM) (b) GT (c) w/o (25.25/0.8529) (d) Ours (27.43/0.9065)

Figure 7: Ablation experiments for the DRL module. (a) Input (b) GT, (c) w/o denotes smoothed
result of removing DRL module in the proposed network, (d) smoothed image of RPANet. Full
network obtains the best index values and visual effects.

Table 3: No-reference metrics on loss functions ablation study.

Methods Metrics BRISQUE ↓ PIQE ↓ BLIINDS2 ↑
Baseline λ1 = 0 30.457 44.326 33.963
RPAFNet λ1 ̸= 0 21.172 37.514 52.748

Parameters λ1, λ2 and α, β. We have confirmed the parameters’ impact on smoothing performance
by ablation studies. Experimental results of λ1 = 0 have been reported in Table 3. The L1 loss
is optimized iteratively using the ADMM algorithm, whereas L2 is directly optimized within an
end-to-end framework. Thus, evaluating L1 also implicitly assesses the impact of the optimization
algorithm, whose corresponding visual comparison and different values of λ1, λ2 have been shown
in appendix B. To confirm the values of α, β, we have conducted a series of experiments for each
of them from 0.1 to 1.0. Quantitative numerical results are shown in Table 4.

Table 4: Quantitative results of different values for α, β.

(α, β) (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6) (0.5,0.5)
BRISQUE↓ 49.761 45.746 35.075 27.448 29.539

NIQE ↓ 7.593 6.219 5.827 4.692 5.146
(α, β) (0.6,0.4) (0.7,0.3) (0.8,0.2) (0.9,0.1) (1.0,0)

BRISQUE↓ 30.471 35.841 38.775 41.577 45.381
NIQE↓ 4.922 5.792 6.933 7.891 10.273

CTUM module. CTUM module enables the fusion of both local and global representations, thereby
enriching the feature space. We conduct an ablation study to confirm its reconstruction performance
in the deconder stage, as shown in appendix B. The best index values demonstrate that the CTUM
module effectively preserves image fines.

5 CONCLUSIONS AND LIMITATTIONS

This work introduces a novel smoothing network with integrates gradient error low-rank represen-
tation, named the residual pyramid atrous filtering network (RPAFNet). The LDSC module serves
as a tool for effectively extracting multi-scale texture features. The proposed DRL module enhances
the reconstruction feature space to enable RPAFNet to keep essensail fines. We introduce a novel
non-convex gradient error low-rank representation model for dynamically constraining RPAFNet to
learning discrimination between textures and edges. The solution of the proposed model is supported
by a complete theoretical guarantee with the ADMM algorithm. Extensive experiments, including
smoothing and downstream applications, demonstrate that RPAFNet outperforms state-of-the-art
approaches in mitigating JPEG compression blocks, gradient reversal, and halos. Whether deep
learning or non-deep learning filtering techniques, RPAFNet consistently achieves a superior bal-
ance between filtering multi-scale textures and edge preservation.

Limitations. Supervised deep learning-based filtering techniques, including our RPAFNet, have
a common limitation: their performance upper is limited by training pairs. A promising direction
for future work would be to design a self-supervised framework for filtering multi-scale textures.
Meanwhile, although our RPAFNet achieves superior performance in handling multi-scale textures,
it has constraints when dealing with low contrast textures, which means texture color close to that
of the background. Exploring the potential of different color space types’ impact could provide
valuable insights into achieving more effective texture filtering while maintaining edges.

9
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Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized minimization
for nonconvex and nonsmooth problems. Mathematical Programming, 146(1):459–494, 2014.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):
834–848, 2017a.

Peng Chen, Fang Li, Deliang Wei, and Changhong Lu. Low-rank and deep plug-and-play priors for
missing traffic data imputation. IEEE Transactions on Intelligent Transportation Systems, 2024.

Qifeng Chen, Jia Xu, and Vladlen Koltun. Fast image processing with fully-convolutional networks.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 2497–2506, 2017b.

Hojin Cho, Hyunjoon Lee, Henry Kang, and Seungyong Lee. Bilateral texture filtering. ACM
Transactions on Graphics (TOG), 33:1 – 8, 2014.

Zeev Farbman, Raanan Fattal, Dani Lischinski, and Richard Szeliski. Edge-preserving decompo-
sitions for multi-scale tone and detail manipulation. ACM transactions on graphics, 27(3):1–10,
2008a.

Zeev Farbman, Raanan Fattal, Dani Lischinski, and Richard Szeliski. Edge-preserving decomposi-
tions for multi-scale tone and detail manipulation. ACM transactions on graphics (TOG), 27(3):
1–10, 2008b.

Yidan Feng, Sen Deng, Xuefeng Yan, Xin Yang, Mingqiang Wei, and Ligang Liu. Easy2hard:
Learning to solve the intractables from a synthetic dataset for structure-preserving image smooth-
ing. IEEE Transactions on Neural Networks and Learning Systems, 33(12):7223–7236, 2021.

Ruturaj G Gavaskar and Kunal N Chaudhury. Fast adaptive bilateral filtering. IEEE transactions on
Image Processing, 28(2):779–790, 2018.

Vladimir Gudkov and Ilia Moiseev. Image smoothing algorithm based on gradient analysis. In
2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology
(USBEREIT), pp. 403–406, 2020.

Xiaojie Guo, Yu Li, Jiayi Ma, and Haibin Ling. Mutually guided image filtering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 42(3):694–707, 2018.

Lei He, Zhaohui Jiang, Yongfang Xie, and Zhipeng Chen. Structure-preserving texture smoothing
with scale-aware intensity aggregation structure measurement. Digital Signal Processing, 136:
103991, 2023.

Ruizhi Hou and Fang Li. Hyperspectral image denoising via cooperated self-supervised cnn trans-
form and nonconvex regularization. Neurocomputing, 616:128912, 2025.

Yao Hu, Debing Zhang, Jieping Ye, Xuelong Li, and Xiaofei He. Fast and accurate matrix com-
pletion via truncated nuclear norm regularization. IEEE transactions on pattern analysis and
machine intelligence, 35(9):2117–2130, 2012.

Junqing Huang, Haihui Wang, Xuechao Wang, and Michael Ruzhansky. Semi-sparsity for smooth-
ing filters. IEEE Transactions on Image Processing, 32:1627–1639, 2023.

Lixi Jiang, Xujie Li, and Yandan Wang. Iterative unsupervised deep bilateral texture filtering. The
Visual Computer, 40(5):3055–3067, 2024.

Fang Li and Tingting Li. A truncated generalized huber prior for image smoothing. Applied Math-
ematical Modelling, 123:332–347, 2023.

Yuemei Li, Guojia Hou, Peixian Zhuang, and Zhenkuan Pan. Dual high-order total variation model
for underwater image restoration. IEEE Transactions on Multimedia, 2025.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wei Liu, Pingping Zhang, Xiaolin Huang, Jie Yang, Chunhua Shen, and Ian Reid. Real-time image
smoothing via iterative least squares. ACM Transactions on Graphics (TOG), 39(3):1–24, 2020a.

Wei Liu, Pingping Zhang, Hongxing Qin, Xiaolin Huang, Jie Yang, and Michael Ng. Fast global
image smoothing via quasi weighted least squares. International Journal of Computer Vision, pp.
1–30, 2024a.

Xingye Liu, Fen Lyu, Li Chen, Chao Li, Shaohuan Zu, and Benfeng Wang. Seismic random noise
suppression based on deep image prior and total variation. IEEE Transactions on Geoscience and
Remote Sensing, 62:1–11, 2024b.

Yang Liu, Guangda Liu, Hongliang Liu, and Changying Liu. Structure-aware texture filtering based
on local histogram operator. IEEE Access, 8:43838–43849, 2020b.

Jianwu Long, Shuang Chen, Kaixin Zhang, Yuanqin Liu, Qi Luo, and Yuten Chen. Global sparse
texture filtering for edge preservation and structural extraction. Computers & Graphics, 128:
104213, 2025.

Kaiyue Lu, Shaodi You, and Nick Barnes. Deep texture and structure aware filtering network for
image smoothing. In Proceedings of the European conference on computer vision (ECCV), pp.
217–233, 2018.

Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality assess-
ment in the spatial domain. IEEE Transactions on Image Processing, 21(12):4695–4708, 2012a.

Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a completely blind image quality
analyzer. IEEE Signal processing letters, 20(3):209–212, 2012b.
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THE USE OF LARGE LANGUAGE MODELS

We declare that we just used the large language models to improve sentences and polish in this
manuscript.

SUMMARY

This technical appendix offers a comprehensive theoretical analysis of our model, including a de-
tailed examination of its convergence properties. Additionally, it presents both visual and numerical
results for smoothing downstream tasks. The structure of this appendix is organized as follows.
Section A presents a mathematical analysis of the proposed non-convex problem, which includes
the derivation process of the truncated nuclear norm and numerical solution to the gradient error
prior model. Meanwhile, we also analyze the convergence of the proposed optimization algorithm.
Section B shows additional ablation study experimental results. Section C provides analysis of three
additional application experimental results, including details manipulation, image stylization, and
artifacts filtering.

A THEORETICAL ANALYSIS OF GELR MODEL

This section mainly presents the mathematical analysis on the truncated nuclear norm, solution to
the non-convex optimization problem, and convergence analysis of our optimization algorithm.

A.1 DERIVATION OF TRUNCATED NUCLEAR NORM

First of all, we review the proposed non-convex optimization problem, which is denoted as:

min
d,t

α||d||1 + β||t||r,

s.t. g = u+ T, ∇u = d, ∇u−∇x = t.
(16)

To better analyze the proposed non-convex problem, we separate the low-rank prior terms for de-
tailed analysis, denoted as:

min
t

β||t||r,

s.t. ∇u−∇x = t.
(17)

Since ||t||r is non-convex, it is not easy to solve directly, then we have the following theorem (Hu
et al., 2012).

Theorem A.1 ((Hu et al., 2012)). For any given matrix X ∈ Rm×n, any matrices A ∈ Rr×m,
B ∈ Rr×n. Such that AAT = Ir×r, BBT = Ir×r. For any nonnegative integer r (r ≤ min(m,n)),
we have

Tr(AXBT ) ≤
r∑

i=1

σi(X).

Therefore, for the proposed model, let X = t, and then the detailed proof is as follows.

Proof. By the Von Neumann’s trace inequality, we can have

Tr(AtBT ) = Tr(tBTA) ≤
min(m,n)∑

i=1

σi(t)σi(B
TA), (18)

where σ1(t) ≥ · · · ≥ σmin(m,n)(t) ≥ 0. Since rank(A) = r and rank(B) = r, then
rank(BTA) = s ≤ r. For i ≤ s, we can get σi(B

TA) ≥ 0. σ2
i (B

TA) is the i-th
eigenvalue of BTAATB = BTB, which is also the eigenvalue of BBT = Ir×r. Therefore,

14
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σi(B
TA) = 1,∀i ≥ s, and others are 0. Thereby, we can get the follows:

min(m,n)∑
i=1

σi(t)σi(B
TA)

=

s∑
i=1

σi(t)σi(B
TA) +

min(m,n)∑
i=s+1

σi(t)σi(B
TA)

=

s∑
i=1

σi(t) · 1 +
min(m,n)∑
i=s+1

σi(t) · 0

=

s∑
i=1

σi(t).

(19)

Since s ≤ r and σi(t) ≥ 0, we have
s∑

i=1

σi(t) ≤
r∑

i=1

σi(t). (20)

Combining equation 18 and equation 19, we can get

Tr(AtBT ) ≤
s∑

i=1

σi(t) ≤
r∑

i=1

σi(t). (21)

Assuming that t has its singular value decomposition t = UΣV T , where U = (u1, · · · , um) ∈
Rm×m, Σ ∈ Rm×n, and V = (v1, · · · , vn) ∈ Rn×n. And when A = (u1, · · · , ur)

T and B =
(v1, · · · , vr)T , we have:

Tr(AtBT ) = Tr((u1, u2, u3, · · · , ur)
T t(v1, v2, v3, · · · , vr))

= Tr((u1, u2, u3, · · · , ur)
TUΣV T (v1, v2, v3, · · · , vr))

= Tr(((u1, u2, u3, · · · , ur)
TU)Σ(V T (v1, v2, v3, · · · , vr)))

= Tr(
(
Ir 0
0 0

)
Σ

(
Ir 0
0 0

)
)

= Tr(diag(σi(t), · · · , σi(t), 0, · · · , 0))

=

r∑
i=1

σi(t)

(22)

Combining equation 21 and equation 22, we can get

max
AAT=I,BBT=I

Tr(AtBT ) =

r∑
i=1

σi(t). (23)

Then

||t||∗ − max
AAT=I,BBT=I

Tr(AtBT )

=

min(m,n)∑
i=1

σi(t)−
r∑

i=1

σi(t) =

min(m,n)∑
i=r+1

σi(t)

= ||t||r.

(24)

■

In summary, the non-convex optimization problem equation 17 can be rewritten as

argmin
t
||t||∗ − max

AAT=I,BBT=I
Tr(AtBT )

s.t. ∇u−∇x = t.
(25)
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The above problem is the same as Eq.(5) of the main manuscript. Then

argmin
t

||t||∗ − max
AAT=I,BBT=I

Tr(AtBT )

+
ρ

2
||t− (∇u−∇x+ ηt)||22,

(26)

where ρ is the balance positive constant, ηt is the Lagrange multiplier. According to (Zhu et al.,
2024), we can get the concise form of equation 26, denoted as

argmin
t

||t||∗ +
ρ

2
||t− (∇u−∇x+ ηt −ATB)||22, (27)

Therefore, we can use Theorem 3.2 to solve the non-convex optimization problem equation 27.

A.2 NUMERICAL SOLUTION TO GELR MODEL

The proposed gradient error prior model can be expressed as the form in equation 16, we use the
alternating direction method of multipliers (ADMM) to solve it. The corresponding augmented
Lagrange function can be splited into subproblems, denoted as follows:

uk+1 = argminu ||g − u− T k||22 +
ρ1

2 ||∇u− dk + ηkd ||22 +
ρ2

2 ||∇u−∇x− tk + ηkt ||22,
dk+1 = argmind α||d||1 +

ρ1

2 ||∇uk+1 − d+ ηkd ||22,
tk+1 = argmint β||t||r +

ρ2

2 ||∇uk+1 −∇x− t+ ηkt ||22,
ηk+1
d = ηkd + (∇uk+1 − dk+1),

ηk+1
t = ηkt + (∇uk+1 −∇x− tk+1),

T k+1 = g − uk+1,
(28)

where k denotes the iteration number. Each subproblem are discussed as follows.

Update uk+1 by

uk+1 = argmin
u

||g − u− T k||22 +
ρ1
2
||∇u− dk + ηkd ||22

+
ρ2
2
||∇u−∇x− tk + ηkt ||22.

(29)

It is obvious that this subproblem has a closed-solution, and its first-order optimal condition is

T k − g − ρ1∇T (dk − ηkd)− ρ2∇T (∇x+ tk − ηkt )

+ (1 + ρ1∇T∇+ ρ2∇T∇)u = 0.
(30)

Then, we have

g − T k + ρ1∇T (dk − ηkd) + ρ2∇T (∇x+ tk − ηkt )

= (1 + ρ1∇T∇+ ρ2∇T∇)u.
(31)

According to the Fourier convolution theorem, we conduct Fourier transform on equation 31 and
obtain

uk+1 = F−1

(
F(g − T k) + ρ1F(∇T (dk − ηkd))

F(1) + (ρ1 + ρ2)F(∇T∇)

)
+ F−1

(
ρ2F(∇T (∇x+ tk − ηkt ))

F(1) + (ρ1 + ρ2)F(∇T∇)

)
.

(32)
F and F−1 denote fast Fourier transform and inverse fast Fourier transform respectively.

Update dk+1 by

dk+1 = argmin
d

α||d||1 +
ρ1
2
||∇uk+1 − d+ ηkd ||22, (33)

The subproblem of those can be solved via the soft-thresholding skrinkage, denoted as

dk+1 = shrink(∇uk+1 + ηkd ,
1

ρ1
). (34)
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Algorithm 1 GELR-ADMM

Input: Image g, x, α β, ρ1, ρ2, θ, K.
Initialization: T 0, t0, d0, η0t , η

0
d = 0, u0 = g.

1: for k = 1 : K do
2: Update uk+1 via Eq. equation 32;
3: Update dk+1 by Eq. equation 34;
4: Update tk+1 via Eq. equation 40;
5: Update ηk+1

d and ηk+1
t via Eq. equation 41;

6: Update T k+1 by Eq. equation 42;
7: end for

Output: u.

shrink function is

shrink(∇uk+1 + ηkd ,
1

ρ1
) =

sign(∇uk+1 + ηkd) ·max(|∇uk+1 + ηkd | −
1

ρ1
, 0),

(35)

where sign(·) is the Signum function.

Update tk+1 by
tk+1 = argmin

t
β||t||r +

ρ2
2
||∇uk+1 −∇x− t+ ηkt ||22, (36)

according to the descriptions of Definition 3.1 and Theomery 3.2, we can solve problem equation 36
via SVTµ,r. Therefore, t−subproblem can be rewritten as

tk+1 = argmin
t

β

ρ2
||t||∗ +

1

2
||t− [∇uk+1 −∇x− t− β

ρ2
ATB + ηkt ]||22, (37)

where A and B are obtained by the singular value decomposition of matrix t. Let Q = ∇uk+1 −
∇x− t− β

ρ2
ATB + ηkt , we have

tk+1 = argmin
t

β

ρ2
||t||∗ +

1

2
||t−Q||22. (38)

We have the unique closed-form solution is
tk+1 = SVT β

ρ2
,r(Q). (39)

Then, we have

tk+1 = SVT β
ρ2

,r(Q) = Udiag[max(σ − β

ρ2
, 0)]V T , (40)

where U ∈ Rr×m, V ∈ Rr×n, and σ = (σ1, · · · , σr)
T ∈ Rr are from the Singular Value Decom-

position of Q.

Update ηk+1
d and ηk+1

t by {
ηk+1
d = ηkd + (∇uk+1 − dk+1),

ηk+1
t = ηkt + (∇uk+1 −∇x− tk+1),

(41)

the two Lagrange multipliers can be updated directly.

Update T k+1 by
T k+1 = g − uk+1, (42)

we obtain T k+1 via uk+1. For completeness, the whole scheme for solving the proposed gradient
error prior model with ADMM is shown in Algorithm 1.

Computational Complexity Analysis. According to the proposed optimization algorithm 1, and
given an input image with size of m× n, we can get the computational complexity as follows. The
computational complexity of the fast Fourier transform and inverse fast Fourier transform both are
O(mn log(mn)). The soft-thresholding shrinkage is O(mn), while the truncated nulcear normal
and singular value decomposition are O(mn) and O(mnr), and the other subproblems are O(mn).
Therefore, the whole algorithm 1 has a O(mnr +mn log(mn)) computational complexity.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.3 SOLUTION TO GELR WITH NETWORK

First of all, we review the u-subproblem, denoted as:

uk+1 = argmin
u

||g − u− T k||22 +
ρ1
2
||∇u− dk + ηkd ||22 +

ρ2
2
||∇u−∇x− tk + ηkt ||22. (43)

To enable the model to handle multi-scale textures while giving the network better capability of
adjusting smooth intensity, we consider u-subproblem as a loss function, which drives the proposed
network to update and optimize parameters. And we can get uk+1 from trained neural network.
Therefore, let uk+1 = fθ(g). Other subproblems would have slight changes, discussed as follows.

Update dk+1 by the soft-thresholding skrinkage, denoted as

dk+1 = shrink(∇fθ(g) + ηkd ,
1

ρ1
). (44)

Update tk+1 by SVTµ,r. Therefore, Let Q = ∇fθ(g)−∇x− t− β
ρ2
ATB + ηkt , we have

tk+1 = argmin
t

β

ρ2
||t||∗ +

1

2
||t−Q||22. (45)

We have the unique closed-form solution is
tk+1 = SVT β

ρ2
,r(Q). (46)

Then, we have

tk+1 = SVT β
ρ2

,r(Q) = Udiag[max(σ − β

ρ2
), 0]V T , (47)

where U ∈ Rr×m, V ∈ Rr×n, and σ = (σ1, · · · , σr)
T ∈ Rr are from the Singular Value Decom-

position of Q.

Update ηk+1
d and ηk+1

t by {
ηk+1
d = ηkd + (∇fθ(g)− dk+1),

ηk+1
t = ηkt + (∇fθ(g)−∇x− tk+1),

(48)

the two Lagrange multipliers can be updated directly.

Update T k+1 by
T k+1 = g − fθ(g), (49)

In summary, the whole scheme for the gradient error prior guided network model is shown in Algo-
rithm 2.

Algorithm 2 GELR with Network-ADMM

Input: Image g, x, α β, ρ1, ρ2, θ, K.
Initialization: T 0, t0, d0, η0t , η

0
d = 0, u0 = g.

1: for k = 1 : K do
2: Update uk+1 via the RPAFNet with adam;
3: Update dk+1 by Eq. equation 44;
4: Update tk+1 via Eq. equation 47;
5: Update ηk+1

d and ηk+1
t via Eq. equation 48;

6: Update T k+1 by Eq. equation 49;
7: end for

Output: u.

Computational Complexity Analysis. Since the algorithmic complexity of the neural network is
related to numbers of parameters and layers, and the update of the neural network depends on the
GPU, it is meaningless to calculate the algorithmic complexity. According to the proposed opti-
mization algorithm 2, and given an input image with size of m × n, we can get the computational
complexity as follows. The soft-thresholding shrinkage is O(mn), while the truncated nulcear nor-
mal and singular value decomposition are O(mn) and O(mnr), and the other subproblems are
O(mn). Therefore, the whole algorithm 2 has a O(mnr) computational complexity.
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A.4 CONVERGENCE ANALYSIS

This section presents the convergence of solving GELR model with designed network. The lemma
on the convergence of ADMM and some essential assumptions are from in (Wang et al., 2019b).

First of all, we provide definitions pertinent to the Lipschitz differentiable. For any function f is
continuous or differentiable on its domain, we can claim that the function f is Lipschitz differen-
tiable if it is differentibale and its gradient is Lipschitz continuous. Additionally, we need define
restricted prox-regularity for regularize objetive functions and an essential Lemma.

Definition A.2 (Restricted Prox-Regularity (Wang et al., 2019b; Hou & Li, 2025)). Given a lower
semi-continuous function f : Rn → R ∪ {∞}, and C ∈ R+, such that

SC := {u ∈ dom(f) : ||d|| > C,∀d ∈ ∂f(u)}. (50)

f is called restricted prox-regular if ∀C > 0 and bounded set P ⊆ dom(f). Then ∃γ > 0, such that

f(g) +
γ

2
||u− g||22 ≥ f(u)+ < d, g − u >,

∀u ∈P\SC , g ∈ P, d ∈ ∂f(u), ||d|| ≤ C.
(51)

Lemma A.3 ((Wang et al., 2019b)). Given the following general optimization problem, denoted as

argmin
Xk,Y

f(X0, X1, · · · , Xp) + h(Y ), s.t.

p∑
k=0

AkXK +BY = C, (52)

where the function f : Rn(p+1)×m → R is proper, continous, and possibly nonsmooth. While the
function h: Rq×m → R is proper and differentiable. f, h can be non-convex. Let (Xt, Y t, Zt) be
a sequence generated by ADMM framework of equation 52. Zt is the dual variable, µ is a psotive
parameter. And Lµ is the corresponding Lagrangian function. Assume that the following conditions
hold:

A1(coercivity). Define the feasible set

F :=
{
(X,Y ) ∈ R(np+q)×m|AX +BY = 0

}
,

the objective function f +h is corecive over this set, that means f(X)+h(Y ) → ∞ if (X,Y ) ∈ F
and ||(X,Y )|| → ∞;

A2(feasibility). Im(A) ⊆ Im(B), where Im(·) returns the image of a matrix;

A3(Lipschitz sub-minimization paths).

(1) For any fixed X , argminY {f(X) + h(Y )|BY = U} has a unique minimizer. H: Im(B) →
Rq×m defined by H(U) := argminY {f(X) + h(Y )|BY = U} is a Lipschitz continuous map.

(2) For k = 0, · · · , p, we denote

X−k := (X0, · · · , (Xk−1, (Xk+1, · · · , (Xp)

and for any fixed X−k, Y ,

argmin
Xk

{f(Xk, X−k) + h(Y )|AkXk = U}

has a unique minimizer, and Fk: Im(Ak) → Rp×m defined by Fk(U) := argminXk
{f(Xk, X−k)+

h(Y )|AkXk = U} is a Lipschitz continuous map.

A4(objective-f regularity). f has the form f(X) = r(X)+
∑p

k=0 fk(Xk), where r(X) is Lipschitz
differentiable with a constant Lr, and f0(X0) is lower semi-continuous, fk(Xk) is restricted prox-
regular for k = 1, · · · , p;

A5(objective-h regularity). h(Y ) is Lipschitz differentiable with a constant Lh;

Specifically, if Lµ is a Kurdyka-Łojasiewicz (KŁ) function, then for any sufficiently large µ,
(Xt, Y t, Zt) converges globally to the unique limit point (X∗, Y ∗, Z∗), which satisfies 0 ∈
Lµ(X

∗, Y ∗, Z∗).
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Upon the Lemma as mentined above, To illustrate the convergence, we need to verify that the itera-
tive framework of our proposed algorithm satisfies the A1-A5 in Lemma A.3 and demonstrates the
KŁ property of our augmented Lagrangian function.

Proof. Suppose u can be directly obtained via u = fθ(g), we rewrite the optimization problem
equation 16, denoted as

argmin
d,t

α

2∑
i=1

||di||1 + β

2∑
i=1

||ti||r,

s.t. g = u+ T, ∇iu = di, ∇iu−∇ix = ti.

(53)

Let d = [d1, d2] and t = [t1, t2], the corresponding augmented Lagrangian function is

L(u, d1,d2, t1, t2, ηd, ηt, T ) =
1

2
||g − u− T ||22 +

1

2
||u− fθ(g)||22 + α

2∑
i=1

||di||1

+
ρ1
2
||∇u− d+ ηd||22 + β

2∑
i=1

||ti||r +
ρ2
2
||∇u−∇x− t+ ηt||22,

(54)

Then, we can consider f(X) as f(X) = α
∑2

i=1 ||di||1, and h(V ) denotes as

h(V ) = β

2∑
i=1

||ti||r +
1

2
||g − u− T ||22 +

1

2
||u− fθ(g)||22,

where X = [d1; d2], and V = [u; t1; t2;T ]. Therefore, we let

A =


−I 0
0 −I
I 0
0 I
0 0

B =


∇1 0 0 0
∇2 0 0 0
0 −I 0 0
0 0 −I 0
I 0 0 I

C =

 0
∇1x
∇2x
g

 .

Suppose the gradient operators ∇1 and ∇2 are with zero boundary condition. Therefore, B has full
column rank. In this condition, we can verify that the assumptions A1-A5 and the KŁ property hold.

The feasible set is F = {(X,V )|AX +BV = C} , when ||(X,V )||2 → +∞, f(X) + h(V ) →
+∞. Thus A1 holds.

Since Im(B) = R3mn, A2 naturally holds.

In section A.3, we have presented the unique solution for each subproblem, and A, B both have full
column rank with trivial null spaces. Then, we can get F and H are linear map operators. Therefore,
for any k1, k2 ∈ N, we have

||Fi(X
k1)− Fi(X

k2)|| ≤ ||Fi||||Xk1 −Xk2 ||,
and

||H(V k1)−H(V k2)|| ≤ ||H||||V k1 − V k2 ||.
Thus A3 holds.

For A4, let r = 0, f0 = 0 and f1 = ||d||1, According to Examples in (Poliquin & Rockafellar,
1996). f1 is pro-regular. Therefore, A4 naturally holds.

For A5, we have

h(V ) = β

2∑
i=1

||ti||r +
1

2
||g − u− T ||22 +

1

2
||u− fθ(g)||22,

thus A5 obviously holds.

For the KŁ property of Lµ, based on the Example 2 in (Bolte et al., 2014), Lµ is a semi-algebratic
and it satisfies the KŁ property.

Since the all conditions A1-A5 hold and Lµ meets the KŁ property, for any sufficiently large penalty
parameters, the iterative sequence (uk, dk1 , d

k
2 , t

k
1 , t

k
2 , η

k
d , η

k
t , T

k) produced via the proposed GELR
model with network converges globally to the unique limit point (u∗, d∗1, d

∗
2, t

∗
1, t

∗
2, η

∗
d, η

∗
t , T

∗) and
it has 0 ∈ ∂Lµ(u

∗, d∗1, d
∗
2, t

∗
1, t

∗
2, η

∗
d, η

∗
t , T

∗). ■
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(a) Input (b) Baseline (c) Ours

Figure 8: Ablation study on loss functions. (a) Input, (b) Baseline means λ1 = 0 in equation 15. (c)
Full total loss.

B ADDITIONAL ABLATION STUDIES

Visual ablattion results of λ1, λ2. Figure 8 presents the ablation results. As shown in Figure
8(b), the baseline struggles to control smoothing intensity, leading to residual textures and over-
smoothed edges. In contrast, Figure 8(c) shows that our GELR model, optimized via ADMM,
effectively adjusts the smoothing level, producing cleaner and more structurally consistent results.
Furthermore, GELR enable RPAFNet to flexibly balance smoothing and detail preservation. We
have reported different values of λ1, λ2 impact on filtering performance in Table 5. The best choice
of λ1, λ2 is 0.7, 0.3.

Table 5: Quantitative results of different values for λ1, λ2.

(λ1, λ2) (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6) (0.5,0.5)
BRISQUE↓ 50.265 48.960 45.045 42.571 39.540

NIQE ↓ 9.472 8.352 7.827 7.012 6.846
(λ1, λ2) (0.6,0.4) (0.7,0.3) (0.8,0.2) (0.9,0.1) (1.0,0)

BRISQUE↓ 34.254 30.041 36.415 40.176 45.251
NIQE↓ 6.512 5.972 6.480 7.091 8.273

CTUM ablation results. It enables the fusion of both local and global representations, thereby
enriching the feature space. This design allows the model to better reconstruct fine details while
maintaining global coherence, resulting in more visually detailed outputs. We have reported quanti-
tative results of the ablation experiment for the CTUM, as shown in Table 6.

Table 6: Quantitative results of ablation study on CTUM module.

Networks Metrics BRISQUE↓ PIQE↓ NIQE ↓
Baseline w/o 28.537 51.698 8.631
RPAFNet w 21.665 30.275 4.307

C APPLICATION EXPERIMENTS

To further illustrate the proposed model’s performance, we utilize three downstream tasks to com-
pare our approach against the state-of-the-art methods, across three smoothing applications, which
include details manipulation, image stylization and clipart compression artifact filtering.

C.1 DETAILS MANIPULATION.

It enhances details by incorporating multiple texture layers, extracted by subtracting the smoothed
image from the original. We present details manipulation results of different SOTA techniques in
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(a) Input (b) L0 (c) L0L1 (d) L1E

(e) NTNN (f) S2DGNet (g) WTL1 (h) Ours

Figure 9: Details Manipulation. (a) The input image. It is enhanced with four details layers via
SOTA methods: (b) L0, (c) L0L1, (d) L1E, (e) NTNN, (f) S2DGNet, (g) WTL1, (h) Ours. The right
green enlarged area denotes the details of smoothed image, and the red-marked enlarged boxes are
corresponding enhanced details. From these marked areas, one can see that our method can reduce
halo artifacts. Meanwhile, it keeps more edges than other algorithms.

Figure 9. The left part of each image is the smoothed image, while the right parts are corresponding
detail enhanced images. Green enlarged areas show details from smoothed results and red enlarged
areas reveal details from enhanced images. L0, L1E and S2DGNet oversmoothed edges in green
marked boxes. L0L1, NTNN, and WTL1 obtained competive edges. However, L0, L0L1, L1E and
WTL1 suffer white halo artifacts, and also NTNN, S2DGNet produce colorful halo artifacts. In
contrast, the proposed model obtains the best visual effect, which reduces significant halo artifacts.

(a) Input (b) WLS (c) L1E (d) Deepwls

(e) NTNN (f) S2DGNet (g) WTL1 (h) Ours

Figure 10: Image stylization. (a) The input image, stylization results of (b) WLS, (c) L1E, (d)
Deepwls, (e) NTNN, (f) S2DGNet, (g) WTL1, (h) Ours. From these marked and enlarged areas,
one can see that our model has significant advantages in the main structures preserving.

C.2 IMAGE STYLIZATION.

This task aims to transform an input image into an image with new style, while preserving the main
contents. This technique can abstract the content of low-contrast areas while preserving the high-
contrast features of images. Stylization results of the comparison approaches are shown in Figure
10. It is worth noting that WLS, L1E, Deepwls, and NTNN can not preserve the high-contrast
edges, leading to oversmoothing. We recommend focusing on these green and red highlighted ar-
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(a) Input (b) Compressed (c) L0L1 (d) L1E (e) CSGIS

(f) NTNN (g) Deepwls (h) S2DGNet (i) WTL1 (j) Ours

Figure 11: Clip-arts JPEG artifacts filtering. (a) Given input image, (b) The compressed image. It is
smoothed by (c) L0L1, (d) L1E, (e) CSGIS, (f)NTNN, (g) Deepwls, (h) S2DGNet, (i) WTL1, and
(j) Ours. Referring to the marked boxes, (c), (d), (f), (g) and (h) suffer from blurred edges. (e) and
(i) filter artifacts uncleanly.

Table 7: PSNR (dB) and SSIM comparison for artifacts filtering.

Methods L0L1 L1E CSGIS Deepwls
PSNR 27.86 20.63 27.03 24.46
SSIM 0.8931 0.8460 0.8912 0.8889

Methods NTNN S2DGNet WTL1 Ours
PSNR 27.88 22.81 24.66 28.67
SSIM 0.8935 0.8640 0.8122 0.9151

eas. S2DGNet and WTL1 obtain competitive performance, while they also can not do the best in
emphasizing high-contrast structures. By contrast, the proposed model has a significant superiority
in structure keeping and obtains the best visual effects over the compared techniques.

C.3 ARTIFACTS FILTERING.

The technique of compression artifacts filtering aims to be employed to eliminate JPEG block arti-
facts when converting clip-art images into JPEG format. When an image is compressed at a low bit
rate using standard JPEG encoding, compression artifacts often manifest along sharp edges, while
staircase artifacts may arise in homogeneous regions. In this study, a 10% compression rate is ap-
plied to the given clip-art image. Figure 11 illustrates the smoothed results obtained from various
SOTA models. It is evident that L1E, Deepwls blur the input image. L0L1, CSGIS, and WTL1 filter
the JPEG blocks uncleanly. Meanwhile, L0L1 and S2DGNet also produce staircase edges. NTNN
and S2DGNet oversmoothed the details of the input image, referring to contents of the green en-
larged boxes. However, the proposed method keeps better edges and details while removing JPEG
block artifacts cleanly. We also show the numerical PSNR and SSIM values corresponding to this
task in Table 7. Our proposed model demonstrates the best performance, achieving the highest
PSNR value of 28.67 and an SSIM value of 0.9151. Whatever the visual effects or quantitative nu-
merical metrics, the proposed model achieves the best performance against other SOTA methods in
the removal of compression artifacts.

C.4 EXPERIMENTS ON PUBLIC DATASETS

We conduct smoothing experiments across on the three public datasets, including SPS (Feng et al.,
2021), NKS (Xu et al., 2020), and ECS (Qi et al., 2024), three above datasets have paired ground-
truth smoothed images. The smoothed images are shown in Figure 12. The first row of images are
from NKS dataset, the second row of images are from SPS dataset, and the last row of images are
from ECS dataset. For these results of NKS dataset, L1E, Deepwls, and WTL1 suffer from blurring
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(a) Input (b) GT (c) L1E (d) Deepwls (e) S2DGNet (f) WTL1 (g) Ours

Figure 12: Image smoothed results across three datasets. (a) The input images, filtered by (c) L1E,
(d) Deepwls, (e) S2DGNet, (f) WTL1, (g) Ours, and corresponding their (b) GT. The first row of
images are from NKS dataset, the second row of images are from SPS dataset, and the last row of
images are from ECS dataset. It is evident that L1E, Deepwls blur output images, while Deepwls,
S2DGNet and WTL1 filter textures uncleanly. In contrast, the proposed model obtain the best visual
effect across three datasets, demonstrated the robustness of our technique.

Table 8: PSNR(dB) and SSIM values across three public datasets.

Methods Datasets
NKS SPS ECS

PSNR SSIM PSNR SSIM PSNR SSIM
L0 (2011) 27.36 0.8932 27.85 0.8826 25.37 0.8539

L0L1 (2022) 25.60 0.8425 26.21 0.8633 24.58 0.7946
L1E (2022) 26.15 0.8651 24.68 0.8295 25.14 0.8021
ILS (2020) 25.98 0.8863 25.57 0.8413 23.25 0.7488

QWLS (2024) 28.27 0.8924 27.57 0.8739 25.16 0.8049
SEMF (2023) 28.46 0.8962 27.71 0.8892 24.75 0.7983
WLS (2008) 23.56 0.8014 24.56 0.8541 22.89 0.8014

CSGIS (2022) 34.50 0.9486 24.56 0.8541 24.90 0.8701
E2H (2021) 34.24 0.9401 31.73 0.9202 26.89 0.8914

Deepwls (2023) 27.63 0.8876 26.55 0.8798 24.87 0.8153
NTNN (2024) 29.89 0.9035 28.57 0.9024 26.49 0.8849

S2DGNet (2024) 33.76 0.9503 32.15 0.9302 30.45 0.9101
WTL1 (2024) 25.43 0.8519 26.47 0.8718 24.76 0.7395

Ours 34.98 0.9575 32.68 0.9382 31.68 0.9286

and over-smooothing to varying degrees. S2DGNet obtains competitive filtering results. For these
ouputs of SPS dataset, the all compared techniques filter textures uncleanly. For these smoothed
images of ECS dataset, It is evident that L1E, Deepwls blur output images, while S2DGNet and
WTL1 over-smoothing details. In contrast, the proposed model obtain the best visual effect across
three datasets, demonstrated the robustness of our technique. The corresponding numerical values
of PSNR and SSIM are presented in Table 8. It is evident that our model achieves the best index in
smoothing on three public datasets.
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