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ABSTRACT

Reflecting the greater significance of recent history over the distant past in non-
stationary environments, A-discounted regret has been introduced in online convex
optimization (OCO) to gracefully forget past data as new information arrives.
When the discount factor \ is given, online gradient descent with an appropriate
step size achieves an O(1/+/1 — ) discounted regret. However, the value of A is
often not predetermined in real-world scenarios. This gives rise to a significant
open question: is it possible to develop a discounted algorithm that adapts to an
unknown discount factor. In this paper, we affirmatively answer this question by
providing a novel analysis to demonstrate that smoothed OGD (SOGD) achieves
a uniform O(4/logT/1 — X) discounted regret, holding for all values of A across
a continuous interval simultaneously. The basic idea is to maintain multiple
OGD instances to handle different discount factors, and aggregate their outputs
sequentially by an online prediction algorithm named as Discounted-Normal-
Predictor (DNP). Our analysis reveals that DNP can combine the decisions of two
experts, even when they operate on discounted regret with different factors.

1 INTRODUCTION

Online convex optimization (OCO) serves as a fundamental framework for online learning, effectively
modeling a wide range of real-world sequential prediction and decision-making problems (Hazanl
2016). OCO can be viewed as a repeated game between the learner and the environment, governed
by the following protocol. In each round ¢ € [T], the learner chooses a decision w; from a convex
domain W C R¢. Then, the learner suffers a loss f; (w) and observe some information about the
functions, where f;: W — R is chosen by the environment. To evaluate the performance of the
learner, static regret is commonly used (Cesa-Bianchi & Lugosi, [2006):

T T
Regret(T) = ; Je(we) — vlvfél% ; fe(w)

which is defined as the difference between the cumulative loss of the online learner and that of the
best decision chosen in hindsight. However, static regret is not well-suited for changing environments
where the future significantly diverges from the past. To facilitate gracefully forgetting past data as
new information arrives, A-discounted regret has been proposed (Freund & Hsul 2008)):

T T
D-Regret(T, \) = Z Mt f(wy) — II.IE%I/%} Z M=t f(w) e
t=1

t=1
where \ € (0,1) is the discount factor, denoting the degree of forgetting of the past.

Although discounted regret has been explored to some extent in prediction with expert advice
(PEA) (Freund & Hsul 2008}, |Chernov & Zhdanovl [2010j Kapralov & Panigrahyl 2010; [Cesa-bianchi
et al.,|2012; |Krichene et al.,2014) and games (Brown & Sandholm, |[2019; Xu et al., | 2024)), discounted
OCO has been relatively underexplored in the literature. Recently, Zhang et al.| (2024)) studied
discounted OCO with given discount factors, aiming to establish gradient-adaptive regret bounds.
For a fixed factor, they derive an O(1/v/1 — A2) result for A-discounted regret, but their algorithm
requires the prior knowledge of discount factor A\. However, in many decision-making problems,
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Figure 1: A meta-expert framework for OCO that adapts to unknown parameters (previous work,
upper panel) and discounted OCO (our setting, lower panel). Previous work typically decomposes
the regret into the sum of meta-regret and expert-regret, where w, ; denotes the decision of the i-th
expert. However, this method fails to combine these experts’ decisions under discounted OCO.

the discount factor reflects intrinsic dynamics rather than a tunable hyperparameter. For instance, in
intertemporal economic models, the discount factor represents agents’ preferences, which are shaped
by empirical observations of market behavior and validated through economic studies (Cohen et al.,
2020). Crucially, in such models the discount factor is treated as a genuine parameter grounded in
economic reality rather than an arbitrary design choice. This highlights the existence of a “true”
discount factor that inherently resides in actual contexts, rather than freely specified in advance.
Recognizing the considerable significance of adapting to an unknown discount factor in practical
scenarios, Zhang et al.|(2024) explicitly leave this as an important open question in their work.

Notably, there exists a similar performance measurement for dealing with changing environments,
known as adaptive regret. Formally, the adaptive regret is defined as the maximal static regret for
every interval [r, s] C [T] over the whole time horizon:

s+7—1 s+7—1
SA-Regret(T,7) = max { tz:; ft(Wt)—v{]Ig}I}v tz:; ft(W)}

[s,s+7—1]C[T]

where 7 is the interval length. It is evident that adaptive regret serves a similar purpose to that of
discounted regret, as both effectively define a temporal horizon of interest. Specifically, the length of
an interval in adaptive regret is conceptually analogous to the effective window size controlled by a
discount factor; for instance, a smaller discount factor emphasizes recent data by promoting more
rapid forgetting of the past, which corresponds to a focus on more recent intervals. The best-known
algorithm (Jun et al., |2017) achieves O(+/7 log T') strongly adaptive regret for all interval length.
Compared to the minimax optimal result for static regret, their bound incurs an additional log 7" term,
which is the necessary cost of adaptivity across all intervals. Since existing algorithms for adaptive
regret (Hazan & Seshadhril 2007; Jun et al., 2017} Zhang et al.l 2018b) provide guarantees that hold
simultaneously for all intervals, it is natural to ask whether it is possible to design a discounted OCO
algorithm that adapts to an unknown discount factor. In this paper, we provide an affirmative answer.

1.1 TECHNICAL CHALLENGE

In the literature, extensive research has explored online algorithms that adapt to unknown parameters,
including universal OCO (van Erven & Koolen, [2016; Zhang et al.l 2022b), dynamic regret (Zhang
et al.,|2018a; Baby & Wang| 2021), and adaptive regret (Daniely et al., 2015; Jun et al.,[2017). These
methods adopt the meta-expert framework as shown in the upper panel of Figure 1} where they
maintain multiple experts with different configurations and deploy a meta-algorithm to track the
best one. Therefore, to adapt to an unknown discount factor, a straightforward idea is to apply this
meta-expert framework by constructing multiple OGD instances, each operating with a different
potential discount factor, and then using a meta-algorithm to combine their decisions. However,
this strategy fails to handle the discounted scenario, because existing meta-algorithms used in the
these studies, such as Hedge (Freund & Schapire, [1997) or Fixed-Share (Herbster & Warmuth,
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Figure 2: Overall procedure of our method: sequentially aggregation by DNP-cu with different
discount factors (red nodes) of OGD experts (blue nodes), using meta-regret from (I3) and (T4).

1998), typically require that all experts and the meta-algorithm operate under a unified performance
measurement. For discounted OCO, the fact that the uncertainty of the discount factor is tied to
the performance measurement makes this requirement difficult to satisfy. As depicted in the lower
panel of Figure[l| experts configured for different discount factors are essentially operating under
different performance measures, i.e., A-discounted regret with varying A. This renders the traditional
meta-expert framework incapable of effectively handling an unknown discount factor.

1.2 OUR SOLUTION AND CONTRIBUTIONS

To address the above challenge, we revisit Smoothed OGD (SOGD) (Zhang et al., 2022a)), which is
proposed to support the adaptive regret for smoothed OCO. The key idea of their work is to construct
multiple instances of OGD with different step sizes, and employ Discounted-Normal-Predictor with
conservative updating (DNP-cu) (Kapralov & Panigrahy, 2010; 2011) as the meta-algorithm to
sequentially aggregate their decisions. Following this idea, we first discretize the continuous interval
of potential discount factors, say A € [1 — 1/7,1 — 1/T] where 7 is a minimal window length,
by constructing a geometric series to cover the range of their values. For each possible discount
factor \;, we create an expert by running an instance of OGD to achieve optimal \;-discounted
regret. Then, we employ multiple instances of DNP-cu with different discount factors p; = A; to
sequentially aggregate decisions from each expert. The overall procedure is illustrated in Figure[2| In
this work, we analyze the performance of DNP-cu under the discounted payoff setting, demonstrating
its ability to effectively control the discounted regret. Furthermore, our novel analysis reveals that
DNP-cu is able to successfully aggregate the decisions of two experts, even when they operate
on discounted regret with different discount factors. Significantly, we prove that this approach
achieves a uniform O(4/logT'/1 — X) bound for A-discounted regret that holds simultaneously for
all A € [1 —1/7,1 —1/T], and does not require knowing the value of \.

Finally, we would like to emphasize that although the idea of deriving uniform discounted regret
across a continuous interval has appeared in Kapralov & Panigrahy|(2010), their analysis is conducted
in the setting of PEA rather than OCO. Moreover, Kapralov & Panigrahy| (2010} § 5) only outlined the
proof sketch without providing many of the technical details. Reconstructing the complete argument
and addressing the gaps and inaccuracies in their presentation requires significant effort. More
discussion on our technical contribution can be found in Appendix [C]

2 RELATED WORKS

In this section, we review related works to our paper, including discounted online learning and
discounted-normal-predictor.

2.1 DISCOUNTED ONLINE LEARNING

Due to the fact that recent information is often more important than past history in non-stationary
environments, discounted online learning has been proposed to gradually forget the past as new data
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Algorithm 1 Discounted-Normal-Predictor
Require: Two parameters: p and Z

1: Setzy =0

2: fort=1,...,T do

3:  Predict g(x¢)

4:  Receive by

5: Set Ti41 = PTt + bt
6: end for

arrives. Under the setting of PEA, discounted regret is defined as (Cesa-Bianchi & Lugosil, [2006)):

T T
Tp : T
> Broipi b prél&;ﬂptp 4, 2

t=1

where p; is a weight picked from a simplex Ay, {3;}1_; is a decreasing sequence of discount factors
and N is the number of experts. The A-discounted regret (I)) studied in our work can be viewed as
a special case of (2)), also referred to as exponential discounting. The seminal work of [Freund &
Hsu| (2008) proposes a discounted variant of Hedge, which achieves an O(y/In N/(1 — X)) regret
bound. Subsequent works (Chernov & Zhdanov, [2010; |Cesa-bianchi et al.,|2012; |[Krichene et al.,
2014) have also explored other discounted variants under the framework of “tracking the best
expert”. Furthermore, Brown & Sandholm| (2019); [Xu et al.| (2024) propose discounted version
of counterfactual regret minimization (CFR) for solving imperfect-information games. Recently,
discounted regret has gained attention in the context of OCO.Zhang et al.|(2024) investigate adaptive
OGD and FTRL for discounted regret with time-varying factors. For online linear regression, Jacobsen
& Cutkosky|(2024)) present a discounted variant of the VAW forecaster, which enjoys dynamic regret
guarantees. Furthermore, they also explore strongly adaptive regret. Based on online-to-non-convex
conversion (Cutkosky et al., [2023)), |Ahn et al.| (2024) investigate Adam optimizer, and propose a
conversion from the discounted regret to the dynamic regret. However, these aforementioned works
cannot adapt to an unknown discount factor.

2.2 DISCOUNTED-NORMAL-PREDICTOR

Discounted-Normal-Predictor (DNP) (Kapralov & Panigrahy, [2010) was introduced to solve the bit
prediction problem, with its protocol described as follows. Consider an adversarial sequence of bits
b1,...,br where each b; € [—1, 1] can take real values, and our goal is to predict the next bit from
the previous bits. In each round ¢ € [T], the learner predicts a confidence ¢; € [—1, 1], and observes
the value of b;. Then, the learner gets a payoff c;b; at each round. For a T-round game, the goal of

the learner is to maximize the cumulative payoff 23:1 ceby.

The overall procedure of DNP is summarized in Algorithm|[l} In each round ¢, DNP maintains a
discounted deviation defined as x; = Z;;ll p'~179b;, where the discount factor p = 1 — 1/n and

n > 0 is a parameter for the interval length. In Step 3, DNP predicts the confidence level g(x;) by a
confidence function g(-), which is defined as

g(x) = sign(x) - min (Z -erf (4{1}) e%, 1> 3)

n

where Z > 0 is a parameter, and erf(z) = % Iy e~ ds is the error function. For any Z < 1/e,
Kapralov & Panigrahy| (2010, Theorem 14) have proved that DNP satisfies

T T

Zg(xt)bt > max ij - 0(\V/Tlog(1/Z)), —O(Z\/T) 4

t=1 j=1

where we set n = T in Algorithm Compared to the strategy that predicts the majority bit
with payoff | >, b;[, DNP achieves an O(y/T log T') regret by setting Z = o(1/T’), as well as a
subconstant o(1) loss. Furthermore, DNP can combine the decisions of two experts by defining b,
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Algorithm 2 Discounted-Normal-Predictor with conservative updating (DNP-cu)

Require: Two parameters: p and Z
I: Setz; =0,n=1/(1—p),and U(n) =g~ *(1)
2: fort=1,...,Tdo
3:  Predict g(x;) where g(-) is defined in
4:  Receive by
50 ifx, €[0,U(n)] orzy < 0&b, > 0or z, > U(n)&b, < 0 then
6: Set xy11 = prr + by
7.  else
8 Set Ti41 = PTt
9: endif
0:

10: end for

as the difference between the losses of experts and restricting ¢; € [0, 1]. For the general case of N
experts, we can use multiple DNP to aggregate experts’ decisions one by one.

Kapralov & Panigrahy| (2010, Lemma 18) also investigate the discounted payoff Zthl pTteyby, and
propose a conservative updating rule to control the value of the deviation x;. To be specific, Line 5 of
Algorithm[T]is replaced by
if |z;| < U(n) or g(x¢)b; < 0 then
Set Ti41 = PTt + bt
else
Set Ti41 = PTt
end if

where U(n) = O(y/nlog(1/Z)) is a constant such that g(z) = 1 for |z| > U(n). It can be seen
that the current bit b; is utilized to update x; only when the confidence of the algorithm is low or the
algorithm predicts incorrectly. Then, they demonstrate that the discounted payoff is on the order of
O(—=Z/(1 — p)) (Kapralov & Panigrahy, 2010, Lemma 18). Similarly, Discounted-Normal-Predictor
with conservative updating can be applied to the problem of PEA.

Following their work, |Daniely & Mansour| (2019) refine the analysis of DNP to support the switching
cost and the adaptive regret. They slightly modify the confidence function as

o) =g (o] 3t) = |32 et (=) e )

where Il 1)[-] denotes the projection operation onto the set [0, 1], and the error function is redefined

as erf(z) = fox e=%"/2ds. Daniely & Mansour| (2019, Theorem 10) demonstrates that their refined
DNP with projection operation attains similar regret bounds to that of (@) even in the presence of
switching costs. Moreover, they also establish adaptive regret guarantee. Subsequently, Zhang et al.
(2022a)) analyze the performance of DNP with conservative updating (DNP-cu) in the context of OCO,
and propose Smoothed OGD (SOGD) algorithm, where multiple instances of OGD with different
step sizes are created and aggregated sequentially using DNP-cu. Their analysis shows that SOGD
achieves nearly-optimal bounds for adaptive regret and dynamic regret, in the presence of switching
cost. However, both of their studies do not consider discounted regret.

3 MAIN RESULTS

In this section, we introduce standard assumptions of OCO, followed by the discounted algorithms,
including OGD and Smoothed OGD (SOGD).

3.1 PRELIMINARIES

We introduce the following common assumptions for OCO (Shalev-Shwartz, [2011)).
Assumption 1. All the functions f;’s are convex over the domain V.
Assumption 2. The gradients of all functions are bounded by G, i.e.,
max [V f,(w)]| < G, ¥t € [1]. ©)
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Assumption 3. The diameter of the domain VV is bounded by D, i.e.,

max |[|w—w|| < D. (7)
w,w’/eW

Without loss of generality, we assume (Zhang et al., 2022a))
fi(w) € [0,GD], Yw e W, t € [T]. (8)

3.2 ONLINE GRADIENT DESCENT FOR DISCOUNTED OCO

We investigate online gradient descent (OGD) with constant step size (Zinkevich, 2003) for discounted
OCO. OGD performs gradient descent to update the current solution wy:

wipr = [Wt - vat(wt)] ©
where 7 > 0 is the step size, and Iy [-] denotes the projection onto W. In the following, we present
the discounted regret of OGD.
Theorem 1. Under Assumptions[I} 2|and[B] for any w € W, OGD satisfies

T T
Z A=t f(wy) — Z ATt (w) < DlGl/i

t=1 t=1
where we setp = D+/2(1 — \)/G.

Remark: Theorem shows that OGD achieves an O(1/1/1 — ) bound for A-discounted regret,

which is on the same order as O(1/+/1 — A?) established by Zhang et al.| (2024, Theorem 6) because
1 — X< 1—A2<2(1—\).Itis worth mentioning that both the step size and the upper bound are
independent of the total iterations 7, thus the O(1/4/1 — ) bound holds uniformly over time.

3.3 UNIFORM DISCOUNTED REGRET ACROSS A CONTINUOUS INTERVAL

In this subsection, we focus on the more challenging case with an unknown discount factor. We
begin by discussing the range of A values that are of interest. With a discount factor 0 < A < 1, the
effective window size is essentially ﬁ For a T-round game, it is natural to require

1
— T
=T
where 7 is a minimal window length introduced for technical reasons, implying[]_-]

1 1
,\e[1—T,1—T] (10)

As shown in Theorem [T, OGD with a suitable step size can minimize the discounted regret for a
particular value of \. In order to handle all possible values of A in (I0), we discretize the interval
[1 —1/7,1— 1/T] by introducing the following set:

1 2 2N T
=ql—-—=1—=,...,1— — here N = |1 — 11
S { T7 T7 ) T},Were ’70g27_—‘ ( )

which covers the range of discount factor values. Then, for each discount factor \; = 1— gi—1 /T €S,
we create an instance of OGD, denoted by A;. According to Theorem [I] the step size of A; is set as

:D\M:D\/? (12)
G GVT

so that it achieves the optimal \;-discounted regret. As discussed in Section [I.T} the traditional
meta-expert framework is unable to combine these experts’ decisions to attain optimal A-discounted

i

'While there is no particular reason to avoid setting the upper bound of X to 1/7"* for some o > 1, we focus
on 1/T for simplicity.
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Algorithm 3 Combiner

Require: Two parameters: p and Z
Require: Two algorithms: A; and A,

1: Let D be an instance of DNP-cu, i.e., Algorithm 2] with parameter p and Z
Receive w ; and wy o from A; and A2 respectively
Receive the prediction wy from D
fort=1,...,T do

Predict w, according to (I6)
Send the loss function fi(+) to .4, and A
Receive w1 1 and w41 2 from 4; and A, respectively
Send the real bit ¢; in (I9) to D
Receive the prediction wyy; from D
end for

YR IAIUNHELD

—_

regret with an unknown A. To address this issue, we choose Discounted-Normal-Predictor with
conservative updating (DNP-cu) (Kapralov & Panigrahy, 2010) (summarized in Algorithm [2) as the
meta-algorithm to sequentially aggregate the decisions from these multiple experts.

Before describing the specific algorithm, we first present the performance of DNP-cu (i.e., Algo-
rithm [2) under the discounted payoff setting. Although [Zhang et al| (2022a, Theorem 1) have
investigated the properties of DNP-cu, their analysis is restricted to the standard payoff.

Theorem 2. Suppose Z < % n > max{8e, 16log Z} and U(n) > 22. For any bit sequence

bi,...,br where |by| < 1, andanyn > p=1—1/n, the dtscountedpayoﬁ‘ofAlgortthmIsatzsﬁes
Z

T—t
;n gla)b 2 — g (13)
Furthermore, it also satisfies
T T
ST b = 3 5 b g~ Uln) — 1 (14)
t=1 t=1 (1=7)

where

Un)=g"1'1) < MlGnlog%. (15)

Remark: Theorem [2]indicates that DNP-cu can effectively control the discounted payoff. First,
(T4) shows that DNP-cu is able to support the A-discounted payoff when p = \. Furthermore, (13)
reveals that while DNP-cu operates with a discount factor p, it can also provide a discounted payoff
guarantee for a different discount factor 7, provided that 7 > p. Therefore, we can exploit (I3)
and (T4) to enable aggregation of two experts operating under the discounted regret with different
discount factors, as specified below.

Algorithm [3] referred to as Combiner, serves as a meta-algorithm to aggregate the outputs of two
OGD experts. Let A; and A, denote two OGD algorithm, and let w; ; and w 5 be their respective
predictions at round ¢. Combiner generates a convex combination of w; ; and wy 7 as its output:

wy = (1 —wy)Wy 1 +wwy o (16)
where the weight w; € [0, 1]. By the convexity of f;(-), we have

fe(wi) < (1 —we) fr(wen) + wife(we ).

Then, it is straightforward to verify that the A1, Ao-discounted regret of Combiner with respect to A
and A5 can be bounded as follows:

T
ZAT *fr(wy) Z f(we) < - GDZAT fwily, (17)
t=1
T T
Z)\T tft Wt Z th < GDZ)\2 7t wtft—ﬁt) (18)

t=1 t=1 t=1
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Algorithm 4 Smoothed OGD (SOGD)

Require: Two parameters: N and Z
: Set By be any baseline
:fori=1,..., N+ 1do
D

1
2
3:  Let A; be an instance of OGD with step size 7, = &
4

2i

T
Let B; be an instance of Combiner, i.e., Algorithmhich combines B;_; and A; with
parameters \; = 1 — 271 /T and Z

5: end for

6: fort=1,...,Tdo

7:  Run By, ..., BNy sequentially for one step each
8:  Output the solution of By 11, denoted by w;

9: end for

where we define i Y )

t\We,1) = Jt(We 2
bl = e € [-1,1]. (19)
To determine the weight, we pass ¢; to DNP-cu and set w; as its output. By the theoretical guarantee
of DNP-cu in Theorem[2] we can use and to upper bound the discounted regret and (T3),
respectively. Notably, since the discounted payoff (I3) in Theorem[2]supports arbitrary discount factor
n > p, we are able to successfully aggregate the decisions of two experts for different discounted
regret measurements. Specifically, let A; and A5 be OGD algorithms for discount factors A; and Ao
respectively, with w; 1 and wy > as their decisions. To combine their decisions, we employ DNP-cu
with p = A9 to obtain:

T T
M. GDZ
T—t T—t
;:1 )\1 ft(wt> — t:E - )\1 ft(th) S ma

g Lo @09 Z

where wy is the combined output of w; ; and w; o, and we require 7 = A\; > Ay by Theorem

Remark: By setting Z = 1/T, DNP-cu delivers a small meta-regret with respect to the decision
from A; and A;. Combining the above inequalities with the corresponding \;-discounted regret
achieved by the i-th expert, we demonstrate that when the discount factor A € {1, A2}, our method
can achieve the optimal O(4/1/(1 — X)) bound for A-discounted regret without requiring knowledge
of the exact value of the discount factor.

To establish uniform discounted regret over the range of discount factors specified in (I0), we
construct multiple experts by running OGD with different step sizes in (IT), and apply Combiner to
sequentially aggregate these algorithms. For each i € [N + 1], we create an instance of Combiner,
denoted by B;, to combine 5;_; and A;, where the discount factor of B; is set to );, matching that
of A;. Initially, we set By as any baseline, such as an algorithm that predicts a fixed point in W.
At each round ¢, we sequentially run By, ..., By for one step each, and output the solution of
Bn41. It is important to construct the sequence of algorithms .4;/5; in descending order of their
associated discount factors, as this ordering is crucial for analyzing the overall discounted regret of
the algorithm. Finally, we leverage a technical lemma (Kapralov & Panigrahy, 2010, Lemma 20) to
extend the results from a discrete set to a continuous interval. Following|Zhang et al.| (2022a)), we
refer to this algorithm as Smoothed OGD (SOGD), and summarize it in Algorithm [4]

We have the following theoretical guarantee regarding the discounted regret of SOGD.

Theorem 3. Suppose 7 > max{16e,32log +} and set Z = 1/T. Under Assumptions and
forany e [1—-1/7,1—-1/T], Algorithmsatisﬁes
T T

AT fy(we) — M=t (w §2G7D 4/ log T + V2 +w+2GD
t; t; ) \/ﬁ(\/? ) (1—-\NT

for any w € W, where N = [log, L.
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Figure 3: Performance comparison of discounted cumulative loss with different discount factors.

Remark: Theorem |3|shows that SOGD achieves an O(4/log T//(1 — X)) bound for A-discounted
regret, holding simultaneously for all A € [I — 1/7,1 — 1/T]. Compared to the O (1/v/1 = X)
guarantee in Theorem for a known discount factor A, this bound incurs an additional O(y/logT)
factor, reflecting the cost of adaptivity to the discount factor. We emphasize that this additional term is
fundamental, as existing algorithms for adaptive regret also incur such log T term (see Appendix [B).

4 EXPERIMENT
In this section, we conduct empirical experiments to validate the effectiveness of our methods.

Setup and contenders Our experiments are conducted on the ijennl dataset from LIBSVM
Data (Chang & Lin, 2011} |Prokhorov, [2001), and the dimension of features is d = 22. We study an
online classification problem where, at each round ¢ € [T, the learner selects a model w; € W. After
submitting this decision, the learner receives a mini-batch of training examples {($§1)7 yﬁ”)};";p
where each pair consists of a feature vector :vgl) and its corresponding label y,E"’, drawn from an
underlying data distribution. The learner evaluates performance using a convex loss function f;(w),
which reflects the loss incurred on the received batch, and then updates the model accordingly for
future rounds. In this work, we set the total rounds 7" = 10000, and the online learner suffers the
absolute loss. We evaluate the performance of our proposed method (SOGD) by comparing it with
OGD using a tuned step size, as specified in Theorem [T} as well as with two untuned variants. For a

fair comparison, all methods are implemented under identical experimental settings.

Results We repeat the experiments for five times and evaluate the algorithms using the discounted
cumulative loss with different factors ranging from 0.5 to 0.999. We report a subset of the results
here, with the remaining results provided in Appendix [D} As illustrated in Figure[3] our proposed
SOGD algorithm achieves performance comparable to that of OGD with a specifically tuned step size.
Notably, for A = 0.999 and 0.998, both algorithms exhibit similar loss accumulation. For A = 0.996,
while OGD shows slightly lower initial loss, SOGD quickly converges to a comparable steady-state
loss. Furthermore, SOGD does not require prior knowledge of A for its configuration, offering the
advantage of adaptability in scenarios where the discount factor is unknown.

5 CONCLUSION

In this paper, we study discounted OCO with a discount factor A. First, we investigate OGD with
constant step size, and prove that OGD with step size n = O(v/1 — \) achieves an O(1/v/1 — X)
bound for A-discounted regret. Second, we focus on the challenging case with an unknown discount
factor. To establish discounted regret for all possible factors across a continuous interval, we provide
a novel analysis on the discounted payoff of DNP-cu, and show that DNP-cu enables aggregation of
two experts with different discount factors. Thus, we employ DNP-cu to sequentially aggregate the
decisions from experts with different configurations to achieve our goal.
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REPRODUCIBILITY STATEMENT

The contributions of this paper are mainly theoretical. We clearly state the problem setting and
all assumptions used in our analysis, and provide complete proofs of the theoretical results in the
appendix. For the experimental part, we describe in detail the publicly available datasets used, as well
as the experimental setup, including parameter configurations, baselines, and other implementation
details. These components together ensure that both the theoretical and empirical findings of our
work can be independently verified and reproduced.
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A ANALYSIS
In this section, we present the analysis of all theorems.

A.1 PROOF OF THEOREMIII

The proof is similar to that of Zhang et al.| (2024}, Theorem 6), except that we adopt a different step
size. From Jensen’s inequality and the standard analysis of OGD, we have

T

Z}\T tftwt Z)\T ff

< AUV fr(wy), Wi — W)

T )\T—t 9 77>\T t 9
<M (Iwe = wl* = w1 —w]? +Z [ fe(we)l

o 2
A1 T/ \T—t  \T—(t—1) " T
< —wl? _ w2z ATt 2
<l S (= g ) I i S ST )
)\T71D2+(1_>\)D2i>\T7t+nG2i)\T7t
S 2n t=2 2 =
T—17)2 _ 2 2 2 2
A D+(1 ND? 1 +nG 1 <D7+ nG* _ DGV2
- 2p 27 1-A 2 1-X2"n 201-X  VI=2X
where in the last step we set
D.\/2(1-X)
n: G

A.2 PROOF OF THEOREM[2]

The proof builds on the approach of |[Zhang et al.| (2022al Theorem 1), and we highlight the main
difference below.

Following the arguments of [Kapralov & Panigrahy|(2010) and [Zhang et al.|(2022a), we analyze the
payoff of Algorithm 2|by leveraging Algorithm[I} This is because the update rule of Algorithm [T}is
simpler, making the analysis more tractable. Specifically, we construct the following bit sequence

P — by, if Line 6 of Algorithm [2]is executed at round ¢;
t— 1 0, otherwise.

It is straightforward to verify that the prediction g(x), as well as the deviation x;, generated by
Algorithm [2| on the bit sequence b1, ..., b, is exactly the same as that of Algorithm [I|on the
transformed sequence by, . .., by. In the following, we first establish the theoretical guarantee for
Algorithm|T]on the transformed sequence and then translate this result to the payoff of Algorithm[2]on
the original sequence. We establish the following theorem for the discounted payoff of Algorithm

Theorem 4. Suppose Z < = and n > max{8e, 16log Z} For any bit sequence by, ..., by such
that |by| < 1, and any n > p = 1—1/n, the discounted payoﬁ‘ofAlgorlthmI satisfies
—t
T—t n" z1g(xt) 4
Yoy > — Py | - — 20
277 g(x1)by Z ( t) 2(1-1) (20)
where ®; = fo s)ds is the potential function. Furthermore,
- T - ptt zrg(xt) 4
Zp _tg(xt)bt ZZ tbt+z ( —(I)t> — 2(1_p) —TT+1- (21)
t=1 t=1
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From Theorem [} we have

2
Z ZT pt " [ @eg(we) Z
T—t 7 —t t
P $t b Z bt—l— n < —(I)t) —m—dqu_l. (23)

From (38) of Zhang et al. (2022a), we have

g(xg) (b — Bk) >0, if by # Bk, 24)
g(xg) (b — Bk) > by — Bk, if by, # Bk (25)
which implies
T T
ZnT tg(w)be =Y 0" g(@)b+ Y 0" g(@) (b — by)
g : )t_l , (26)
! Leg( Tt
SR () wsy
T T T
Z PT_tg(iUt)bt = Z PT_tg(xt)Bt + Z PT_tg(xt)(bt - Bt)
t=1 t;l t= 1t @7
" ZPT by + Z o (mtg ) — q)t> - 2(1Z_ ) — XT+1-
t=1

ztg(wt)
2

To simplify the term involving — ®,, we make use of the following property of Algorithm

(Zhang et al., 20224, (33))
—1<z,<U(n)+1,vt>1 (28)

and establish the following lemma.
Lemma 1. Suppose Z < 1, n > max{8e, 16log +} and U(n) > 20. Under the condition in @)

we have o
®, :/ g(s)ds < %(m. (29)
0

Finally, we obtain (T3] by combining (26)) and (29), and obtain (T4) by combining (27), (28) and (29).

A.3 PROOF OF THEOREM[3]

We start by presenting the discounted regret of each OGD algorithm, namely A;. Let w; ; be the
output of A; at round ¢, and recall that the step size is set according to (I2). From Theorem|[I] we
have

oo _ DGv2
;)\ZT P fo(wig) — Z)\T L fo(w \/17_7)\ (30)

for all w € W, where \; = 1 — 271/

Next, we proceed to bound the discounted regret of SOGD at each discount factor \;, where
1 € [N + 1]. To this end, we make use of the theoretical guarantee of DNP-cu stated in Theoreml
Note that the conditions of Theorem 2]impose a lower bound on the window size n. Therefore, to
apply this result, we need to ensure that the minimal window size appearing in Algorithm [ satisfies

1 T 1
in —=— > 16log — ;. 1
ieI[Izl\}Rl] T v = max{Se, 6 log Z} 3D
Since
T S T T
2N = 9ltlog, T~ 2’
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holds when 7 > max{16e, 32log + }. Furthermore, we also require U(n) > 22 in Theorem

Ve now proceed to estimate a lower bound for U(n). Since g(z) is a monotonically increasing
function on [0, U(n)], it follows that if we can find a point 2’ such that g(z’) < 1, then we must have
x' < U(n). Setting = 44/n, we have

g(4v/n) = \/ZZ erf (%) e< 4{2@ ~ 0.8517

where the last step is because we set Z = 1/T and n = 7 < T, and property of the error function.
Since g(41/n) < 1, we have

U(n) > 4v/n > 4v/32 > 22.

Denote the output of B; at round ¢ by v, ;, and observe that the final output is w; = v; n41. Then,
we decompose the \;-discounted regret of SOGD as

T
ZAT b fi(wy) Z)\T fo(w z)\ t(Vi,Nt+1) Z)\?_tft(w)
=1

N+1 T
= Z Z /\iT_tft(Vt,k-) — )\iT_tft(Vt,k 1) | + Z >\T “fi( (Vi) Z >\T G
k=i+1 | t=1 (32)
g B
T T
Y AT fwii) = DA T f(w)
t=1 t=1

Y

where «j, denotes the \;-discounted regret of 35, with respect to B_1, 5 denotes the \;-discounted
regret of 13; with respect to .A;, and -y denotes the A;-discounted regret of .4;. We can directly bound
~ using (B30), so we next focus on bounding oy, for k =i +1,..., N + 1, and S.

Recall that By, invokes DNP-cu with discount factor Ay to aggregate 3,1 and Ay. Define
ft(Vt,k—l) - ft(Wt,k)

bk = oD
Following the derivation of , we have
T
ag = Z )\ 1 (Vi) iTitft(Vt,kfl) <-GD Z )\iTitwt,kgt,k (33)

t=1

where wy j, is the output of the k-th instance of DNP-cu at round ¢. Since the discount factors are set
in descending order in Algorithm[4] it holds that

Ai > A, forallk=4+1,... , N+ 1.
Thus, we can use (I3) in Theorem 2] to upper bound the RHS of (33)), yielding

@©@).6G3) GDZz

= 30— Gd

Ak

Similarly, following the derivation of (I8), we have

ZAT* (Vi) ZAT* (W) < GDZAT (weilei — Lri)

() Z 1 (5 Z / 1 1
< < - - il
GD((I_Ai)—l—U(l_/\i)—i—l) GD(Q(I—)\i)+ 161_/\ilogZ+1>

(35)
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Substituting (30), @]) and (33)) into (32)), we obtain

GD [ 1 GD(N +1)Z
T—t T—t .
EjA fe(wy) — E:)\ fe(w m(“ 1ogZ+\/§>+ 20N +GD (36)
forallzfl,...,N+1.

So far, we have established discounted regret guarantees for each discount factor \;, where i € [N +1].
Next, we extend these results to the continuous range of \ values specified in (I0). To this end, we
make use of the following lemma (Kapralov & Panigrahy| [2010, Lemma 20).

Lemma 2. Given a sequence s1,. .., s, and a discount factor A\ < 1, define the \-smoothed average
at time T by
T
sy =(1-X\) Z)\T*tst
t=1

Then, for any A1 > )Xo, the A1-smoothed average at time T is a convex combination of Ay-smoothed
average at time j < T

“A (1= A1) (A1 — Ag)AT =372
A1 1 >\z E 1 2 A2
T 1-— )\2 1 — Ag ST*j

where the coefficients on the RHS are nonnegatlve and sum to 1.

According to our construction in (11), for each A € [1 — 1/7,1 — 1/T7, there exists an index i € [N]
such that

2i 2i—1
)\Hl:l—?g)\g)\i:l— T
implying
1 1 , and L= A <2. (37)

<
1—Xp1 —1=A
From Lemma 2} we know that

1—-A

T
=N N [ fu(wi) = fo(w)]

can be expressed as a convex combination of

T
(1_)\i+1)z)\31+71t[ft(wt)_ft( (1= Xig1) Z)\l_;ll flwe) = fu(w)], ...
t=1
As a result

SN ) — fulw)]
t=1

J -
<(1- Ai+1)j¥2%§ N [fe(we) = fu(w)]

D 1 D(N+1)Z
_ D (s )el vz LGP N2 o
V1= Nt Z 2(1 = Nit1)

where we use the fact that (36) holds for any integer 7". Thus, we have
T

SN fi(we) = fu(w)]

t=1

1-Mxu | 6D 1 GD(N +1)Z
< 4yf/log=+V2 | + ——" "= 4L GD
=710 l 1_)\i+1< V%87 > 21— A1)

2GD 1 GD(N +1)Z
< = (4y/log= +V2 | + ——— = 4+ 2GD.
< = \/ogZJrf +—T 5 +26

Finally, we set Z = 1/T to finish the proof.

< (1= Xig1)
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A.4 PROOF OF THEOREM 4]

The overall proof strategy is similar to that of Zhang et al.| (2022a, Theorem 5), with the key distinction
being that we consider the discounted payoff rather than the standard payoff. Moreover, our proof
is more concise, as we focus on the interval [1, 7] and omit the switching cost. Building upon their
analysis while adapting it to our setting, we directly leverage several intermediate results to avoid
redundancy.

From (70) of Zhang et al.|(2022a)), we know the difference between any two consecutive deviations is
bounded by 2, i.e.,
|fEt — xt+1| < 2. (38)
Let I(z) be the indicator function of the interval [O U(n) + 2]. We have (Zhang et al., 2022al (74))
4 max [g'(s)| < *fﬂtg( )l(@e) + 2. (39)
s€[xe,Te41]

We also recall the following inequality for piecewise differentiable functions f : [a, b] — R (Kapralov
& Panigrahy, [2010; Daniely & Mansour, | 2019):

b
[ f@)ds < f@)(b - @)+ max | )56 - a)”. (40)

Following the idea outlined in Kapralov & Panigrahy| (2010, proof of Lemma 18), we have
Tt41
i1 =P =Ppp1 — e+ (1 — )Py = / g(s)ds + (1 —n),

1

< g(@e) (21 — ) + §(~”Ct+1 —a)> max |g'(s)|+ (1 —n)P,
Se[.’ct,$1,+1]

1

oo <yt b) 42 _max I+ (-0

n s€[xe,xi41] (41)
1 1 A
<g(e0) (~ e+ )+ gaiglelle) + 5 + (0L 0

N

=g(w¢)by + %%9(%) (I(ze) = 1)+ (L —n)Pr — %mtg(xt) +
Z

<ol + angte) (@) - 1)+ (#- 202 ) 1 2

where the last line follows from the condition 7 > 1 — 1/n. Then, we have

0<Pryy =br —n @ = 277 (Pry1 —1Py)

1i ET: b Z ) (1 ET: n ( xtg( )) Z ET: T—t
g(z + “trig(x )+ + =
= 2 t)bt t9( 24" D) D) f:ln
<i g(z bJFZ*ﬂ trrg(ae) (I +i717 N n Z
S t)0t tg\T¢ " D) 21— 1)

t

Il
_

t=1

where in the first equality we use the fact that ®; = 0 since x; = 0.

We proceed to bound the second term in the last line of (#2). Combining the simple observation that
zg(we) (1 — L)) > 0,
with (@2)), we obtain (20). Recall that

T

Tt

Try1 = E p by
t=1

and thus
T T
() -t/ Z
ZPTt xtthZPT thy +Zp (tg)—‘bt>—2(1_p)—$T+1-

t=1 t=1

B
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0]

Figure 4: The confidence function g(z).

A.5 PROOF OF LEMMA

We note that Kapralov & Panigrahy| (2010, Lemma 22) have established a similar result for their
confidence function in (3)), but provided only an incomplete proof. In this paper, we adopt a novel
and insightful approach to provide an entirely new and complete analysis.

First, when z; € [—1, 0], we have

xtg(xt)
2

since g(s) = 0 for s € [—1,0]. Second, when z,; € [0,U(n)], it follows from Daniely & Mansour
(2019, Lemma 18) that g(s) is convex over [0, z¢]. Therefore, holds by the convexity of g(s).
Third, when z; € [U(n),U(n) + 1], we have

Ty U(n)
o, = / g(s)ds = / g(s)ds +x, — U(n)
0 0

According to definition of g(z), we have %(w‘) = %t when z; € [U(n),U(n) + 1]. Accordingly,
our objective reduces to proving the following inequality:

U(n) T
0

for all z; € [U(n),U(n) + 1], which implies

Tt

U(n)
/ g(s)ds < U(n) — —. (43)
0 2

To establish that @3) holds for all z; € [U(n),U(n) + 1], it suffices to prove the inequality for the
maximum value of x; in this interval, that is, when x; = U(n) + 1. Specifically, we need to show

that U
/ g(s)ds < % (44)
0

As long as (@4)) can be established, the proof of Lemma 1 is complete. However, proving (@4) remains
highly challenging. To address this, we propose a novel approach that combines analytical and
geometric insights. The confidence function g(x) is illustrated in Figure@

Notably, we identify a point B : (c, g(c)) on the function g(z). If we can show that the following
inequality holds at this point, then (@4)) is immediately satisfied:

U(n)
2

DN | =

U(n)
/ g(s)ds + Spoap < , and SphoaB >
0

From Figure [4] it can be seen that the area of triangle AOAB is equal to the sum of the areas of
triangles AOBC and AABC'. Therefore, we have
1

SproaB = %BC =3 (c=U(n)-g(c)
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where the point C'is (U(n) - g(c), g(c)) because this point is on the line OA : y = Ty To prove
#4), we need to find a point B : (¢, g(c)) that it satisfies

c—U(n)-glc) > 1.

To achieve this, we find a specific point B such that ¢ = U(n) — 8, and we have

9(U(n) — 8) = \/Zz erf (U%;S) e

n Un W(n)-8)?
<4/=Z-erf L e 1Ion

8 V8&n

64—16U (n)
— e 16n

64—16U(n)
<e sz

where the last two steps are due to the definition of U(n) and n > 32. Then, we find that
c—U(n)-g(c)=U(n) —8—U(n) g(U(n) —8)
64—16U (n)
> U(n) (1 P ) 8
> 1.4648

where the last step is due to U (n) > 22. We finish the proof.

B FURTHER CLARIFICATIONS ON OPTIMALITY

Compared to the theoretical guarantee of OGD in Theorem [I] SOGD incurs an additional log T’
factor. We emphasize that this additional term is a necessary cost for adapting to an unknown
parameter. As discussed in our work, discounted OCO with an unknown discount factor serves a
similar purpose to adaptive regret, as both effectively define a temporal horizon of interest. In fact,
existing algorithms for adaptive regret (Hazan & Seshadhri,[2007; Jun et al., 2017;Zhang et al.,[2018b)
also incur such a term, as in our work. Specifically, several online algorithms achieve O (/7 log T'),
O(+logTlogT), and O(< log T log T') for general convex, A-strongly convex, and a-exp-concave
functions, respectively, where 7 is the interval length. Compared to the minimax optimal result
for static regret (Ordentlich & Cover, |1998; |Abernethy et al.,[2008), i.e., O(\/T), O(% logT), and

O(£1logT), it is evident that the adaptive regret bounds suffer an additional O(y/log T') or O(log T')
term, reflecting the cost of adaptivity to every interval.

C MORE DISCUSSION ON TECHNICAL CONTRIBUTIONS

In the literature, DNP-cu is not a well-studied algorithm. [Kapralov & Panigrahy|(2010) proposed
the original algorithm, but without a rigorous theoretical analysis. Subsequent works by Daniely &
Mansour| (2019) and |Zhang et al.|(2022a)) have progressively improved its theoretical foundations. To
adapt it to discounted OCO with an unknown factor, we need to make technical contributions to the
original theoretical analysis.

Specifically, we provide a new theoretical guarantee (Theorem [2) to demonstrate that DNP-cu can
support A-discounted regret when the parameter p = A is set, and at the same time, it can provide
a guarantee on the discounted payoff for a different discount factor, which proves the theoretical
feasibility of the algorithm design. Compared to the standard payoff analysis, we show that the
discounted payoff with a different factor 7 > p can be effectively bounded. Furthermore, we need to
struggle with the potential function in Theorem 4 Bounding this potential function is particularly
challenging, and previous work does not provide a rigorous proof. In our work, we establish a new
lemma, i.e., Lemmal[I] by adopting a novel and insightful approach to provide an entirely new and
complete analysis to upper bound this function.
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Figure 5: Performance comparison of discounted cumulative loss with different discount factors.

D ADDITIONAL EXPERIMENTS

Following the experimental setup in the main text, we additionally report experimental results across
a wide range of discount factors A € {0.9,0.85,0.8,0.7,0.6,0.5}. From the definition of discounted

cumulative loss Zthl AT=t fi(wy), itis clear that as the discount factor A decreases, our algorithm
places more emphasis on the recent losses. As shown in Figure[3] all algorithms quickly converge to
a stable minimum loss. For all values of discount factors ), it is evident that our algorithm, SOGD,
along with OGD with a tuned step size, outperforms the OGD algorithm without tuned step sizes.

E THE USE OF LLMS

In preparing this manuscript, we used large language models (LLMs) solely to improve the clarity and
readability of the writing, with the goal of helping readers better understand our ideas and methods.
LLMs did not contribute to any part of the research itself, including the generation of ideas, theoretical
proofs, algorithm design, or other components that constitute the core contributions of this paper.
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