Weaver : Interweaving SQL and LLM for Table Reasoning

Anonymous ACL submission

Abstract

Querying tables with unstructured data is challenging due to the presence of text (or image), either embedded in the table or in external paragraphs, which traditional SQL struggles to process, especially for tasks requiring semantic reasoning. While Large Language 007 Models (LLMs) excel at understanding context, they face limitations with long input sequences. Existing approaches that combine SQL and LLMs typically rely on rigid, predefined workflows, limiting their adaptability to complex 011 012 queries. To address these issues, we introduce Weaver, a modular pipeline that dynamically integrates SQL and LLMs for table-based ques-014 tion answering (TableQA). Weaver generates a 015 flexible, step-by-step plan that combines SQL 017 for structured data retrieval with LLMs for semantic processing. By decomposing complex queries into manageable subtasks, Weaver improves accuracy and generalization. Our experiments show that Weaver consistently out-021 performs state-of-the-art methods across four TableQA datasets, reducing both API calls and error rates. Code and data publicly available ¹.

1 Introduction

027

034

039

Tables play a critical role across various domains such as finance (e.g., transaction records), healthcare (e.g., medical reports), and scientific research. However, many real-world tables are **semistructured** (Gupta et al., 2020a), containing a combination of structured fields and unstructured content (such as free-form text or images), which makes reasoning and information retrieval challenging. Extracting insights from such data demands both logical and semantic reasoning. While SQL and Python-based methods excel in handling structured data, they fall short in dealing with unstructured text, missing entries, or implicit inter-column relationships.

1990 British Grand Prix									
Rank	Driver	Constructor	Laps	TimeRetire					
1	Alain Prost	Ferrari	64	1:18:31					
2	Thierry Boutsen	Williams-Renault	64	39.092					
3	Ayrton Senna	McLaren-Honda	64	43.088					
4	Éric Bernard	Lola-Lamborghini	64	401:03:00					
5	Nelson Piquet	Benetton-Ford	64	1:20:02					
6	Aguri Suzuki	Lola-Lamborghini	63	1 Lap					
7	Alex Caffi	Arrows-Ford	63	1 Lap					

Question: Which Country had the most competitors?

Gold Answer: Italy

Jean Alesi

8

Figure 1: Table and Question Answer example from WikiTQ Dataset

Tyrrell-Ford

63

1 Lap

040

041

042

043

045

049

051

054

057

059

060

061

062

063

064

065

066

067

068

069

Recent advances in Large Language Models (LLMs) have demonstrated strong capabilities in natural language understanding and contextual reasoning, opening new avenues for complex tasks. However, LLMs still face key limitations, particularly with long contexts and numerical or temporal reasoning. For instance, in the WikiTableQuestions (Pasupat and Liang, 2015) dataset, the query "Which country had the most competitors?" Figure 1 requires inferring the competitors' countries from a "driver" column-information not explicitly present. While traditional tools like SQL or Python cannot resolve such gaps, LLMs can leverage their pre-trained knowledge to do so. Yet, the subsequent grouping and counting by country is something LLMs struggle with but SQL handles well. Solving such queries effectively requires a hybrid approach that combines the strengths of LLMs and programmatic methods. This raises a key question: Can SQL and LLMs be seamlessly interwoven?

Some methods, such as Binder (Cheng et al., 2022) and BlendSQL (Glenn et al., 2024), integrate LLMs into SQL workflows by treating them as function calls. For example, Binder combines LLM reasoning with SQLite to support hybrid queries. While effective for simpler tasks, these approaches struggle with complex queries, as LLMs often fail to generate accurate multi-step logic. This highlights the need to decompose complex queries into

¹https://anonymous.4open.science/r/weaver-84DB/

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

smaller, manageable steps. Other approaches, like H-Star (Abhyankar et al., 2024) and ReAcTable (Zhang et al., 2024), use programmatic techniques 072 to prune tables but rely heavily on costly API calls. Meanwhile, methods like ProTrix (Wu and Feng, 2024) limit reasoning to just two steps, making them insufficient for multi-hop queries. These rigid pipelines often constrain LLMs to final answer extraction and cannot handle questions requiring external or implicit knowledge.

071

084

091

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

To address these challenges, we introduce a modular, planning-based framework that dynamically alternates between SQL for logical operations and LLMs for semantic reasoning. By decoupling these components, our approach overcomes the limitations of monolithic systems and significantly improves performance on complex Table QA tasks. The process begins with selecting relevant columns and generating natural-language descriptions to resolve schema inconsistencies. An LLM then generates a step-by-step reasoning plan, combining SQL queries for structured operations with LLM prompts for semantic inference or column augmentation. Each step produces an intermediate table, enabling transparent reasoning and easy backtracking. A final answer extraction step retrieves the result from the processed table. This flexible design integrates with standard database engines (e.g., MySQL, SQLite) and supports various deployment settings. Our approach offers the following key contributions:

> • We propose Weaver, a modular and interpretable framework for hybrid query execution that dynamically decomposes complex queries into modality-specific steps (e.g., SQL, LLM, VLM) without manual effort.

- We conduct extensive experiments on multiple hybrid QA benchmarks, including multimodal datasets, showing that Weaver outperforms existing methods by large margins, particularly on complex, multi-hop reasoning queries.
- We introduce a query plan optimization strategy that improves execution efficiency with minimal accuracy loss. Weaver also stores all intermediate outputs, enabling transparency, effective human-in-the-loop debugging.

Our results show superior accuracy over exist-117 ing baselines, especially for queries requiring im-118 plicit reasoning beyond explicit table values. By 119 bridging structured and unstructured reasoning, our 120

approach sets a new benchmark for complex Table QA, offering a scalable solution for real-world applications.

2 **Our Approach**

This study addresses question answering tasks over tables containing both structured and unstructured data. Each instance consists of a table (T), a user query (Q), an optional paragraph (P), and a predicted answer (A). Queries span multiple categories: short-form queries (WikiTQ) involving direct lookups or aggregations; fact-checking queries (TabFact (Chen et al., 2019)) that require claim verification; numerical reasoning queries (FinQA (Chen et al., 2021b)) necessitating multi-step calculations; and multi-modal queries (FinQA and OTT-QA (Chen et al., 2021a)) that demand reasoning over extensive textual contexts inside and outside tables. Complex queries, such as "Which country had the most competitors?", frequently require semantic inference when explicit data is unavailable. Previous approaches typically rely on single-step executions, limiting flexibility and interpretability. In contrast, our method dynamically integrates SQL for structured data operations and LLMs for semantic inference, providing adaptable and accurate query resolution.

2.1 SQL-LLM Weaver

We introduce Weaver, a novel methodology integrating SQL and LLM specifically designed for TableQA tasks involving complex semantic reasoning and free-form responses. Weaver operates through distinct, structured phases:

1. Pre-processing: We begin by preprocessing the tables to mitigate SQL-related errors due to naming conflicts and data inconsistencies. This involves renaming columns conflicting with SQL reserved words (e.g., Rank), removing special characters, and standardizing column names. Subsequently, an LLM identifies and extracts relevant columns for the query, generating descriptive metadata for these columns. This metadata clarifies schema interpretations, resolves formatting issues, and defines accurate data types, as illustrated in Figure 2. For external unstructured text, relevant information is retained using an LLM to ensure context alignment.

2. Planning: In this phase, an LLM generates a 167 dynamic, step-by-step plan using few-shot prompt-

Figure 2: Step-by-step TableQA execution using Weaver approach.

ing based on the previously derived metadata. The plan consists of sequential subtasks, each categorized explicitly as either SQL or LLM operations.

170

172

174

175

176

178

183

186

188

189

191

192

(a.) <u>SQL Step</u>: SQL steps manage structured data tasks, including filtering rows, formatting column data types, mathematical operations and data aggregations. For example, Figure 2 demonstrates an SQL step that generates an intermediate table, "unique_drivers."

(b.) LLM Step: LLM steps handle tasks beyond SQL's capabilities, such as deriving new columns through semantic inference, sentiment analysis, or interpreting complex textual data. LLMs leverage either contextual paragraphs or their pretrained knowledge to perform these tasks. Each LLM step carefully integrates outputs back into the structured data tables to ensure coherence and consistency for subsequent SQL steps. Figure 2 illustrates how an LLM infers a "country" column from the "driver" column in the intermediate table "unique drivers". The LLM is guided through structured prompts that leverage its pretrained knowledge and reasoning capabilities. Relevant information (extracted from external unstructured text in pre-processing step) is also passed to LLM if present.

194Plan Verification.Prompting techniques like195self-refinement (Madaan et al., 2023) and verifi-196cation (Weng et al., 2023) are known to enhance197LLM reasoning by reducing errors and improving198consistency. To leverage this, we use a secondary

LLM to verify the initial plan, ensuring its logical consistency, robustness, and completeness. Gaps such as insufficient reasoning or formatting issues are addressed by refining the plan, as shown in step (D) in Figure 2. This verification improves the pipeline's reliability and mitigates cascading errors.

3. Code Execution: Following verification, the pipeline executes the plan sequentially, combining SQL queries and LLM-generated prompts.

(a.) <u>SQL Step - Query Generation</u>: SQL operations involve formatting, filtering, joining, aggregating, and grouping data, with intermediate tables stored at each stage. SQL efficiently handles structured data operations, reducing reliance on LLM steps.

(b.) LLM Step - Prompt Generation: LLMs dynamically create prompts for operations exceeding SQL capabilities, such as generating new columns or interpreting textual insights. These LLM-generated prompts interact with structured intermediate tables from SQL steps, ensuring coherent integration.

Robust error handling and fallback mechanisms ensure pipeline robustness, utilizing the recent successful intermediate table if execution errors occur.

4. Answer Extraction: In the final pipeline stage, the intermediate table and user query are inputted to an LLM, which generates a natural language answer. Leveraging few-shot learning en-

199

200

201

202

sures output consistency and contextual accuracy, effectively resolving complex queries. Figure 2 illustrates this process with a sample TableQA example.

2.2 Optimization

230

240

241

242

243

245

246

247

248

249

250

We experimented to further enhance the efficiency of our pipeline, optimizing the planning strategy by minimizing unnecessary LLM calls and prioritizing SQL-based operations.

One key optimization involves pushing SQL operations such as filtering, aggregation, and formatting early in the pipeline as shown in Figure 3 in Appendix A.5. This reduces the volume of data that needs to be processed by the LLM, significantly reducing latency and computational overhead. Furthermore, parallelizing LLM inference across these optimized chunks further enhances efficiency, allowing the system to handle large-scale tabular reasoning tasks effectively, as shown Figure 3. To further streamline execution, sequential SQL steps are merged, reducing SQL calls and improving performance, see Figure 4 in Appendix A.5.

Figure 3: Optimization using SQL Reordering and LLM call parallelization.

Given the computational demands of LLMs for large tables we split data into smaller context-aware chunks before sending them to the LLM for inference. This prevents input truncation, maintains logical coherence between batches, and ensures optimal utilization of the context window of the model, as demonstrated in Figure 5, in the Appendix A.5. This optimization strategy further enhances *Weaver* planning and execution efficiency.

256

257

258

259

260

261

262

263

264

265

266

269

270

271

272

273

274

275

276

277

278

279

281

282

283

285

286

290

291

293

294

296

297

298

299

301

302

303

304

305

3 Experiments

Benchmarks. As hybrid multi-hop TableQA remains an emerging research area, there is no dedicated benchmark to evaluate such tasks. To fill this gap, we curate a hybrid subset by filtering relevant examples from several established table-based datasets for the evaluation of *Weaver*.

Source Datasets. For a comprehensive evaluation of Weaver 's ability to handle complex hybrid queries, we assess its performance across four diverse datasets: WikiTQ, TabFact (a fact verification dataset), FinQA (a numerical reasoning dataset), and OTT-QA (a short-form answering dataset). We also evaluated our approach on 3000 queries each of multimodal (MM) datasets, FinQA_{MM} and OTT-QA_{MM}, which require reasoning in both tabular data, and the accompanying textual context (usually a paragraph outside tables). We also evaluated Weaver on the MMTabQA_{MM} dataset (Mathur et al., 2024), which involves reasoning over tables that include both text and images. This dataset contains 1,600 queries and 206 tables, with each query requiring the integration of textual and visual reasoning, including SQL, LLM, and VLM calls. Unlike traditional table QA tasks, these benchmarks challenge the model to integrate information from structured (tables) and unstructured (text) modalities. Details on the datasets in Appendix B.

Filtering Methodology. We define "hybrid" queries as those that require both SQL operations and LLM-based reasoning. These queries are more complex, as they necessitate not only structured data retrieval but also advanced reasoning capabilities, such as entity inference or free-text interpretation, which SQL alone cannot provide. To identify such queries, we use Binder-generated queries that incorporate user-defined LLM functions (UDFs). Queries involving UDFs indicate the need for semantic reasoning beyond SQL's capabilities. It is important to note that we did not validate the correctness of Binder's outputs; its role was purely to flag queries with hybrid characteristics. These candidate queries were then manually validated to confirm they genuinely required both SOL execution and LLM reasoning steps to arrive at the correct answer. For FinQA, we utilized the "qa" object to identify queries requiring multiple reasoning
steps, excluding simple table lookups to ensure the
selected queries involved more than just direct data
retrieval. These flagged queries were then manually reviewed to confirm their need for both SQL
execution and LLM reasoning.

312

313

314

315

317

342

343

352

<u>Dataset Statistics.</u> After filtering, the hybrid versions of the datasets consist of: (a) WIKITQ: 510 examples (original: 4,344), (b) TABFACT: 303 examples (original: 2,000), and (c) FINQA: 1,006 examples (original: 8,281). These represent the final queries filtered to create the hybrid versions: WikiTQ_{hybrid}, TabFact_{hybrid}, and FinQA_{hybrid}.

Evaluation Metrics Traditional Exact Match 319 requires an exact match between the model's 320 generated answer and the gold answer, which 321 can unfairly penalize correct responses that differ 322 only in format, for example, 2nd April 2024 and 04/02/2024 are semantically the same. To address 324 this, we introduce Relaxed Exact Match (REM) 325 metric which implements a three-step evaluation 326 framework. First, we standardize the model's output to align with the gold answer, handling variations such as unit representation and common abbreviations. For example, if the model returns the final table with column- "Year" with value- "17", and 331 the expected answer is "17 years", we transform the output to match the reference format. Once the answers are format-aligned, we apply the stan-334 dard EM metric to determine whether the processed output matches the gold answer. However, auto-336 mated transformations can sometimes introduce unintended errors, such as incorrect unit conversions or context misalignment. To prevent such issues, we also perform human evaluation to ensure accurate answer matching.

> LLM Models. In our research, we use stateof-the-art large language models (LLM) such as Gemini-2.0-Flash (DeepMind, 2024), GPT-4omini-2024-07-18, GPT-4o-2024-08-06 (OpenAI et al., 2024) and the open-source DeepSeek R1distill Llama-70B² (DeepSeek-AI et al., 2025), (Shi et al., 2024) for table reasoning tasks. Our model inputs include in-context examples, the table, and the question for each step of the pipeline.

3.1 Baseline Methods

We evaluated our approach against several baselines that are broadly categorized into 4 categories: 1. Query Engines (Binder, BlendSQL): These methods generate hybrid SQL queries with LLMs as User Defined Functions. They leverage SQL to interpret tabular data and execute queries to retrieve relevant information., 2. End-to-End LLM QA: This approach leverages LLMs for question answering without intermediate query structuring. The model receives a query and table as input, generating answers based on learned patterns and reasoning. We employ GPT-40, GPT-40-mini, Gemini-2.0-Flash, and DeepSeek R1-distill LlaMA 70B for all tasks, 3. Pruning-Based Methods (ReacTable, H-Star): These methods first apply SQL or Python-based pruning techniques, such as filtering columns or rows, before passing the refined table to an LLM for final answer extraction, and 4. Planning Based Approach (ProTrix): ProTrix employs a two-step "Plan-then-Reason" framework. It first plans the reasoning, and assigns SQL to filter the table. Finally, it uses LLM to extract the final answer. By comparing our approach with these methods, we highlight the unique strengths of SQL-LLM Weaver, which combines SQL-based filtering with LLM-driven reasoning for more effective query resolution.

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

383

385

386

387

388

390

392

393

394

395

3.2 Results and Analysis

Our Weaver performs well on three challenging benchmarks; we present key findings next.

First, are Hybrid Queries harder? The results in Table 1 compare GPT-3.5-turbo on the original dataset with GPT-4o-mini on the hybrid set. Despite leveraging a more capable model (GPT-4omini) for the hybrid queries, we observe substantial performance drops—H-Star and Binder see accuracy declines of 9.5% and 32.7%, respectively, on WikiTQ_{hvbrid}.

	Original (GPT-3.5)	Hybrid (GPT-4o-mini)
Binder	56.7%	24%
ReAcTable	52.4%	27%
H-Star	69.5%	59%
ProTrix	65.2%	61.4%

Table 1: Baselines result comparison on WIKITQ after filtering on hybrid part.

Notably, GPT-4o-mini outperforms GPT-3.5turbo on benchmarks like MMLU and MATH (Source: OpenAI), yet still struggles on hybrid queries. This underscores their inherent difficulty and highlights the limitations of current methods in handling multi-step, semantically complex reasoning in Table QA.

²https://github.com/meta-llama/llama- models/blob/main/models/llama3_3/LICENSE

416

417

418

419

443

444

445

446

447

448

449

450

451

452

453

454

455

456

397

405

407 408 409

406

410

411 412

413

414

414 415 **Does Weaver Help?** Table 2 demonstrates that Weaver consistently outperforms state-of-theart baselines across all datasets. On WikiTQ, Weaver surpasses the best-performing baseline Pro-Trix by 5.5% across all four models. On TabFact, it achieves a breakthrough 91.2% using DeepSeek model, surpassing the 90% benchmark. On FinQA, it achieves accuracy of 65%, outperforming baselines by 4.6% on DeepSeek R1-distill Llama 70B.

	WikiTQ	TabFact	FinQA		
	(GPT-40-mini			
End-to-End OA	60.4	84.4	44.7		
Binder * ~	24.0	62.0	13.0		
BlendSQL	26.0	68.5	37.0		
ReAcTable*	29.9	37.4	-		
H-Star	59.0	83.0	40.1		
ProTrix	61.4	81.5	46.4		
Weaver	65.0	89.4	49.3		
	GPT-4o				
End-to-End QA	66.4	80.8	58.3		
Binder*	27.3	60.3	17.0		
BlendSQL	42.0	68.3	34.3		
ReAcTable*	45.4	45.4	-		
H-Star	61.0	87.0	46.0		
ProTrix	61.7	80.5	54.3		
Weaver	70.7	<u>83.4</u>	60.8		
	Ge	mini-2.0-Flas	sh		
End-to-End QA	67.5	81.8	29.4		
Binder*	12.9	60.4	21.3		
BlendSQL	31.1	60.1	19.7		
ReAcTable*	20.4	37.6	-		
H-Star	63.5	86.1	38.7		
ProTrix	62.2	80.8	42.9		
Weaver	69.6	<u>85.4</u>	44.5		
	DeepSeek	R1-distill Ll	ama 70B		
End-to-End QA	76.4	82.5	52.4		
Binder*	26.4	62.7	24.4		
BlendSQL	32.2	50.8	36.7		
ReAcTable*	52.2	45.6	-		
H-Star	68.7	55.6	50.3		
ProTrix	41.4	81.1	60.4		
Weaver	73.0	91.2	65.0		

Table 2: Experimental results for various models on shortform QA, fact verification, and numerical reasoning tasks. *: with self-consistency. Best result in **bold**, second-best in <u>underlined</u>. A hyphen (-) indicates missing results due to incompatibility or untested scenarios.

<u>Weaver vs Query Engines.</u> Binder and Blend-SQL struggle with hybrid queries due to their rigid single-step execution framework. We observe that only 61% and 66% of the hybrid queries execute successfully in Binder and BlendSQL on WikiTQ. The reported accuracies for these methods are calculated based on successfully executed queries. Although BlendSQL slightly outperforms Binder with a modest 2% it frequently encounters type errors when integrating LLM-generated outputs into SQL operations. Weaver outperforms BlendSQL by 39%, 20.9% and 12.3% accuracy on WikiTQ, TabFact and FinQA using GPT-40-mini.

<u>Weaver vs Pruning Methods.</u> H-Star and Re-AcTable while effective for structured queries, perform poorly on semantic tasks. H-Star attains 59.0% and 63.5% accuracy on WikiTQ_{hybrid} using GPT-4o-mini and Gemini-2.0-Flash, respectively, but struggles with row extraction. In some cases, its row-filtering heuristics discard critical contextual data essential for reasoning. H-Star's higher accuracy on TabFact with GPT-40 stems from the dataset's suitability for pruning techniques. ³ Furthermore, *Weaver* with GPT-40-mini and DeepseekR1-Distill-LLAMA, despite their smaller size, performs competitively highlighting its effectiveness in resource-constrained environments where lightweight models are preferred.

<u>Weaver vs Planning Method.</u> ProTrix follows a two-step pipeline (planning and execution), achieves 61.4% and 62.2% on WikiTQ_{hybrid} with GPT-4o-mini and Gemini-2.0-Flash. However, it fails in scenarios requiring intermediate semantic processing. For example, queries demanding dynamic column generation (e.g., inferring Country from Constructor) reveal its inability to seamlessly integrate SQL and LLM reasoning, leading to a 9% accuracy gap (GPT-40) compared to Weaver .

<u>Weaver on Multimodal Method.</u> We evaluated Weaver on two multimodal datasets—FinQA_{MM} and OTT-QA_{MM}—requiring multi-hop reasoning over both structured (tables) and unstructured (text) data. As shown in Table 3, Weaver outperformed baselines, with notable improvements in FinQA_{MM} and moderate gains in OTT-QA_{MM}.

F	FinQA _{MM}	OTT-QA _{MM}	FinQA _{MM}	OTT-QA _{MM}	
GPT-4o-mini GPT-4o					
End2End QA	45.9	61.2	57.6	68.7	
Weaver	63.2	63.7	68.0	65.2	
	Gemini	2.0-Flash	DeepS	Seek R1	
End2End QA	37.9	64.1	54.8	59.9	
Weaver	60.8	66.7	66.2	62.8	

Table 3: Experimental results on short-form question answering on dataset with table and paragraphs.

In FinQA_{MM}, Weaver excelled in numerical and multi-hop reasoning, where end-to-end models struggled with irrelevant information and sequential logic, such as calculating net values. For OTT- QA_{MM} , which involved less structured computation and more world knowledge, Weaver still showed

³We didn't test ReAcTable on FinQA since its prompts are tailored to other sets; modifying them changes baseline.

457 consistent gains. Unlike baselines, Weaver effectively retrieved and integrated key table and paragraph segments, ensuring relevant information was
460 used. These results highlight the strength of our
461 modular, reasoning-focused approach, which integrates information step-by-step instead of relying
463 on holistic attention.

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

489

490

491

492

493

494

495

496

497

498

499

500

501

502

504

505

On MMTabQA_{MM} dataset, Weaver achieved an accuracy of 53.02% using gpt-4o-mini model, significantly outperforming the end-to-end QA baseline, which scored 46.33%. These results highlight the strength of our modular, reasoning-driven approach, combining structured data (tables), unstructured data (text), and visual inputs (images) for superior performance. This underscores Weaver 's versatility and scalability in addressing complex multimodal (table, text, images) QA tasks.

Efficacy Analysis. We conducted an analysis to assess the effectiveness and scalability of Weaver in WikiTQ_{hybrid}, focusing on 98 large tables with over 30 rows and average token length of 17,731. Our results show that Weaver achieved an accuracy of 65.6%, outperforming ProTrix (37.5%) and H-Star (35.9%) by 28.1% and 29.7%, respectively, on these large tables Weaver maintained the same accuracy on the entire original dataset, demonstrating its ability to handle complex queries while remaining both scalable and robust. These results highlight Weaver 's ability to tackle a wide range of table-based tasks with consistent performance.

In addition to delivering reliable performance, *Weaver* offers the critical advantage of transparent, interpretable reasoning. By following a structured execution plan, it ensures that final answers are tightly aligned with preceding reasoning steps, enhancing traceability and reducing spurious outputs. This directly addresses a core limitation of large language models—hallucination and memorization. Unlike end-to-end LLMs, which may produce correct answers without valid reasoning, *Weaver* only yields correct outputs when the underlying plan is sound, ensuring both reliability and interpretability.

Efficiency Analysis. Table 4 demonstrate the efficiency of our proposed Weaver framework using number of API calls. We make six API calls which are much lower compared to approaches that use self-consistency (Binder) with 50 calls and H-Star which uses ~ 8 calls to reach the answer.

ProTrix uses only two fixed API calls and relies on the LLM solely for generating the plan. How-

API calls/ Query	GPT-40	GPT-40-mini	Gemini-2.0
ProTrix	2	2	2
Binder	50	60	53
H-STAR	8	8	8
Weaver	5.31	5.87	5.85

Table 4: Number of API calls comparison per TableQA.

ever, it does not involve the LLM during execution. This limits its ability to handle multi-step queries requiring reasoning at each step. For instance, it may fail to infer information from individual rows or perform operations such as applying a SQL GROUP BY on an LLM-inferred 'country' column. Such steps are often essential to arrive at the correct final answer. These metrics demonstrate how our approach minimizes computational overhead while maintaining accuracy.

#LLM Optimization Effect					
#LLMs Drops 15					
#SQL Drops	19				
#SQL Merge 113					
#SQL Reorder 4					
	Before Opt.	After Opt.			
#LLMs	74	59			
#SQL	532	513			
#Total Steps	616	469			
Accuracy (%)	65	64			

Table 5: Effect of optimization on GPT-4o-mini plans on WIKITQ. Opt. stands for plan optimization.

Optimization: We experimented with optimizing our planning and execution strategy on 200 TableQA queries. Table 5 demonstrates how our optimization strategy focuses on reducing unnecessary computational steps without compromising accuracy. To achieve this, we implemented several techniques.

1. <u>LLM Step Reduction</u>: By identifying and eliminating redundant LLM steps, we reduced the 15 LLM calls. This optimization ensures that LLMs are only used when necessary, lowering computational costs.

2. <u>SQL Step Optimization</u>: We achieved a reduction of 19 SQL steps by eliminating unused operations. Additionally, we merged 113 sequential SQL steps into fewer, more efficient queries and reordered 4 steps to optimize execution flow, making it more efficient.

Optimizing GPT-4o-mini reduces LLM steps by 20% and SQL steps by 24.8%, significantly improving efficiency. The accuracy slightly drops from 65% to 64%, but this trade-off is minimal, especially under practical constraints. Our goal is to create a scalable TableQA pipeline that balances

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

541accuracy with computational cost, particularly for542large tables. The optimization achieves this by543maintaining modular reasoning while reducing la-544tency, API calls, and input tokens, demonstrating545that efficiency gains don't sacrifice performance.

547

548

549

552

553

554

555

557

561

563

564

565

567

568

569

571

573

574

575

577

Error Analysis Table 6 illustrates the effectiveness of our approach in minimizing errors in SQL execution and plan generation. Our approach reduces SQL errors by 30% and plan generation by 86% compared to ProTrix in both GPT-40, GPT-40-mini and Gemini-2.0-Flash. However, GPT-40mini exhibits a higher SQL error rate due to its smaller model size, which limits its ability to generate accurate SQL queries.

	GPT-40	GPT-4o-mini	Gemini-2.0
		ProTrix	
SQL Error Plan Generation	51.2% 11.0%	25.9% 17.0%	27.0% 9.0%
		Weaver	
SQL Error Plan Generation	15.0% 1.0%	42.5% 3.0%	16.0% 1.0%

Table 6: Error in SQL and Plan Generation on WIKITQ.

In Weaver, SQL errors arise due to incorrect formatting, unsupported MySQL functions, or hallucinated columns and tables. Planning errors arise when SQL steps replace LLM reasoning or generate unused tables. The Plan Verification Step, Figure 2, mitigates these issues by refining planning for improved reliability in complex table-based reasoning.

Analysis Across Pipeline Stages: We perform a stage-wise analysis to assess the contribution of each component in our pipeline-filtering, planning, and execution. Compared to SQL-only generation, which struggles with multi-step reasoning, our pipeline yields consistent accuracy gains by structuring the task into sub-components. The *fil*tering stage removes irrelevant columns, reducing noise and guiding the model's attention. The planning stage-central to our method-decomposes complex queries into symbolic and semantic steps. This step is essential and not ablatable. However, skipping plan verification (i.e., executing without validating) leads to a 1% drop in accuracy, indicating that verification adds robustness. Finally, execution stage translates structured plans into SQL.

4 Comparision with Related Work

Table-based Question Answering (TableQA) com-bines table understanding, question interpretation,

and NLP. Foundational work such as Text-to-SQL (Rajkumar et al., 2022), Program-of-Thought (Chen et al., 2023), and TabSQLify (Nahid and Rafiei, 2024b) laid the groundwork. Binder and TAG (Biswal et al., 2024) expose the limitations of traditional Text-to-SQL methods in handling complex analytical tasks involving both structured and unstructured data. To address these challenges, several alternative approaches have been explored: 582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

Fine-Tuning Methods: These methods fine-tune LLMs to specialize in reasoning over hybrid tabular and textual data. Models such as (Zhu et al., 2024), (Mittal et al., 2024), and (Patel et al., 2024) are trained to extract, reason, and execute over such inputs. However, fine-tuning requires large task-specific datasets and tends to lack generalization across domains.

Query Engines: This direction integrates LLMs with SQL engines via user-defined functions (UDFs), allowing LLM calls within queries. UQE (Dai et al., 2024), BlendSQL, SUQL (Liu et al., 2024a), and Binder follow this paradigm. While flexible, LLM-generated queries can be error-prone, and these systems often support only limited query structures, reducing adaptability.

Table Pruning and Planning: Approaches like H-Star, ReAcT, ProTrix, and others (Liu et al., 2024b; Nahid and Rafiei, 2024a) enhance efficiency by programmatically pruning rows or columns using SQL or Python. While this reduces processing overhead, these methods often function as black boxes, lacking transparency and vulnerable to cascading errors if early pruning steps are incorrect.

5 Conclusion

We introduce Weaver , a novel approach for tablebased question answering on semi-structured tables. Weaver outperforms all baselines by strategically decomposing complex queries into a sequence of LLM- and SQL-based planning steps. By alternating between these modalities, it enables precise, interpretable, and adaptive query resolution. Weaver overcomes prior limitations by effectively handling both complex queries and large tables. Its modular design also supports future extensions, including image-based tables, multi-table reasoning, and integration with free-form text. As future work, we plan to explore fine-tuning and supervision strategies to further improve execution accuracy and plan reliability.

681 682

- 684 685
- 686 687
- 688 689 690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

718

719

720

721

722

723

724

725

726

727

728

729

730

731

- 645

670

671

672

673

674

675

676

Limitations 631

While our approach demonstrates strong performance across multiple datasets, it is currently limited to English-language tables, restricting its ap-634 plicability to multilingual settings. Additionally, our method does not explicitly handle hierarchical tables, where multi-level dependencies introduce additional complexity in reasoning. Another limitation is the inability to process multi-table queries, which require reasoning across multiple relational structures. Furthermore, the lack of well-641 established benchmarks for hybrid datasets poses a challenge in evaluating and further improving per-643 formance in more complex, real-world scenarios.

Ethics Statement

We, the authors, confirm that our research adheres to the highest ethical standards in both research 647 and publication. We have thoughtfully addressed various ethical considerations to ensure the responsible and equitable use of computational linguistics methodologies. In the interest of reproducibility, 651 we provide detailed resources, including publicly available code, datasets (compliant with their respective ethical standards), and other relevant materials. Our claims are supported by the experimental results, although some degree of stochasticity is inherent in black-box large language models, which we mitigate by using a fixed temperature. We also offer thorough details on annotations, dataset splits, models used, and prompting techniques to ensure that our work can be reliably reproduced. We used AI assistants to help refine the writing and improve clarity during the drafting and revision process. No content was generated without human oversight or verification.

References

- Nikhil Abhyankar, Vivek Gupta, Dan Roth, and Chandan K. Reddy. 2024. H-star: Llm-driven hybrid sqltext adaptive reasoning on tables.
- Asim Biswal, Liana Patel, Siddarth Jha, Amog Kamsetty, Shu Liu, Joseph E. Gonzalez, Carlos Guestrin, and Matei Zaharia. 2024. Text2sql is not enough: Unifying ai and databases with tag.
- Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William Wang, and William W. Cohen. 2021a. Open question answering over tables and text.
- Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. 2023. Program of thoughts

prompting: Disentangling computation from reasoning for numerical reasoning tasks.

- Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and William Yang Wang. 2019. Tabfact: A largescale dataset for table-based fact verification. arXiv preprint arXiv:1909.02164.
- Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema Moussa, Matt Beane, Ting-Hao Huang, Bryan Routledge, and William Yang Wang. 2021b. FinQA: A dataset of numerical reasoning over financial data. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3697-3711, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.
- Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong, Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, et al. 2022. Binding language models in symbolic languages. In The Eleventh International Conference on Learning Representations.
- Hanjun Dai, Bethany Yixin Wang, Xingchen Wan, Bo Dai, Sherry Yang, Azade Nova, Pengcheng Yin, Phitchaya Mangpo Phothilimthana, Charles Sutton, and Dale Schuurmans. 2024. Uge: A guery engine for unstructured databases.

Google DeepMind. 2024. Gemini 2.0.

- DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, and et al. 2025. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
- Parker Glenn, Parag Pravin Dakle, Liang Wang, and Preethi Raghavan. 2024. Blendsql: A scalable dialect for unifying hybrid question answering in relational algebra.
- Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek Srikumar. 2020a. INFOTABS: Inference on tables as semi-structured data. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2309–2324, Online. Association for Computational Linguistics.
- Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek Srikumar. 2020b. INFOTABS: Inference on tables as semi-structured data. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2309–2324, Online. Association for Computational Linguistics.
- Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy Liang. 2023. Lost in the middle: How language models use long contexts.

- 732 733 734
- 7:

- 740 741 742
- 743 744 745

- 750 751 752 753
- 754 755 756 757 758
- 7 7
- 7

7(7(

764 765 766

7

- 7
- 772
- 774
- 775 776
- .

779

7

782

- 783 784
- 78

- Shicheng Liu, Jialiang Xu, Wesley Tjangnaka, Sina Semnani, Chen Yu, and Monica Lam. 2024a. SUQL:
 Conversational search over structured and unstructured data with large language models. In *Findings of the Association for Computational Linguistics:* NAACL 2024, pages 4535–4555, Mexico City, Mexico. Association for Computational Linguistics.
- Shu Liu, Asim Biswal, Audrey Cheng, Xiangxi Mo, Shiyi Cao, Joseph E. Gonzalez, Ion Stoica, and Matei Zaharia. 2024b. Optimizing llm queries in relational workloads.
- Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. 2023. Self-refine: Iterative refinement with self-feedback.
- Suyash Vardhan Mathur, Jainit Sushil Bafna, Kunal Kartik, Harshita Khandelwal, Manish Shrivastava, Vivek Gupta, Mohit Bansal, and Dan Roth. 2024.
 Knowledge-aware reasoning over multimodal semistructured tables. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pages 14054–14073, Miami, Florida, USA. Association for Computational Linguistics.
- Akash Mittal, Anshul Bheemreddy, and Huili Tao. 2024. Semantic sql – combining and optimizing semantic predicates in sql.
- Md Mahadi Hasan Nahid and Davood Rafiei. 2024a. Normtab: Improving symbolic reasoning in llms through tabular data normalization.
- Md Mahadi Hasan Nahid and Davood Rafiei. 2024b. Tabsqlify: Enhancing reasoning capabilities of llms through table decomposition.
- OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, and et al. 2024. Gpt-4o system card.
- Panupong Pasupat and Percy Liang. 2015. Compositional semantic parsing on semi-structured tables. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1470– 1480, Beijing, China. Association for Computational Linguistics.
- Liana Patel, Siddharth Jha, Parth Asawa, Melissa Pan, Carlos Guestrin, and Matei Zaharia. 2024. Semantic operators: A declarative model for rich, ai-based analytics over text data.
- Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. 2022. Evaluating the text-to-sql capabilities of large language models.

Yucheng Shi, Peng Shu, Zhengliang Liu, Zihao Wu, Quanzheng Li, Tianming Liu, Ninghao Liu, and Xiang Li. 2024. Mgh radiology llama: A llama 3 70b model for radiology. 786

787

789

790

791

792

793

794

795

798

799

800

801

802

803

804

805

806

807

808

809

810

- Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao. 2023. Large language models are better reasoners with self-verification.
- Zirui Wu and Yansong Feng. 2024. ProTrix: Building models for planning and reasoning over tables with sentence context. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pages 4378–4406, Miami, Florida, USA. Association for Computational Linguistics.
- Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen Deep, and Jignesh M. Patel. 2024. Reactable: Enhancing react for table question answering. *Proceedings of the VLDB Endowment*, 17(8):1981–1994.
- Fengbin Zhu, Ziyang Liu, Fuli Feng, Chao Wang, Moxin Li, and Tat Seng Chua. 2024. Tat-Ilm: A specialized language model for discrete reasoning over financial tabular and textual data. In *Proceedings of the 5th ACM International Conference on AI in Finance*, ICAIF '24, page 310–318, New York, NY, USA. Association for Computing Machinery.

A Appendix: LLM Prompts and Examples

A.1 Prompt Examples

```
Given column descriptions, Table and Question return a list of columns that can be
relevant to the solving the question (even if slightly relevant) given the table
name and table:
table name: { self.name }
table: { self.table }
Question: { self.question }
Example output: [ 'Score', 'Driver']
Instructions:
1. Do not provide any explanations, just give the cols as a list
2. The list will be used to filter the table dataframe directly so take care of that
Output:
```

Listing 2: Column Description Prompt

```
Give me the column name, data type, formatting that needs to be done, column
descriptions in short for the given table and question. The descriptions should be
useful in planning steps that solve the question asked on that table. Also, give a
small description of the table using table name and table data given.
Table:
table name: { self.name }
{ self.table }
Question: { self.question }
```

Listing 3: Planning Prompt

```
I need a step-by-step plan in plain text for solving a question, given column
descriptions and table rows. Follow these guidelines:
Begin analyzing the question to categorize tasks that require only SQL capabilities
(like straightforward data formatting, mathematical operations, basic aggregations)
and those that need LLM assistance (like summarization, text interpretation, or
answering open-ended queries).
MySQL Query Generation: For parts of the question that involve formatting of column
data type, filtering and mathematical or analytical tasks, generate SQL query code
to answer them directly, without using an LLM call.
LLM-Dependent Task Identification: For tasks that SQL cannot inherently
perform, specify the columns or portions of rows where LLM calls are needed. Add an
extra column in the result set to store the LLM output for each row in the filtered
data subset.
Example
<Table Name>
<Table>
Question: <Question>
<Column Descriptions>
<Plan>
Solve for this:
Table:
table name: { self.name }
{ self.table }
Question: { self.question }
self.description }
Only give the step-by-step plan and remove any other explanations or code.
Output format:
Step 1: SQL
Step 2: Either SQL or LLM
Step 3: ...
Step 4: ...
```

812

819

824

830

839

840

841

873

858

859 860

874 875 Suppose you are an expert planner verification agent. 876 Verify if the given plan will be able to answer the Question asked on this table. 877 Table name: { self.name } 878 Table: { self.table } 879 Column descriptions: { self.description } Question to Answer: { self.question } 881 Old Plan: { self.plan } Is the given plan correct to answer the Question asked on this table (check format issues and reasoning steps) should be able to guide the LLM to write correct code 884 and get correct result. If the plan is not correct, provide better plan detailed on what needs to be done 885 handling all kinds of values in the column. 887 - Check if the MySQL step logic adheres to the column format. (Performs calculations and formatting and filtering in the table) 889 - The LLM step's logic will help in getting the correct answer. 890 If the original plan is correct then return that plan. 891 892 Do not provide with code or other explanations, only the new plan. Output format: 894 Step 1: Either SQL or LLM - ... Step 2: SQL or LLM - ... 896 Step 3: SOL ... As given in original plan. 899 Listing 5: Code Execution Prompt 900 901 MySOL Code Generation: For parts of the question that involve data 902 formatting, data manipulations such as filtering, grouping, aggregations, and 903 creating new tables. Generate optimized MySQL code to 904 answer those parts directly without using an LLM. 905 906 LLM-Dependent Tasks Identification: For tasks that SQL cannot inherently perform that require sentiment analysis, logical inferences, or questions that involve 907 interpreting text data, specify only that 1 column where LLM calls are needed. Add 908 909 an extra column in the table that stores the LLM output for each row in the filtered 910 data subset. 911 912 Instructions: 913 1. Store the output at each step by creating a new table. Use this new table for the 914 next steps. 915 The code for MySQL should handle all values in the column (formatting and 916 filtering). New columns from previous LLM steps can be assumed present in table. 917 918 3. Don't give any other explanations, only MySQL and LLM steps as the given plan. 919 Then, Only give step (SQL or LLM) that is needed -921 The Output format example -922 Step 1 - SQL: MySQL code, table name to be used in the next query 923 Step 2 - LLM: 924 Reason: Why we need to use LLM 925 Table name: 926 - original column to be used: 927 - LLM prompt: The prompt that user can use to solve the problem 928 New column name: 929 Step 3 - SQL: MySQL code, table name to be used in the next query Step 4 - ... 930 931 Step 5 - ... 932 933 LLM step format should be same. 934 Solve for this question, given table and step by step plan as a reference: 935 Table name: { self.name } 936 Schema: { self.table.columns } 937 Column Descriptions: { self.description } 938 Table: { self.table] 939 Question: { self.question } 940 Plan: { self.plan } 941 First check if taking above Plan will give the desired output.

Give me code for solving the question, and no other explanations. Keep in mind the column data formats (string to appropriate data type, removing extra character, Null values) while writing Mysql code.

Listing 6: LLM Step Prompt

```
Given a column and step you need to perform on it -
Column: { df.column }
Step to solve the question: { step.prompt }
Question: { self.question }
Instructions:
- Do not provide any explanation and Return only a list (separate values by '#')
that can be added
to a dataframe as a new column in a dataframe.
- Do not create a column name already present in the table. (duplicate column)
- Any value should not be more than 3 words (or each value should be as short as
possible).
- Size of output list Should be same as input list.
```

Listing 7: Answer Extraction Prompt

Table: { self.name }
{ self.table }
Question: { self.question }
Answer the question given the table in as short as possible.
If the table has just one column or value consider that as the answer given the
 column name.
Just provide the answer, do not provide any other information.

Listing 8: Plan Optimization Prompt

A.2 Table and Question Example

Below is an example of a table and question used for LLM planning.

Listing 9: Table and Question Example for LLM Planning

		e	τ I	6	007
Tab	le: New_York_Am	ericans_soccer			988
	Year D	ivision League	Reg_Season	Playoffs	989
	Nat:	ional_Cup			990
0	1931	1.0 ASL	6th (Fall)	No playoff	991
	None				992
1	Spring 1932	1.0 ASL	5th?	No playoff 1st	993
	Round				994
2	Fall 1932	1.0 ASL	3rd	No playoff	995
	None				996
3	Spring 1933	1.0 ASL	?	?	997
	Final				998
4	1933/34	NaN ASL	2nd	No playoff	999
	?				1000
5	1934/35	NaN ASL	2nd	No playoff	1001
	?				1002
6	1935/36	NaN ASL	1st Ch	ampion (no playoff)	1003
	2				100/

1005	7	1936/37	NaN	ASL	5th,	National	Did not	qualify
1006		Champion						
1007	8	1937/38	NaN	ASL	3rd(t),	National	1:	st Round
1008		?						
1009	9	1938/39	NaN	ASL	4th,	National	Did not	qualify
1010		?						
1011	10	1939/40	NaN	ASL		4th	No	playoff
1012		?						
1013	11	1940/41	NaN	ASL		6th	No	playoff
1014		?						
1015	12	1941/42	NaN	ASL		3rd	No	playoff
1016	4.5	?				C		1 66
1017	13	1942/43	NaN	ASL		6th	No	playoff
1018	14	1042/44	NeN	4.61		0+6	Na	nlovoff
1019	14	1943/44	Nan	ASL		911	NO	ртауотт
1020	15	1044/45	NoN	121		0+h	No	playoff
1021	15	7 1944/45	Indin	AGE		9011	NU	prayon
1022	16	1945/46	NaN	451		5th	No	playoff
1024	10	?	nan	NOL		0 011		prayon
1025	17	1946/47	NaN	ASL		6th	No	plavoff
1026		?						
1027	18	1947/48	NaN	ASL		6th	No	playoff
1028		?						
1029	19	1948/49	NaN	ASL		1st(t)		Finals
1030		?						
1031	20	1949/50	NaN	ASL		3rd	No	playoff
1032		?				-		1 66
1033	21	1950/51	NaN	ASL		5th	NO	playoff
1034	22	1051/52	NeN	4.61		6 + 6	Na	nlovoff
1035	22	1951/52	Nan	ASL		011	NO	ртауотт
1030	23	: 1952/53	NaN	451		6th	No	playoff
1038	23	Semifinals	Nan	AJE		0.011	NO	piayon
1039	24	1953/54	NaN	ASI		1st	Champion (no u	playoff)
1040		Champion					0110111p1011 (110 p	
1041	25	1954/55	NaN	ASL		8th	No	playoff
1042		?						
1043	26	1955/56	NaN	ASL		6th	No	playoff
1044		?						
1045								
1046	Que	stion: How long	did it	take for	the New	v York Ame	ricans to win	the National Cup
1048		after 1936?						

A.3 Model Responses

Listing 10: Response to Sample Prompt 1 (Column Description)

The	New York American playoff outcomes, information on th participation, an	soccer team, detailin and national cup resul year, division, leagu national cup results.	g their standings in var ts from 1931 to 1956. The e, regular season standin	e data for th ious leagues, e data include ngs, playoff
###	‡ Column Details			
0	Column Name Description	Data Type Formati	ting Needed	Colu
	•		1	1
 Y	/ear Represents the ye parsing to extrac	 String Standar r or season of the soc the year.	rdize to a consistent for ccer performance. Some en	 mat tries may nee
 Y C	/ear Represents the ye parsing to extrac Division Indicates the div handling.	String Standar r or season of the soc the year. Float Convert sion in which the team	rdize to a consistent for cer performance. Some en t to Integer (if applicab played. Some entries are	 mat tries may nee le) e NaN and nee

Reg_Season String Clean and standardize standings	1072
Indicates the team's regular season performance, which may include qualifiers	1073
like "t" or "?" that need clarification.	1074
Playoffs String Standardize and clean	107
Indicates playoff participation and outcomes, with entries like "No playoff" and	1070
"Finals" that need to be standardized.	1077
National_Cup String Standardize and clean	1078
Indicates the outcome of the national cup, with entries like "Champion" or "1st	1079
Round" that need standardization.	1089

Listing 11: Response to Sample Prompt 2 (Planning Prompt)

Listing 11. Response to Sample Frompt 2 (Framming Frompt)	1000
Plan: Step 1: SQL - Standardize the Year column to a consistent format and extract	1082
the year from	1084
entries like "Spring 1932" and "Fall 1932".	1085
Step 2: SQL - Clean and standardize the National_Cup column to identify the years	1086
when the team won	1087
the national cup.	1088
Step 3: SQL - Filter the data to find the first year after 1936 when the	1089
National_Cup column	1090
indicates a win.	1092

Listing 12: Response to Sample Prompt 3 (Verify Plan Prompt)

Disting 12. Response to bumple Frompt's (verify Fran Frompt)	1000
New Plan: ### Revised Plan:	1093
Step 1: LLM - Standardize the Year column to a consistent format by extracting the	1095
year from entries	1096
like "Spring 1932" and "Fall 1932". Convert all entries to a four-digit year format	1097
(e.g., "1932"	1098
instead of "Spring 1932").	1099
Step 2: SQL - Clean and standardize the National_Cup column to identify winning	1100
entries. Define a	1101
clear criterion for a "win," such as entries that contain "Champion" or "1st Round"	1102
(if applicable).	1103
Step 3: SQL - Filter the data to find the first year after 1936 where the	1104
National_Cup column	1105
indicates a win. Ensure to handle any NaN or ambiguous entries appropriately.	1186

A.4 Code Execution Results

Listing 13: Response to Sample Prompt 4 (Code Execution Prompt) Step 1

LL	M Step –						
- 1	Reason: S	tandardize	the Ye	ar column to corre	ct format.		
	Table nam	e: New_Yor	k_Ameri	cans_soccer			
- (original	column to	be used	: Year			
- 1	LM promp standar	t: Extract dize all	the ye	ar from phrases li	ke "Spring 1932	2" or "Fal	l 1932" and
en	tries to	a YYYY for	mat. En	sure the output is	consistent acr	oss all e	ntries.
- 1	New colum	n name: Ye	ar Form	atted.			
Da	taframe c	reate afte	r LLM S	tep			
Yea	ar Format	ted Divisi	on Leag	ue Reg Season	Pla	avoffs	
	Nationa	1 Cup					
0	1931	1.0	ASL	6th (Fall)	No	playoff	None
1	1932	1.0	ASL	5th?	No	playoff	1st Round
2	1932	1.0	ASL	3rd	No	playoff	None
3	1933	1.0	ASL	?		?	Final
4	1933	NaN	ASL	2nd	No	playoff	?
5	1934	NaN	ASL	2nd	No	playoff	?
6	1935	NaN	ASL	1st	Champion (no p	playoff)	?
7	1936	NaN	ASL	5th, National	Did not	qualify	Champion
8	1937	NaN	ASL	3rd(t), National	1 s	st Round	?
9	1938	NaN	ASL	4th, National	Did not	qualify	?
10	1939	NaN	ASL	4th	No	playoff	?
11	1940	NaN	ASL	6th	No	playoff	?
12	1941	NaN	ASL	3rd	No	plavoff	?

1136	13	1942	NaN	ASL	6th	No	playoff	?
1137	14	1943	NaN	ASL	9th	No	playoff	?
1138	15	1944	NaN	ASL	9th	No	playoff	?
1139	16	1945	NaN	ASL	5th	No	playoff	?
1140	17	1946	NaN	ASL	6th	No	playoff	?
1141	18	1947	NaN	ASL	6th	No	playoff	?
1142	19	1948	NaN	ASL	1st(t)		Finals	?
1143	20	1949	NaN	ASL	3rd	No	playoff	?
1144	21	1950	NaN	ASL	5th	No	playoff	?
1145	22	1951	NaN	ASL	6th	No	playoff	?
1146	23	1952	NaN	ASL	6th	No	playoff	Semifinals
1147	24	1953	NaN	ASL	1st	Champion (no p	layoff)	Champion
1148	25	1954	NaN	ASL	8th	No	playoff	?
11 5 8	26	1955	NaN	ASL	6th	No	playoff	?

Listing 14: Response to Sample Prompt 4 (Code Execution Prompt) Step 2

1151		Listing	1 4 . Kes	polise to Sample Trompt	4 (Code Execution Frompt) Su	ep 2	
1152	SQL Step	-					
1153	CREATE TAI	CREATE TABLE standardized_national_cup AS					
1154	SELECT						
1155	Year_I	Formatted,					
1156	Divisi	ion,					
1157	League	е,					
1158	Reg_Se	eason,					
1159	Playof	ffs,					
1160	CASE						
1161	W	HEN Nationa	I_Cup	LIKE '%Champion%'	THEN 'Win'		
1162	W	HEN Nationa	I_Cup	LIKE '%1st Round%'	THEN 'Win'		
1163	E	LSE 'No Win'	<u> </u>				
1164	END AS	S National_	Cup				
1165	FROM New_	York_Americ	ans_so	ccer;			
1165	Table crea	ated: stand	ardize	d_national_cup			
1107	dataframa	anaata aft	om 100	ding from standard	ized notional own		
1160	Voor	Create and	er Ioa	an Loogua	ized_national_cup	Playoffe	
1170	rear_r	rormatteu	DIVISI	on League K	eg_season	FIAYUTIS	
1171	0 1031		121	6th (Eall)	No playoff	No Win	
1172	1 1932	1.0		5th?	No playoff	Win	
1173	2 1932	1.0	ASI	3 rd	No playoff	No Win	
1174	3 1933	1 0	ASI	?	7 No prayon	No Win	
1175	4 1933	NaN	ASI	2 nd	No plavoff	No Win	
1176	5 1934	NaN	ASL	2 nd	No playoff	No Win	
1177	6 1935	NaN	ASL	1st	Champion (no playoff)	No Win	
1178	7 1936	NaN	ASL	5th, National	Did not qualify	Win	
1179	8 1937	NaN	ASL	3rd(t), National	1st Round	No Win	
1180	9 1938	NaN	ASL	4th, National	Did not qualify	No Win	
1181	10 1939	NaN	ASL	4 th	No playoff	No Win	
1182	11 1940	NaN	ASL	6th	No playoff	No Win	
1183	12 1941	NaN	ASL	3rd	No playoff	No Win	
1184	13 1942	NaN	ASL	6th	No playoff	No Win	
1185	14 1943	NaN	ASL	9th	No playoff	No Win	
1186	15 1944	NaN	ASL	9 t h	No playoff	No Win	
1187	16 1945	NaN	ASL	5th	No playoff	No Win	
1188	17 1946	NaN	ASL	6th	No playoff	No Win	
1189	18 1947	NaN	ASL	6th	No playoff	No Win	
1190	19 1948	NaN	ASL	1st(t)	Finals	No Win	
1191	20 1949	NaN	ASL	3rd	No playoff	No Win	
1192	21 1950	NaN	ASL	5th	No playoff	No Win	
1193	22 1951	NaN	ASL	6th	No playoff	No Win	
1194	23 1952	NaN	ASL	6th	No playoff	No Win	
1195	24 1953	NaN	ASL	lst	cnampion (no playoff)	Win	
1196	25 1954	NaN	ASL	8th	No playoff	No Win	
1198	26 1955	NaN	ASL	6 t h	No playoff	No Win	

Listing 15: Response to Sample Prompt 4 (Code Execution Prompt) Step 3

1100		Listing 15. Response to 5	amp
1200	SQL Step -		
1201	CREATE TABLE	first_win_after_1936	AS
1202	SELECT		

```
Year_Formatted,
                                                                                                    1203
    Division,
                                                                                                    1204
                                                                                                    1205
    League,
    Reg_Season,
                                                                                                    1206
    Playoffs,
                                                                                                    1207
    National_Cup
                                                                                                    1208
FROM standardized_national_cup
                                                                                                    1209
WHERE Year_Formatted > '1936' AND National_Cup = 'Win'
                                                                                                    1210
ORDER BY Year
                                                                                                    1211
LIMIT 1;
                                                                                                    1212
Table created: first_win_after_1936
                                                                                                    1213
dataframe create after loading from first_win_after_1936
                                                                                                    1214
                                                                Playoffs National_Cup
   Year_Formatted Division League Reg_Season
                                                                                                    1215
0
   1953
             None
                     ASL
                                 1st
                                       Champion (no playoff)
                                                                         Win
                                                                                                    1219
```

1220

1221

1223

1224

1225

1226

1227

1233 1234

1235

1236 1237

1238

1228

Listing 16: Response to Sample Prompt 5 (Answer Extraction Prompt)

Generated Answer: 17 years Comparison Result: Yes Actual answer: 17 years, model answer: 17 years Answer matched: True

More Detail on Optimization A.5

We have explored several optimization techniques to enhance the efficiency of our pipeline by reducing the number of steps generated during query execution. While some of these strategies are detailed in the section 2, we outline additional key techniques below:

SQL Merging. Figure 4 explains merging sequential SQL steps to optimize the pipeline's performance. 1228 Since SQL operations follow a logical structure, combining multiple steps into a single query does not 1229 compromise the correctness or integrity of the process. This consolidation reduces the overhead of 1230 executing individual queries and improves the overall efficiency of the pipeline by minimizing redundant 1231 operations and streamlining execution. 1232

Listing 17: Example of Step Merging

```
Original Plan (Multiple SQL Steps):
SELECT * FROM table WHERE column = 'X';
SELECT * FROM table ORDER BY date DESC;
Optimized (Merged into a Single Step):
SELECT * FROM table WHERE column = 'X' ORDER BY date DESC;
```


Figure 4: Optimization using SQL step merging

Parallel LLM Execution. Initially, we prompted the LLM to generate a new column by supplying the entire existing column and asking it to return a list of the same length. However, this approach often led to inconsistent results—such as incorrect list lengths, duplicated values, or hallucinated entries—due to the model's sensitivity to long input sequences. Errors were especially prevalent in the middle of the list, consistent with the "Lost in the Middle" effect (Liu et al., 2023).

Figure 5: Optimizing LLM Calls: Chunk-based processing on Rows

To improve both reliability and efficiency, we adopted a chunk-wise parallel execution strategy that avoids the overhead of row-by-row processing while enhancing consistency. As illustrated in Figure 5, we segment the input into appropriately sized batches and execute multiple LLM calls in parallel. This design enables simultaneous inference over different parts of the data, substantially reducing latency by eliminating sequential processing bottlenecks. The result is faster response times and improved scalability—making this approach well-suited for large-scale reasoning tasks over semi-structured data.

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

Column-Wise Batching. Conventional LLM pipelines often chunk inputs row-wise, generating one column value per row across a batch. In contrast, we propose a column-wise batching strategy, depicted in Figure 6, which processes multiple columns for a small chunk of rows in a single call.

Figure 6: Optimizing LLM Calls: Chunk-based processing on Columns

This approach preserves intra-row context across multiple attributes of the same entity, reducing inconsistencies that arise when attributes are generated independently. It is particularly advantageous in Retrieval-Augmented Generation (RAG) systems and memory-augmented pipelines, where repeated LLM calls over fragmented inputs can be inefficient. By extracting all relevant information in one unified query, column-wise batching lowers computational costs while maintaining high accuracy in entity-level reasoning.

Listing 18: Examples of Different Plan Optimization

1061	
1262	Question - The Kremlin Cup is held in Russia, and the St. Petersburg Open is also
1263	held in Russia.
1264	
1265	Plan:
1266	Step 1: SQL - Filter the table to select tournaments with the names "Kremlin Cup"
1267	and "St. Petersburg Open".

```
1268
Step 2: SQL - Extract the country information from the Tournament column for the
                                                                                                1269
   selected tournaments.
                                                                                                1270
                                                                                                1271
Step 3: LLM - Summarize the results to confirm that both tournaments are held in
                                                                                                1272
   Russia.
                                                                                                1274
Optimized Plan:
                                                                                                1275
Step 1: SQL - Filter the table to select tournaments with the names "Kremlin Cup"
                                                                                                1276
   and "St. Petersburg Open", and extract the country information from the
                                                                                                1277
   Tournament column in a single query.
                                                                                                1278
                                                                                                1279
Step 2: LLM - Summarize the results to confirm that both tournaments are held in
                                                                                                1280
   Russia.
                                                                                                1282
```

A.6 More Detail on handling Multi-Modal data

The proposed pipeline Figure 8 is modular and designed for extensibility. Each component can be 1284 upgraded such as substituting the SQL Query Executor with an expert SQL agent to enhance execution 1285 efficiency and accuracy. Likewise, the LLM Semantic Reasoner and VLM (Vision Language Model) 1286 components can be replaced with specialized reasoning agents, allowing Weaver to adapt to evolving 1287 multi-modal requirements. 1288

Figure 7: Modular Pipeline for query execution

Handling Paragraph data using LLM step To address unstructured textual content outside the table 1289 (i.e., paragraph data), we filter these texts for relevance to both the question and the tabular data. The filtered content is used as an auxiliary knowledge source during LLM steps. This enables the system 1291 to either incorporate the external text into the tabular context or leverage it directly in the final answer 1292 generation step, depending on the Planner Agent's discretion. 1293

Figure 8: Modular Pipeline for query execution

This design supports robust integration of text, table, and visual data, ensuring that the system remains scalable, accurate, and adaptable across diverse input modalities. 1295

A.7 Additional Analysis

Table 7 shows the number of LLM and SQL steps used by Weaver, across different models on WikiTQ. 1297

1294

1296

Steps	GPT-40	GPT-4o-mini	Gemini-2.0-Flash
LLM Steps SQL Steps	46 1530	178 1407	122 1510
Total	1576	1585	1632

Table 7: Number of LLM steps and SQL steps used in Weaver on WikiTQ.

Token Usage Analysis: We compared the average token usage (input/output) per TableQA pair across 1298 1299 ProTrix, H-STAR, and Weaver using three different LLM backends. As shown in Table 8, Weaver 1300 maintains competitive token efficiency, especially in output size, while enabling structured multi-step reasoning. Notably, ProTrix appears lightweight due to its limited planning, whereas H-STAR and Weaver 1301 consume similar token budgets despite Weaver offering higher accuracy. Binder is excluded from this 1302 comparison due to its excessive API usage (see Table 4).

Token Usage/Query	GPT-4o (I/O)	GPT-40-mini (I/O)	Gemini-2.0 (I/O)
ProTrix H-STAR Weaver	445.57 / 317.14 8,836 / 842 8,568 / 725	564.3 / 388.85 8,994 / 854 8,723 / 796	559.94 / 220.44 10,284 / 702 6,041 / 545
E 11 0 = 1			

Table 8: Token usage comparison per TableQA (Input/Output tokens).

Experimental Setup and Hyperparameters: All experiments were conducted using publicly available 1304 large language models (LLMs) accessed via their official APIs. We used the models in their standard configuration without any fine-tuning. Specifically, we used GPT-4o, GPT-4o-mini (OpenAI), Gemini-2.0-1306 Flash, and DeepSeek R1 with a fixed temperature setting of 0.01 to ensure deterministic and stable outputs. 1307 No additional modifications were made to the default API settings beyond controlling temperature for 1308 consistency across runs. 1309

Dataset Details B

1310

1311

1315

1320

1321

1323

1324

1325

1326

1327

1328

1329

1331

1332

1333

1334

1335

In this section, we describe the used dataset in details.

- Short-Form Answering (WikiTQ): WikiTQ is a dataset designed for short-form answering where the 1312 steps to reach the answer can be relatively complex and the expected answer is a short piece of information. 1313 1314 For example, the query "Which country had the most competitors?" in Figure 1. This task is ideal for testing how well information retrieval from a semi-structured table can be handled.

- Fact-Checking (TabFact): TabFact focuses on fact-checking tasks where the query involves verifying 1316 whether a particular statement is true or false. For example, the query, "Is the GDP of Japan in 2022 1317 greater than that of Germany?" evaluates the framework's ability to correctly interpret data points in 1318 complex tables and make valid judgments. 1319

- Numerical Reasoning (FinQA): FinQA (Financial QA) is a dataset that requires the model to perform arithmetic operations or infer relationships between numerical values across different columns. For example, "What is the total revenue of Company X in 2021 after deducting expenses?" tests the model's ability to handle numerical data and apply operations such as summation, subtraction, or other mathematical reasoning tasks.

- Multimodal Dataset (FinQA_{MM}, OTT-QA_{MM}, MMTabQA_{MM}): FinQA_{MM} and OTT-QA_{MM} are datasets that require reasoning across both tabular data and accompanying textual context (typically a paragraph) to answer questions correctly. Unlike traditional table QA tasks, these benchmarks challenge the model to integrate information from both structured (tables) and unstructured (text) modalities. For instance, in FinQA, financial metrics are found in the table, while their definitions, dependencies, or contextual cues are only available in the surrounding text. Similarly, OTT-QA includes open-domain trivia questions, where the relevant answers often span both the table and the associated paragraphs.

MMTabQA_{MM} is a multimodal dataset that requires reasoning across both tabular data and visual information. Unlike traditional table QA tasks, it incorporates both text and images within its tables, challenging the model to integrate structured (tables), unstructured (text), and visual (images) modalities. The data set consists of query demands that combine textual descriptions, numerical data, and visual cues

from images. For example, a question might ask about the relationship between financial data in the table and trends depicted in an image. MMTabQA_{MM} tests the model's ability to perform complex multimodal reasoning, requiring SQL, LLM, and VLM calls to accurately derive answers. This makes it a valuable benchmark for evaluating systems that integrate and reason over multimodal inputs.

C Few-Shot Prompting for Plan Generation

We use a few-shot prompting approach to generate plans during the planning stage. Through our analysis of various complex data problems, we identified three broad categories of transformation challenges that commonly arise. For each category, we manually crafted a representative example—rather than using examples from any particular dataset—to serve as in-context prompts. This was done to avoid memorization bias and to encourage cross-dataset generalization. These examples were specifically designed to capture the reasoning skills required for hybrid queries. We will include them in the appendix for clarity and reproducibility in the final version. Below are the three categories and the corresponding examples with sample tables:

• Semantic reasoning from textual content: These are cases where a column contains long or descriptive text, and we want the LLM to reason some semantic information which can be either direct extraction from text (e.g., extract topic from abstract text) or inference from text (e.g., infer sentiment from a text).

Listing 19: Few-shot examples for semantic reasoning from textual content

Table: grocery_shop
item_description sell_price buy_price
"Indulge your senses with this botanical blend of rosemary and lavender. Gently
 cleanses while nourishing your hair, leaving it soft, shiny, and revitalized."
 7.99 4.99
Question: Which item category has the highest average profit?
Plan:
Step 1: LLM - Item_category column needs to be created using item_description column
.
Step 2: SQL - Calculate average profit for each category and find the maximum.

• **Commonsense or background knowledge inference**: In these cases, the required information is not explicitly present in the table but can be inferred using commonsense knowledge or facts the LLM is likely to have been trained on. We prompt the LLM to infer and populate a new column based on the existing data.

Listing 20: Few-shot examples for commonsense or background knowledge inference

Table: or o	der_delive	ry_history			1375
Order ID	Product	Event	Timestamp (Local)	Location	1376
101	Laptop	Dispatched	2025-01-14 08:00 AM	Los Angeles, USA	1378
101	Laptop	Arrived at Hub	2025-01-15 03:00 AM	Chicago, USA	1379
					1380
Question:	Which loc	ation had the maxir	num time taken between di	spatch at one location	1381
and a	rrival or	delivery at a subs	sequent location?		1382
					1383
Plan:					1384
Step 1: LL	_M - Conve	rt local timestamps	s to UTC time for all eve	ents.	1385
Step 2: SQ)L - Sort	events within each	Order_ID and Product by	Timestamp_UTC.	1386
Step 3: SQ)L - Pair	Dispatched events w	with the corresponding Ar	rived at Hub or	1387
Delive	red events	s for each order/pr	oduct and calculate the	time difference.	1388
Step 4: SQ	QL - Displ	ay the final output	t with paired events, dur	ations, and relevant	1389
inform	ation sort	ed by Order_ID and	l Product.		1399

Preprocessing or normalization of non-SQL-friendly columnse: These are cases where a column contains values that are too diverse or unstructured to be directly used in a SQL query. Since the full table is not visible to the LLM and generating an exhaustive list of conditions is infeasible, we prompt the LLM to generate a cleaned or normalized version of the column that can be used in downstream SQL queries.

Listing 21: Few-shot examples for preprocessing or normalization of non-SQL-friendly columns

```
1397
1398
            Table: Israel at the 1972 Summer Olympics
1399
                                  Placing
            Name
1400
1401
            Shaul Ladani
                                  19
                                  Semifinal (5th)
1402
            Esther Shahamorov
            Listeravov Shamil
1403
                                  12th
1404
            Question: Who has the highest placing rank?
1405
1406
1407
            Plan:
            Step 1: LLM - Format the column Placing by extracting only numerical values (e.g. 5
1408
1409
                from Semifinal (5th)) and converting the text into numbers (e.g. Semifinal to 5,
1410
                 12th to 12, 19 to 19).
1411
            Step 2: SQL - Retrieve the highest placing (rank) from the placing column by
                selecting the minimum number in the list as lower number corresponds to higher
1412
                rank.
1413
```

D Additonal Discussion

438

LLM Utility in Column Transformation and Semantic Inference: Our core contribution lies in how we effectively leverage LLMs beyond what traditional SQL systems can offer, specifically in tasks involving column transformation and semantic inference. Weaver integrates LLM reasoning for two primary purposes: (i) handling tasks that SQL cannot perform—such as entity extraction or parsing ambiguous formats A.2 and (ii) inferring implicit knowledge based on pretraining, where the LLM is tasked with verifying a plan that involves semantic understanding Figure 2.

A detailed example from the WikiTQ dataset in Appendix A.2(Listing 12) demonstrates the LLM's capability to normalize complex date strings like *"Spring 1932"* or *"1935/36"* into standardized YYYY formats. This transformation, impossible through SQL alone, was completed through a single LLM step with high consistency.

]	Listing	22:	Exampl	le exp	olainat	ion
--	---	---------	-----	--------	--------	---------	-----

Processes complex	date	formats (e.g., "Spri	ing 1932",	"1935/36", "1937")
Standardizes them	into	YYYY format (1932, 1	1936, 1937	respectively)

Additionally, our hybrid planning enables seamless coordination between SQL and LLM steps, as seen in examples involving multi-column reasoning (e.g., from a movies table with columns movie name, review content, movie information, and release date).

Listing 23:	Example e	xplaination
-------------	-----------	-------------

```
Question: "What movies suitable for kids with positive reviews should be recommended
based on their reviews after 2018?"
Plan:
SQL: Filter movies released after 2018 using the release_date column:
SELECT * FROM movies WHERE release_date > 2018;
LLM: Utilize a Large Language Model (LLM) to evaluate whether a movie is suitable
for children by processing:
movie_info (structured metadata)
review_content (unstructured user reviews)
new column: suitable_movies
```

```
SQL: Apply SQL filtering to retain only movies flagged as suitable by the LLM:
SELECT * FROM movies WHERE suitable_movies = 'Yes';
LLM: For the filtered movies, check which movies have positive reviews based on:
movie_info
review content
new column: recommended
SQL: Apply SQL filtering to retain only movies which are recommended:
SELECT * FROM movies WHERE recommended = 'Yes';
```

Beyond Semi-structured Text. We define semi-structured tables following prior work (Gupta et al., 2020b), focusing on unstructured or free-form content embedded within structured table formats—such as textual cells requiring semantic interpretation-rather than on hierarchical structures like JSON or HTML trees. While our current benchmarks focus on flat tables, the primary challenges we address stem from this embedded unstructured content. These challenges often require semantic inference, an area where traditional SQL struggles and large language models (LLMs) are critical in bridging the gap. Examples include inconsistencies in formatting, reliance on domain-specific knowledge, and implicit contextual cues necessary for accurate query interpretation.

Additionally, our approach is easily extendable to hierarchical data formats (e.g., HTML, nested JSON, HiTab) through structure decoding. These formats can be transformed into a flattened, normalized table representation and then processed using Weaver. However, as we discuss later, such datasets typically lack the complex hybrid queries involving multi-step reasoning and semantic inference, which are the primary focus of our work.

Filtering Hybrid Queries using Binder. To filter hybrid queries from their original dataset counterparts, 1472 we leverage Binder's query structure. Specifically, we identify queries that invoke any UDF, for example 1473 'OA' function as seen in the example below, which prompts the LLM with a ves/no question related to a 1474 single column. This serves as a reliable indicator that the query requires semantic reasoning beyond SQL capabilities. The example below demonstrates such a pattern, where the QA function is applied to assess 1476 contextual understanding. This filtering process ensures that the LLM is used for its intended purpose, 1477 semantic inference or interpretation, aligned with the methodology outlined in the "Our Approach" section. 1478

Listing 24: Example NeuralSOL query using OA function

```
Question: what number of games were lost at home?
NeuralSOL:
SELECT COUNT(*) FROM w WHERE QA("map@is it a loss?"; 'result/score') = 'yes'
AND QA("map@is it the home court of New Orleans Saints?"; 'game site') = 'yes'
```

Е **Comparison with Existing Datasets**

Several benchmark datasets—such as Spider, HiTab, and BIRD—have contributed significantly to multihop and multi-table question answering. However, these benchmarks primarily emphasize symbolic SQL reasoning and do not align with the hybrid reasoning focus of Weaver, which requires coordinated symbolic (SQL-based) and semantic (LLM-based) reasoning.

Spider was designed for cross-domain Text-to-SQL parsing over a variety of databases. While it features compositional queries, the questions can typically be answered using SQL alone. Despite recent augmentations that add paraphrasing and perturbation, the core tasks remain fully executable without any semantic interpretation, making Spider insufficient for evaluating hybrid symbolic-semantic pipelines.

HiTab focuses on hierarchical tables and structural decoding challenges. Although it includes tables 1495 that require some normalization or flattening, once transformed, the resulting queries involve only 2-31496 simple SQL operations (e.g., filtering, aggregation). Importantly, these tasks do not demand semantic 1497 reasoning or LLM-based operations, limiting HiTab's suitability for hybrid evaluation. 1498

1486

1479 1480

1481

1482

1483

1448

1449 1450

1451

1452 1453

1454

1455

1456

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1475

1487 1488

1489

1490

1491

1492

1493

BIRD is a large-scale, multi-table QA benchmark that emphasizes compositional and multi-hop reasoning over relational tables. It serves as a rigorous testbed for symbolic systems. However, as we detail below, it lacks tasks that truly require hybrid semantic-symbolic coordination.

E.1 Evaluation on BIRD Dataset

We evaluate Weaver on the BIRD benchmark using GPT-40 as the backend. Weaver achieves an accuracy of **91%**, solving nearly all tasks using symbolic SQL execution alone, without invoking any LLM-based semantic reasoning. These results demonstrate that while Weaver is highly effective on BIRD, the dataset's symbolic nature limits its value for testing hybrid reasoning capabilities. Most BIRD tasks can be completed in 3–4 SQL steps involving standard operations like joins, filtering, and sorting. For instance, consider the query:

Listing 25	: Example	execution	plan
Libring Lo	· Drampie	enceation	pran

<pre>Question: Please list the lowest ten eligible free rates for students aged 5 17 in continuation schools. Eligible free rates Free Meal Count (Ages 5 17) / Enrollment (Ages 5 17)</pre>
Plan:
 SQL: Join the frpm table with the schools table using School Type and SOCType, filtering for "Continuation High Schools". SQL: Compute eligible free rates per school using the formula: Free Meal Count (Ages 5-17) / Enrollment (Ages 5-17). SQL: Sort schools by the calculated rate in ascending order. SQL: Select the ten schools with the lowest eligible free rates.
SQL Queries Generated -
<pre>Step 1: SELECT f.* FROM frpm f JOIN schools s ON f.School Type = s.SOCType WHERE s. SOCType = 'Continuation High Schools';</pre>
<pre>Step 2: CREATE TABLE eligible_free_rates AS SELECT School Name, School Type, Free Meal Count (Ages 5-17), Enrollment (Ages 5-17), (Free Meal Count (Ages 5-17) / Enrollment (Ages 5-17)) AS eligible_free_rate FROM continuation_schools;</pre>
<pre>Step3: CREATE TABLE sorted_eligible_free_rates AS SELECT * FROM eligible_free_rates ORDER BY eligible_free_rate ASC;</pre>
<pre>Step 4: CREATE TABLE lowest_ten_eligible_free_rates AS SELECT * FROM sorted_eligible_free_rates LIMIT 10;</pre>

Despite the multi-hop joins, these tasks do not require semantic disambiguation, commonsense reasoning, or LLM-assisted table understanding. As such, BIRD was excluded from our main hybrid benchmark comparison table, though its results highlight Weaver 's strong symbolic reasoning capabilities.

Why Existing Datasets Fall Short? While Spider, HiTab, and BIRD advance multi-hop QA in important ways, none capture the core challenges of hybrid queries where symbolic (SQL) and semantic (LLM) steps must be interleaved. Weaver is explicitly designed for such hybrid workflows, requiring intelligent planning, decomposition, and alternating execution paths—capabilities not required in these prior datasets.

E.2 Execution Strategy in the Weaver Pipeline

1546Why SQL Execution Alone Was Insufficient?In Weaver, SQL execution alone does not yield the final1547answer because the retrieved table may contain extraneous data or errors, particularly if any SQL-LLM1548steps fail or produce incomplete results. Although SQL retrieves the data, it cannot handle formatting1549issues, missing values, or the semantic reasoning required to extract the correct answer. Therefore, an1550LLM is used post-execution to refine the table, correct formatting, and extract only the relevant values,1551ensuring accurate final answers that SQL alone cannot guarantee.

1552Why SQL and LLM Outputs Are Not Combined?Unlike methods like H-STAR, which execute1553SQL and LLMs in parallel, *Weaver* selectively chooses whether SQL or LLM should handle each query

part. This planning-based approach improves efficiency by avoiding the computational cost of parallel execution. As shown in Table 5: Number of API Calls Comparison per TableQA, H-STAR requires 8 LLM API calls per query, whereas <i>Weaver</i> averages only 5.4, significantly reducing overhead and improving overall performance.	1554 1555 1556 1557
E.3 Rationale for Using SQL over Python	1558
While Python offers greater expressiveness, we selected SQL for three key reasons that align with the objectives of our framework:	1559 1560
• Portability: SQL is the standard query language supported by most database engines, ensuring our approach can be easily integrated into real-world systems.	1561 1562
• Interpretability: SQL's declarative nature makes queries more transparent, facilitating step-by-step explainability in the planning pipeline.	1563 1564
• Efficiency: SQL operations, such as filtering, aggregation, and joins, are highly optimized for symbolic inference over tabular data, enabling faster execution on large datasets without requiring data export.	1565 1566 1567
SQL is well-suited for our use case because <i>Weaver</i> is designed for seamless integration with database systems and big data environments. In contrast, Python-based solutions like Pandas can encounter scalability issues, while SQL is inherently optimized to efficiently handle large-scale tabular data.	1568 1569 1570