
Weaver : Interweaving SQL and LLM for Table Reasoning

Anonymous ACL submission

Abstract

Querying tables with unstructured data is chal-001
lenging due to the presence of text (or im-002
age), either embedded in the table or in ex-003
ternal paragraphs, which traditional SQL strug-004
gles to process, especially for tasks requiring005
semantic reasoning. While Large Language006
Models (LLMs) excel at understanding context,007
they face limitations with long input sequences.008
Existing approaches that combine SQL and009
LLMs typically rely on rigid, predefined work-010
flows, limiting their adaptability to complex011
queries. To address these issues, we introduce012
Weaver , a modular pipeline that dynamically013
integrates SQL and LLMs for table-based ques-014
tion answering (TableQA). Weaver generates a015
flexible, step-by-step plan that combines SQL016
for structured data retrieval with LLMs for se-017
mantic processing. By decomposing complex018
queries into manageable subtasks, Weaver im-019
proves accuracy and generalization. Our ex-020
periments show that Weaver consistently out-021
performs state-of-the-art methods across four022
TableQA datasets, reducing both API calls and023
error rates. Code and data publicly available 1.024

1 Introduction025

Tables play a critical role across various domains026

such as finance (e.g., transaction records), health-027

care (e.g., medical reports), and scientific re-028

search. However, many real-world tables are semi-029

structured (Gupta et al., 2020a), containing a030

combination of structured fields and unstructured031

content (such as free-form text or images), which032

makes reasoning and information retrieval challeng-033

ing. Extracting insights from such data demands034

both logical and semantic reasoning. While SQL035

and Python-based methods excel in handling struc-036

tured data, they fall short in dealing with unstruc-037

tured text, missing entries, or implicit inter-column038

relationships.039

1https://anonymous.4open.science/r/weaver-
84DB/

Figure 1: Table and Question Answer example from WikiTQ
Dataset

Recent advances in Large Language Models 040

(LLMs) have demonstrated strong capabilities in 041

natural language understanding and contextual rea- 042

soning, opening new avenues for complex tasks. 043

However, LLMs still face key limitations, particu- 044

larly with long contexts and numerical or temporal 045

reasoning. For instance, in the WikiTableQues- 046

tions (Pasupat and Liang, 2015) dataset, the query 047

"Which country had the most competitors?" Fig- 048

ure 1 requires inferring the competitors’ countries 049

from a "driver" column—information not explic- 050

itly present. While traditional tools like SQL or 051

Python cannot resolve such gaps, LLMs can lever- 052

age their pre-trained knowledge to do so. Yet, the 053

subsequent grouping and counting by country is 054

something LLMs struggle with but SQL handles 055

well. Solving such queries effectively requires a 056

hybrid approach that combines the strengths of 057

LLMs and programmatic methods. This raises a 058

key question: Can SQL and LLMs be seamlessly 059

interwoven? 060

Some methods, such as Binder (Cheng et al., 061

2022) and BlendSQL (Glenn et al., 2024), integrate 062

LLMs into SQL workflows by treating them as 063

function calls. For example, Binder combines LLM 064

reasoning with SQLite to support hybrid queries. 065

While effective for simpler tasks, these approaches 066

struggle with complex queries, as LLMs often fail 067

to generate accurate multi-step logic. This high- 068

lights the need to decompose complex queries into 069

1

https://anonymous.4open.science/r/weaver-84DB/
https://anonymous.4open.science/r/weaver-84DB/

smaller, manageable steps. Other approaches, like070

H-Star (Abhyankar et al., 2024) and ReAcTable071

(Zhang et al., 2024), use programmatic techniques072

to prune tables but rely heavily on costly API calls.073

Meanwhile, methods like ProTrix (Wu and Feng,074

2024) limit reasoning to just two steps, making075

them insufficient for multi-hop queries. These rigid076

pipelines often constrain LLMs to final answer ex-077

traction and cannot handle questions requiring ex-078

ternal or implicit knowledge.079

To address these challenges, we introduce a mod-080

ular, planning-based framework that dynamically081

alternates between SQL for logical operations and082

LLMs for semantic reasoning. By decoupling these083

components, our approach overcomes the limita-084

tions of monolithic systems and significantly im-085

proves performance on complex Table QA tasks.086

The process begins with selecting relevant columns087

and generating natural-language descriptions to re-088

solve schema inconsistencies. An LLM then gen-089

erates a step-by-step reasoning plan, combining090

SQL queries for structured operations with LLM091

prompts for semantic inference or column augmen-092

tation. Each step produces an intermediate table,093

enabling transparent reasoning and easy backtrack-094

ing. A final answer extraction step retrieves the095

result from the processed table. This flexible de-096

sign integrates with standard database engines (e.g.,097

MySQL, SQLite) and supports various deployment098

settings. Our approach offers the following key099

contributions:100

• We propose Weaver , a modular and inter-101

pretable framework for hybrid query exe-102

cution that dynamically decomposes com-103

plex queries into modality-specific steps (e.g.,104

SQL, LLM, VLM) without manual effort.105

• We conduct extensive experiments on multi-106

ple hybrid QA benchmarks, including mul-107

timodal datasets, showing that Weaver out-108

performs existing methods by large margins,109

particularly on complex, multi-hop reasoning110

queries.111

• We introduce a query plan optimization strat-112

egy that improves execution efficiency with113

minimal accuracy loss. Weaver also stores all114

intermediate outputs, enabling transparency,115

effective human-in-the-loop debugging.116

Our results show superior accuracy over exist-117

ing baselines, especially for queries requiring im-118

plicit reasoning beyond explicit table values. By119

bridging structured and unstructured reasoning, our120

approach sets a new benchmark for complex Ta- 121

ble QA, offering a scalable solution for real-world 122

applications. 123

2 Our Approach 124

This study addresses question answering tasks over 125

tables containing both structured and unstructured 126

data. Each instance consists of a table (T), a user 127

query (Q), an optional paragraph (P), and a pre- 128

dicted answer (A). Queries span multiple cate- 129

gories: short-form queries (WikiTQ) involving di- 130

rect lookups or aggregations; fact-checking queries 131

(TabFact (Chen et al., 2019)) that require claim 132

verification; numerical reasoning queries (FinQA 133

(Chen et al., 2021b)) necessitating multi-step cal- 134

culations; and multi-modal queries (FinQA and 135

OTT-QA (Chen et al., 2021a)) that demand rea- 136

soning over extensive textual contexts inside and 137

outside tables. Complex queries, such as "Which 138

country had the most competitors?", frequently re- 139

quire semantic inference when explicit data is un- 140

available. Previous approaches typically rely on 141

single-step executions, limiting flexibility and in- 142

terpretability. In contrast, our method dynamically 143

integrates SQL for structured data operations and 144

LLMs for semantic inference, providing adaptable 145

and accurate query resolution. 146

2.1 SQL-LLM Weaver 147

We introduce Weaver , a novel methodology inte- 148

grating SQL and LLM specifically designed for 149

TableQA tasks involving complex semantic rea- 150

soning and free-form responses. Weaver operates 151

through distinct, structured phases: 152

1. Pre-processing: We begin by preprocessing 153

the tables to mitigate SQL-related errors due to 154

naming conflicts and data inconsistencies. This 155

involves renaming columns conflicting with SQL 156

reserved words (e.g., Rank), removing special char- 157

acters, and standardizing column names. Subse- 158

quently, an LLM identifies and extracts relevant 159

columns for the query, generating descriptive meta- 160

data for these columns. This metadata clarifies 161

schema interpretations, resolves formatting issues, 162

and defines accurate data types, as illustrated in 163

Figure 2. For external unstructured text, relevant 164

information is retained using an LLM to ensure 165

context alignment. 166

2. Planning: In this phase, an LLM generates a 167

dynamic, step-by-step plan using few-shot prompt- 168

2

Figure 2: Step-by-step TableQA execution using Weaver approach.

ing based on the previously derived metadata. The169

plan consists of sequential subtasks, each catego-170

rized explicitly as either SQL or LLM operations.171

(a.) SQL Step: SQL steps manage structured172

data tasks, including filtering rows, formatting col-173

umn data types, mathematical operations and data174

aggregations. For example, Figure 2 demonstrates175

an SQL step that generates an intermediate table,176

"unique_drivers."177

(b.) LLM Step: LLM steps handle tasks beyond178

SQL’s capabilities, such as deriving new columns179

through semantic inference, sentiment analysis, or180

interpreting complex textual data. LLMs lever-181

age either contextual paragraphs or their pretrained182

knowledge to perform these tasks. Each LLM step183

carefully integrates outputs back into the structured184

data tables to ensure coherence and consistency for185

subsequent SQL steps. Figure 2 illustrates how an186

LLM infers a "country" column from the "driver"187

column in the intermediate table "unique_drivers".188

The LLM is guided through structured prompts that189

leverage its pretrained knowledge and reasoning190

capabilities. Relevant information (extracted from191

external unstructured text in pre-processing step) is192

also passed to LLM if present.193

Plan Verification. Prompting techniques like194

self-refinement (Madaan et al., 2023) and verifi-195

cation (Weng et al., 2023) are known to enhance196

LLM reasoning by reducing errors and improving197

consistency. To leverage this, we use a secondary198

LLM to verify the initial plan, ensuring its logical 199

consistency, robustness, and completeness. Gaps 200

such as insufficient reasoning or formatting issues 201

are addressed by refining the plan, as shown in 202

step (D) in Figure 2. This verification improves 203

the pipeline’s reliability and mitigates cascading 204

errors. 205

3. Code Execution: Following verification, the 206

pipeline executes the plan sequentially, combining 207

SQL queries and LLM-generated prompts. 208

(a.) SQL Step - Query Generation: SQL opera- 209

tions involve formatting, filtering, joining, aggre- 210

gating, and grouping data, with intermediate tables 211

stored at each stage. SQL efficiently handles struc- 212

tured data operations, reducing reliance on LLM 213

steps. 214

(b.) LLM Step - Prompt Generation: LLMs dy- 215

namically create prompts for operations exceed- 216

ing SQL capabilities, such as generating new 217

columns or interpreting textual insights. These 218

LLM-generated prompts interact with structured 219

intermediate tables from SQL steps, ensuring co- 220

herent integration. 221

Robust error handling and fallback mechanisms 222

ensure pipeline robustness, utilizing the recent suc- 223

cessful intermediate table if execution errors occur. 224

4. Answer Extraction: In the final pipeline 225

stage, the intermediate table and user query are 226

inputted to an LLM, which generates a natural lan- 227

guage answer. Leveraging few-shot learning en- 228

3

sures output consistency and contextual accuracy,229

effectively resolving complex queries. Figure 2230

illustrates this process with a sample TableQA ex-231

ample.232

2.2 Optimization233

We experimented to further enhance the efficiency234

of our pipeline, optimizing the planning strategy by235

minimizing unnecessary LLM calls and prioritizing236

SQL-based operations.237

One key optimization involves pushing SQL op-238

erations such as filtering, aggregation, and format-239

ting early in the pipeline as shown in Figure 3 in240

Appendix A.5. This reduces the volume of data that241

needs to be processed by the LLM, significantly242

reducing latency and computational overhead. Fur-243

thermore, parallelizing LLM inference across these244

optimized chunks further enhances efficiency, al-245

lowing the system to handle large-scale tabular rea-246

soning tasks effectively, as shown Figure 3. To247

further streamline execution, sequential SQL steps248

are merged, reducing SQL calls and improving per-249

formance, see Figure 4 in Appendix A.5.250

Figure 3: Optimization using SQL Reordering and LLM call
parallelization.

Given the computational demands of LLMs for251

large tables we split data into smaller context-aware252

chunks before sending them to the LLM for infer-253

ence. This prevents input truncation, maintains log-254

ical coherence between batches, and ensures opti-255

mal utilization of the context window of the model, 256

as demonstrated in Figure 5, in the Appendix A.5. 257

This optimization strategy further enhances Weaver 258

planning and execution efficiency. 259

3 Experiments 260

Benchmarks. As hybrid multi-hop TableQA re- 261

mains an emerging research area, there is no ded- 262

icated benchmark to evaluate such tasks. To fill 263

this gap, we curate a hybrid subset by filtering rele- 264

vant examples from several established table-based 265

datasets for the evaluation of Weaver . 266

Source Datasets. For a comprehensive evalua- 267

tion of Weaver ’s ability to handle complex hybrid 268

queries, we assess its performance across four di- 269

verse datasets: WikiTQ, TabFact (a fact verification 270

dataset), FinQA (a numerical reasoning dataset), 271

and OTT-QA (a short-form answering dataset). We 272

also evaluated our approach on 3000 queries each 273

of multimodal (MM) datasets, FinQAMM and OTT- 274

QAMM, which require reasoning in both tabular 275

data, and the accompanying textual context (usu- 276

ally a paragraph outside tables). We also evalu- 277

ated Weaver on the MMTabQAMM dataset (Mathur 278

et al., 2024), which involves reasoning over tables 279

that include both text and images. This dataset con- 280

tains 1,600 queries and 206 tables, with each query 281

requiring the integration of textual and visual rea- 282

soning, including SQL, LLM, and VLM calls. Un- 283

like traditional table QA tasks, these benchmarks 284

challenge the model to integrate information from 285

structured (tables) and unstructured (text) modali- 286

ties. Details on the datasets in Appendix B. 287

Filtering Methodology. We define "hybrid" 288

queries as those that require both SQL operations 289

and LLM-based reasoning. These queries are more 290

complex, as they necessitate not only structured 291

data retrieval but also advanced reasoning capabili- 292

ties, such as entity inference or free-text interpreta- 293

tion, which SQL alone cannot provide. To identify 294

such queries, we use Binder-generated queries that 295

incorporate user-defined LLM functions (UDFs). 296

Queries involving UDFs indicate the need for se- 297

mantic reasoning beyond SQL’s capabilities. It is 298

important to note that we did not validate the cor- 299

rectness of Binder’s outputs; its role was purely 300

to flag queries with hybrid characteristics. These 301

candidate queries were then manually validated 302

to confirm they genuinely required both SQL ex- 303

ecution and LLM reasoning steps to arrive at the 304

correct answer. For FinQA, we utilized the "qa" ob- 305

4

ject to identify queries requiring multiple reasoning306

steps, excluding simple table lookups to ensure the307

selected queries involved more than just direct data308

retrieval. These flagged queries were then manu-309

ally reviewed to confirm their need for both SQL310

execution and LLM reasoning.311

Dataset Statistics. After filtering, the hybrid ver-312

sions of the datasets consist of: (a) WIKITQ: 510313

examples (original: 4,344), (b) TABFACT: 303 ex-314

amples (original: 2,000), and (c) FINQA: 1,006315

examples (original: 8,281). These represent the316

final queries filtered to create the hybrid versions:317

WikiTQhybrid, TabFacthybrid, and FinQAhybrid.318

Evaluation Metrics Traditional Exact Match319

requires an exact match between the model’s320

generated answer and the gold answer, which321

can unfairly penalize correct responses that differ322

only in format, for example, 2nd April 2024 and323

04/02/2024 are semantically the same. To address324

this, we introduce Relaxed Exact Match (REM)325

metric which implements a three-step evaluation326

framework. First, we standardize the model’s out-327

put to align with the gold answer, handling varia-328

tions such as unit representation and common ab-329

breviations. For example, if the model returns the fi-330

nal table with column- "Year" with value- "17", and331

the expected answer is "17 years", we transform332

the output to match the reference format. Once333

the answers are format-aligned, we apply the stan-334

dard EM metric to determine whether the processed335

output matches the gold answer. However, auto-336

mated transformations can sometimes introduce337

unintended errors, such as incorrect unit conver-338

sions or context misalignment. To prevent such339

issues, we also perform human evaluation to en-340

sure accurate answer matching.341

LLM Models. In our research, we use state-342

of-the-art large language models (LLM) such343

as Gemini-2.0-Flash (DeepMind, 2024), GPT-4o-344

mini-2024-07-18, GPT-4o-2024-08-06 (OpenAI345

et al., 2024) and the open-source DeepSeek R1-346

distill Llama-70B 2 (DeepSeek-AI et al., 2025),347

(Shi et al., 2024) for table reasoning tasks. Our348

model inputs include in-context examples, the ta-349

ble, and the question for each step of the pipeline.350

3.1 Baseline Methods351

We evaluated our approach against several base-352

lines that are broadly categorized into 4 categories:353

2https://github.com/meta-llama/llama- models/blob/main/-
models/llama3_3/LICENSE

1. Query Engines (Binder, BlendSQL): These 354

methods generate hybrid SQL queries with LLMs 355

as User Defined Functions. They leverage SQL to 356

interpret tabular data and execute queries to retrieve 357

relevant information., 2. End-to-End LLM QA: 358

This approach leverages LLMs for question answer- 359

ing without intermediate query structuring. The 360

model receives a query and table as input, generat- 361

ing answers based on learned patterns and reason- 362

ing. We employ GPT-4o, GPT-4o-mini, Gemini- 363

2.0-Flash, and DeepSeek R1-distill LlaMA 70B 364

for all tasks, 3. Pruning-Based Methods (Re- 365

acTable, H-Star): These methods first apply SQL 366

or Python-based pruning techniques, such as fil- 367

tering columns or rows, before passing the refined 368

table to an LLM for final answer extraction, and 369

4. Planning Based Approach (ProTrix): ProTrix 370

employs a two-step "Plan-then-Reason" framework. 371

It first plans the reasoning, and assigns SQL to fil- 372

ter the table. Finally, it uses LLM to extract the 373

final answer. By comparing our approach with 374

these methods, we highlight the unique strengths 375

of SQL-LLM Weaver , which combines SQL-based 376

filtering with LLM-driven reasoning for more ef- 377

fective query resolution. 378

3.2 Results and Analysis 379

Our Weaver performs well on three challenging 380

benchmarks; we present key findings next. 381

First, are Hybrid Queries harder? The results 382

in Table 1 compare GPT-3.5-turbo on the origi- 383

nal dataset with GPT-4o-mini on the hybrid set. 384

Despite leveraging a more capable model (GPT-4o- 385

mini) for the hybrid queries, we observe substantial 386

performance drops—H-Star and Binder see accu- 387

racy declines of 9.5% and 32.7%, respectively, on 388

WikiTQhybrid. 389

Original (GPT-3.5) Hybrid (GPT-4o-mini)

Binder 56.7% 24%
ReAcTable 52.4% 27%
H-Star 69.5% 59%
ProTrix 65.2% 61.4%

Table 1: Baselines result comparison on WIKITQ after filter-
ing on hybrid part.

Notably, GPT-4o-mini outperforms GPT-3.5- 390

turbo on benchmarks like MMLU and MATH 391

(Source: OpenAI), yet still struggles on hybrid 392

queries. This underscores their inherent difficulty 393

and highlights the limitations of current methods 394

in handling multi-step, semantically complex rea- 395

soning in Table QA. 396

5

Does Weaver Help? Table 2 demonstrates397

that Weaver consistently outperforms state-of-the-398

art baselines across all datasets. On WikiTQ,399

Weaver surpasses the best-performing baseline Pro-400

Trix by 5.5% across all four models. On TabFact,401

it achieves a breakthrough 91.2% using DeepSeek402

model, surpassing the 90% benchmark. On FinQA,403

it achieves accuracy of 65%, outperforming base-404

lines by 4.6% on DeepSeek R1-distill Llama 70B.405

WikiTQ TabFact FinQA

GPT-4o-mini

End-to-End QA 60.4 84.4 44.7
Binder∗ 24.0 62.0 13.0
BlendSQL 26.0 68.5 37.0
ReAcTable∗ 29.9 37.4 -
H-Star 59.0 83.0 40.1
ProTrix 61.4 81.5 46.4
Weaver 65.0 89.4 49.3

GPT-4o

End-to-End QA 66.4 80.8 58.3
Binder∗ 27.3 60.3 17.0
BlendSQL 42.0 68.3 34.3
ReAcTable∗ 45.4 45.4 -
H-Star 61.0 87.0 46.0
ProTrix 61.7 80.5 54.3
Weaver 70.7 83.4 60.8

Gemini-2.0-Flash

End-to-End QA 67.5 81.8 29.4
Binder∗ 12.9 60.4 21.3
BlendSQL 31.1 60.1 19.7
ReAcTable∗ 20.4 37.6 -
H-Star 63.5 86.1 38.7
ProTrix 62.2 80.8 42.9
Weaver 69.6 85.4 44.5

DeepSeek R1-distill Llama 70B

End-to-End QA 76.4 82.5 52.4
Binder∗ 26.4 62.7 24.4
BlendSQL 32.2 50.8 36.7
ReAcTable∗ 52.2 45.6 -
H-Star 68.7 55.6 50.3
ProTrix 41.4 81.1 60.4
Weaver 73.0 91.2 65.0

Table 2: Experimental results for various models on short-
form QA, fact verification, and numerical reasoning tasks.
∗: with self-consistency. Best result in bold, second-best
in underlined. A hyphen (-) indicates missing results due to
incompatibility or untested scenarios.

Weaver vs Query Engines. Binder and Blend-406

SQL struggle with hybrid queries due to their rigid407

single-step execution framework. We observe that408

only 61% and 66% of the hybrid queries execute409

successfully in Binder and BlendSQL on WikiTQ.410

The reported accuracies for these methods are cal-411

culated based on successfully executed queries.412

Although BlendSQL slightly outperforms Binder413

with a modest 2% it frequently encounters type er-414

rors when integrating LLM-generated outputs into415

SQL operations. Weaver outperforms BlendSQL 416

by 39%, 20.9% and 12.3% accuracy on WikiTQ, 417

TabFact and FinQA using GPT-4o-mini. 418

Weaver vs Pruning Methods. H-Star and Re- 419

AcTable while effective for structured queries, per- 420

form poorly on semantic tasks. H-Star attains 421

59.0% and 63.5% accuracy on WikiTQhybrid us- 422

ing GPT-4o-mini and Gemini-2.0-Flash, respec- 423

tively, but struggles with row extraction. In some 424

cases, its row-filtering heuristics discard critical 425

contextual data essential for reasoning. H-Star’s 426

higher accuracy on TabFact with GPT-4o stems 427

from the dataset’s suitability for pruning techniques. 428
3 Furthermore, Weaver with GPT-4o-mini and 429

DeepseekR1-Distill-LLAMA, despite their smaller 430

size, performs competitively highlighting its ef- 431

fectiveness in resource-constrained environments 432

where lightweight models are preferred. 433

Weaver vs Planning Method. ProTrix follows 434

a two-step pipeline (planning and execution), 435

achieves 61.4% and 62.2% on WikiTQhybrid with 436

GPT-4o-mini and Gemini-2.0-Flash. However, it 437

fails in scenarios requiring intermediate semantic 438

processing. For example, queries demanding dy- 439

namic column generation (e.g., inferring Country 440

from Constructor) reveal its inability to seamlessly 441

integrate SQL and LLM reasoning, leading to a 9% 442

accuracy gap (GPT-4o) compared to Weaver . 443

Weaver on Multimodal Method. We evaluated 444

Weaver on two multimodal datasets—FinQAMM 445

and OTT-QAMM—requiring multi-hop reasoning 446

over both structured (tables) and unstructured (text) 447

data. As shown in Table 3, Weaver outperformed 448

baselines, with notable improvements in FinQAMM 449

and moderate gains in OTT-QAMM. 450

FinQAMM OTT-QAMM FinQAMM OTT-QAMM

GPT-4o-mini GPT-4o
End2End QA 45.9 61.2 57.6 68.7
Weaver 63.2 63.7 68.0 65.2

Gemini-2.0-Flash DeepSeek R1

End2End QA 37.9 64.1 54.8 59.9
Weaver 60.8 66.7 66.2 62.8

Table 3: Experimental results on short-form question answer-
ing on dataset with table and paragraphs.

In FinQAMM, Weaver excelled in numerical and 451

multi-hop reasoning, where end-to-end models 452

struggled with irrelevant information and sequen- 453

tial logic, such as calculating net values. For OTT- 454

QAMM, which involved less structured computation 455

and more world knowledge, Weaver still showed 456

3We didn’t test ReAcTable on FinQA since its prompts are
tailored to other sets; modifying them changes baseline.

6

consistent gains. Unlike baselines, Weaver effec-457

tively retrieved and integrated key table and para-458

graph segments, ensuring relevant information was459

used. These results highlight the strength of our460

modular, reasoning-focused approach, which inte-461

grates information step-by-step instead of relying462

on holistic attention.463

On MMTabQAMM dataset, Weaver achieved an464

accuracy of 53.02% using gpt-4o-mini model, sig-465

nificantly outperforming the end-to-end QA base-466

line, which scored 46.33%. These results highlight467

the strength of our modular, reasoning-driven ap-468

proach, combining structured data (tables), unstruc-469

tured data (text), and visual inputs (images) for470

superior performance. This underscores Weaver ’s471

versatility and scalability in addressing complex472

multimodal (table, text, images) QA tasks.473

Efficacy Analysis. We conducted an analysis to474

assess the effectiveness and scalability of Weaver in475

WikiTQhybrid, focusing on 98 large tables with over476

30 rows and average token length of 17,731. Our477

results show that Weaver achieved an accuracy478

of 65.6%, outperforming ProTrix (37.5%) and H-479

Star (35.9%) by 28.1% and 29.7%, respectively,480

on these large tables Weaver maintained the same481

accuracy on the entire original dataset, demonstrat-482

ing its ability to handle complex queries while re-483

maining both scalable and robust. These results484

highlight Weaver ’s ability to tackle a wide range485

of table-based tasks with consistent performance.486

In addition to delivering reliable performance,487

Weaver offers the critical advantage of transparent,488

interpretable reasoning. By following a structured489

execution plan, it ensures that final answers are490

tightly aligned with preceding reasoning steps, en-491

hancing traceability and reducing spurious outputs.492

This directly addresses a core limitation of large493

language models—hallucination and memorization.494

Unlike end-to-end LLMs, which may produce cor-495

rect answers without valid reasoning, Weaver only496

yields correct outputs when the underlying plan is497

sound, ensuring both reliability and interpretability.498

Efficiency Analysis. Table 4 demonstrate the ef-499

ficiency of our proposed Weaver framework using500

number of API calls. We make six API calls which501

are much lower compared to approaches that use502

self-consistency (Binder) with 50 calls and H-Star503

which uses ∼ 8 calls to reach the answer.504

ProTrix uses only two fixed API calls and relies505

on the LLM solely for generating the plan. How-506

API calls/ Query GPT-4o GPT-4o-mini Gemini-2.0

ProTrix 2 2 2
Binder 50 60 53
H-STAR 8 8 8
Weaver 5.31 5.87 5.85

Table 4: Number of API calls comparison per TableQA.

ever, it does not involve the LLM during execution. 507

This limits its ability to handle multi-step queries re- 508

quiring reasoning at each step. For instance, it may 509

fail to infer information from individual rows or per- 510

form operations such as applying a SQL GROUP 511

BY on an LLM-inferred ’country’ column. Such 512

steps are often essential to arrive at the correct fi- 513

nal answer. These metrics demonstrate how our 514

approach minimizes computational overhead while 515

maintaining accuracy. 516

#LLM Optimization Effect

#LLMs Drops 15
#SQL Drops 19
#SQL Merge 113
#SQL Reorder 4

Before Opt. After Opt.

#LLMs 74 59
#SQL 532 513
#Total Steps 616 469
Accuracy (%) 65 64

Table 5: Effect of optimization on GPT-4o-mini plans on
WIKITQ. Opt. stands for plan optimization.

Optimization: We experimented with optimiz- 517

ing our planning and execution strategy on 200 518

TableQA queries. Table 5 demonstrates how our 519

optimization strategy focuses on reducing unnec- 520

essary computational steps without compromising 521

accuracy. To achieve this, we implemented several 522

techniques. 523

1. LLM Step Reduction: By identifying and 524

eliminating redundant LLM steps, we reduced the 525

15 LLM calls. This optimization ensures that LLMs 526

are only used when necessary, lowering computa- 527

tional costs. 528

2. SQL Step Optimization: We achieved a re- 529

duction of 19 SQL steps by eliminating unused 530

operations. Additionally, we merged 113 sequen- 531

tial SQL steps into fewer, more efficient queries 532

and reordered 4 steps to optimize execution flow, 533

making it more efficient. 534

Optimizing GPT-4o-mini reduces LLM steps by 535

20% and SQL steps by 24.8%, significantly im- 536

proving efficiency. The accuracy slightly drops 537

from 65% to 64%, but this trade-off is minimal, 538

especially under practical constraints. Our goal is 539

to create a scalable TableQA pipeline that balances 540

7

accuracy with computational cost, particularly for541

large tables. The optimization achieves this by542

maintaining modular reasoning while reducing la-543

tency, API calls, and input tokens, demonstrating544

that efficiency gains don’t sacrifice performance.545

Error Analysis Table 6 illustrates the effective-546

ness of our approach in minimizing errors in SQL547

execution and plan generation. Our approach re-548

duces SQL errors by 30% and plan generation by549

86% compared to ProTrix in both GPT-4o, GPT-550

4o-mini and Gemini-2.0-Flash. However, GPT-4o-551

mini exhibits a higher SQL error rate due to its552

smaller model size, which limits its ability to gen-553

erate accurate SQL queries.554

GPT-4o GPT-4o-mini Gemini-2.0

ProTrix

SQL Error 51.2% 25.9% 27.0%
Plan Generation 11.0% 17.0% 9.0%

Weaver

SQL Error 15.0% 42.5% 16.0%
Plan Generation 1.0% 3.0% 1.0%

Table 6: Error in SQL and Plan Generation on WIKITQ.

In Weaver , SQL errors arise due to incorrect555

formatting, unsupported MySQL functions, or hal-556

lucinated columns and tables. Planning errors arise557

when SQL steps replace LLM reasoning or gener-558

ate unused tables. The Plan Verification Step, Fig-559

ure 2, mitigates these issues by refining planning560

for improved reliability in complex table-based rea-561

soning.562

Analysis Across Pipeline Stages: We perform563

a stage-wise analysis to assess the contribution of564

each component in our pipeline—filtering, plan-565

ning, and execution. Compared to SQL-only gen-566

eration, which struggles with multi-step reasoning,567

our pipeline yields consistent accuracy gains by568

structuring the task into sub-components. The fil-569

tering stage removes irrelevant columns, reducing570

noise and guiding the model’s attention. The plan-571

ning stage—central to our method—decomposes572

complex queries into symbolic and semantic steps.573

This step is essential and not ablatable. However,574

skipping plan verification (i.e., executing without575

validating) leads to a 1% drop in accuracy, indicat-576

ing that verification adds robustness. Finally, exe-577

cution stage translates structured plans into SQL.578

4 Comparision with Related Work579

Table-based Question Answering (TableQA) com-580

bines table understanding, question interpretation,581

and NLP. Foundational work such as Text-to- 582

SQL (Rajkumar et al., 2022), Program-of-Thought 583

(Chen et al., 2023), and TabSQLify (Nahid and 584

Rafiei, 2024b) laid the groundwork. Binder and 585

TAG (Biswal et al., 2024) expose the limitations 586

of traditional Text-to-SQL methods in handling 587

complex analytical tasks involving both structured 588

and unstructured data. To address these challenges, 589

several alternative approaches have been explored: 590

Fine-Tuning Methods: These methods fine-tune 591

LLMs to specialize in reasoning over hybrid tabular 592

and textual data. Models such as (Zhu et al., 2024), 593

(Mittal et al., 2024), and (Patel et al., 2024) are 594

trained to extract, reason, and execute over such 595

inputs. However, fine-tuning requires large task- 596

specific datasets and tends to lack generalization 597

across domains. 598

Query Engines: This direction integrates LLMs 599

with SQL engines via user-defined functions 600

(UDFs), allowing LLM calls within queries. UQE 601

(Dai et al., 2024), BlendSQL, SUQL (Liu et al., 602

2024a), and Binder follow this paradigm. While 603

flexible, LLM-generated queries can be error- 604

prone, and these systems often support only limited 605

query structures, reducing adaptability. 606

Table Pruning and Planning: Approaches like H- 607

Star, ReAcT, ProTrix, and others (Liu et al., 2024b; 608

Nahid and Rafiei, 2024a) enhance efficiency by pro- 609

grammatically pruning rows or columns using SQL 610

or Python. While this reduces processing overhead, 611

these methods often function as black boxes, lack- 612

ing transparency and vulnerable to cascading errors 613

if early pruning steps are incorrect. 614

5 Conclusion 615

We introduce Weaver , a novel approach for table- 616

based question answering on semi-structured tables. 617

Weaver outperforms all baselines by strategically 618

decomposing complex queries into a sequence of 619

LLM- and SQL-based planning steps. By alter- 620

nating between these modalities, it enables pre- 621

cise, interpretable, and adaptive query resolution. 622

Weaver overcomes prior limitations by effectively 623

handling both complex queries and large tables. 624

Its modular design also supports future extensions, 625

including image-based tables, multi-table reason- 626

ing, and integration with free-form text. As future 627

work, we plan to explore fine-tuning and supervi- 628

sion strategies to further improve execution accu- 629

racy and plan reliability. 630

8

Limitations631

While our approach demonstrates strong perfor-632

mance across multiple datasets, it is currently lim-633

ited to English-language tables, restricting its ap-634

plicability to multilingual settings. Additionally,635

our method does not explicitly handle hierarchi-636

cal tables, where multi-level dependencies intro-637

duce additional complexity in reasoning. Another638

limitation is the inability to process multi-table639

queries, which require reasoning across multiple640

relational structures. Furthermore, the lack of well-641

established benchmarks for hybrid datasets poses a642

challenge in evaluating and further improving per-643

formance in more complex, real-world scenarios.644

Ethics Statement645

We, the authors, confirm that our research adheres646

to the highest ethical standards in both research647

and publication. We have thoughtfully addressed648

various ethical considerations to ensure the respon-649

sible and equitable use of computational linguistics650

methodologies. In the interest of reproducibility,651

we provide detailed resources, including publicly652

available code, datasets (compliant with their re-653

spective ethical standards), and other relevant mate-654

rials. Our claims are supported by the experimental655

results, although some degree of stochasticity is in-656

herent in black-box large language models, which657

we mitigate by using a fixed temperature. We also658

offer thorough details on annotations, dataset splits,659

models used, and prompting techniques to ensure660

that our work can be reliably reproduced. We used661

AI assistants to help refine the writing and improve662

clarity during the drafting and revision process. No663

content was generated without human oversight or664

verification.665

References666

Nikhil Abhyankar, Vivek Gupta, Dan Roth, and Chan-667
dan K. Reddy. 2024. H-star: Llm-driven hybrid sql-668
text adaptive reasoning on tables.669

Asim Biswal, Liana Patel, Siddarth Jha, Amog Kam-670
setty, Shu Liu, Joseph E. Gonzalez, Carlos Guestrin,671
and Matei Zaharia. 2024. Text2sql is not enough:672
Unifying ai and databases with tag.673

Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William674
Wang, and William W. Cohen. 2021a. Open question675
answering over tables and text.676

Wenhu Chen, Xueguang Ma, Xinyi Wang, and677
William W. Cohen. 2023. Program of thoughts678

prompting: Disentangling computation from reason- 679
ing for numerical reasoning tasks. 680

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai 681
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and 682
William Yang Wang. 2019. Tabfact: A large- 683
scale dataset for table-based fact verification. arXiv 684
preprint arXiv:1909.02164. 685

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena 686
Shah, Iana Borova, Dylan Langdon, Reema Moussa, 687
Matt Beane, Ting-Hao Huang, Bryan Routledge, and 688
William Yang Wang. 2021b. FinQA: A dataset of nu- 689
merical reasoning over financial data. In Proceedings 690
of the 2021 Conference on Empirical Methods in Nat- 691
ural Language Processing, pages 3697–3711, Online 692
and Punta Cana, Dominican Republic. Association 693
for Computational Linguistics. 694

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu 695
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong, 696
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, 697
et al. 2022. Binding language models in symbolic 698
languages. In The Eleventh International Conference 699
on Learning Representations. 700

Hanjun Dai, Bethany Yixin Wang, Xingchen Wan, 701
Bo Dai, Sherry Yang, Azade Nova, Pengcheng Yin, 702
Phitchaya Mangpo Phothilimthana, Charles Sutton, 703
and Dale Schuurmans. 2024. Uqe: A query engine 704
for unstructured databases. 705

Google DeepMind. 2024. Gemini 2.0. 706

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, 707
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, 708
Shirong Ma, and et al. 2025. Deepseek-r1: Incen- 709
tivizing reasoning capability in llms via reinforce- 710
ment learning. 711

Parker Glenn, Parag Pravin Dakle, Liang Wang, and 712
Preethi Raghavan. 2024. Blendsql: A scalable dialect 713
for unifying hybrid question answering in relational 714
algebra. 715

Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek 716
Srikumar. 2020a. INFOTABS: Inference on tables 717
as semi-structured data. In Proceedings of the 58th 718
Annual Meeting of the Association for Computational 719
Linguistics, pages 2309–2324, Online. Association 720
for Computational Linguistics. 721

Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek 722
Srikumar. 2020b. INFOTABS: Inference on tables 723
as semi-structured data. In Proceedings of the 58th 724
Annual Meeting of the Association for Computational 725
Linguistics, pages 2309–2324, Online. Association 726
for Computational Linguistics. 727

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran- 728
jape, Michele Bevilacqua, Fabio Petroni, and Percy 729
Liang. 2023. Lost in the middle: How language 730
models use long contexts. 731

9

http://arxiv.org/abs/2407.05952
http://arxiv.org/abs/2407.05952
http://arxiv.org/abs/2407.05952
http://arxiv.org/abs/2408.14717
http://arxiv.org/abs/2408.14717
http://arxiv.org/abs/2408.14717
http://arxiv.org/abs/2010.10439
http://arxiv.org/abs/2010.10439
http://arxiv.org/abs/2010.10439
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
http://arxiv.org/abs/2407.09522
http://arxiv.org/abs/2407.09522
http://arxiv.org/abs/2407.09522
https://deepmind.google
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2402.17882
http://arxiv.org/abs/2402.17882
http://arxiv.org/abs/2402.17882
http://arxiv.org/abs/2402.17882
http://arxiv.org/abs/2402.17882
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
http://arxiv.org/abs/2307.03172
http://arxiv.org/abs/2307.03172
http://arxiv.org/abs/2307.03172

Shicheng Liu, Jialiang Xu, Wesley Tjangnaka, Sina732
Semnani, Chen Yu, and Monica Lam. 2024a. SUQL:733
Conversational search over structured and unstruc-734
tured data with large language models. In Findings735
of the Association for Computational Linguistics:736
NAACL 2024, pages 4535–4555, Mexico City, Mex-737
ico. Association for Computational Linguistics.738

Shu Liu, Asim Biswal, Audrey Cheng, Xiangxi Mo,739
Shiyi Cao, Joseph E. Gonzalez, Ion Stoica, and Matei740
Zaharia. 2024b. Optimizing llm queries in relational741
workloads.742

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler743
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,744
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,745
Shashank Gupta, Bodhisattwa Prasad Majumder,746
Katherine Hermann, Sean Welleck, Amir Yazdan-747
bakhsh, and Peter Clark. 2023. Self-refine: Iterative748
refinement with self-feedback.749

Suyash Vardhan Mathur, Jainit Sushil Bafna, Kunal750
Kartik, Harshita Khandelwal, Manish Shrivastava,751
Vivek Gupta, Mohit Bansal, and Dan Roth. 2024.752
Knowledge-aware reasoning over multimodal semi-753
structured tables. In Findings of the Association754
for Computational Linguistics: EMNLP 2024, pages755
14054–14073, Miami, Florida, USA. Association for756
Computational Linguistics.757

Akash Mittal, Anshul Bheemreddy, and Huili Tao. 2024.758
Semantic sql – combining and optimizing semantic759
predicates in sql.760

Md Mahadi Hasan Nahid and Davood Rafiei. 2024a.761
Normtab: Improving symbolic reasoning in llms762
through tabular data normalization.763

Md Mahadi Hasan Nahid and Davood Rafiei. 2024b.764
Tabsqlify: Enhancing reasoning capabilities of llms765
through table decomposition.766

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,767
Adam Perelman, Aditya Ramesh, Aidan Clark,768
AJ Ostrow, Akila Welihinda, and et al. 2024. Gpt-4o769
system card.770

Panupong Pasupat and Percy Liang. 2015. Composi-771
tional semantic parsing on semi-structured tables. In772
Proceedings of the 53rd Annual Meeting of the As-773
sociation for Computational Linguistics and the 7th774
International Joint Conference on Natural Language775
Processing (Volume 1: Long Papers), pages 1470–776
1480, Beijing, China. Association for Computational777
Linguistics.778

Liana Patel, Siddharth Jha, Parth Asawa, Melissa Pan,779
Carlos Guestrin, and Matei Zaharia. 2024. Semantic780
operators: A declarative model for rich, ai-based781
analytics over text data.782

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-783
danau. 2022. Evaluating the text-to-sql capabilities784
of large language models.785

Yucheng Shi, Peng Shu, Zhengliang Liu, Zihao Wu, 786
Quanzheng Li, Tianming Liu, Ninghao Liu, and Xi- 787
ang Li. 2024. Mgh radiology llama: A llama 3 70b 788
model for radiology. 789

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, 790
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao. 791
2023. Large language models are better reasoners 792
with self-verification. 793

Zirui Wu and Yansong Feng. 2024. ProTrix: Building 794
models for planning and reasoning over tables with 795
sentence context. In Findings of the Association 796
for Computational Linguistics: EMNLP 2024, pages 797
4378–4406, Miami, Florida, USA. Association for 798
Computational Linguistics. 799

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce 800
Cahoon, Shaleen Deep, and Jignesh M. Patel. 2024. 801
Reactable: Enhancing react for table question an- 802
swering. Proceedings of the VLDB Endowment, 803
17(8):1981–1994. 804

Fengbin Zhu, Ziyang Liu, Fuli Feng, Chao Wang, 805
Moxin Li, and Tat Seng Chua. 2024. Tat-llm: A 806
specialized language model for discrete reasoning 807
over financial tabular and textual data. In Proceed- 808
ings of the 5th ACM International Conference on AI 809
in Finance, ICAIF ’24, page 310–318, New York, 810
NY, USA. Association for Computing Machinery. 811

10

https://doi.org/10.18653/v1/2024.findings-naacl.283
https://doi.org/10.18653/v1/2024.findings-naacl.283
https://doi.org/10.18653/v1/2024.findings-naacl.283
https://doi.org/10.18653/v1/2024.findings-naacl.283
https://doi.org/10.18653/v1/2024.findings-naacl.283
http://arxiv.org/abs/2403.05821
http://arxiv.org/abs/2403.05821
http://arxiv.org/abs/2403.05821
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
https://doi.org/10.18653/v1/2024.findings-emnlp.822
https://doi.org/10.18653/v1/2024.findings-emnlp.822
https://doi.org/10.18653/v1/2024.findings-emnlp.822
http://arxiv.org/abs/2404.03880
http://arxiv.org/abs/2404.03880
http://arxiv.org/abs/2404.03880
http://arxiv.org/abs/2406.17961
http://arxiv.org/abs/2406.17961
http://arxiv.org/abs/2406.17961
http://arxiv.org/abs/2404.10150
http://arxiv.org/abs/2404.10150
http://arxiv.org/abs/2404.10150
http://arxiv.org/abs/2410.21276
http://arxiv.org/abs/2410.21276
http://arxiv.org/abs/2410.21276
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
http://arxiv.org/abs/2407.11418
http://arxiv.org/abs/2407.11418
http://arxiv.org/abs/2407.11418
http://arxiv.org/abs/2407.11418
http://arxiv.org/abs/2407.11418
http://arxiv.org/abs/2204.00498
http://arxiv.org/abs/2204.00498
http://arxiv.org/abs/2204.00498
http://arxiv.org/abs/2408.11848
http://arxiv.org/abs/2408.11848
http://arxiv.org/abs/2408.11848
http://arxiv.org/abs/2212.09561
http://arxiv.org/abs/2212.09561
http://arxiv.org/abs/2212.09561
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.14778/3659437.3659452
https://doi.org/10.14778/3659437.3659452
https://doi.org/10.14778/3659437.3659452
https://doi.org/10.1145/3677052.3698685
https://doi.org/10.1145/3677052.3698685
https://doi.org/10.1145/3677052.3698685
https://doi.org/10.1145/3677052.3698685
https://doi.org/10.1145/3677052.3698685

A Appendix: LLM Prompts and Examples 812

A.1 Prompt Examples 813

Listing 1: Extract Relevant Column
814

Given column descriptions , Table and Question return a list of columns that can be 815
relevant to the solving the question (even if slightly relevant) given the table 816
name and table: 817
table name: { self.name } 818

819
table: { self.table } 820
Question: { self.question } 821

822
Example output: [’Score ’, ’Driver ’] 823
Instructions: 824
1. Do not provide any explanations , just give the cols as a list 825
2. The list will be used to filter the table dataframe directly so take care of that 826

827
Output: 828829

Listing 2: Column Description Prompt
830

Give me the column name , data type , formatting that needs to be done , column 831
descriptions in short for the given table and question. The descriptions should be 832
useful in planning steps that solve the question asked on that table. Also , give a 833
small description of the table using table name and table data given. 834
Table: 835
table name: { self.name } 836
{ self.table } 837
Question: { self.question } 838839

Listing 3: Planning Prompt
840

I need a step -by-step plan in plain text for solving a question , given column 841
descriptions and table rows. Follow these guidelines: 842
Begin analyzing the question to categorize tasks that require only SQL capabilities 843
(like straightforward data formatting , mathematical operations , basic aggregations) 844
and those that need LLM assistance (like summarization , text interpretation , or 845
answering open -ended queries). 846
MySQL Query Generation: For parts of the question that involve formatting of column 847
data type , filtering and mathematical or analytical tasks , generate SQL query code 848
to answer them directly , without using an LLM call. 849
LLM -Dependent Task Identification: For tasks that SQL cannot inherently 850
perform , specify the columns or portions of rows where LLM calls are needed. Add an 851
extra column in the result set to store the LLM output for each row in the filtered 852
data subset. 853
Example - 854
<Table Name > 855
<Table > 856
Question: <Question > 857
<Column Descriptions > 858
<Plan > 859

860
Solve for this: 861
Table: 862
table name: { self.name } 863
{ self.table } 864
Question: { self.question } 865
{ self.description } 866
Only give the step -by-step plan and remove any other explanations or code. 867
Output format: 868
Step 1: SQL 869
Step 2: Either SQL or LLM 870
Step 3: ... 871
Step 4: ... 872873

Listing 4: Verify Plan Prompt

11

874
Suppose you are an expert planner verification agent.875
Verify if the given plan will be able to answer the Question asked on this table.876
Table name: { self.name }877
Table: { self.table }878
Column descriptions: { self.description }879
Question to Answer: { self.question }880
Old Plan: { self.plan }881
Is the given plan correct to answer the Question asked on this table (check format882
issues and reasoning steps) should be able to guide the LLM to write correct code883
and get correct result.884
If the plan is not correct , provide better plan detailed on what needs to be done885
handling all kinds of values in the column.886
- Check if the MySQL step logic adheres to the column format. (Performs calculations887

and formatting and filtering in the table)888
- The LLM step ’s logic will help in getting the correct answer.889
If the original plan is correct then return that plan.890

891
Do not provide with code or other explanations , only the new plan.892
Output format:893
Step 1: Either SQL or LLM - ...894
Step 2: SQL or LLM - ...895
Step 3: SQL ...896

897
As given in original plan.898899

Listing 5: Code Execution Prompt
900

MySQL Code Generation: For parts of the question that involve data901
formatting , data manipulations such as filtering , grouping , aggregations , and902
creating new tables. Generate optimized MySQL code to903
answer those parts directly without using an LLM.904

905
LLM -Dependent Tasks Identification: For tasks that SQL cannot inherently perform906
that require sentiment analysis , logical inferences , or questions that involve907
interpreting text data , specify only that 1 column where LLM calls are needed. Add908
an extra column in the table that stores the LLM output for each row in the filtered909
data subset.910

911
Instructions:912
1. Store the output at each step by creating a new table. Use this new table for the913

next steps.914
2. The code for MySQL should handle all values in the column (formatting and915

filtering). New columns916
from previous LLM steps can be assumed present in table.917
3. Don ’t give any other explanations , only MySQL and LLM steps as the given plan.918

919
Then , Only give step (SQL or LLM) that is needed -920
The Output format example -921
Step 1 - SQL: MySQL code , table name to be used in the next query922
Step 2 - LLM:923
- Reason: Why we need to use LLM924
- Table name:925
- original column to be used:926
- LLM prompt: The prompt that user can use to solve the problem927
- New column name:928
Step 3 - SQL: MySQL code , table name to be used in the next query929
Step 4 - ...930
Step 5 - ...931

932
LLM step format should be same.933
Solve for this question , given table and step by step plan as a reference:934
Table name: { self.name }935
Schema: { self.table.columns }936
Column Descriptions: { self.description }937
Table: { self.table }938
Question: { self.question }939
Plan: { self.plan }940

941
First check if taking above Plan will give the desired output.942

12

Give me code for solving the question , and no other explanations. Keep in mind the 943
column data formats (string to appropriate data type , removing extra character , 944
Null values) while writing Mysql code. 945946

Listing 6: LLM Step Prompt
947

Given a column and step you need to perform on it - 948
Column: { df.column } 949
Step to solve the question: { step.prompt } 950
Question: { self.question } 951

952
Instructions: 953
- Do not provide any explanation and Return only a list (separate values by ’#’) 954

that can be added 955
to a dataframe as a new column in a dataframe. 956
- Do not create a column name already present in the table. (duplicate column) 957
- Any value should not be more than 3 words (or each value should be as short as 958

possible). 959
- Size of output list Should be same as input list. 960961

Listing 7: Answer Extraction Prompt
962

Table: { self.name } 963
{ self.table } 964
Question: { self.question } 965

966
Answer the question given the table in as short as possible. 967
If the table has just one column or value consider that as the answer given the 968

column name. 969
Just provide the answer , do not provide any other information. 970971

Listing 8: Plan Optimization Prompt
972

You are an expert in SQL and plan optimization. Your task is to optimize the given 973
SQL plan while ensuring it correctly answers the given question. Use the following 974
optimization strategies , but only if they maintain correctness: 975

976
SQL Merge: Merge sequential SQL steps where possible (e.g., combining filtering , 977

aggregation , and sorting in one query). 978
SQL Reordering: Reorder SQL steps to filter early before applying computationally 979

expensive operations like LLM processing. 980
LLM Merge: Merge sequential LLM steps where the operation is on the same column. 981
Given Information: ... 982
Plan: { self.plan } 983984

A.2 Table and Question Example 985

Below is an example of a table and question used for LLM planning. 986

Listing 9: Table and Question Example for LLM Planning
987

Table: New_York_Americans_soccer 988
Year Division League Reg_Season Playoffs 989

National_Cup 990
0 1931 1.0 ASL 6th (Fall) No playoff 991

None 992
1 Spring 1932 1.0 ASL 5th? No playoff 1st 993

Round 994
2 Fall 1932 1.0 ASL 3rd No playoff 995

None 996
3 Spring 1933 1.0 ASL ? ? 997

Final 998
4 1933/34 NaN ASL 2nd No playoff 999

? 1000
5 1934/35 NaN ASL 2nd No playoff 1001

? 1002
6 1935/36 NaN ASL 1st Champion (no playoff) 1003

? 1004

13

7 1936/37 NaN ASL 5th, National Did not qualify1005
Champion1006

8 1937/38 NaN ASL 3rd(t), National 1st Round1007
?1008

9 1938/39 NaN ASL 4th, National Did not qualify1009
?1010

10 1939/40 NaN ASL 4th No playoff1011
?1012

11 1940/41 NaN ASL 6th No playoff1013
?1014

12 1941/42 NaN ASL 3rd No playoff1015
?1016

13 1942/43 NaN ASL 6th No playoff1017
?1018

14 1943/44 NaN ASL 9th No playoff1019
?1020

15 1944/45 NaN ASL 9th No playoff1021
?1022

16 1945/46 NaN ASL 5th No playoff1023
?1024

17 1946/47 NaN ASL 6th No playoff1025
?1026

18 1947/48 NaN ASL 6th No playoff1027
?1028

19 1948/49 NaN ASL 1st(t) Finals1029
?1030

20 1949/50 NaN ASL 3rd No playoff1031
?1032

21 1950/51 NaN ASL 5th No playoff1033
?1034

22 1951/52 NaN ASL 6th No playoff1035
?1036

23 1952/53 NaN ASL 6th No playoff1037
Semifinals1038

24 1953/54 NaN ASL 1st Champion (no playoff)1039
Champion1040

25 1954/55 NaN ASL 8th No playoff1041
?1042

26 1955/56 NaN ASL 6th No playoff1043
?1044

1045
Question: How long did it take for the New York Americans to win the National Cup1046

after 1936?10471048

A.3 Model Responses1049

Listing 10: Response to Sample Prompt 1 (Column Description)
1050

Table Description1051
The table ‘New_York_Americans_soccer ‘ contains historical performance data for the1052

New York Americans soccer team , detailing their standings in various leagues ,1053
playoff outcomes , and national cup results from 1931 to 1956. The data includes1054
information on the year , division , league , regular season standings , playoff1055
participation , and national cup results.1056

1057
Column Details1058

1059
| Column Name | Data Type | Formatting Needed | Column1060

Description |1061
|--------------------|-------------|------------------------|--------------|1062
| Year | String | Standardize to a consistent format |1063

Represents the year or season of the soccer performance. Some entries may need1064
parsing to extract the year. |1065

| Division | Float | Convert to Integer (if applicable) |1066
Indicates the division in which the team played. Some entries are NaN and need1067
handling. |1068

| League | String | Standardize to a consistent format |1069
Represents the league in which the team participated , primarily ASL (American1070
Soccer League). |1071

14

| Reg_Season | String | Clean and standardize standings | 1072
Indicates the team ’s regular season performance , which may include qualifiers 1073
like "t" or "?" that need clarification. | 1074

| Playoffs | String | Standardize and clean | 1075
Indicates playoff participation and outcomes , with entries like "No playoff" and 1076
"Finals" that need to be standardized. | 1077

| National_Cup | String | Standardize and clean | 1078
Indicates the outcome of the national cup , with entries like "Champion" or "1st 1079
Round" that need standardization. | 10801081

Listing 11: Response to Sample Prompt 2 (Planning Prompt)
1082

Plan: Step 1: SQL - Standardize the Year column to a consistent format and extract 1083
the year from 1084

entries like "Spring 1932" and "Fall 1932". 1085
Step 2: SQL - Clean and standardize the National_Cup column to identify the years 1086

when the team won 1087
the national cup. 1088
Step 3: SQL - Filter the data to find the first year after 1936 when the 1089

National_Cup column 1090
indicates a win. 10911092

Listing 12: Response to Sample Prompt 3 (Verify Plan Prompt)
1093

New Plan: ### Revised Plan: 1094
Step 1: LLM - Standardize the Year column to a consistent format by extracting the 1095

year from entries 1096
like "Spring 1932" and "Fall 1932". Convert all entries to a four -digit year format 1097

(e.g., "1932" 1098
instead of "Spring 1932"). 1099
Step 2: SQL - Clean and standardize the National_Cup column to identify winning 1100

entries. Define a 1101
clear criterion for a "win ," such as entries that contain "Champion" or "1st Round" 1102

(if applicable). 1103
Step 3: SQL - Filter the data to find the first year after 1936 where the 1104

National_Cup column 1105
indicates a win. Ensure to handle any NaN or ambiguous entries appropriately. 11061107

A.4 Code Execution Results 1108

Listing 13: Response to Sample Prompt 4 (Code Execution Prompt) Step 1
1109

LLM Step - 1110
- Reason: Standardize the Year column to correct format. 1111
- Table name: New_York_Americans_soccer 1112
- original column to be used: Year 1113
- LLM prompt: Extract the year from phrases like "Spring 1932" or "Fall 1932" and 1114

standardize all 1115
entries to a YYYY format. Ensure the output is consistent across all entries. 1116
- New column name: Year_Formatted. 1117

1118
Dataframe create after LLM Step 1119

1120
Year_Formatted Division League Reg_Season Playoffs 1121

National_Cup 1122
0 1931 1.0 ASL 6th (Fall) No playoff None 1123
1 1932 1.0 ASL 5th? No playoff 1st Round 1124
2 1932 1.0 ASL 3rd No playoff None 1125
3 1933 1.0 ASL ? ? Final 1126
4 1933 NaN ASL 2nd No playoff ? 1127
5 1934 NaN ASL 2nd No playoff ? 1128
6 1935 NaN ASL 1st Champion (no playoff) ? 1129
7 1936 NaN ASL 5th, National Did not qualify Champion 1130
8 1937 NaN ASL 3rd(t), National 1st Round ? 1131
9 1938 NaN ASL 4th, National Did not qualify ? 1132
10 1939 NaN ASL 4th No playoff ? 1133
11 1940 NaN ASL 6th No playoff ? 1134
12 1941 NaN ASL 3rd No playoff ? 1135

15

13 1942 NaN ASL 6th No playoff ?1136
14 1943 NaN ASL 9th No playoff ?1137
15 1944 NaN ASL 9th No playoff ?1138
16 1945 NaN ASL 5th No playoff ?1139
17 1946 NaN ASL 6th No playoff ?1140
18 1947 NaN ASL 6th No playoff ?1141
19 1948 NaN ASL 1st(t) Finals ?1142
20 1949 NaN ASL 3rd No playoff ?1143
21 1950 NaN ASL 5th No playoff ?1144
22 1951 NaN ASL 6th No playoff ?1145
23 1952 NaN ASL 6th No playoff Semifinals1146
24 1953 NaN ASL 1st Champion (no playoff) Champion1147
25 1954 NaN ASL 8th No playoff ?1148
26 1955 NaN ASL 6th No playoff ?11491150

Listing 14: Response to Sample Prompt 4 (Code Execution Prompt) Step 2
1151

SQL Step -1152
CREATE TABLE standardized_national_cup AS1153
SELECT1154

Year_Formatted ,1155
Division ,1156
League ,1157
Reg_Season ,1158
Playoffs ,1159
CASE1160

WHEN National_Cup LIKE ’%Champion%’ THEN ’Win’1161
WHEN National_Cup LIKE ’%1st Round%’ THEN ’Win’1162
ELSE ’No Win’1163

END AS National_Cup1164
FROM New_York_Americans_soccer;1165
Table created: standardized_national_cup1166

1167
dataframe create after loading from standardized_national_cup ...1168

Year_Formatted Division League Reg_Season Playoffs1169
National_Cup1170

0 1931 1.0 ASL 6th (Fall) No playoff No Win1171
1 1932 1.0 ASL 5th? No playoff Win1172
2 1932 1.0 ASL 3rd No playoff No Win1173
3 1933 1.0 ASL ? ? No Win1174
4 1933 NaN ASL 2nd No playoff No Win1175
5 1934 NaN ASL 2nd No playoff No Win1176
6 1935 NaN ASL 1st Champion (no playoff) No Win1177
7 1936 NaN ASL 5th, National Did not qualify Win1178
8 1937 NaN ASL 3rd(t), National 1st Round No Win1179
9 1938 NaN ASL 4th, National Did not qualify No Win1180
10 1939 NaN ASL 4th No playoff No Win1181
11 1940 NaN ASL 6th No playoff No Win1182
12 1941 NaN ASL 3rd No playoff No Win1183
13 1942 NaN ASL 6th No playoff No Win1184
14 1943 NaN ASL 9th No playoff No Win1185
15 1944 NaN ASL 9th No playoff No Win1186
16 1945 NaN ASL 5th No playoff No Win1187
17 1946 NaN ASL 6th No playoff No Win1188
18 1947 NaN ASL 6th No playoff No Win1189
19 1948 NaN ASL 1st(t) Finals No Win1190
20 1949 NaN ASL 3rd No playoff No Win1191
21 1950 NaN ASL 5th No playoff No Win1192
22 1951 NaN ASL 6th No playoff No Win1193
23 1952 NaN ASL 6th No playoff No Win1194
24 1953 NaN ASL 1st Champion (no playoff) Win1195
25 1954 NaN ASL 8th No playoff No Win1196
26 1955 NaN ASL 6th No playoff No Win11971198

Listing 15: Response to Sample Prompt 4 (Code Execution Prompt) Step 3
1199

SQL Step -1200
CREATE TABLE first_win_after_1936 AS1201
SELECT1202

16

Year_Formatted , 1203
Division , 1204
League , 1205
Reg_Season , 1206
Playoffs , 1207
National_Cup 1208

FROM standardized_national_cup 1209
WHERE Year_Formatted > ’1936’ AND National_Cup = ’Win’ 1210
ORDER BY Year 1211
LIMIT 1; 1212
Table created: first_win_after_1936 1213
dataframe create after loading from first_win_after_1936 ... 1214

Year_Formatted Division League Reg_Season Playoffs National_Cup 1215
0 1953 None ASL 1st Champion (no playoff) Win 12161217

Listing 16: Response to Sample Prompt 5 (Answer Extraction Prompt)
1218

Generated Answer: 17 years 1219
Comparison Result: Yes 1220
Actual answer: 17 years , model answer: 17 years 1221
Answer matched: True 12221223

A.5 More Detail on Optimization 1224

We have explored several optimization techniques to enhance the efficiency of our pipeline by reducing 1225

the number of steps generated during query execution. While some of these strategies are detailed in the 1226

section 2, we outline additional key techniques below: 1227

SQL Merging. Figure 4 explains merging sequential SQL steps to optimize the pipeline’s performance. 1228

Since SQL operations follow a logical structure, combining multiple steps into a single query does not 1229

compromise the correctness or integrity of the process. This consolidation reduces the overhead of 1230

executing individual queries and improves the overall efficiency of the pipeline by minimizing redundant 1231

operations and streamlining execution. 1232

Listing 17: Example of Step Merging
1233

Original Plan (Multiple SQL Steps): 1234
SELECT * FROM table WHERE column = ’X’; 1235
SELECT * FROM table ORDER BY date DESC; 1236

1237
Optimized (Merged into a Single Step): 1238
SELECT * FROM table WHERE column = ’X’ ORDER BY date DESC; 12391240

Figure 4: Optimization using SQL step merging

17

Parallel LLM Execution. Initially, we prompted the LLM to generate a new column by supplying the1241

entire existing column and asking it to return a list of the same length. However, this approach often led1242

to inconsistent results—such as incorrect list lengths, duplicated values, or hallucinated entries—due to1243

the model’s sensitivity to long input sequences. Errors were especially prevalent in the middle of the list,1244

consistent with the “Lost in the Middle” effect (Liu et al., 2023).1245

Figure 5: Optimizing LLM Calls: Chunk-based processing on Rows

To improve both reliability and efficiency, we adopted a chunk-wise parallel execution strategy that1246

avoids the overhead of row-by-row processing while enhancing consistency. As illustrated in Figure 5,1247

we segment the input into appropriately sized batches and execute multiple LLM calls in parallel. This1248

design enables simultaneous inference over different parts of the data, substantially reducing latency1249

by eliminating sequential processing bottlenecks. The result is faster response times and improved1250

scalability—making this approach well-suited for large-scale reasoning tasks over semi-structured data.1251

Column-Wise Batching. Conventional LLM pipelines often chunk inputs row-wise, generating one1252

column value per row across a batch. In contrast, we propose a column-wise batching strategy, depicted1253

in Figure 6, which processes multiple columns for a small chunk of rows in a single call.1254

Figure 6: Optimizing LLM Calls: Chunk-based processing on Columns

This approach preserves intra-row context across multiple attributes of the same entity, reducing1255

inconsistencies that arise when attributes are generated independently. It is particularly advantageous1256

in Retrieval-Augmented Generation (RAG) systems and memory-augmented pipelines, where repeated1257

LLM calls over fragmented inputs can be inefficient. By extracting all relevant information in one unified1258

query, column-wise batching lowers computational costs while maintaining high accuracy in entity-level1259

reasoning.1260

Listing 18: Examples of Different Plan Optimization
1261

Question - The Kremlin Cup is held in Russia , and the St. Petersburg Open is also1262
held in Russia.1263

1264
Plan:1265
Step 1: SQL - Filter the table to select tournaments with the names "Kremlin Cup"1266

and "St. Petersburg Open".1267

18

1268
Step 2: SQL - Extract the country information from the Tournament column for the 1269

selected tournaments. 1270
1271

Step 3: LLM - Summarize the results to confirm that both tournaments are held in 1272
Russia. 1273

1274
Optimized Plan: 1275
Step 1: SQL - Filter the table to select tournaments with the names "Kremlin Cup" 1276

and "St. Petersburg Open", and extract the country information from the 1277
Tournament column in a single query. 1278

1279
Step 2: LLM - Summarize the results to confirm that both tournaments are held in 1280

Russia. 12811282

A.6 More Detail on handling Multi-Modal data 1283

The proposed pipeline Figure 8 is modular and designed for extensibility. Each component can be 1284

upgraded such as substituting the SQL Query Executor with an expert SQL agent to enhance execution 1285

efficiency and accuracy. Likewise, the LLM Semantic Reasoner and VLM (Vision Language Model) 1286

components can be replaced with specialized reasoning agents, allowing Weaver to adapt to evolving 1287

multi-modal requirements. 1288

Figure 7: Modular Pipeline for query execution

Handling Paragraph data using LLM step To address unstructured textual content outside the table 1289

(i.e., paragraph data), we filter these texts for relevance to both the question and the tabular data. The 1290

filtered content is used as an auxiliary knowledge source during LLM steps. This enables the system 1291

to either incorporate the external text into the tabular context or leverage it directly in the final answer 1292

generation step, depending on the Planner Agent’s discretion. 1293

Figure 8: Modular Pipeline for query execution

This design supports robust integration of text, table, and visual data, ensuring that the system remains 1294

scalable, accurate, and adaptable across diverse input modalities. 1295

A.7 Additional Analysis 1296

Table 7 shows the number of LLM and SQL steps used by Weaver , across different models on WikiTQ. 1297

19

Steps GPT-4o GPT-4o-mini Gemini-2.0-Flash

LLM Steps 46 178 122
SQL Steps 1530 1407 1510

Total 1576 1585 1632

Table 7: Number of LLM steps and SQL steps used in Weaver on WikiTQ.

Token Usage Analysis: We compared the average token usage (input/output) per TableQA pair across1298

ProTrix, H-STAR, and Weaver using three different LLM backends. As shown in Table 8, Weaver1299

maintains competitive token efficiency, especially in output size, while enabling structured multi-step1300

reasoning. Notably, ProTrix appears lightweight due to its limited planning, whereas H-STAR and Weaver1301

consume similar token budgets despite Weaver offering higher accuracy. Binder is excluded from this1302

comparison due to its excessive API usage (see Table 4).1303

Token Usage/Query GPT-4o (I/O) GPT-4o-mini (I/O) Gemini-2.0 (I/O)

ProTrix 445.57 / 317.14 564.3 / 388.85 559.94 / 220.44
H-STAR 8,836 / 842 8,994 / 854 10,284 / 702
Weaver 8,568 / 725 8,723 / 796 6,041 / 545

Table 8: Token usage comparison per TableQA (Input/Output tokens).

Experimental Setup and Hyperparameters: All experiments were conducted using publicly available1304

large language models (LLMs) accessed via their official APIs. We used the models in their standard1305

configuration without any fine-tuning. Specifically, we used GPT-4o, GPT-4o-mini (OpenAI), Gemini-2.0-1306

Flash, and DeepSeek R1 with a fixed temperature setting of 0.01 to ensure deterministic and stable outputs.1307

No additional modifications were made to the default API settings beyond controlling temperature for1308

consistency across runs.1309

B Dataset Details1310

In this section, we describe the used dataset in details.1311

- Short-Form Answering (WikiTQ): WikiTQ is a dataset designed for short-form answering where the1312

steps to reach the answer can be relatively complex and the expected answer is a short piece of information.1313

For example, the query "Which country had the most competitors?" in Figure 1. This task is ideal for1314

testing how well information retrieval from a semi-structured table can be handled.1315

- Fact-Checking (TabFact): TabFact focuses on fact-checking tasks where the query involves verifying1316

whether a particular statement is true or false. For example, the query, "Is the GDP of Japan in 20221317

greater than that of Germany?" evaluates the framework’s ability to correctly interpret data points in1318

complex tables and make valid judgments.1319

- Numerical Reasoning (FinQA): FinQA (Financial QA) is a dataset that requires the model to perform1320

arithmetic operations or infer relationships between numerical values across different columns. For exam-1321

ple, "What is the total revenue of Company X in 2021 after deducting expenses?" tests the model’s ability1322

to handle numerical data and apply operations such as summation, subtraction, or other mathematical1323

reasoning tasks.1324

- Multimodal Dataset (FinQAMM, OTT-QAMM, MMTabQAMM): FinQAMM and OTT-QAMM are datasets1325

that require reasoning across both tabular data and accompanying textual context (typically a paragraph)1326

to answer questions correctly. Unlike traditional table QA tasks, these benchmarks challenge the model1327

to integrate information from both structured (tables) and unstructured (text) modalities. For instance,1328

in FinQA, financial metrics are found in the table, while their definitions, dependencies, or contextual1329

cues are only available in the surrounding text. Similarly, OTT-QA includes open-domain trivia questions,1330

where the relevant answers often span both the table and the associated paragraphs.1331

MMTabQAMM is a multimodal dataset that requires reasoning across both tabular data and visual1332

information. Unlike traditional table QA tasks, it incorporates both text and images within its tables,1333

challenging the model to integrate structured (tables), unstructured (text), and visual (images) modalities.1334

The data set consists of query demands that combine textual descriptions, numerical data, and visual cues1335

20

from images. For example, a question might ask about the relationship between financial data in the table 1336

and trends depicted in an image. MMTabQAMM tests the model’s ability to perform complex multimodal 1337

reasoning, requiring SQL, LLM, and VLM calls to accurately derive answers. This makes it a valuable 1338

benchmark for evaluating systems that integrate and reason over multimodal inputs. 1339

C Few-Shot Prompting for Plan Generation 1340

We use a few-shot prompting approach to generate plans during the planning stage. Through our analysis 1341

of various complex data problems, we identified three broad categories of transformation challenges 1342

that commonly arise. For each category, we manually crafted a representative example—rather than 1343

using examples from any particular dataset—to serve as in-context prompts. This was done to avoid 1344

memorization bias and to encourage cross-dataset generalization. These examples were specifically 1345

designed to capture the reasoning skills required for hybrid queries. We will include them in the appendix 1346

for clarity and reproducibility in the final version. Below are the three categories and the corresponding 1347

examples with sample tables: 1348

• Semantic reasoning from textual content: These are cases where a column contains long or 1349

descriptive text, and we want the LLM to reason some semantic information which can be either 1350

direct extraction from text (e.g., extract topic from abstract text) or inference from text (e.g., infer 1351

sentiment from a text). 1352

Listing 19: Few-shot examples for semantic reasoning from textual content
1353
1354

Table: grocery_shop 1355
1356

item_description sell_price buy_price 1357
"Indulge your senses with this botanical blend of rosemary and lavender. Gently 1358

cleanses while nourishing your hair , leaving it soft , shiny , and revitalized ." 1359
7.99 4.99 1360

1361
Question: Which item category has the highest average profit? 1362

1363
Plan: 1364
Step 1: LLM - Item_category column needs to be created using item_description column 1365

. 1366
Step 2: SQL - Calculate average profit for each category and find the maximum. 13671368

• Commonsense or background knowledge inference: In these cases, the required information is 1369

not explicitly present in the table but can be inferred using commonsense knowledge or facts the 1370

LLM is likely to have been trained on. We prompt the LLM to infer and populate a new column 1371

based on the existing data. 1372

Listing 20: Few-shot examples for commonsense or background knowledge inference
1373
1374

Table: order_delivery_history 1375
1376

Order ID Product Event Timestamp (Local) Location 1377
101 Laptop Dispatched 2025 -01 -14 08:00 AM Los Angeles , USA 1378
101 Laptop Arrived at Hub 2025 -01 -15 03:00 AM Chicago , USA 1379

1380
Question: Which location had the maximum time taken between dispatch at one location 1381

and arrival or delivery at a subsequent location? 1382
1383

Plan: 1384
Step 1: LLM - Convert local timestamps to UTC time for all events. 1385
Step 2: SQL - Sort events within each Order_ID and Product by Timestamp_UTC. 1386
Step 3: SQL - Pair Dispatched events with the corresponding Arrived at Hub or 1387

Delivered events for each order/product and calculate the time difference. 1388
Step 4: SQL - Display the final output with paired events , durations , and relevant 1389

information sorted by Order_ID and Product. 13901391

21

• Preprocessing or normalization of non-SQL-friendly columnse: These are cases where a column1392

contains values that are too diverse or unstructured to be directly used in a SQL query. Since the1393

full table is not visible to the LLM and generating an exhaustive list of conditions is infeasible, we1394

prompt the LLM to generate a cleaned or normalized version of the column that can be used in1395

downstream SQL queries.1396

Listing 21: Few-shot examples for preprocessing or normalization of non-SQL-friendly columns
1397

Table: Israel at the 1972 Summer Olympics1398
1399

Name Placing1400
Shaul Ladani 191401
Esther Shahamorov Semifinal (5th)1402
Listeravov Shamil 12th1403

1404
Question: Who has the highest placing rank?1405

1406
Plan:1407
Step 1: LLM - Format the column Placing by extracting only numerical values (e.g. 51408

from Semifinal (5th)) and converting the text into numbers (e.g. Semifinal to 5,1409
12th to 12, 19 to 19).1410

Step 2: SQL - Retrieve the highest placing (rank) from the placing column by1411
selecting the minimum number in the list as lower number corresponds to higher1412
rank.14131414

D Additonal Discussion1415

LLM Utility in Column Transformation and Semantic Inference: Our core contribution lies in1416

how we effectively leverage LLMs beyond what traditional SQL systems can offer, specifically in tasks1417

involving column transformation and semantic inference. Weaver integrates LLM reasoning for two1418

primary purposes: (i) handling tasks that SQL cannot perform—such as entity extraction or parsing1419

ambiguous formats A.2 and (ii) inferring implicit knowledge based on pretraining, where the LLM is1420

tasked with verifying a plan that involves semantic understanding Figure 2.1421

A detailed example from the WikiTQ dataset in Appendix A.2(Listing 12) demonstrates the LLM’s1422

capability to normalize complex date strings like "Spring 1932" or "1935/36" into standardized YYYY1423

formats. This transformation, impossible through SQL alone, was completed through a single LLM step1424

with high consistency.1425

Listing 22: Example explaination
1426

Processes complex date formats (e.g., "Spring 1932", "1935/36" , "1937")1427
Standardizes them into YYYY format (1932, 1936, 1937 respectively)14281429

Additionally, our hybrid planning enables seamless coordination between SQL and LLM steps, as1430

seen in examples involving multi-column reasoning (e.g., from a movies table with columns movie name,1431

review content, movie information, and release date).1432

Listing 23: Example explaination
1433

Question: "What movies suitable for kids with positive reviews should be recommended1434
based on their reviews after 2018?"1435

1436
Plan:1437
SQL: Filter movies released after 2018 using the release_date column:1438

1439
SELECT * FROM movies WHERE release_date > 2018;1440

1441
LLM: Utilize a Large Language Model (LLM) to evaluate whether a movie is suitable1442

for children by processing:1443
movie_info (structured metadata)1444
review_content (unstructured user reviews)1445
new column: suitable_movies1446

1447

22

SQL: Apply SQL filtering to retain only movies flagged as suitable by the LLM: 1448
SELECT * FROM movies WHERE suitable_movies = ’Yes ’; 1449

1450
LLM: For the filtered movies , check which movies have positive reviews based on: 1451
movie_info 1452
review_content 1453
new column: recommended 1454

1455
SQL: Apply SQL filtering to retain only movies which are recommended: 1456
SELECT * FROM movies WHERE recommended = ’Yes ’; 14571458

Beyond Semi-structured Text. We define semi-structured tables following prior work (Gupta et al., 1459

2020b), focusing on unstructured or free-form content embedded within structured table formats—such as 1460

textual cells requiring semantic interpretation—rather than on hierarchical structures like JSON or HTML 1461

trees. While our current benchmarks focus on flat tables, the primary challenges we address stem from 1462

this embedded unstructured content. These challenges often require semantic inference, an area where 1463

traditional SQL struggles and large language models (LLMs) are critical in bridging the gap. Examples 1464

include inconsistencies in formatting, reliance on domain-specific knowledge, and implicit contextual 1465

cues necessary for accurate query interpretation. 1466

Additionally, our approach is easily extendable to hierarchical data formats (e.g., HTML, nested JSON, 1467

HiTab) through structure decoding. These formats can be transformed into a flattened, normalized table 1468

representation and then processed using Weaver . However, as we discuss later, such datasets typically 1469

lack the complex hybrid queries involving multi-step reasoning and semantic inference, which are the 1470

primary focus of our work. 1471

Filtering Hybrid Queries using Binder. To filter hybrid queries from their original dataset counterparts, 1472

we leverage Binder’s query structure. Specifically, we identify queries that invoke any UDF, for example 1473

‘QA‘ function as seen in the example below, which prompts the LLM with a yes/no question related to a 1474

single column. This serves as a reliable indicator that the query requires semantic reasoning beyond SQL 1475

capabilities. The example below demonstrates such a pattern, where the QA function is applied to assess 1476

contextual understanding. This filtering process ensures that the LLM is used for its intended purpose, 1477

semantic inference or interpretation, aligned with the methodology outlined in the "Our Approach" section. 1478

Listing 24: Example NeuralSQL query using QA function
1479

Question: what number of games were lost at home? 1480
1481

NeuralSQL: 1482
SELECT COUNT (*) FROM w WHERE QA(" map@is it a loss ?"; ‘result/score ‘) = ’yes ’ 1483
AND QA(" map@is it the home court of New Orleans Saints ?"; ‘game site ‘) = ’yes ’ 14841485

E Comparison with Existing Datasets 1486

Several benchmark datasets—such as Spider, HiTab, and BIRD—have contributed significantly to multi- 1487

hop and multi-table question answering. However, these benchmarks primarily emphasize symbolic 1488

SQL reasoning and do not align with the hybrid reasoning focus of Weaver , which requires coordinated 1489

symbolic (SQL-based) and semantic (LLM-based) reasoning. 1490

Spider was designed for cross-domain Text-to-SQL parsing over a variety of databases. While it 1491

features compositional queries, the questions can typically be answered using SQL alone. Despite recent 1492

augmentations that add paraphrasing and perturbation, the core tasks remain fully executable without any 1493

semantic interpretation, making Spider insufficient for evaluating hybrid symbolic-semantic pipelines. 1494

HiTab focuses on hierarchical tables and structural decoding challenges. Although it includes tables 1495

that require some normalization or flattening, once transformed, the resulting queries involve only 2–3 1496

simple SQL operations (e.g., filtering, aggregation). Importantly, these tasks do not demand semantic 1497

reasoning or LLM-based operations, limiting HiTab’s suitability for hybrid evaluation. 1498

23

BIRD is a large-scale, multi-table QA benchmark that emphasizes compositional and multi-hop rea-1499

soning over relational tables. It serves as a rigorous testbed for symbolic systems. However, as we detail1500

below, it lacks tasks that truly require hybrid semantic-symbolic coordination.1501

E.1 Evaluation on BIRD Dataset1502

We evaluate Weaver on the BIRD benchmark using GPT-4o as the backend. Weaver achieves an accuracy1503

of 91%, solving nearly all tasks using symbolic SQL execution alone, without invoking any LLM-based1504

semantic reasoning. These results demonstrate that while Weaver is highly effective on BIRD, the1505

dataset’s symbolic nature limits its value for testing hybrid reasoning capabilities. Most BIRD tasks can be1506

completed in 3–4 SQL steps involving standard operations like joins, filtering, and sorting. For instance,1507

consider the query:1508

Listing 25: Example execution plan
1509

Question: Please list the lowest ten eligible free rates for students aged 5 17 in1510
continuation schools. Eligible free rates Free Meal Count (Ages 5 17) /1511

Enrollment (Ages 5 17)1512
1513

Plan:1514
1515

SQL: Join the frpm table with the schools table using School Type and SOCType ,1516
filtering for "Continuation High Schools ".1517

SQL: Compute eligible free rates per school using the formula: Free Meal Count (Ages1518
5-17) / Enrollment (Ages 5-17).1519

SQL: Sort schools by the calculated rate in ascending order.1520
SQL: Select the ten schools with the lowest eligible free rates.1521

1522
SQL Queries Generated -1523

1524
Step 1: SELECT f.* FROM frpm f JOIN schools s ON f.School Type = s.SOCType WHERE s.1525

SOCType = ’Continuation High Schools ’;1526
1527

Step 2: CREATE TABLE eligible_free_rates AS SELECT School Name , School Type , Free1528
Meal Count (Ages 5-17), Enrollment (Ages 5-17), (Free Meal Count (Ages 5-17) /1529
Enrollment (Ages 5-17)) AS eligible_free_rate FROM continuation_schools;1530

1531
Step3: CREATE TABLE sorted_eligible_free_rates AS SELECT * FROM eligible_free_rates1532

ORDER BY eligible_free_rate ASC;1533
1534

Step 4: CREATE TABLE lowest_ten_eligible_free_rates AS SELECT * FROM1535
sorted_eligible_free_rates LIMIT 10;15361537

Despite the multi-hop joins, these tasks do not require semantic disambiguation, commonsense reason-1538

ing, or LLM-assisted table understanding. As such, BIRD was excluded from our main hybrid benchmark1539

comparison table, though its results highlight Weaver ’s strong symbolic reasoning capabilities.1540

Why Existing Datasets Fall Short? While Spider, HiTab, and BIRD advance multi-hop QA in important1541

ways, none capture the core challenges of hybrid queries where symbolic (SQL) and semantic (LLM)1542

steps must be interleaved. Weaver is explicitly designed for such hybrid workflows, requiring intelligent1543

planning, decomposition, and alternating execution paths—capabilities not required in these prior datasets.1544

E.2 Execution Strategy in the Weaver Pipeline1545

Why SQL Execution Alone Was Insufficient? In Weaver , SQL execution alone does not yield the final1546

answer because the retrieved table may contain extraneous data or errors, particularly if any SQL-LLM1547

steps fail or produce incomplete results. Although SQL retrieves the data, it cannot handle formatting1548

issues, missing values, or the semantic reasoning required to extract the correct answer. Therefore, an1549

LLM is used post-execution to refine the table, correct formatting, and extract only the relevant values,1550

ensuring accurate final answers that SQL alone cannot guarantee.1551

Why SQL and LLM Outputs Are Not Combined? Unlike methods like H-STAR, which execute1552

SQL and LLMs in parallel, Weaver selectively chooses whether SQL or LLM should handle each query1553

24

part. This planning-based approach improves efficiency by avoiding the computational cost of parallel 1554

execution. As shown in Table 5: Number of API Calls Comparison per TableQA, H-STAR requires 1555

8 LLM API calls per query, whereas Weaver averages only 5.4, significantly reducing overhead and 1556

improving overall performance. 1557

E.3 Rationale for Using SQL over Python 1558

While Python offers greater expressiveness, we selected SQL for three key reasons that align with the 1559

objectives of our framework: 1560

• Portability: SQL is the standard query language supported by most database engines, ensuring our 1561

approach can be easily integrated into real-world systems. 1562

• Interpretability: SQL’s declarative nature makes queries more transparent, facilitating step-by-step 1563

explainability in the planning pipeline. 1564

• Efficiency: SQL operations, such as filtering, aggregation, and joins, are highly optimized for 1565

symbolic inference over tabular data, enabling faster execution on large datasets without requiring 1566

data export. 1567

SQL is well-suited for our use case because Weaver is designed for seamless integration with database 1568

systems and big data environments. In contrast, Python-based solutions like Pandas can encounter 1569

scalability issues, while SQL is inherently optimized to efficiently handle large-scale tabular data. 1570

25

