Weaver : Interweaving SQL and LLM for Table Reasoning

Anonymous ACL submission

Abstract

Querying tables with unstructured data is chal-
lenging due to the presence of text (or im-
age), either embedded in the table or in ex-
ternal paragraphs, which traditional SQL strug-
gles to process, especially for tasks requiring
semantic reasoning. While Large Language
Models (LLMs) excel at understanding context,
they face limitations with long input sequences.
Existing approaches that combine SQL and
LLMs typically rely on rigid, predefined work-
flows, limiting their adaptability to complex
queries. To address these issues, we introduce
Weaver , a modular pipeline that dynamically
integrates SQL and LLM:s for table-based ques-
tion answering (TableQA). Weaver generates a
flexible, step-by-step plan that combines SQL
for structured data retrieval with LLMs for se-
mantic processing. By decomposing complex
queries into manageable subtasks, Weaver im-
proves accuracy and generalization. Our ex-
periments show that Weaver consistently out-
performs state-of-the-art methods across four
TableQA datasets, reducing both API calls and
error rates. Code and data publicly available '.

1 Introduction

Tables play a critical role across various domains
such as finance (e.g., transaction records), health-
care (e.g., medical reports), and scientific re-
search. However, many real-world tables are semi-
structured (Gupta et al., 2020a), containing a
combination of structured fields and unstructured
content (such as free-form text or images), which
makes reasoning and information retrieval challeng-
ing. Extracting insights from such data demands
both logical and semantic reasoning. While SQL
and Python-based methods excel in handling struc-
tured data, they fall short in dealing with unstruc-
tured text, missing entries, or implicit inter-column
relationships.

"https: //anonymous. 4open.science/r/weaver-
84DB/

Question: Which Country had the most competitors?

1990 British Grand Prix

Rank Driver Constructor Laps TimeRetired
1 Alain Prost Ferrari 64 1:18:31
2 Thierry Boutsen Williams-Renault 64 39.092
3 Ayrton Senna McLaren-Honda 64 43.088
4 Eric Bernard Lola-Lamborghini 64 401:03:00
5 Nelson Piquet Benetton-Ford 64 1:20:02
6 Aguri Suzuki Lola-Lamborghini 63 1 Lap
7 Alex Caffi Arrows-Ford 63 1 Lap
8 Jean Alesi Tyrrell-Ford 63 1 Lap

Gold Answer: Italy
Figure 1: Table and Question Answer example from WikiTQ
Dataset

Recent advances in Large Language Models
(LLMs) have demonstrated strong capabilities in
natural language understanding and contextual rea-
soning, opening new avenues for complex tasks.
However, LLMs still face key limitations, particu-
larly with long contexts and numerical or temporal
reasoning. For instance, in the WikiTableQues-
tions (Pasupat and Liang, 2015) dataset, the query
"Which country had the most competitors?" Fig-
ure 1 requires inferring the competitors’ countries
from a "driver” column—information not explic-
itly present. While traditional tools like SQL or
Python cannot resolve such gaps, LLMs can lever-
age their pre-trained knowledge to do so. Yet, the
subsequent grouping and counting by country is
something LLMs struggle with but SQL handles
well. Solving such queries effectively requires a
hybrid approach that combines the strengths of
LLMs and programmatic methods. This raises a
key question: Can SQL and LLMs be seamlessly
interwoven?

Some methods, such as Binder (Cheng et al.,
2022) and BlendSQL (Glenn et al., 2024), integrate
LLMs into SQL workflows by treating them as
function calls. For example, Binder combines LLM
reasoning with SQLite to support hybrid queries.
While effective for simpler tasks, these approaches
struggle with complex queries, as LLMs often fail
to generate accurate multi-step logic. This high-
lights the need to decompose complex queries into

https://anonymous.4open.science/r/weaver-84DB/
https://anonymous.4open.science/r/weaver-84DB/

smaller, manageable steps. Other approaches, like
H-Star (Abhyankar et al., 2024) and ReAcTable
(Zhang et al., 2024), use programmatic techniques
to prune tables but rely heavily on costly API calls.
Meanwhile, methods like ProTrix (Wu and Feng,
2024) limit reasoning to just two steps, making
them insufficient for multi-hop queries. These rigid
pipelines often constrain LLMs to final answer ex-
traction and cannot handle questions requiring ex-
ternal or implicit knowledge.

To address these challenges, we introduce a mod-
ular, planning-based framework that dynamically
alternates between SQL for logical operations and
LLMs for semantic reasoning. By decoupling these
components, our approach overcomes the limita-
tions of monolithic systems and significantly im-
proves performance on complex Table QA tasks.
The process begins with selecting relevant columns
and generating natural-language descriptions to re-
solve schema inconsistencies. An LLM then gen-
erates a step-by-step reasoning plan, combining
SQL queries for structured operations with LLM
prompts for semantic inference or column augmen-
tation. Each step produces an intermediate table,
enabling transparent reasoning and easy backtrack-
ing. A final answer extraction step retrieves the
result from the processed table. This flexible de-
sign integrates with standard database engines (e.g.,
MySQL, SQLite) and supports various deployment
settings. Our approach offers the following key
contributions:

* We propose Weaver , a modular and inter-
pretable framework for hybrid query exe-
cution that dynamically decomposes com-
plex queries into modality-specific steps (e.g.,
SQL, LLM, VLM) without manual effort.

* We conduct extensive experiments on multi-
ple hybrid QA benchmarks, including mul-
timodal datasets, showing that Weaver out-
performs existing methods by large margins,
particularly on complex, multi-hop reasoning
queries.

* We introduce a query plan optimization strat-
egy that improves execution efficiency with
minimal accuracy loss. Weaver also stores all
intermediate outputs, enabling transparency,
effective human-in-the-loop debugging.

Our results show superior accuracy over exist-
ing baselines, especially for queries requiring im-
plicit reasoning beyond explicit table values. By
bridging structured and unstructured reasoning, our

approach sets a new benchmark for complex Ta-
ble QA, offering a scalable solution for real-world
applications.

2 Our Approach

This study addresses question answering tasks over
tables containing both structured and unstructured
data. Each instance consists of a table (1), a user
query (@), an optional paragraph (P), and a pre-
dicted answer (A). Queries span multiple cate-
gories: short-form queries (WikiTQ) involving di-
rect lookups or aggregations; fact-checking queries
(TabFact (Chen et al., 2019)) that require claim
verification; numerical reasoning queries (FinQA
(Chen et al., 2021b)) necessitating multi-step cal-
culations; and multi-modal queries (FinQA and
OTT-QA (Chen et al., 2021a)) that demand rea-
soning over extensive textual contexts inside and
outside tables. Complex queries, such as "Which
country had the most competitors?", frequently re-
quire semantic inference when explicit data is un-
available. Previous approaches typically rely on
single-step executions, limiting flexibility and in-
terpretability. In contrast, our method dynamically
integrates SQL for structured data operations and
LLMs for semantic inference, providing adaptable
and accurate query resolution.

2.1 SQL-LLM Weaver

We introduce Weaver , a novel methodology inte-
grating SQL and LLM specifically designed for
TableQA tasks involving complex semantic rea-
soning and free-form responses. Weaver operates
through distinct, structured phases:

1. Pre-processing: We begin by preprocessing
the tables to mitigate SQL-related errors due to
naming conflicts and data inconsistencies. This
involves renaming columns conflicting with SQL
reserved words (e.g., Rank), removing special char-
acters, and standardizing column names. Subse-
quently, an LL.M identifies and extracts relevant
columns for the query, generating descriptive meta-
data for these columns. This metadata clarifies
schema interpretations, resolves formatting issues,
and defines accurate data types, as illustrated in
Figure 2. For external unstructured text, relevant
information is retained using an LLM to ensure
context alignment.

2. Planning: In this phase, an LLM generates a
dynamic, step-by-step plan using few-shot prompt-

Table QA
1990 British Grand Prix

Rank Driver Constructor Laps TimeRetired
1 Alain Prost Ferrari 64 1:18:31
2 Thierry Boutsen Williams-Renault 64 39.092
Ayrton Senna McLaren-Honda 64 43.088
4 Eric Bernard Lola-Lamborghini 64 401:03:00

Question: which country had the most competitors?

Pos

1
Gold Answer: Italy E
|

Verify Plan using LLM

New Plan
Find the country with the highest number of competitors by selecting
the country with the maximum count from the previous step.

S
' :
Pre-processed table o ! '
Relevant Columns: {Driver} il A:SQL Execute SQL !
'
Column Name Data Type Formatting Needed Column Description \ [CREATE TABLE unique_drivers AS Query '
H * Position of the driver at the end of the race H SELECT DISTINCT driver '
1 Rank_1 Cardinal None (e.g., 1,2, 3, Ret, DNS, DNQ, DNPQ) ' FROM table 1990 british grand prix !
1 Driver String None Name of the driver \ 1 E
'
1 Constructor String None Name of the constructor (team) the driver is racing for , ! B: LLM : !
H Convert to time Time taken to complete the race or reason for retirement H - - '
1 TimeRetired String delta format (if applicable) . Table name: unique_drivers '
1 P "
""""""""""""""""""""""""""" O roserved koveord © Original Column to be used: Driver '
. 3¢ Renamed SQL reserved keyword H Add New n H
Generate Plan using LLM 9 E LLM prompt: "Identify the country for each Column Ttaly '
! Planning ' ! driver based on their name" UK :
H ' + New column: country '
H PWITeT Extract the unique drivers to identify the country ' H ; UK :
H . of each driver. ' 0 H ' UK H
:) ’ ! H c:saL ! :
' Use the driver names to determine the country of each driver ' !] :
H = and create a new column for country. ' Generate | CREATE TABLE competitors_count AS '
H ' 1| SELECT country H
! [s-=a]l | Count the number of competitors from each country by joining | code using! Count (*) AS CompetitorCount Execute SQL H
! previous table with the original. \ LLM !| FROM table 1990 british grand prix Query !
' . . : . ! ' JOIN unigque_drivers '
' bH1e B Find the country with the highest number of competitors. ' H ON table 1990 british_grand prix.driver H
H ' H 1
' ! ' '
H ' ' i
H H .
: H :
H H H
H ' .
. H h
h H .
. H h

|

Country

E 0 taly |:L\ Model's Answer: Italy E

Answer Extraction '

B, N
o Final Table

1 Code Execution

unique_drivers.driver
GROUP BY country

D:sa. B
SQL Step

Figure 2: Step-by-step TableQA execution using Weaver approach.

ing based on the previously derived metadata. The
plan consists of sequential subtasks, each catego-
rized explicitly as either SQL or LLM operations.

(a.) SQL Step: SQL steps manage structured
data tasks, including filtering rows, formatting col-
umn data types, mathematical operations and data
aggregations. For example, Figure 2 demonstrates
an SQL step that generates an intermediate table,
"unique_drivers."

(b.) LLM Step: LLM steps handle tasks beyond
SQL’s capabilities, such as deriving new columns
through semantic inference, sentiment analysis, or
interpreting complex textual data. LLMs lever-
age either contextual paragraphs or their pretrained
knowledge to perform these tasks. Each LLM step
carefully integrates outputs back into the structured
data tables to ensure coherence and consistency for
subsequent SQL steps. Figure 2 illustrates how an
LLM infers a "country" column from the "driver"
column in the intermediate table "unique_drivers".
The LLM is guided through structured prompts that
leverage its pretrained knowledge and reasoning
capabilities. Relevant information (extracted from
external unstructured text in pre-processing step) is
also passed to LLM if present.

Plan Verification. Prompting techniques like
self-refinement (Madaan et al., 2023) and verifi-
cation (Weng et al., 2023) are known to enhance
LLM reasoning by reducing errors and improving
consistency. To leverage this, we use a secondary

LLM to verify the initial plan, ensuring its logical
consistency, robustness, and completeness. Gaps
such as insufficient reasoning or formatting issues
are addressed by refining the plan, as shown in
step (D) in Figure 2. This verification improves
the pipeline’s reliability and mitigates cascading
errors.

3. Code Execution: Following verification, the
pipeline executes the plan sequentially, combining
SQL queries and LLM-generated prompts.

(a.) SQL Step - Query Generation: SQL opera-
tions involve formatting, filtering, joining, aggre-
gating, and grouping data, with intermediate tables
stored at each stage. SQL efficiently handles struc-
tured data operations, reducing reliance on LLM
steps.

(b.) LLM Step - Prompt Generation: LLMs dy-
namically create prompts for operations exceed-
ing SQL capabilities, such as generating new
columns or interpreting textual insights. These
LLM-generated prompts interact with structured
intermediate tables from SQL steps, ensuring co-
herent integration.

Robust error handling and fallback mechanisms
ensure pipeline robustness, utilizing the recent suc-
cessful intermediate table if execution errors occur.

4. Answer Extraction: In the final pipeline
stage, the intermediate table and user query are
inputted to an LLM, which generates a natural lan-
guage answer. Leveraging few-shot learning en-

sures output consistency and contextual accuracy,
effectively resolving complex queries. Figure 2
illustrates this process with a sample TableQA ex-
ample.

2.2 Optimization

We experimented to further enhance the efficiency
of our pipeline, optimizing the planning strategy by
minimizing unnecessary LLM calls and prioritizing
SQL-based operations.

One key optimization involves pushing SQL op-
erations such as filtering, aggregation, and format-
ting early in the pipeline as shown in Figure 3 in
Appendix A.5. This reduces the volume of data that
needs to be processed by the LLM, significantly
reducing latency and computational overhead. Fur-
thermore, parallelizing LLM inference across these
optimized chunks further enhances efficiency, al-
lowing the system to handle large-scale tabular rea-
soning tasks effectively, as shown Figure 3. To
further streamline execution, sequential SQL steps
are merged, reducing SQL calls and improving per-
formance, see Figure 4 in Appendix A.5.

Question: Find all drivers who completed 64 laps and whose constructor and
driver are from the same country

Generate Plan

Use the constructor names to find out constructor country and
create new column for country.

Use the Driver names to find out Driver country and create new
column for country.

Query Drivers Who Completed 64 Laps

pE{e]ET] Match Constructor Country with Drivers country

| T T T\ T T
-G —©—() Optimzaion, @ EG)-()—{)
Execution Ord .
Swap Pushing SQL step before
LLM step

New Plan

(o31={elE] Query Drivers Who Completed 64 Laps

Use the Driver names to find out Driver country and create new
column for country.

Use the constructor names to find out constructor country and
create new column for country.

Match Constructor Country with Drivers country

P

o o

C B A D Optimization / >m
——> Execution Order QA

b o

Sequential -

New Plan Parallel processing of LLM Steps
(o3=el8] Query Drivers Who Completed 64 Laps
A:LLM B:LLM |

Use the Constructor names to find ~ Use the Driver names to find out

out country and create near column country and create near column for
for country. country.

D: SQL

Figure 3: Optimization using SQL Reordering and LLM call
parallelization.

Match Constructor Country with Drivers country.

Given the computational demands of LLMs for
large tables we split data into smaller context-aware
chunks before sending them to the LLM for infer-
ence. This prevents input truncation, maintains log-
ical coherence between batches, and ensures opti-

mal utilization of the context window of the model,
as demonstrated in Figure 5, in the Appendix A.5.
This optimization strategy further enhances Weaver
planning and execution efficiency.

3 Experiments

Benchmarks. As hybrid multi-hop TableQA re-
mains an emerging research area, there is no ded-
icated benchmark to evaluate such tasks. To fill
this gap, we curate a hybrid subset by filtering rele-
vant examples from several established table-based
datasets for the evaluation of Weaver .

Source Datasets. For a comprehensive evalua-
tion of Weaver ’s ability to handle complex hybrid
queries, we assess its performance across four di-
verse datasets: WikiTQ, TabFact (a fact verification
dataset), FinQA (a numerical reasoning dataset),
and OTT-QA (a short-form answering dataset). We
also evaluated our approach on 3000 queries each
of multimodal (MM) datasets, FinQApn and OTT-
QAwmm, Which require reasoning in both tabular
data, and the accompanying textual context (usu-
ally a paragraph outside tables). We also evalu-
ated Weaver on the MMTabQA v dataset (Mathur
et al., 2024), which involves reasoning over tables
that include both text and images. This dataset con-
tains 1,600 queries and 206 tables, with each query
requiring the integration of textual and visual rea-
soning, including SQL, LLM, and VLM calls. Un-
like traditional table QA tasks, these benchmarks
challenge the model to integrate information from
structured (tables) and unstructured (text) modali-
ties. Details on the datasets in Appendix B.

Filtering Methodology. We define "hybrid"
queries as those that require both SQL operations
and LLM-based reasoning. These queries are more
complex, as they necessitate not only structured
data retrieval but also advanced reasoning capabili-
ties, such as entity inference or free-text interpreta-
tion, which SQL alone cannot provide. To identify
such queries, we use Binder-generated queries that
incorporate user-defined LLM functions (UDFs).
Queries involving UDFs indicate the need for se-
mantic reasoning beyond SQL’s capabilities. It is
important to note that we did not validate the cor-
rectness of Binder’s outputs; its role was purely
to flag queries with hybrid characteristics. These
candidate queries were then manually validated
to confirm they genuinely required both SQL ex-
ecution and LLM reasoning steps to arrive at the
correct answer. For FinQA, we utilized the "qa" ob-

ject to identify queries requiring multiple reasoning
steps, excluding simple table lookups to ensure the
selected queries involved more than just direct data
retrieval. These flagged queries were then manu-
ally reviewed to confirm their need for both SQL
execution and LLM reasoning.

Dataset Statistics. After filtering, the hybrid ver-
sions of the datasets consist of: (a) WIKITQ: 510
examples (original: 4,344), (b) TABFACT: 303 ex-
amples (original: 2,000), and (c) FINQA: 1,006
examples (original: 8,281). These represent the
final queries filtered to create the hybrid versions:
WikiTQpyprig, TabFacthybrid, and FInQAyprig-

Evaluation Metrics Traditional Exact Match
requires an exact match between the model’s
generated answer and the gold answer, which
can unfairly penalize correct responses that differ
only in format, for example, 2nd April 2024 and
04/02/2024 are semantically the same. To address
this, we introduce Relaxed Exact Match (REM)
metric which implements a three-step evaluation
framework. First, we standardize the model’s out-
put to align with the gold answer, handling varia-
tions such as unit representation and common ab-
breviations. For example, if the model returns the fi-
nal table with column- "Year" with value- "17", and
the expected answer is "17 years", we transform
the output to match the reference format. Once
the answers are format-aligned, we apply the stan-
dard EM metric to determine whether the processed
output matches the gold answer. However, auto-
mated transformations can sometimes introduce
unintended errors, such as incorrect unit conver-
sions or context misalignment. To prevent such
issues, we also perform human evaluation to en-
sure accurate answer matching.

LLM Models. In our research, we use state-
of-the-art large language models (LLM) such
as Gemini-2.0-Flash (DeepMind, 2024), GPT-4o0-
mini-2024-07-18, GPT-40-2024-08-06 (OpenAl
et al., 2024) and the open-source DeepSeek R1-
distill Llama-70B 2 (DeepSeek-Al et al., 2025),
(Shi et al., 2024) for table reasoning tasks. Our
model inputs include in-context examples, the ta-
ble, and the question for each step of the pipeline.

3.1 Baseline Methods

We evaluated our approach against several base-
lines that are broadly categorized into 4 categories:

*https://github.com/meta-llama/llama- models/blob/main/-
models/llama3_3/LICENSE

1. Query Engines (Binder, BlendSQL): These
methods generate hybrid SQL queries with LLMs
as User Defined Functions. They leverage SQL to
interpret tabular data and execute queries to retrieve
relevant information., 2. End-to-End LLM QA:
This approach leverages LLMs for question answer-
ing without intermediate query structuring. The
model receives a query and table as input, generat-
ing answers based on learned patterns and reason-
ing. We employ GPT-40, GPT-40-mini, Gemini-
2.0-Flash, and DeepSeek R1-distill LlaMA 70B
for all tasks, 3. Pruning-Based Methods (Re-
acTable, H-Star): These methods first apply SQL
or Python-based pruning techniques, such as fil-
tering columns or rows, before passing the refined
table to an LLM for final answer extraction, and
4. Planning Based Approach (ProTrix): ProTrix
employs a two-step "Plan-then-Reason" framework.
It first plans the reasoning, and assigns SQL to fil-
ter the table. Finally, it uses LLM to extract the
final answer. By comparing our approach with
these methods, we highlight the unique strengths
of SQL-LLM Weaver , which combines SQL-based
filtering with LLM-driven reasoning for more ef-
fective query resolution.

3.2 Results and Analysis

Our Weaver performs well on three challenging
benchmarks; we present key findings next.

First, are Hybrid Queries harder? The results
in Table 1 compare GPT-3.5-turbo on the origi-
nal dataset with GPT-40-mini on the hybrid set.
Despite leveraging a more capable model (GPT-4o-
mini) for the hybrid queries, we observe substantial
performance drops—H-Star and Binder see accu-
racy declines of 9.5% and 32.7%, respectively, on
WikiTQpyprig-

Original (GPT-3.5) Hybrid (GPT-40-mini)

Binder 56.7% 24%
ReAcTable 52.4% 27%
H-Star 69.5% 59%
ProTrix 65.2% 61.4%

Table 1: Baselines result comparison on WIKITQ after filter-
ing on hybrid part.

Notably, GPT-40-mini outperforms GPT-3.5-
turbo on benchmarks like MMLU and MATH
(Source: OpenAl), yet still struggles on hybrid
queries. This underscores their inherent difficulty
and highlights the limitations of current methods
in handling multi-step, semantically complex rea-
soning in Table QA.

Does Weaver Help? Table 2 demonstrates
that Weaver consistently outperforms state-of-the-
art baselines across all datasets. On WikiTQ,
Weaver surpasses the best-performing baseline Pro-
Trix by 5.5% across all four models. On TabFact,
it achieves a breakthrough 91.2% using DeepSeek
model, surpassing the 90% benchmark. On FinQA,
it achieves accuracy of 65%, outperforming base-
lines by 4.6% on DeepSeek R1-distill Llama 70B.

WikiTQ TabFact FinQA
GPT-40-mini
End-to-End QA 60.4 84.4 44.7
Binder* 24.0 62.0 13.0
BlendSQL 26.0 68.5 37.0
ReAcTable™ 29.9 374 -
H-Star 59.0 83.0 40.1
ProTrix 61.4 81.5 46.4
Weaver 65.0 89.4 49.3
GPT-40
End-to-End QA 66.4 80.8 58.3
Binder* 27.3 60.3 17.0
BlendSQL 42.0 68.3 343
ReAcTable* 454 45.4 -
H-Star 61.0 87.0 46.0
ProTrix 61.7 80.5 54.3
Weaver 70.7 83.4 60.8
Gemini-2.0-Flash

End-to-End QA 67.5 81.8 294
Binder* 12.9 60.4 21.3
BlendSQL 31.1 60.1 19.7
ReAcTable* 20.4 37.6 -
H-Star 63.5 86.1 38.7
ProTrix 62.2 80.8 429
Weaver 69.6 85.4 44.5

DeepSeek R1-distill Llama 70B
End-to-End QA 76.4 82.5 52.4
Binder* 26.4 62.7 24.4
BlendSQL 32.2 50.8 36.7
ReAcTable* 52.2 45.6 -
H-Star 68.7 55.6 50.3
ProTrix 41.4 81.1 60.4
Weaver 73.0 91.2 65.0

Table 2: Experimental results for various models on short-
form QA, fact verification, and numerical reasoning tasks.
*: with self-consistency. Best result in bold, second-best
in underlined. A hyphen (-) indicates missing results due to
incompatibility or untested scenarios.

Weaver vs Query Engines. Binder and Blend-
SQL struggle with hybrid queries due to their rigid
single-step execution framework. We observe that
only 61% and 66% of the hybrid queries execute
successfully in Binder and BlendSQL on WikiTQ.
The reported accuracies for these methods are cal-
culated based on successfully executed queries.
Although BlendSQL slightly outperforms Binder
with a modest 2% it frequently encounters type er-
rors when integrating LLM-generated outputs into

SQL operations. Weaver outperforms BlendSQL
by 39%, 20.9% and 12.3% accuracy on WikiTQ,
TabFact and FinQA using GPT-40-mini.

Weaver vs Pruning Methods. H-Star and Re-
AcTable while effective for structured queries, per-
form poorly on semantic tasks. H-Star attains
59.0% and 63.5% accuracy on WikiTQyyprq us-
ing GPT-40-mini and Gemini-2.0-Flash, respec-
tively, but struggles with row extraction. In some
cases, its row-filtering heuristics discard critical
contextual data essential for reasoning. H-Star’s
higher accuracy on TabFact with GPT-40 stems
from the dataset’s suitability for pruning techniques.
3 Furthermore, Weaver with GPT-40-mini and
DeepseekR1-Distill-LLAMA, despite their smaller
size, performs competitively highlighting its ef-
fectiveness in resource-constrained environments
where lightweight models are preferred.

Weaver vs Planning Method. ProTrix follows
a two-step pipeline (planning and execution),
achieves 61.4% and 62.2% on WikiTQyyiq With
GPT-40-mini and Gemini-2.0-Flash. However, it
fails in scenarios requiring intermediate semantic
processing. For example, queries demanding dy-
namic column generation (e.g., inferring Country
from Constructor) reveal its inability to seamlessly
integrate SQL and LLM reasoning, leading to a 9%
accuracy gap (GPT-40) compared to Weaver .

Weaver on Multimodal Method. We evaluated
Weaver on two multimodal datasets—FinQAnm
and OTT-QAnv—requiring multi-hop reasoning
over both structured (tables) and unstructured (text)
data. As shown in Table 3, Weaver outperformed
baselines, with notable improvements in FinQAnm
and moderate gains in OTT-QAnv.

FinQAny OTT-QAwmm FinQAym OTT-QAwm

GPT-40-mini GPT-40
End2End QA 45.9 61.2 57.6 68.7
Weaver 63.2 63.7 68.0 65.2
Gemini-2.0-Flash DeepSeek R1
End2End QA 37.9 64.1 54.8 59.9
Weaver 60.8 66.7 66.2 62.8

Table 3: Experimental results on short-form question answer-
ing on dataset with table and paragraphs.

In FinQAnv, Weaver excelled in numerical and
multi-hop reasoning, where end-to-end models
struggled with irrelevant information and sequen-
tial logic, such as calculating net values. For OTT-
QAwmM, which involved less structured computation
and more world knowledge, Weaver still showed

3We didn’t test ReAcTable on FinQA since its prompts are
tailored to other sets; modifying them changes baseline.

consistent gains. Unlike baselines, Weaver effec-
tively retrieved and integrated key table and para-
graph segments, ensuring relevant information was
used. These results highlight the strength of our
modular, reasoning-focused approach, which inte-
grates information step-by-step instead of relying
on holistic attention.

On MMTabQAwm dataset, Weaver achieved an
accuracy of 53.02% using gpt-4o-mini model, sig-
nificantly outperforming the end-to-end QA base-
line, which scored 46.33%. These results highlight
the strength of our modular, reasoning-driven ap-
proach, combining structured data (tables), unstruc-
tured data (text), and visual inputs (images) for
superior performance. This underscores Weaver ’s
versatility and scalability in addressing complex
multimodal (table, text, images) QA tasks.

Efficacy Analysis. We conducted an analysis to
assess the effectiveness and scalability of Weaver in
WikiTQpyprig, focusing on 98 large tables with over
30 rows and average token length of 17,731. Our
results show that Weaver achieved an accuracy
of 65.6%, outperforming ProTrix (37.5%) and H-
Star (35.9%) by 28.1% and 29.7%, respectively,
on these large tables Weaver maintained the same
accuracy on the entire original dataset, demonstrat-
ing its ability to handle complex queries while re-
maining both scalable and robust. These results
highlight Weaver ’s ability to tackle a wide range
of table-based tasks with consistent performance.
In addition to delivering reliable performance,
Weaver offers the critical advantage of transparent,
interpretable reasoning. By following a structured
execution plan, it ensures that final answers are
tightly aligned with preceding reasoning steps, en-
hancing traceability and reducing spurious outputs.
This directly addresses a core limitation of large
language models—hallucination and memorization.
Unlike end-to-end LLMs, which may produce cor-
rect answers without valid reasoning, Weaver only
yields correct outputs when the underlying plan is
sound, ensuring both reliability and interpretability.

Efficiency Analysis. Table 4 demonstrate the ef-
ficiency of our proposed Weaver framework using
number of API calls. We make six API calls which
are much lower compared to approaches that use
self-consistency (Binder) with 50 calls and H-Star
which uses ~ 8 calls to reach the answer.

ProTrix uses only two fixed API calls and relies
on the LLM solely for generating the plan. How-

API calls/ Query GPT-40 GPT-40-mini Gemini-2.0

ProTrix 2 2 2
Binder 50 60 53
H-STAR 8 8 8
Weaver 5.31 5.87 5.85

Table 4: Number of API calls comparison per TableQA.

ever, it does not involve the LLM during execution.
This limits its ability to handle multi-step queries re-
quiring reasoning at each step. For instance, it may
fail to infer information from individual rows or per-
form operations such as applying a SQL GROUP
BY on an LLM-inferred ’country’ column. Such
steps are often essential to arrive at the correct fi-
nal answer. These metrics demonstrate how our
approach minimizes computational overhead while
maintaining accuracy.

#LLM Optimization Effect

#LLMs Drops 15

#SQL Drops 19

#SQL Merge 113

#SQL Reorder 4

Before Opt. After Opt.

#LLMs 74 59
#SQL 532 513
#Total Steps 616 469
Accuracy (%) 65 64

Table 5: Effect of optimization on GPT-4o0-mini plans on
WIKITQ. Opt. stands for plan optimization.

Optimization: We experimented with optimiz-
ing our planning and execution strategy on 200
TableQA queries. Table 5 demonstrates how our
optimization strategy focuses on reducing unnec-
essary computational steps without compromising
accuracy. To achieve this, we implemented several
techniques.

1. LLM Step Reduction: By identifying and
eliminating redundant LLM steps, we reduced the
15 LLM calls. This optimization ensures that LLMs
are only used when necessary, lowering computa-
tional costs.

2. SQL Step Optimization: We achieved a re-
duction of 19 SQL steps by eliminating unused
operations. Additionally, we merged 113 sequen-
tial SQL steps into fewer, more efficient queries
and reordered 4 steps to optimize execution flow,
making it more efficient.

Optimizing GPT-40-mini reduces LLM steps by
20% and SQL steps by 24.8%, significantly im-
proving efficiency. The accuracy slightly drops
from 65% to 64%, but this trade-off is minimal,
especially under practical constraints. Our goal is
to create a scalable TableQA pipeline that balances

accuracy with computational cost, particularly for
large tables. The optimization achieves this by
maintaining modular reasoning while reducing la-
tency, API calls, and input tokens, demonstrating
that efficiency gains don’t sacrifice performance.

Error Analysis Table 6 illustrates the effective-
ness of our approach in minimizing errors in SQL
execution and plan generation. Our approach re-
duces SQL errors by 30% and plan generation by
86% compared to ProTrix in both GPT-40, GPT-
4o0-mini and Gemini-2.0-Flash. However, GPT-40-
mini exhibits a higher SQL error rate due to its
smaller model size, which limits its ability to gen-
erate accurate SQL queries.

GPT-40 GPT-40-mini Gemini-2.0

ProTrix
SQL Error 51.2% 25.9% 27.0%
Plan Generation 11.0% 17.0% 9.0%
Weaver
SQL Error 15.0% 42.5% 16.0%
Plan Generation 1.0% 3.0% 1.0%

Table 6: Error in SQL and Plan Generation on WIKITQ.

In Weaver , SQL errors arise due to incorrect
formatting, unsupported MySQL functions, or hal-
lucinated columns and tables. Planning errors arise
when SQL steps replace LLM reasoning or gener-
ate unused tables. The Plan Verification Step, Fig-
ure 2, mitigates these issues by refining planning
for improved reliability in complex table-based rea-
soning.

Analysis Across Pipeline Stages: We perform
a stage-wise analysis to assess the contribution of
each component in our pipeline—filtering, plan-
ning, and execution. Compared to SQL-only gen-
eration, which struggles with multi-step reasoning,
our pipeline yields consistent accuracy gains by
structuring the task into sub-components. The fil-
tering stage removes irrelevant columns, reducing
noise and guiding the model’s attention. The plan-
ning stage—central to our method—decomposes
complex queries into symbolic and semantic steps.
This step is essential and not ablatable. However,
skipping plan verification (i.e., executing without
validating) leads to a 1% drop in accuracy, indicat-
ing that verification adds robustness. Finally, exe-
cution stage translates structured plans into SQL.

4 Comparision with Related Work

Table-based Question Answering (TableQA) com-
bines table understanding, question interpretation,

and NLP. Foundational work such as Text-to-
SQL (Rajkumar et al., 2022), Program-of-Thought
(Chen et al., 2023), and TabSQLify (Nahid and
Rafiei, 2024b) laid the groundwork. Binder and
TAG (Biswal et al., 2024) expose the limitations
of traditional Text-to-SQL methods in handling
complex analytical tasks involving both structured
and unstructured data. To address these challenges,
several alternative approaches have been explored:

Fine-Tuning Methods: These methods fine-tune
LLMs to specialize in reasoning over hybrid tabular
and textual data. Models such as (Zhu et al., 2024),
(Mittal et al., 2024), and (Patel et al., 2024) are
trained to extract, reason, and execute over such
inputs. However, fine-tuning requires large task-
specific datasets and tends to lack generalization
across domains.

Query Engines: This direction integrates LLMs
with SQL engines via user-defined functions
(UDFs), allowing LLM calls within queries. UQE
(Dai et al., 2024), BlendSQL, SUQL (Liu et al.,
2024a), and Binder follow this paradigm. While
flexible, LLM-generated queries can be error-
prone, and these systems often support only limited
query structures, reducing adaptability.

Table Pruning and Planning: Approaches like H-
Star, ReAcT, ProTrix, and others (Liu et al., 2024b;
Nahid and Rafiei, 2024a) enhance efficiency by pro-
grammatically pruning rows or columns using SQL
or Python. While this reduces processing overhead,
these methods often function as black boxes, lack-
ing transparency and vulnerable to cascading errors
if early pruning steps are incorrect.

5 Conclusion

We introduce Weaver , a novel approach for table-
based question answering on semi-structured tables.
Weaver outperforms all baselines by strategically
decomposing complex queries into a sequence of
LLM- and SQL-based planning steps. By alter-
nating between these modalities, it enables pre-
cise, interpretable, and adaptive query resolution.
Weaver overcomes prior limitations by effectively
handling both complex queries and large tables.
Its modular design also supports future extensions,
including image-based tables, multi-table reason-
ing, and integration with free-form text. As future
work, we plan to explore fine-tuning and supervi-
sion strategies to further improve execution accu-
racy and plan reliability.

Limitations

While our approach demonstrates strong perfor-
mance across multiple datasets, it is currently lim-
ited to English-language tables, restricting its ap-
plicability to multilingual settings. Additionally,
our method does not explicitly handle hierarchi-
cal tables, where multi-level dependencies intro-
duce additional complexity in reasoning. Another
limitation is the inability to process multi-table
queries, which require reasoning across multiple
relational structures. Furthermore, the lack of well-
established benchmarks for hybrid datasets poses a
challenge in evaluating and further improving per-
formance in more complex, real-world scenarios.

Ethics Statement

We, the authors, confirm that our research adheres
to the highest ethical standards in both research
and publication. We have thoughtfully addressed
various ethical considerations to ensure the respon-
sible and equitable use of computational linguistics
methodologies. In the interest of reproducibility,
we provide detailed resources, including publicly
available code, datasets (compliant with their re-
spective ethical standards), and other relevant mate-
rials. Our claims are supported by the experimental
results, although some degree of stochasticity is in-
herent in black-box large language models, which
we mitigate by using a fixed temperature. We also
offer thorough details on annotations, dataset splits,
models used, and prompting techniques to ensure
that our work can be reliably reproduced. We used
Al assistants to help refine the writing and improve
clarity during the drafting and revision process. No
content was generated without human oversight or
verification.

References

Nikhil Abhyankar, Vivek Gupta, Dan Roth, and Chan-
dan K. Reddy. 2024. H-star: LIm-driven hybrid sql-
text adaptive reasoning on tables.

Asim Biswal, Liana Patel, Siddarth Jha, Amog Kam-
setty, Shu Liu, Joseph E. Gonzalez, Carlos Guestrin,
and Matei Zaharia. 2024. Text2sql is not enough:
Unifying ai and databases with tag.

Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William
Wang, and William W. Cohen. 2021a. Open question
answering over tables and text.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts

prompting: Disentangling computation from reason-
ing for numerical reasoning tasks.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2019. Tabfact: A large-
scale dataset for table-based fact verification. arXiv
preprint arXiv:1909.02164.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge, and
William Yang Wang. 2021b. FinQA: A dataset of nu-
merical reasoning over financial data. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3697-3711, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
et al. 2022. Binding language models in symbolic
languages. In The Eleventh International Conference
on Learning Representations.

Hanjun Dai, Bethany Yixin Wang, Xingchen Wan,
Bo Dai, Sherry Yang, Azade Nova, Pengcheng Yin,
Phitchaya Mangpo Phothilimthana, Charles Sutton,
and Dale Schuurmans. 2024. Uqe: A query engine
for unstructured databases.

Google DeepMind. 2024. Gemini 2.0.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, and et al. 2025. Deepseek-rl: Incen-
tivizing reasoning capability in 1lms via reinforce-
ment learning.

Parker Glenn, Parag Pravin Dakle, Liang Wang, and
Preethi Raghavan. 2024. Blendsql: A scalable dialect
for unifying hybrid question answering in relational
algebra.

Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek
Srikumar. 2020a. INFOTABS: Inference on tables
as semi-structured data. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2309-2324, Online. Association
for Computational Linguistics.

Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek
Srikumar. 2020b. INFOTABS: Inference on tables
as semi-structured data. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2309-2324, Online. Association
for Computational Linguistics.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How language
models use long contexts.

http://arxiv.org/abs/2407.05952
http://arxiv.org/abs/2407.05952
http://arxiv.org/abs/2407.05952
http://arxiv.org/abs/2408.14717
http://arxiv.org/abs/2408.14717
http://arxiv.org/abs/2408.14717
http://arxiv.org/abs/2010.10439
http://arxiv.org/abs/2010.10439
http://arxiv.org/abs/2010.10439
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
http://arxiv.org/abs/2407.09522
http://arxiv.org/abs/2407.09522
http://arxiv.org/abs/2407.09522
https://deepmind.google
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2402.17882
http://arxiv.org/abs/2402.17882
http://arxiv.org/abs/2402.17882
http://arxiv.org/abs/2402.17882
http://arxiv.org/abs/2402.17882
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
http://arxiv.org/abs/2307.03172
http://arxiv.org/abs/2307.03172
http://arxiv.org/abs/2307.03172

Shicheng Liu, Jialiang Xu, Wesley Tjangnaka, Sina
Semnani, Chen Yu, and Monica Lam. 2024a. SUQL.:
Conversational search over structured and unstruc-
tured data with large language models. In Findings
of the Association for Computational Linguistics:
NAACL 2024, pages 4535-4555, Mexico City, Mex-
ico. Association for Computational Linguistics.

Shu Liu, Asim Biswal, Audrey Cheng, Xiangxi Mo,
Shiyi Cao, Joseph E. Gonzalez, Ion Stoica, and Matei
Zaharia. 2024b. Optimizing 1lm queries in relational
workloads.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Iterative
refinement with self-feedback.

Suyash Vardhan Mathur, Jainit Sushil Bafna, Kunal
Kartik, Harshita Khandelwal, Manish Shrivastava,
Vivek Gupta, Mohit Bansal, and Dan Roth. 2024.
Knowledge-aware reasoning over multimodal semi-
structured tables. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
14054-14073, Miami, Florida, USA. Association for
Computational Linguistics.

Akash Mittal, Anshul Bheemreddy, and Huili Tao. 2024.
Semantic sql — combining and optimizing semantic
predicates in sql.

Md Mahadi Hasan Nahid and Davood Rafiei. 2024a.
Normtab: Improving symbolic reasoning in llms
through tabular data normalization.

Md Mahadi Hasan Nahid and Davood Rafiei. 2024b.
Tabsqlify: Enhancing reasoning capabilities of 1lms
through table decomposition.

OpenAl, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, and et al. 2024. Gpt-4o
system card.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470—
1480, Beijing, China. Association for Computational
Linguistics.

Liana Patel, Siddharth Jha, Parth Asawa, Melissa Pan,
Carlos Guestrin, and Matei Zaharia. 2024. Semantic
operators: A declarative model for rich, ai-based
analytics over text data.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabilities
of large language models.

10

Yucheng Shi, Peng Shu, Zhengliang Liu, Zihao Wu,
Quanzheng Li, Tianming Liu, Ninghao Liu, and Xi-
ang Li. 2024. Mgh radiology llama: A llama 3 70b
model for radiology.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.
2023. Large language models are better reasoners
with self-verification.

Zirui Wu and Yansong Feng. 2024. ProTrix: Building
models for planning and reasoning over tables with
sentence context. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
4378-4406, Miami, Florida, USA. Association for
Computational Linguistics.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M. Patel. 2024.
Reactable: Enhancing react for table question an-
swering. Proceedings of the VLDB Endowment,
17(8):1981-1994.

Fengbin Zhu, Ziyang Liu, Fuli Feng, Chao Wang,
Moxin Li, and Tat Seng Chua. 2024. Tat-llm: A
specialized language model for discrete reasoning
over financial tabular and textual data. In Proceed-
ings of the 5th ACM International Conference on Al
in Finance, ICAIF ’24, page 310-318, New York,
NY, USA. Association for Computing Machinery.

https://doi.org/10.18653/v1/2024.findings-naacl.283
https://doi.org/10.18653/v1/2024.findings-naacl.283
https://doi.org/10.18653/v1/2024.findings-naacl.283
https://doi.org/10.18653/v1/2024.findings-naacl.283
https://doi.org/10.18653/v1/2024.findings-naacl.283
http://arxiv.org/abs/2403.05821
http://arxiv.org/abs/2403.05821
http://arxiv.org/abs/2403.05821
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
https://doi.org/10.18653/v1/2024.findings-emnlp.822
https://doi.org/10.18653/v1/2024.findings-emnlp.822
https://doi.org/10.18653/v1/2024.findings-emnlp.822
http://arxiv.org/abs/2404.03880
http://arxiv.org/abs/2404.03880
http://arxiv.org/abs/2404.03880
http://arxiv.org/abs/2406.17961
http://arxiv.org/abs/2406.17961
http://arxiv.org/abs/2406.17961
http://arxiv.org/abs/2404.10150
http://arxiv.org/abs/2404.10150
http://arxiv.org/abs/2404.10150
http://arxiv.org/abs/2410.21276
http://arxiv.org/abs/2410.21276
http://arxiv.org/abs/2410.21276
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
http://arxiv.org/abs/2407.11418
http://arxiv.org/abs/2407.11418
http://arxiv.org/abs/2407.11418
http://arxiv.org/abs/2407.11418
http://arxiv.org/abs/2407.11418
http://arxiv.org/abs/2204.00498
http://arxiv.org/abs/2204.00498
http://arxiv.org/abs/2204.00498
http://arxiv.org/abs/2408.11848
http://arxiv.org/abs/2408.11848
http://arxiv.org/abs/2408.11848
http://arxiv.org/abs/2212.09561
http://arxiv.org/abs/2212.09561
http://arxiv.org/abs/2212.09561
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.14778/3659437.3659452
https://doi.org/10.14778/3659437.3659452
https://doi.org/10.14778/3659437.3659452
https://doi.org/10.1145/3677052.3698685
https://doi.org/10.1145/3677052.3698685
https://doi.org/10.1145/3677052.3698685
https://doi.org/10.1145/3677052.3698685
https://doi.org/10.1145/3677052.3698685

A Appendix: LLM Prompts and Examples
A.1 Prompt Examples

Listing 1: Extract Relevant Column

Given column descriptions, Table and Question return a list of columns that can be
relevant to the solving the question (even if slightly relevant) given the table
name and table:

table name: { self.name }

table: { self.table }
Question: { self.question }

Example output: [’Score’, ’Driver’]

Instructions:

1. Do not provide any explanations, just give the cols as a list

2. The list will be used to filter the table dataframe directly so take care of that

Qutput:

Listing 2: Column Description Prompt

Give me the column name, data type, formatting that needs to be done, column
descriptions in short for the given table and question. The descriptions should be
useful in planning steps that solve the question asked on that table. Also, give a
small description of the table using table name and table data given.

Table:

table name: { self.name }

{ self.table }

Question: { self.question }

Listing 3: Planning Prompt

I need a step-by-step plan in plain text for solving a question, given column
descriptions and table rows. Follow these guidelines:

Begin analyzing the question to categorize tasks that require only SQL capabilities
(like straightforward data formatting, mathematical operations, basic aggregations)
and those that need LLM assistance (like summarization, text interpretation, or
answering open-ended queries).

MySQL Query Generation: For parts of the question that involve formatting of column
data type, filtering and mathematical or analytical tasks, generate SQL query code
to answer them directly, without using an LLM call.

LLM-Dependent Task Identification: For tasks that SQL cannot inherently

perform, specify the columns or portions of rows where LLM calls are needed. Add an
extra column in the result set to store the LLM output for each row in the filtered
data subset.

Example -

<Table Name>

<Table>

Question: <Question>

<Column Descriptions>

<Plan>

Solve for this:

Table:

table name: { self.name }

{ self.table }

Question: { self.question }

{ self.description }

Only give the step-by-step plan and remove any other explanations or code.
Output format:

Step 1: SQL

Step 2: Either SQL or LLM

Step 3:

Step 4:

Listing 4: Verify Plan Prompt

11

Suppose you are an expert planner verification agent.

Verify if the given plan will be able to answer the Question asked on this table.

Table name: { self.name }

Table: { self.table }

Column descriptions: { self.description }

Question to Answer: { self.question }

0ld Plan: { self.plan }

Is the given plan correct to answer the Question asked on this table (check format

issues and reasoning steps) should be able to guide the LLM to write correct code

and get correct result.

If the plan is not correct, provide better plan detailed on what needs to be done

handling all kinds of values in the column.

- Check if the MySQL step logic adheres to the column format. (Performs calculations
and formatting and filtering in the table)

- The LLM step’s logic will help in getting the correct answer.

If the original plan is correct then return that plan.

Do not provide with code or other explanations, only the new plan.
Output format:

Step 1: Either SQL or LLM -

Step 2: SQL or LLM -

Step 3: SQL

As given in original plan.

Listing 5: Code Execution Prompt

MySQL Code Generation: For parts of the question that involve data
formatting, data manipulations such as filtering, grouping, aggregations, and
creating new tables. Generate optimized MySQL code to
answer those parts directly without using an LLM.

LLM-Dependent Tasks Identification: For tasks that SQL cannot inherently perform
that require sentiment analysis, logical inferences, or questions that involve
interpreting text data, specify only that 1 column where LLM calls are needed. Add
an extra column in the table that stores the LLM output for each row in the filtered
data subset.

Instructions:

1. Store the output at each step by creating a new table. Use this new table for the
next steps.

2. The code for MySQL should handle all values in the column (formatting and
filtering). New columns

from previous LLM steps can be assumed present in table.

3. Don’t give any other explanations, only MySQL and LLM steps as the given plan.

Then, Only give step (SQL or LLM) that is needed -

The Output format example -

Step 1 - SQL: MySQL code, table name to be used in the next query
Step 2 - LLM:

- Reason: Why we need to use LLM

- Table name:

- original column to be used:

- LLM prompt: The prompt that user can use to solve the problem

- New column name:

Step 3 - SQL: MySQL code, table name to be used in the next query
Step 4 -

Step 5 -

LLM step format should be same.

Solve for this question, given table and step by step plan as a reference:
Table name: { self.name }

Schema: { self.table.columns }

Column Descriptions: { self.description }

Table: { self.table }

Question: { self.question }

Plan: { self.plan }

First check if taking above Plan will give the desired output.

12

Give me code for solving the question, and no other explanations. Keep in mind the
column data formats (string to appropriate data type, removing extra character,
Null values) while writing Mysql code.

Listing 6: LLM Step Prompt

Given a column and step you need to perform on it -
Column: { df.column }

Step to solve the question: { step.prompt }

Question: { self.question }

Instructions:

- Do not provide any explanation and Return only a list (separate values by ’'#’)
that can be added

to a dataframe as a new column in a dataframe.

- Do not create a column name already present in the table. (duplicate column)

- Any value should not be more than 3 words (or each value should be as short as
possible).

- Size of output list Should be same as input list.

Listing 7: Answer Extraction Prompt

Table: { self.name }
{ self.table }
Question: { self.question }

Answer the question given the table in as short as possible.

If the table has just one column or value consider that as the answer given the
column name.

Just provide the answer, do not provide any other information.

Listing 8: Plan Optimization Prompt

You are an expert in SQL and plan optimization. Your task is to optimize the given
SQL plan while ensuring it correctly answers the given question. Use the following
optimization strategies, but only if they maintain correctness:

SQL Merge: Merge sequential SQL steps where possible (e.g., combining filtering,
aggregation, and sorting in one query).

SQL Reordering: Reorder SQL steps to filter early before applying computationally
expensive operations like LLM processing.

LLM Merge: Merge sequential LLM steps where the operation is on the same column.

Given Information:

Plan: { self.plan }

A.2 Table and Question Example

Below is an example of a table and question used for LLM planning.

Listing 9: Table and Question Example for LLM Planning

Table: New_York_Americans_soccer

Year Division League Reg_Season Playoffs
National_Cup
0 1931 1.0 ASL 6th (Fall) No playoff
None
1 Spring 1932 1.0 ASL 5th? No playoff 1st
Round
2 Fall 1932 1.0 ASL 3rd No playoff
None
3 Spring 1933 1.0 ASL ? ?
Final
4 1933/34 NaN ASL 2nd No playoff
?
5 1934/35 NaN ASL 2nd No playoff
?
6 1935/36 NaN ASL 1st Champion (no playoff)
)

13

7 1936/37 NaN ASL 5th, National Did not qualify

Champion
8 1937/38 NaN ASL 3rd(t), National 1st Round
?
9 1938/39 NaN ASL 4th, National pildl riat qualify
?
10 1939/46. NaN ASL 4th No playoff
?
11 1940/41. NaN ASL 6th No playoff
?
12 1941/42. NaN ASL 3rd No playoff
?
13 1942/43. NaN ASL 6th No playoff
?
14 1943/44. NaN ASL 9th No playoff
?
15 1944/45. NaN ASL 9th No playoff
?
16 1945/46. NaN ASL 5th No playoff
?
17 1946/47. NaN ASL 6th No playoff
?
18 1947/48. NaN ASL 6th No playoff
?
19 1948/49. NaN ASL 1st(t) Finals
?
20 1949/50. NaN ASL 3rd No playoff
?
21 1950/51. NaN ASL 5th No playoff
?
22 1951/52. NaN ASL 6th No playoff
?
23 1952/53. NaN ASL 6th No playoff
Semifinals
24 1953/54 NaN ASL 1st Champion (no playoff)
Champion
25 1954/55 NaN ASL 8th No playoff
?
26 1955/56. NaN ASL 6th No playoff
?

Question: How long did it take for the New York Americans to win the National Cup
after 19367

A.3 Model Responses

Listing 10: Response to Sample Prompt 1 (Column Description)

Table Description

The table ‘New_York_Americans_soccer ¢ contains historical performance data for the
New York Americans soccer team, detailing their standings in various leagues,
playoff outcomes, and national cup results from 1931 to 1956. The data includes
information on the year, division, league, regular season standings, playoff
participation, and national cup results.

Column Details

| Column Name | Data Type | Formatting Needed | Column
Description |

| =-ommmmmmmmmoom oo |-=ommmmmoooe- | =oommmmmmmmmoo oo |-mmmmmmmoooe- |

| Year | String | Standardize to a consistent format |
Represents the year or season of the soccer performance. Some entries may need
parsing to extract the year. |

| Division | Float | Convert to Integer (if applicable) |
Indicates the division in which the team played. Some entries are NaN and need
handling. |

| League | String | Standardize to a consistent format |

Represents the league in which the team participated, primarily ASL (American
Soccer League). |

14

| Reg_Season | String | Clean and standardize standings |
Indicates the team’s regular season performance, which may include qualifiers
like "t" or "?" that need clarification. |
| Playoffs | String | Standardize and clean |
Indicates playoff participation and outcomes, with entries like "No playoff"” and
"Finals” that need to be standardized. |
| National_Cup | String | Standardize and clean |

Indicates the outcome of the national cup, with entries like "Champion” or "1st

Round"” that need standardization. |
Listing 11: Response to Sample Prompt 2 (Planning Prompt)
Plan: Step 1: SQL - Standardize the Year column to a consistent format and extract

the year from

entries like "Spring 1932" and "Fall 1932".

Step 2: SQL - Clean and standardize the National_Cup column to identify the years
when the team won

the national cup.

Step 3: SQL - Filter the data to find the first year after 1936 when the
National_Cup column

indicates a win.

Listing 12: Response to Sample Prompt 3 (Verify Plan Prompt)

New Plan: ### Revised Plan:
Step 1: LLM - Standardize the Year column to a consistent format by extracting the
year from entries

like "Spring 1932" and "Fall 1932". Convert all entries to a four-digit year format
(e.g., "1932"

instead of "Spring 1932").

Step 2: SQL - Clean and standardize the National_Cup column to identify winning
entries. Define a

clear criterion for a "win,"” such as entries that contain "Champion” or "1st Round”

(if applicable).

Step 3: SQL - Filter the data to find the first year after 1936 where the
National_Cup column

indicates a win. Ensure to handle any NaN or ambiguous entries appropriately.

A.4 Code Execution Results

Listing 13: Response to Sample Prompt 4 (Code Execution Prompt) Step 1

LLM Step -
- Reason: Standardize the Year column to correct format.
- Table name: New_York_Americans_soccer

- original column to be used: Year

- LLM prompt: Extract the year from phrases like

standardize all

entries to a YYYY format.
- New column name:

"Spring 1932" or "Fall 1932" and

Ensure the output is consistent across all entries.

Year_Formatted.

Dataframe create after LLM Step

Year_Formatted Division League Reg_Season Playoffs
National_Cup

0 1931 1.0 ASL 6th (Fall) No playoff None
1 1932 1.0 ASL 5th? No playoff 1st Round
2 1932 1.0 ASL 3rd No playoff None
3 1933 1.0 ASL ? ? Final
4 1933 NaN ASL 2nd No playoff ?
5 1934 NaN ASL 2nd No playoff ?
6 1935 NaN ASL 1st Champion (no playoff) ?
7 1936 NaN ASL 5th, National Did not qualify Champion
8 1937 NaN ASL 3rd(t), National 1st Round ?
9 1938 NaN ASL 4th, National Did not qualify ?
10 1939 NaN ASL 4th No playoff ?
11 1940 NaN ASL 6th No playoff ?
12 1941 NaN ASL 3rd No playoff ?

15

13 1942 NaN ASL 6th No playoff ?
14 1943 NaN ASL 9th No playoff ?
15 1944 NaN ASL 9th No playoff ?
16 1945 NaN ASL 5th No playoff ?
17 1946 NaN ASL 6th No playoff ?
18 1947 NaN ASL 6th No playoff ?
19 1948 NaN ASL 1st(t) Finals ?
20 1949 NaN ASL 3rd No playoff ?
21 1950 NaN ASL 5th No playoff ?
22 1951 NaN ASL 6th No playoff ?
23 1952 NaN ASL 6th No playoff Semifinals
24 1953 NaN ASL 1st Champion (no playoff) Champion
25 1954 NaN ASL 8th No playoff ?
26 1955 NaN ASL 6th No playoff ?

Listing 14: Response to Sample Prompt 4 (Code Execution Prompt) Step 2

SQL Step -
CREATE TABLE standardized_national_cup AS
SELECT
Year_Formatted,
Division,
League,
Reg_Season,
Playoffs,
CASE
WHEN National_Cup LIKE ?%Champion%’ THEN ’Win’
WHEN National_Cup LIKE ’%1st Round%’ THEN ’Win
ELSE ’No Win’
END AS National_Cup
FROM New_York_Americans_soccer;
Table created: standardized_national_cup

dataframe create after loading from standardized_national_cup

Year_Formatted Division League Reg_Season Playoffs
National_Cup
0 1931 1.0 ASL 6th (Fall) No playoff No Win
1 1932 1.0 ASL 5th? No playoff Win
2 1932 1.0 ASL 3rd No playoff No Win
3 1933 1.0 ASL ? ? No Win
4 1933 NaN ASL 2nd No playoff No Win
5 1934 NaN ASL 2nd No playoff No Win
6 1935 NaN ASL 1st Champion (no playoff) No Win
7 1936 NaN ASL 5th, National Did not qualify Win
8 1937 NaN ASL 3rd(t), National 1st Round No Win
9 1938 NaN ASL 4th, National Did not qualify No Win
10 1939 NaN ASL 4th No playoff No Win
11 1940 NaN ASL 6th No playoff No Win
12 1941 NaN ASL 3rd No playoff No Win
13 1942 NaN ASL 6th No playoff No Win
14 1943 NaN ASL 9th No playoff No Win
15 1944 NaN ASL 9th No playoff No Win
16 1945 NaN ASL 5th No playoff No Win
17 1946 NaN ASL 6th No playoff No Win
18 1947 NaN ASL 6th No playoff No Win
19 1948 NaN ASL 1st(t) Finals No Win
20 1949 NaN ASL 3rd No playoff No Win
21 1950 NaN ASL 5th No playoff No Win
22 1951 NaN ASL 6th No playoff No Win
23 1952 NaN ASL 6th No playoff No Win
24 1953 NaN ASL 1st Champion (no playoff) Win
25 1954 NaN ASL 8th No playoff No Win
26 1955 NaN ASL 6th No playoff No Win
Listing 15: Response to Sample Prompt 4 (Code Execution Prompt) Step 3
SQL Step -
CREATE TABLE first_win_after_1936 AS
SELECT

16

Year_Formatted,
Division,
League,
Reg_Season,
Playoffs,
National_Cup
FROM standardized_national_cup
WHERE Year_Formatted > ’1936° AND National_Cup = ’Win’
ORDER BY Year
LIMIT 1;
Table created: first_win_after_1936
dataframe create after loading from first_win_after_1936
Year_Formatted Division League Reg_Season Playoffs National_Cup
0 1953 None ASL 1st Champion (no playoff) Win

Listing 16: Response to Sample Prompt 5 (Answer Extraction Prompt)

Generated Answer: 17 years

Comparison Result: Yes

Actual answer: 17 years, model answer: 17 years
Answer matched: True

A.5 More Detail on Optimization

We have explored several optimization techniques to enhance the efficiency of our pipeline by reducing
the number of steps generated during query execution. While some of these strategies are detailed in the
section 2, we outline additional key techniques below:

SQL Merging. Figure 4 explains merging sequential SQL steps to optimize the pipeline’s performance.
Since SQL operations follow a logical structure, combining multiple steps into a single query does not
compromise the correctness or integrity of the process. This consolidation reduces the overhead of
executing individual queries and improves the overall efficiency of the pipeline by minimizing redundant
operations and streamlining execution.

Listing 17: Example of Step Merging

Original Plan (Multiple SQL Steps):
SELECT * FROM table WHERE column = ’X’;
SELECT * FROM table ORDER BY date DESC;

Optimized (Merged into a Single Step):
SELECT * FROM table WHERE column = ’X’ ORDER BY date DESC;

Question: Find all drivers who completed 64 laps and whose constructor and
driver are from the same country

Generate Plan < ',

Use the constructor names to find out constructor country and
create new column for country.

Use the Driver names to find out Driver country and create new
column for country.

Query Drivers Who Completed 64 Laps

Match Constructor Country with Drivers country

N—G) O —6) Optimization M
b B © 0
— — > Dependency Merging SQL steps

Merge
New Pian e

Use the constructor names to find out constructor country and
create new column for country.
Use the Driver names to find out Driver country and create new
column for country.
Find drivers with 64 laps matching their constructor’s country.

Figure 4: Optimization using SQL step merging

17

Parallel LLM Execution. Initially, we prompted the LLM to generate a new column by supplying the
entire existing column and asking it to return a list of the same length. However, this approach often led
to inconsistent results—such as incorrect list lengths, duplicated values, or hallucinated entries—due to
the model’s sensitivity to long input sequences. Errors were especially prevalent in the middle of the list,
consistent with the “Lost in the Middle” effect (Liu et al., 2023).

Input to LLM Input to LLM
S Rank Constructor Output Country Rank Constructor Output Country
ltaly (1 Ferrari —— | ltaly 1 Ferrari Chunk 1 Italy
uni
UK 2 Wiliams-Renault ——— | UK 2 Wiliams-Renault ——— UK
UK 3 Mclaren-Honda — | yk 3 McLaren Honda UK
UK = «—4 200 Benetton-Ford ——— UK 200 Benetton Ford |Chunki UK
UK 201 Lola-Lamborghini ——» yk 201 Lola- Lamborghlnl UK
UK 4001 Tyrrell-Ford —— UK 4001 TyrreII-Ford Chunk n UK
(UK) L 4002 Arrows-Ford — | UK 4002 Arrows-Ford LK

a. All Rows at Once b. Row-by-Row Processing ¢. Processing in chunks

#LLMcalls=1 # LLM calls = # rows

exceeding context length inefficient

Figure 5: Optimizing LLM Calls: Chunk-based processing on Rows

To improve both reliability and efficiency, we adopted a chunk-wise parallel execution strategy that
avoids the overhead of row-by-row processing while enhancing consistency. As illustrated in Figure 5,
we segment the input into appropriately sized batches and execute multiple LLM calls in parallel. This
design enables simultaneous inference over different parts of the data, substantially reducing latency
by eliminating sequential processing bottlenecks. The result is faster response times and improved
scalability—making this approach well-suited for large-scale reasoning tasks over semi-structured data.

Column-Wise Batching. Conventional LLM pipelines often chunk inputs row-wise, generating one
column value per row across a batch. In contrast, we propose a column-wise batching strategy, depicted
in Figure 6, which processes multiple columns for a small chunk of rows in a single call.

Input to LLM Output Country
Rank Driver Constructor Driver Constructor
1 Alain Prost Ferrari France Italy

Chunk 1
2 Thierry Boutsen Williams-Renault e Belgium UK

3 Ayrton Senna McLaren-Honda Brazil UK
200 Nelson Piquet Benetton—Ford Chunki| | Brazi UK
201 Aguri Suzuki LoIa-Lamborghlnl Japan UK

4001 Jean Alesi TyrreII -Ford (Chunkn| [France| [UK
4002 Alex Caffi Arrows-Ford Italy UK
c. Processing in chunks

LLM calls = # rows / chunk size
chunk size =5

Figure 6: Optimizing LLM Calls: Chunk-based processing on Columns

This approach preserves intra-row context across multiple attributes of the same entity, reducing
inconsistencies that arise when attributes are generated independently. It is particularly advantageous
in Retrieval-Augmented Generation (RAG) systems and memory-augmented pipelines, where repeated
LLM calls over fragmented inputs can be inefficient. By extracting all relevant information in one unified
query, column-wise batching lowers computational costs while maintaining high accuracy in entity-level
reasoning.

Listing 18: Examples of Different Plan Optimization

Question - The Kremlin Cup is held in Russia, and the St. Petersburg Open is also
held in Russia.

Plan:

Step 1: SQL - Filter the table to select tournaments with the names "Kremlin Cup”
and "St. Petersburg Open”

18

Step 2: SQL - Extract the country information from the Tournament column for the
selected tournaments.

Step 3: LLM - Summarize the results to confirm that both tournaments are held in
Russia.

Optimized Plan:

Step 1: SQL - Filter the table to select tournaments with the names "Kremlin Cup’
and "St. Petersburg Open”, and extract the country information from the
Tournament column in a single query.

J

Step 2: LLM - Summarize the results to confirm that both tournaments are held in
Russia.

A.6 More Detail on handling Multi-Modal data

The proposed pipeline Figure 8 is modular and designed for extensibility. Each component can be
upgraded such as substituting the SQL Query Executor with an expert SQL agent to enhance execution
efficiency and accuracy. Likewise, the LLM Semantic Reasoner and VLM (Vision Language Model)
components can be replaced with specialized reasoning agents, allowing Weaver to adapt to evolving

multi-modal requirements.
LLM Semantic
Reasoner \
‘ / —
Table Name .
and LLM Planner VLA’I Semantic | | LLM Answer —N/Answer\}
User _ Question \ easoner / Extractor A4

SQL Query

o Executor

Figure 7: Modular Pipeline for query execution

Handling Paragraph data using LLLM step To address unstructured textual content outside the table
(i.e., paragraph data), we filter these texts for relevance to both the question and the tabular data. The
filtered content is used as an auxiliary knowledge source during LLLM steps. This enables the system
to either incorporate the external text into the tabular context or leverage it directly in the final answer
generation step, depending on the Planner Agent’s discretion.

LLM Planer

Table with relevant LM SQL Step
Table ™) o

Unstructured Extracted relevant
t eXt text

Figure 8: Modular Pipeline for query execution

LLM Step

This design supports robust integration of text, table, and visual data, ensuring that the system remains
scalable, accurate, and adaptable across diverse input modalities.

A.7 Additional Analysis
Table 7 shows the number of LLM and SQL steps used by Weaver , across different models on WikiTQ.

19

Steps GPT-40 GPT-40-mini Gemini-2.0-Flash

LLM Steps 46 178 122
SQL Steps 1530 1407 1510
Total 1576 1585 1632

Table 7: Number of LLM steps and SQL steps used in Weaver on WikiTQ.

Token Usage Analysis: We compared the average token usage (input/output) per TableQA pair across
ProTrix, H-STAR, and Weaver using three different LLM backends. As shown in Table 8, Weaver
maintains competitive token efficiency, especially in output size, while enabling structured multi-step
reasoning. Notably, ProTrix appears lightweight due to its limited planning, whereas H-STAR and Weaver
consume similar token budgets despite Weaver offering higher accuracy. Binder is excluded from this
comparison due to its excessive API usage (see Table 4).

Token Usage/Query GPT-40 (I/0) GPT-40-mini (I/O) Gemini-2.0 (I/O)

ProTrix 445.57/317.14 564.3/388.85 559.94 /220.44
H-STAR 8,836 /842 8,994 /854 10,284 /702
Weaver 8,568 /725 8,723 /796 6,041 /545

Table 8: Token usage comparison per TableQA (Input/Output tokens).

Experimental Setup and Hyperparameters: All experiments were conducted using publicly available
large language models (LLMs) accessed via their official APIs. We used the models in their standard
configuration without any fine-tuning. Specifically, we used GPT-40, GPT-40-mini (OpenAl), Gemini-2.0-
Flash, and DeepSeek R1 with a fixed temperature setting of 0.01 to ensure deterministic and stable outputs.
No additional modifications were made to the default API settings beyond controlling temperature for
consistency across runs.

B Dataset Details

In this section, we describe the used dataset in details.

- Short-Form Answering (WikiTQ): WikiTQ is a dataset designed for short-form answering where the
steps to reach the answer can be relatively complex and the expected answer is a short piece of information.
For example, the query "Which country had the most competitors?" in Figure 1. This task is ideal for
testing how well information retrieval from a semi-structured table can be handled.

- Fact-Checking (TabFact): TabFact focuses on fact-checking tasks where the query involves verifying
whether a particular statement is true or false. For example, the query, "Is the GDP of Japan in 2022
greater than that of Germany?" evaluates the framework’s ability to correctly interpret data points in
complex tables and make valid judgments.

- Numerical Reasoning (FinQA): FinQA (Financial QA) is a dataset that requires the model to perform
arithmetic operations or infer relationships between numerical values across different columns. For exam-
ple, "What is the total revenue of Company X in 2021 after deducting expenses?" tests the model’s ability
to handle numerical data and apply operations such as summation, subtraction, or other mathematical
reasoning tasks.

- Multimodal Dataset (FinQAyy, OTT-QAym, MMTabQAyy): FinQAmm and OTT-QApwny are datasets
that require reasoning across both tabular data and accompanying textual context (typically a paragraph)
to answer questions correctly. Unlike traditional table QA tasks, these benchmarks challenge the model
to integrate information from both structured (tables) and unstructured (text) modalities. For instance,
in FinQA, financial metrics are found in the table, while their definitions, dependencies, or contextual
cues are only available in the surrounding text. Similarly, OTT-QA includes open-domain trivia questions,
where the relevant answers often span both the table and the associated paragraphs.

MMTabQApy is a multimodal dataset that requires reasoning across both tabular data and visual
information. Unlike traditional table QA tasks, it incorporates both text and images within its tables,
challenging the model to integrate structured (tables), unstructured (text), and visual (images) modalities.
The data set consists of query demands that combine textual descriptions, numerical data, and visual cues

20

from images. For example, a question might ask about the relationship between financial data in the table
and trends depicted in an image. MMTabQAwm tests the model’s ability to perform complex multimodal
reasoning, requiring SQL, LLM, and VLM calls to accurately derive answers. This makes it a valuable
benchmark for evaluating systems that integrate and reason over multimodal inputs.

C Few-Shot Prompting for Plan Generation

We use a few-shot prompting approach to generate plans during the planning stage. Through our analysis
of various complex data problems, we identified three broad categories of transformation challenges
that commonly arise. For each category, we manually crafted a representative example—rather than
using examples from any particular dataset—to serve as in-context prompts. This was done to avoid
memorization bias and to encourage cross-dataset generalization. These examples were specifically
designed to capture the reasoning skills required for hybrid queries. We will include them in the appendix
for clarity and reproducibility in the final version. Below are the three categories and the corresponding
examples with sample tables:

* Semantic reasoning from textual content: These are cases where a column contains long or
descriptive text, and we want the LLM to reason some semantic information which can be either
direct extraction from text (e.g., extract topic from abstract text) or inference from text (e.g., infer
sentiment from a text).

Listing 19: Few-shot examples for semantic reasoning from textual content

Table: grocery_shop

item_description sell_price buy_price
"Indulge your senses with this botanical blend of rosemary and lavender. Gently
cleanses while nourishing your hair, leaving it soft, shiny, and revitalized."
7.99 4.99

Question: Which item category has the highest average profit?

Plan:
Step 1: LLM - Item_category column needs to be created using item_description column
Step 2: SQL - Calculate average profit for each category and find the maximum.

¢ Commonsense or background knowledge inference: In these cases, the required information is
not explicitly present in the table but can be inferred using commonsense knowledge or facts the
LLM is likely to have been trained on. We prompt the LLM to infer and populate a new column
based on the existing data.

Listing 20: Few-shot examples for commonsense or background knowledge inference

Table: order_delivery_history

Order ID Product Event Timestamp (Local) Location
101 Laptop Dispatched 2025-01-14 08:00 AM Los Angeles, USA
101 Laptop Arrived at Hub 2025-01-15 03:00 AM Chicago, USA

Question: Which location had the maximum time taken between dispatch at one location
and arrival or delivery at a subsequent location?

Plan:
Step 1: LLM - Convert local timestamps to UTC time for all events.
Step 2: SQL - Sort events within each Order_ID and Product by Timestamp_UTC.

Step 3: SQL - Pair Dispatched events with the corresponding Arrived at Hub or
Delivered events for each order/product and calculate the time difference.
Step 4: SQL - Display the final output with paired events, durations, and relevant

information sorted by Order_ID and Product.

21

* Preprocessing or normalization of non-SQL-friendly columnse: These are cases where a column
contains values that are too diverse or unstructured to be directly used in a SQL query. Since the
full table is not visible to the LLM and generating an exhaustive list of conditions is infeasible, we
prompt the LLLM to generate a cleaned or normalized version of the column that can be used in
downstream SQL queries.

Listing 21: Few-shot examples for preprocessing or normalization of non-SQL-friendly columns

Table: Israel at the 1972 Summer Olympics

Name Placing

Shaul Ladani 19

Esther Shahamorov Semifinal (5th)
Listeravov Shamil 12th

Question: Who has the highest placing rank?

Plan:
Step 1: LLM - Format the column Placing by extracting only numerical values (e.g. 5
from Semifinal (5th)) and converting the text into numbers (e.g. Semifinal to 5,
12th to 12, 19 to 19).
Step 2: SQL - Retrieve the highest placing (rank) from the placing column by
selecting the minimum number in the list as lower number corresponds to higher
rank.

D Additonal Discussion

LLM Utility in Column Transformation and Semantic Inference: Our core contribution lies in
how we effectively leverage LLMs beyond what traditional SQL systems can offer, specifically in tasks
involving column transformation and semantic inference. Weaver integrates LLM reasoning for two
primary purposes: (i) handling tasks that SQL cannot perform—such as entity extraction or parsing
ambiguous formats A.2 and (ii) inferring implicit knowledge based on pretraining, where the LLM is
tasked with verifying a plan that involves semantic understanding Figure 2.

A detailed example from the WikiTQ dataset in Appendix A.2(Listing 12) demonstrates the LLM’s
capability to normalize complex date strings like "Spring 1932" or "1935/36" into standardized YYYY
formats. This transformation, impossible through SQL alone, was completed through a single LLM step
with high consistency.

Listing 22: Example explaination

Processes complex date formats (e.g., "Spring 1932", "1935/36", "1937")
Standardizes them into YYYY format (1932, 1936, 1937 respectively)

Additionally, our hybrid planning enables seamless coordination between SQL and LLM steps, as
seen in examples involving multi-column reasoning (e.g., from a movies table with columns movie name,
review content, movie information, and release date).

Listing 23: Example explaination

Question: "What movies suitable for kids with positive reviews should be recommended
based on their reviews after 2018?"

Plan:
SQL: Filter movies released after 2018 using the release_date column:

SELECT * FROM movies WHERE release_date > 2018;

LLM: Utilize a Large Language Model (LLM) to evaluate whether a movie is suitable
for children by processing:

movie_info (structured metadata)

review_content (unstructured user reviews)

new column: suitable_movies

22

SQL: Apply SQL filtering to retain only movies flagged as suitable by the LLM:
SELECT * FROM movies WHERE suitable_movies = ’Yes’;

LLM: For the filtered movies, check which movies have positive reviews based on:
movie_info

review_content

new column: recommended

SQL: Apply SQL filtering to retain only movies which are recommended:
SELECT * FROM movies WHERE recommended = ’Yes’;

Beyond Semi-structured Text. We define semi-structured tables following prior work (Gupta et al.,
2020b), focusing on unstructured or free-form content embedded within structured table formats—such as
textual cells requiring semantic interpretation—rather than on hierarchical structures like JSON or HTML
trees. While our current benchmarks focus on flat tables, the primary challenges we address stem from
this embedded unstructured content. These challenges often require semantic inference, an area where
traditional SQL struggles and large language models (LLMs) are critical in bridging the gap. Examples
include inconsistencies in formatting, reliance on domain-specific knowledge, and implicit contextual
cues necessary for accurate query interpretation.

Additionally, our approach is easily extendable to hierarchical data formats (e.g., HTML, nested JSON,
HiTab) through structure decoding. These formats can be transformed into a flattened, normalized table
representation and then processed using Weaver . However, as we discuss later, such datasets typically
lack the complex hybrid queries involving multi-step reasoning and semantic inference, which are the
primary focus of our work.

Filtering Hybrid Queries using Binder. To filter hybrid queries from their original dataset counterparts,
we leverage Binder’s query structure. Specifically, we identify queries that invoke any UDF, for example
‘QA‘ function as seen in the example below, which prompts the LLM with a yes/no question related to a
single column. This serves as a reliable indicator that the query requires semantic reasoning beyond SQL
capabilities. The example below demonstrates such a pattern, where the QA function is applied to assess
contextual understanding. This filtering process ensures that the LLM is used for its intended purpose,
semantic inference or interpretation, aligned with the methodology outlined in the "Our Approach" section.

Listing 24: Example NeuralSQL query using QA function

Question: what number of games were lost at home?

NeuralSQL:
SELECT COUNT(*) FROM w WHERE QA("map@is it a loss?"; ‘result/score‘) = ’yes’
AND QA("map@is it the home court of New Orleans Saints?”; ‘game site‘) = ’yes’

E Comparison with Existing Datasets

Several benchmark datasets—such as Spider, HiTab, and BIRD—have contributed significantly to multi-
hop and multi-table question answering. However, these benchmarks primarily emphasize symbolic
SQL reasoning and do not align with the hybrid reasoning focus of Weaver , which requires coordinated
symbolic (SQL-based) and semantic (LLM-based) reasoning.

Spider was designed for cross-domain Text-to-SQL parsing over a variety of databases. While it
features compositional queries, the questions can typically be answered using SQL alone. Despite recent
augmentations that add paraphrasing and perturbation, the core tasks remain fully executable without any
semantic interpretation, making Spider insufficient for evaluating hybrid symbolic-semantic pipelines.

HiTab focuses on hierarchical tables and structural decoding challenges. Although it includes tables
that require some normalization or flattening, once transformed, the resulting queries involve only 2—3
simple SQL operations (e.g., filtering, aggregation). Importantly, these tasks do not demand semantic
reasoning or LLM-based operations, limiting HiTab’s suitability for hybrid evaluation.

23

BIRD is a large-scale, multi-table QA benchmark that emphasizes compositional and multi-hop rea-
soning over relational tables. It serves as a rigorous testbed for symbolic systems. However, as we detail
below, it lacks tasks that truly require hybrid semantic-symbolic coordination.

E.1 Evaluation on BIRD Dataset

We evaluate Weaver on the BIRD benchmark using GPT-40 as the backend. Weaver achieves an accuracy
of 91%, solving nearly all tasks using symbolic SQL execution alone, without invoking any LLM-based
semantic reasoning. These results demonstrate that while Weaver is highly effective on BIRD, the
dataset’s symbolic nature limits its value for testing hybrid reasoning capabilities. Most BIRD tasks can be
completed in 3—4 SQL steps involving standard operations like joins, filtering, and sorting. For instance,
consider the query:

Listing 25: Example execution plan

Question: Please list the lowest ten eligible free rates for students aged 5 17 in
continuation schools. Eligible free rates Free Meal Count (Ages 5 17) /
Enrollment (Ages 5 17)

Plan:

SQL: Join the frpm table with the schools table using School Type and SOCType,
filtering for "Continuation High Schools”.

SQL: Compute eligible free rates per school using the formula: Free Meal Count (Ages
5-17) / Enrollment (Ages 5-17).

SQL: Sort schools by the calculated rate in ascending order.

SQL: Select the ten schools with the lowest eligible free rates.

SQL Queries Generated -

Step 1: SELECT f.* FROM frpm f JOIN schools s ON f.School Type = s.SOCType WHERE s.
SOCType = ’Continuation High Schools’;

Step 2: CREATE TABLE eligible_free_rates AS SELECT School Name, School Type, Free
Meal Count (Ages 5-17), Enrollment (Ages 5-17), (Free Meal Count (Ages 5-17) /
Enrollment (Ages 5-17)) AS eligible_free_rate FROM continuation_schools;

Step3: CREATE TABLE sorted_eligible_free_rates AS SELECT x FROM eligible_free_rates
ORDER BY eligible_free_rate ASC;

Step 4: CREATE TABLE lowest_ten_eligible_free_rates AS SELECT x FROM
sorted_eligible_free_rates LIMIT 10;

Despite the multi-hop joins, these tasks do not require semantic disambiguation, commonsense reason-
ing, or LLM-assisted table understanding. As such, BIRD was excluded from our main hybrid benchmark
comparison table, though its results highlight Weaver ’s strong symbolic reasoning capabilities.

Why Existing Datasets Fall Short? While Spider, HiTab, and BIRD advance multi-hop QA in important
ways, none capture the core challenges of hybrid queries where symbolic (SQL) and semantic (LLM)
steps must be interleaved. Weaver is explicitly designed for such hybrid workflows, requiring intelligent
planning, decomposition, and alternating execution paths—capabilities not required in these prior datasets.

E.2 Execution Strategy in the Weaver Pipeline

Why SQL Execution Alone Was Insufficient? In Weaver , SQL execution alone does not yield the final
answer because the retrieved table may contain extraneous data or errors, particularly if any SQL-LLM
steps fail or produce incomplete results. Although SQL retrieves the data, it cannot handle formatting
issues, missing values, or the semantic reasoning required to extract the correct answer. Therefore, an
LLM is used post-execution to refine the table, correct formatting, and extract only the relevant values,
ensuring accurate final answers that SQL alone cannot guarantee.

Why SQL and LLLM Outputs Are Not Combined? Unlike methods like H-STAR, which execute
SQL and LLMs in parallel, Weaver selectively chooses whether SQL or LLM should handle each query

24

part. This planning-based approach improves efficiency by avoiding the computational cost of parallel
execution. As shown in Table 5: Number of API Calls Comparison per TableQA, H-STAR requires
8 LLM API calls per query, whereas Weaver averages only 5.4, significantly reducing overhead and
improving overall performance.

E.3 Rationale for Using SQL over Python

While Python offers greater expressiveness, we selected SQL for three key reasons that align with the
objectives of our framework:

 Portability: SQL is the standard query language supported by most database engines, ensuring our
approach can be easily integrated into real-world systems.

* Interpretability: SQL’s declarative nature makes queries more transparent, facilitating step-by-step
explainability in the planning pipeline.

* Efficiency: SQL operations, such as filtering, aggregation, and joins, are highly optimized for
symbolic inference over tabular data, enabling faster execution on large datasets without requiring
data export.

SQL is well-suited for our use case because Weaver is designed for seamless integration with database
systems and big data environments. In contrast, Python-based solutions like Pandas can encounter
scalability issues, while SQL is inherently optimized to efficiently handle large-scale tabular data.

25

