FINSIGHT: TOWARDS REAL-WORLD FINANCIAL DEEP RESEARCH

Anonymous authorsPaper under double-blind review

ABSTRACT

Generating professional financial reports is a labor-intensive and intellectually demanding process that current AI systems struggle to fully automate. To address this challenge, we introduce FinSight (Financial InSight), a novel multiagent framework for producing high-quality, multimodal financial reports. The foundation of FinSight is the Code Agent with Variable Memory (CAVM) architecture, which unifies external data, designed tools, and agents into a programmable variable space, enabling flexible data collection, analysis and report generation through executable code. To ensure professional-grade visualization, we propose an Iterative Vision-Enhanced Mechanism that progressively refines raw visual outputs into polished financial charts. Furthermore, a Two-Stage Writing Framework expands concise Chain-of-Analysis segments into coherent, citation-aware, and multimodal reports, ensuring both analytical depth and structural consistency. Experiments on various company and industrylevel tasks demonstrate that FinSight significantly outperforms all baselines, including leading deep research systems in terms of factual accuracy, analytical depth, and presentation quality, demonstrating a clear path toward generating reports that approach human-expert quality. Our code is available at https: //anonymous.4open.science/r/FinSight-6739/.

1 Introduction

Investment decisions worth billions of dollars hinge on the quality and timeliness of financial research reports (Tian et al., 2025). These reports translate raw market data into strategic insights, serving as analytical support for asset managers, equity researchers, and institutional investors. However, producing such reports remains a challenging task due to the overwhelming volume of financial data and the demand for rapid, high-quality analysis (Ren et al., 2021; Jimeno-Yepes et al., 2024). Recent advances in artificial intelligence, particularly in reasoning models (OpenAI, 2024; DeepSeek-AI et al., 2025; Bai et al., 2025), deep search and research applications (OpenAI, 2025a; Gemini, 2025; Grok, 2025; Camara, 2025), present great potential in solving these labor-intensive collecting and analyzing tasks. Despite these technical advances, significant challenges persist in automating the generation of full financial research reports that meet the high standards for data accuracy, analytical depth, and multimodal content integration (Yang et al., 2025).

Existing methods face several limitations that hinder their practical adoption: (1) Lack of Financial Domain Knowledge: Most current systems, whether closed-source (OpenAI, 2025a; Grok, 2025; Gemini, 2025) or open-source (Hu et al., 2025; Li et al., 2025b), are designed for general search scenarios, ignoring the integration of real-time heterogeneous financial data (both unstructured articles, news, and structured data). (2) Limited Multimodal Support and Visualization: Almost all current methods can only produce plain-text reports, lacking diverse visualizations (e.g., figures, charts and tables) that are critical in conveying information (Yang et al., 2025). (3) Insufficient Analytical Depth: Current methods often rely on rigid, predefined workflows for single-pass data collection (Trivedi et al., 2023; Li et al., 2025a; Jin et al., 2025) and report generation (Chen et al., 2024), preventing them from dynamically adjusting research strategies based on intermediate findings, ultimately limiting the analytical depth and insight of the final report.

To address these challenges, we introduce **FinSight**, a novel multi-agent system that simulates the cognitive processes and analytical workflows of expert financial researchers. FinSight operates three

necessary stages: (1) Data Collection, which gathers up-to-date heterogeneous data and organizes it into a structured multimodal memory. (2) Data Analysis, where an interactive environment enables multi-round interactions with data, tools, and agents to derive a concise Chain-of-Analysis sequence. (3) Report Generation, which follows a draft outline to transform the data and Chain-of-Analysis into a formatted financial report with chart and data references, finally rendered in a professional style.

To realize FinSight, we reconstruct the deep research workflow and propose a novel agent architecture, **Code Agent with Variable Memory (CAVM)**, where all data, tools, and agents are unified into a programmable variable space accessible and manipulable through executable code. This architecture leverages the code capabilities of language models (Wang et al., 2024a; Jiang et al., 2024; Tang et al., 2024), and enables flexible, scalable task handling from bottom-up data operations to high-level workflow orchestration.

To address the critical challenges of multimodal generation and analytical depth, we introduce two specialized mechanisms. To overcome the shortcomings of automated visualization, we propose an Iterative Vision-Enhanced Mechanism, where a vision-language model provides critical feedback to iteratively refine code-generated charts until they meet professional standards. For the challenge of generating coherent, long-form reports, we employ a Two-Stage Writing Framework. This framework first distills insights into concise Chain-of-Analysis segments, which then serve as a structured foundation for the Report Generation Agent to compose a full, context-aware report with tightly integrated visualizations and citations. Our extensive evaluations demonstrate that this synergistic approach enables FinSight to significantly outperform existing methods, delivering reports with superior accuracy, depth, and multimodal coherence.

To comprehensively evaluate our method, we construct a high-quality benchmark featuring research tasks at both company and industry levels, spanning multiple markets and diverse sectors. Utilizing this benchmark, we conduct both LLM-as-a-Judge and human evaluations, with a specific focus on fine-grained assessments of factuality and citation accuracy. Experiments demonstrate that our method significantly surpasses various deep research systems across three key dimensions: Factual Accuracy, Analytical Depth, and Presentation Quality, validating that FinSight can generate rich, insightful, and multimodal financial research reports that approach the quality of human experts.

Our core contributions are as follows:

- We propose a novel multi-agent framework for Multimodal Deep Research. To the
 best of our knowledge, this work presents the first exploration of Multimodal Deep
 Research capable of generating long-form reports with interleaved text and charts.
 While benchmarked in the financial domain, our work establishes a generalizable paradigm
 for future deep research systems, extending the boundary from text-only search to
 comprehensive multimodal content generation.
- 2. We design the **Code Agent with Variable Memory (CAVM)** architecture to instantiate this framework. By unifying data, tools, and agents into a programmable variable space, CAVM enables the flexible and scalable workflow orchestration required for complex tasks.
- 3. We propose an Iterative Vision-Enhanced Mechanism for professional chart generation that integrates the code-generation capabilities of large language models with the visual understanding of vision-language models to iteratively refine basic charts into professionalquality visualizations.
- 4. We introduce a **Two-stage Writing Framework with Generative Retrieval** that progresses from short and concise Chain-of-Analysis segments to long and comprehensive financial reports, seamlessly integrating textual analysis with visual elements to meet the need for real-world financial multimodal deep research.

2 Method

2.1 PROBLEM FORMULATION

We formalize the task of *Professional Financial Report Generation* as an open-ended, multimodal generation process. Unlike general web summaries, this task targets investment-grade research standards, requiring high analytical depth, rigorous data collection, and multimodal synthesis (e.g.,

110

111

112

113

114

115

116

117 118 119

121

122

123

125

126 127 128

129

130

131

132

133 134

135

136

137 138

139 140

141

142

143 144

145

146

147

148

149

150

151

152

153 154

155

156

157

158

159

160

161

Ouestion: Company Research Report on POP MART (09992) Data Collection Two-Stage Writing Stage 2: Structured Writing Predefined Tasks from Use Predefined Tasks from Use Stock information PDF Reader Financial Condition D Invoke Brainstormed Tasks from Agen Financing Process . Trend of Tov Market Brainstormed Tasks from Agent Product of POP MART Supply Chain Cost Data Collection Tasks Agentic Workflow Orchestration ing: I can first get the st Analyze in parallel Stock Pri Balance S Deep S ⋒×∪**୵**ॗऻ॔ Stage 1: Chain-of-Analysis Generation Save as Data Collected Data Chain-of-Analysis Deep Search Agent Data B Supply Chain Cost Analysis

Figure 1: Overview of the FinSight Framework.

integrating professional charts with insights). Given a research query q (e.g., "Analyze the competitive landscape of the EV battery industry"), the system aims to generate a structured report R. To address the complexity of long-form writing, we model R not as a disordered bag of words, but as a hierarchical ordered sequence:

$$R = \{S_1, S_2, \dots, S_N\},\$$

where N is the number of sections derived from a dynamic outline \mathcal{O} . Each section S_i is further defined as an ordered sequence of multimodal elements $S_i = (e_{i,1}, e_{i,2}, \dots, e_{i,m})$, where each element $e_{i,j} \in \{T, V, C\}$ represents text segments, visualization figures, or citations, respectively.

2.2 THE FRAMEWORK OF FINSIGHT

FinSight is a multi-agent system designed to simulate the workflow of a professional financial analyst. The system realizes three core processes: multi-source data collection, multi-turn data analysis and progressive report writing, implemented through the CAVM architecture described in Section 2.3. The key design of this framework will be detailed in the following sections.

Data Collection To address the limitations of general web search systems in financial domains, we design two specialized agents for comprehensive data gathering: (1) **Deep Search Agent:** Conducts iterative, multi-round investigations using search engines and virtual browsers to gather comprehensive information with source verification. (2) **Multi-Source Data Collection Agent:** Collects heterogeneous data from financial databases, APIs, and web sources, leveraging different tools to access diverse information types. It can invoke the deep search agent for specific information requirements. Instead of treating data collection as an isolated preliminary step, FinSight allows the analysis and writing stages to dynamically invoke further data collection, ensuring broader and more relevant knowledge coverage.

Data Analysis Built on CAVM, the **Data Analysis Agent** executes analytical tasks via multiturn code actions, dynamically deciding when to process data, invoke data collection workflows, or terminate with a concise Chain-of-Analysis (CoA) output (Section 2.5). It integrates the Iterative Vision-Enhanced Mechanism (Section 2.4) for professional chart generation.

Report Generation The **Report Generation Agent** handles drafting, optimization, and post-processing using the Two-Stage Writing Framework (Section 2.5). The process includes: (1) *Drafting:* retrieving relevant CoA segments and structured data according to predefined outlines; (2) *Self-reflective Optimization:* iteratively refining text for factual accuracy and consistency; and

(3) *Post-processing:* parsing identifiers, loading visualizations, formatting citations, and rendering into a publication-ready format.

2.3 CODE AGENT WITH VARIABLE MEMORY (CAVM)

Motivation: From Reading Context to Manipulating Variables Traditional agents typically rely on unstructured text or vector embeddings as memory. While sufficient for general tasks, this paradigm struggles in professional financial scenarios which require precise calculations and handling of massive heterogeneous data. To address this, we propose Code Agent with Variable **Memory** (CAVM), a novel architecture that redefines agent memory as a Programmable State Representation. The core philosophy is to shift the agent's interaction mode from reading context to manipulating variables. This design empowers agents

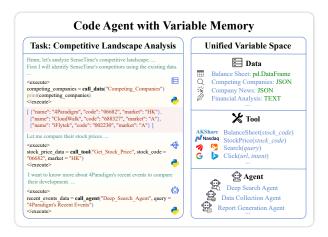


Figure 2: The design philosophy of CAVM architecture.

to maintain data as executable objects (e.g., DataFrames) rather than static text, enabling rigorous mathematical operations and significantly reducing hallucinations in numerical reasoning.

Unified Variable Space We abstract the multi-agent collaboration environment into a unified variable space V, encompassing three distinct types as shown in Figure 2: (1) **Data** (V_{data}): Stores both structured (e.g., 'pandas.DataFrame' for financial tables) and unstructured data as executable Python objects; (2) **Tools** (V_{tool}): Functional interfaces for external interaction; (3) **Agents** (V_{agent}): encapsulated agent instances that can be invoked recursively.

$$\mathcal{V} = \mathcal{V}_{data} \cup \mathcal{V}_{tool} \cup \mathcal{V}_{agent}.$$

This unified scope allows heterogeneous elements to be accessed via a standard code interface. For instance, an agent can perform statistical analysis on \mathcal{V}_{data} or invoke another expert agent from \mathcal{V}_{agent} within the same code block, supporting hierarchical reasoning that static context windows cannot achieve.

Foundation Agent with Code Action Built upon this variable space, the agent operates in an iterative loop of reasoning and code execution. Unlike purely generative agents, our agent actively decides which variables to retrieve or modify via code, ensuring **contextual conciseness**. Formally, at step t, the agent generates a reasoning trace \mathcal{R}_t and a code action \mathcal{C}_t :

$$P_{\theta}(\mathcal{R}_{t}, \mathcal{C}_{t} \mid q, \mathcal{V}_{t-1}, \mathcal{H}_{t-1}) = \underbrace{P_{\theta}(\mathcal{R}_{t} \mid \Phi(\mathcal{V}_{t-1}), \cdot)}_{\text{Reasoning}} \cdot \underbrace{P_{\theta}(C_{t} \mid \mathcal{R}_{t}, \Phi(\mathcal{V}_{t-1}), \cdot)}_{\text{Code Action}},$$

where Φ is a formatting function that summarizes the metadata of variables in \mathcal{V}_{t-1} . The code \mathcal{C}_t is then executed by a Python interpreter to update the variable space:

$$V_t$$
, output_t = Execute(C_t, V_{t-1}), (1)

$$\mathcal{H}_t = \mathcal{H}_{t-1} \oplus \text{output}_t.$$
 (2)

This mechanism allows the agent to maintain a "working memory" of precise data states throughout long-horizon tasks.

2.4 ITERATIVE VISION-ENHANCED MECHANISM FOR VISUALIZATION

Motivation Generating high-quality visualizations is a persistent challenge in automated report generation, particularly in data-intensive domains like finance that require nuanced analysis and

presentation. Existing methods often rely on single-pass code execution or employ Vision-Language Models (VLMs) without incorporating visual feedback, which frequently leads to suboptimal outcomes. Drawing inspiration from Chain-of-Thought (Wei et al., 2022) and Actor-Critic (Schulman et al., 2017), we propose a framework where an agent learns to progressively improve visualizations. This is achieved by iteratively plotting a chart and refining it based on critical feedback, ensuring both stable generation and continuous quality enhancement.

Iterative Vision-Enhanced Mechanism Specifically, the final output of the Data Analysis Agent includes the target chart specifications along with the corresponding descriptions and data. For each chart, the agent generates an initial visualization through executable plotting code, which is then evaluated by a VLM to give potential issues of visual cues (e.g. missing labels, inappropriate color schemes). These feedbacks are sent to the system, directing the iterative code generation until the output reaches professional quality.

$$P(\mathcal{C}_{vis} \mid \mathcal{V}) = \prod_{t=1}^{M} P_{\theta}(\mathcal{C}_{t}^{vis} \mid \mathcal{C}_{t-1}^{vis}, \mathcal{F}_{t-1}, \mathcal{V}), \quad \mathcal{F}_{t-1} = \text{VLM}(\text{Execute}(\mathcal{C}_{t-1}^{vis})),$$

where M is the maximum number of iterations. The iteration continues until convergence or a predefined quality threshold is satisfied.

2.5 Two-Stage Writing with Generative Retrieval

Motivation A complete report encompasses analyses from multiple perspectives, which can be regarded as an integration of several Chains-of-Analysis. To generate long-form financial research reports with both textual depth and multimodal coherence, we design a two-stage writing framework augmented with generative retrieval. It decomposes the report writing process into (1) Chain-of-Analysis Generation and (2) Structured Writing with Generative Retrieval.

Stage 1: Chain-of-Analysis Generation Given the research question q, the Data Analysis Agent first generates a set of analytical perspectives $\mathcal{P} = \{p_1, p_2, ..., p_K\}$. The agent then performs parallel data anal-

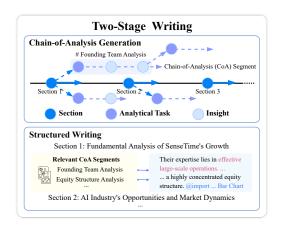


Figure 3: Chain-of-Analysis Illustration.

ysis for each p_i , producing corresponding Chain-of-Analysis (CoA) that capture insights from distinct viewpoints.

Each CoA is generated based on the interaction history \mathcal{H}_i , accumulated during the data analysis process. To ensure coherence between textual content and referenced elements (e.g. figure, reference), this process is augmented with a generative retrieval mechanism that jointly produces textual contents along with element identifiers. These identifiers specify chart and reference attributes using natural language descriptions, enabling unified autoregressive generation. The process can be formalized as:

$$P(\mathcal{A} \mid q, \mathcal{V}) = P(\mathcal{P} \mid q, \mathcal{V}) \cdot \prod_{i=1}^{|\mathcal{P}|} P(a_i \mid p_i, \mathcal{V}).$$

Stage 2: Structured Writing Building on CoAs, a Report Generation Agent first constructs a report outline $\mathcal{O} = \{o_1, o_2, ..., o_n\}$, and then writes each section sequentially. For each section s_i , the agent dynamically retrieves the most relevant data and CoA segments from the unified variable memory \mathcal{V} , formalized as:

$$P(R \mid \mathcal{A}, \mathcal{V}, q) = P(\mathcal{O} \mid \mathcal{A}, q) \cdot \prod_{i=1}^{n} P(A_{\text{selected}}^{(i)}, \mathcal{V}_{\text{selected}}^{(i)} \mid \mathcal{A}, \mathcal{V}, \cdot) \cdot P(s_{i} | s_{\leq i}, A_{\text{selected}}^{(i)}, \mathcal{V}_{\text{selected}}^{(i)}, \cdot).$$

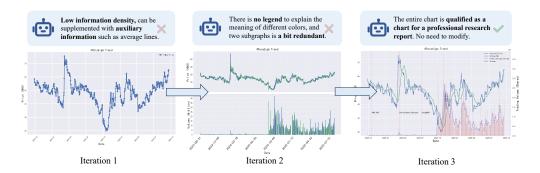


Figure 4: An example of our Iterative Vision-Enhanced Mechanism of Visualization. The chart is generated by matplotlib and seaborn package in Python.

To prevent hallucination of non-existent references and figures, agent is instructed to follow the identifiers established in \mathcal{A} . To ensure reference accuracy, the agent strictly follows the identifiers established during the stage 1.

3 EXPERIMENTS

3.1 Dataset and Evaluation Metrics

Financial research report generation remains an under-explored problem lacking appropriate evaluation benchmarks and metrics. To address this gap, we construct a high-quality benchmark specifically designed for financial research report generation, comprising a dataset of research targets with corresponding professional institutional reports and a comprehensive set of automated evaluation metrics. Details can be found in Appendix C.6.

Dataset. Our dataset encompasses research targets at both company and industry levels. For company-level analysis, we curated a diverse list of companies from authoritative financial platforms, covering different markets, industry sectors, and market capitalizations. For industry-level analysis, we selected high-attention industries from these platforms as research targets. For all targets, we collected in-depth analysis reports authored by professional brokerage institutions as golden reference reports to facilitate evaluation of data accuracy and analytical quality.

To ensure the quality of golden reference reports, we applied stringent filtering criteria, selecting only reports exceeding 20 pages in length and containing more than 20 charts and visualizations. Following established practices in report generation research (Wang et al., 2024b; 2025; Li et al., 2025b), and considering the substantial time and computational costs associated with report generation and evaluation, we collected 20 samples: 10 company-level and 10 industry-level targets.

Evaluation Metrics. We design 9 automated evaluation metrics across three critical dimensions, each ranging from 0 to 10 points. Detailed description of each metric can be found in Appendix C.6.

- (1) Factual Accuracy: Measures the reliability and correctness of generated content through Core Conclusion Consistency (alignment with reference conclusions), Textual Faithfulness (proper citation support), and Text-Image Coherence (consistency between textual and visual elements).
- (2) Information Effectiveness: Evaluates the analytical value delivered to investors via Information Richness (distinct information points), Coverage (proportion of key reference information captured), and Analytical Insight (critical analysis and forward-looking recommendations).
- (3) **Presentation Quality:** Assesses professional standards through Structural Logic (organizational coherence), Language Professionalism (adherence to financial terminology), and Chart Expressiveness (effective visualization utilization and aesthetic quality).

Table 1: Overall evaluation results on financial report generation benchmark (averaged over three runs). **Bold** denotes the highest score in each column, Underlined denotes the second highest.

Model	Factual		Analytical		Presentation		Avg.			
TVIO GET	Cons.	Faith.	T-I.	Rich.	Cover.	Ins.	Logic	Lang.	Vis.	·-·· 8•
		LLM	with Se	arch To	ols					
GPT-5 w/ Search	5.95	6.35	4.77	5.43	4.52	5.09	6.53	5.87	3.90	5.38
Claude-4.1-Sonnet w/ Search	5.78	5.92	3.55	5.58	5.25	5.01	6.34	6.07	2.59	5.12
DeepSeek-R1 w/ Search	6.26	5.92	4.08	6.68	6.33	6.62	7.03	6.79	3.35	5.90
		Deep	Resea	rch Age	nt					
Grok Deep Search	4.71	5.72	4.21	4.90	4.03	4.35	5.87	5.61	3.76	4.79
Perplexity Deep Research	5.02	5.74	4.03	3.88	3.40	3.65	5.47	4.92	3.42	4.39
Gemini-2.5-Pro Deep Research	5.92	6.66	4.32	6.19	6.03	5.74	6.77	6.70	3.23	5.73
OpenAI Deep Research	6.87	<u>6.78</u>	4.58	<u>6.79</u>	6.83	<u>7.33</u>	<u>7.56</u>	<u>7.58</u>	3.66	<u>6.44</u>
FinSight (ours)	<u>6.84</u>	7.59	7.84	8.49	8.44	7.78	7.82	7.98	8.57	7.93

3.2 Baselines

We compare FinSight against multiple categories of baselines:

LLMs with Search Tools: We evaluate leading large language models directly combined with search tools for report generation, including OpenAI GPT-5 (OpenAI, 2025b), DeepSeek-R1 (DeepSeek-AI et al., 2025), and Claude-4.1-Sonnet (Google, 2023).

Deep Research Agents: We compare against state-of-the-art commercial deep research products, including Gemini-2.5-Pro Deep Research (Gemini, 2025), Grok Deep Search (Grok, 2025), OpenAI Deep Research (OpenAI, 2025a), and Perplexity Deep Research¹. Details of baseline implementations can be found in Appendix C.1.

3.3 IMPLEMENTATION DETAILS

Our backbone model uses DeepSeek-V3, and during the writing phase, we employ DeepSeek-R1 with reasoning capabilities. The maximum input length is set to 81,920, and the maximum output length is set to 16,384. For search, we use the Google Search API and retrieving the top 10 search results. For evaluation, we employ Gemini-2.5-Pro as our primary judge model. To ensure statistical robustness, we conduct three independent evaluation runs per sample and report mean scores with 95% confidence intervals. Additionally, we employ GPT-5 as an auxiliary evaluator to mitigate potential single-model bias and verify cross-model consistency.

To complement our automated metrics, we conducted a rigorous human evaluation involving **6 graduate students with backgrounds in finance**. In human evaluation part, we compared FinSight against the two strongest commercial baselines: Gemini-2.5-Pro Deep Research and OpenAI Deep Research. We report the inter-rater reliability using Krippendorff's α and the correlation between human and LLM judges using Pearson's r. Details can be found in Appendix C.

3.4 MAIN RESULTS

Table 1 presents the performance of FinSight against two categories of baselines on the financial research report generation task. Overall, FinSight achieves the highest overall score (8.09), significantly outperforming all baselines, including closed-source commercial agents like Gemini Deep Research (6.82) and OpenAI Deep Research (6.11). This result validates the effectiveness of our proposed multi-agent framework for crafting in-depth financial research reports. In terms of factuality, FinSight obtains the best scores in both the faithfulness of text citations and text-image consistency, demonstrating the efficacy of the identifier mechanism designed within our Chain-of-Analysis process.

https://www.perplexity.ai/?model_id=deep_research

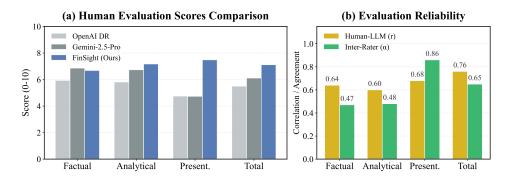


Figure 5: **Human Evaluation Results.** (a) Comparison of human scores (0-10 scale). FinSight (red bars) consistently achieves high scores, demonstrating a significant lead in Presentation and Analytical dimensions compared to commercial baselines. (b) Reliability analysis metrics. High Human-LLM correlation (r) validates our automated judges, and robust Inter-Rater reliability (α) confirms the consensus among human experts.

A noteworthy observation is that the consistency score of our model (6.85) is slightly lower than that of Gemini Deep Research (7.10). Case studies reveal that our method prioritizes comprehensive data acquisition to deliver deeper insights. This approach leads it to uncover more data-driven findings, rather than generating simplified conclusions from conventional search-based methods.

The superiority of our method is further reflected in the analytical quality of the reports. FinSight scores the highest in information richness, coverage of key information from professional reports, and insightfulness. Regarding presentation quality, our system demonstrates a comprehensive lead in logic, language, and visualization. It particularly excels in visualization (9.00), far surpassing other methods and showcasing the advanced multimodal presentation capabilities of our system.

3.5 ABLATION STUDIES

We conduct ablation studies to evaluate the contribution of our key components, with results summarized in Table 2. Key findings are as follows: (1) Removing iterative VLM feedback for chart generation causes a significant decline in both Presentation Quality (from 8.0 to 7.5) and Analytical Quality (from 7.9 to 7.2). This is primarily because the writing process relies on analyzing the generated images, lower-quality visuals impede the ability to perform insightful analysis based on the charts. (2) Merging analysis and writing into a single process leads to a significant drop in analytical quality (from 7.9 to 5.9) and factual accuracy (from 7.0 to 6.4), demonstrating the

Table 2: Ablation studies of our key design.

Method	Fact.	Ana.	Pres.
FinSight	7.0	7.9	8.0
w/o Iter w/o 2-Stage. w/o Dyn.	6.9 6.4 5.9	7.2 5.9 5.7	7.5 6.3 6.4

effectiveness of our proposed two-stage, analyze-then-write strategy. (3) Eliminating dynamic search during the analysis and writing phases results in a significant performance drop across all dimensions, including Factual Accuracy (from 7.0 to 5.9) and Analytical Depth (from 7.9 to 5.7). This highlights the necessity of acquiring additional knowledge during these stages to ensure comprehensive and factually correct reports.

3.6 Human Evaluation

As illustrated in Figure 5, our key observations are: (1) **Superior Overall Performance:** Figure 5(a) presents the comparative results. FinSight achieves the highest total score (7.11), significantly outperforming Gemini-2.5-Pro (6.11) and OpenAI Deep Research (5.50). While Gemini-2.5-Pro shows competitive performance in the Factual dimension, FinSight establishes a substantial margin in *Analytical Depth* and *Presentation Quality*. Specifically, in the Presentation dimension, FinSight scores 7.48 compared to ¡5.0 for baselines, highlighting the impact of our multimodal chart generation capabilities. (2) **Validation of Automated Metrics:** Figure 5(b) details the reliability

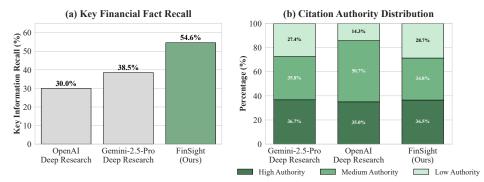


Figure 6: Factuality Evaluation. (a) **Key Financial Fact Recall**: The percentage of ground truth facts from golden reports covered by each model. (b) **Citation Authority**: The distribution of citations classified by source reliability.

metrics. We observe a strong positive correlation between human and LLM scoring (Total Score r=0.76), which validates the reliability of the automated evaluation framework used in our main experiments. (3) Robust Inter-Rater Agreement: The consistently high α values in Figure 5(b), particularly in the Presentation dimension ($\alpha=0.86$), underscore that the visual and structural advantages of FinSight are objectively recognizable and consensus-based.

4 ANALYSIS

4.1 RELIABILITY AND FACTUALITY ANALYSIS

Key Fact Accuracy. Directly measuring the factuality of long-form reports is challenging. We introduced a **Golden Facts Evaluation** by extracting 13 core financial indicators (e.g., Gross Margin, ROE) from professional reports as Ground Truth. We manually verified the recall rate of these data points. As shown in Figure 6(a), FinSight achieves a recall rate of **54.6%**, surpassing Gemini DR (38.5%) and OpenAI DR (30.0%) by a large margin. This demonstrates our method's superiority in uncovering deep, quantitative details that general-purpose agents often miss.

Citation Quality Analysis. We further evaluated the quality of the references cited in our report. (1) Citation Faithfulness: We manually verified the top-50 citations per report to check if the source explicitly supported the text. FinSight achieves a superior accuracy of 72.9% (342/469 verified), outperforming Gemini DR's 69.8%. This high faithfulness is attributed to our generative retrieval mechanism, which identifies references during the drafting process rather than via post-hoc appending. (2)Source Authority: We classified citations into High, Medium, and Low authority based on human-written rules. Figure 6(b) reveals that FinSight utilizes High Authority sources at a rate (36.5%) comparable to Gemini DR. While our reliance on open web search results in a slightly higher portion of Low Authority sources, the high faithfulness score ensures that the information extracted remains valid.

Table 3: Statistics of our generation process. We analyze metrics at both the CoA level and the final report level.

Metric	Avg. Value
Chain of Analysi	is (CoA)
# Tokens	2,761
# Images	5.3
Final Report	
# Fin. API Calls	18.3
# Search Queries	983.2
# Browse Pages	469.8
# CoA Segments	17.6
# Tokens	62,586
# Images	51.2

4.2 STATISTICAL ANALYSIS OF GENERATION PROCESS.

Table 3 summarizes report statistics. Some key findings are: (1) Each CoA is a self-contained multimodal block, averaging 2,761 tokens and 5.3 images, (2) A report synthesizes about 17.6 CoAs, yielding 62,586 tokens and 51.2 images and (3) Incorporating deep search introduces richer knowledge, with 983.2 searches and 469.8 browsed pages per report.

4.3 Analysis of Image Generation.

As illustrated in Figure 4, our Iterative Vision-Enhanced Mechanism progressively refines a stock chart over three iterations. In contrast to the initial, simplistic plot with low information density, the final visualization resolves this issue by integrating price and volume on a dual-axis, enriched with analytical overlays and contextual event markers, thereby presenting multifaceted data within a single view. This process is driven by critical VLM feedback across iterations, which targets improvements in aesthetics, information density, and other aspects. This suggests our mechanism is crucial for bridging the gap between automated chart generation and expert-quality financial visualizations.

5 RELATED WORK

5.1 DEEP RESEARCH SYSTEMS

Deep research systems represent a paradigm shift from traditional information retrieval to comprehensive knowledge synthesis, characterized by their ability to conduct multi-round information searching and integration. Current open-source deep research frameworks have emerged along several technical trajectories. ReAct-based agents (Yao et al., 2022), such as Open Deep Research (OpenAI, 2025a) and WebThinker (Li et al., 2025b), employ observation-thought-action loops with reasoning capabilities for iterative problem planning and execution. Multi-agent systems, including OWL (Hu et al., 2025) and Auto Deep Research (Tang et al., 2025), focus on collaborative problem-solving through agent specialization and coordination. Additionally, commercial systems represented by OpenAI Deep Research (OpenAI, 2025a) have demonstrated promising performance. However, existing frameworks exhibit significant limitations in multimodal processing (Yang et al., 2025) and domain-specific applications (Jimeno-Yepes et al., 2024; Tian et al., 2025). Due to the text-centric design of report generation workflows and the base models' lack of native image generation capabilities (Ren et al., 2021; Chen et al., 2024), current systems produce reports deficient in visual elements such as charts and diagrams. Furthermore, these systems demonstrate inadequate adaptation to financial domains, particularly in their inability to support for professional-grade chart generation, limited real-time market data integration, creating substantial gaps between system outputs and professional requirements.

5.2 LLM AGENTS IN FINANCIAL DOMAIN

Recent advances in Large Language Models have led to the development of various financial AI systems, each targeting specific aspects of financial analysis. Many of these works focus on stock price prediction and modeling (Zhang et al., 2025; Xiao et al., 2025) using multi-agent architectures. From a report generation perspective, FinTeam (Wu et al., 2025) can provide analysis from multiple viewpoints including company and industry levels. However, due to its single-round generation process, the resulting analysis lacks depth and comprehensiveness. Similarly, FinRobot (Yang et al., 2024) directly inputs collected information to models for single-round investment recommendation generation. Additionally, several open-source works (Zhang et al., 2025; Tian et al., 2025) provide comprehensive tools and data interfaces, yet they lack well-designed frameworks for report generation. Overall, existing systems exhibit critical limitations for comprehensive financial research report generation, particularly regarding report depth, data breadth, and multimodal integration.

6 CONCLUSION

In this paper, we present FinSight, a multi-agent framework designed for multimodal deep research. To the best of our knowledge, this is the first work capable of generating comprehensive, long-form reports with interleaved text and images. By integrating the Code Agent with Variable Memory and an Iterative Vision-Enhanced Mechanism, FinSight achieves dynamic analysis and professional visualization. While benchmarked on financial tasks, our code-centric approach provides a promising paradigm for future general-purpose automated research.

REFERENCES

540

541

542

543

544

546

547

548

549

550

551

552

553

554

556

558 559

560

561

562

563

565 566

567

568

569

570

571

573

574

575

576

577

578

579

580

581

582

583

584 585

586

587

588

589

590

592

Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong, Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao, Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu, Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin, Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu, Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi, Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng Teng, Chensi Wang, Dinglu Wang, Feng Wang, and Haiming Wang. Kimi K2: open agentic intelligence. CoRR, abs/2507.20534, 2025. doi: 10.48550/ARXIV.2507.20534. URL https://doi.org/ 10.48550/arXiv.2507.20534.

Nicholas Camara. open-deep-research, 2025. URL https://github.com/nickscamara/open-deep-research.

Yuemin Chen, Feifan Wu, Jingwei Wang, Hao Qian, Ziqi Liu, Zhiqiang Zhang, Jun Zhou, and Meng Wang. Knowledge-augmented financial market analysis and report generation. In Franck Dernoncourt, Daniel Preoţiuc-Pietro, and Anastasia Shimorina (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track*, pp. 1207–1217, Miami, Florida, US, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-industry.90. URL https://aclanthology.org/2024.emnlp-industry.90/.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learning. CoRR, abs/2501.12948, 2025. doi: 10. 48550/ARXIV.2501.12948. URL https://doi.org/10.48550/arXiv.2501.12948.

Gemini. Gemini deep research. https://gemini.google/overview/deep-research, 2025.

Google. Bard. bard.google.com, 2023.

Grok. Grok 3 beta — the age of reasoning agents. https://x.ai/news/grok-3, 2025.

David Hasler and Sabine Süsstrunk. Measuring colorfulness in natural images. In Bernice E. Rogowitz and Thrasyvoulos N. Pappas (eds.), *Human Vision and Electronic Imaging VIII, Santa Clara, CA, USA, January 20, 2003*, volume 5007 of *SPIE Proceedings*, pp. 87–95. SPIE, 2003. doi: 10.1117/12.477378. URL https://doi.org/10.1117/12.477378.

Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan Jin, Yingru Li, Qiguang Chen, Zeyu Zhang, Yifeng Wang, Qianshuo Ye, Bernard Ghanem, Ping Luo, and Guohao Li. Owl: Optimized workforce learning for general multi-agent assistance in real-world task automation, 2025. URL https://arxiv.org/abs/2505.23885.

```
    Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language models for code generation. CoRR, abs/2406.00515, 2024. doi: 10.48550/ARXIV.2406.00515.
    URL https://doi.org/10.48550/arXiv.2406.00515.
```

- Antonio Jimeno-Yepes, Yao You, Jan Milczek, Sebastian Laverde, and Renyu Li. Financial report chunking for effective retrieval augmented generation. *CoRR*, abs/2402.05131, 2024. doi: 10. 48550/ARXIV.2402.05131. URL https://doi.org/10.48550/arXiv.2402.05131.
- Jiajie Jin, Xiaoxi Li, Guanting Dong, Yuyao Zhang, Yutao Zhu, Zhao Yang, Hongjin Qian, and Zhicheng Dou. Decoupled planning and execution: A hierarchical reasoning framework for deep search. *CoRR*, abs/2507.02652, 2025. doi: 10.48550/ARXIV.2507.02652. URL https://doi.org/10.48550/arXiv.2507.02652.
- Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng Dou. Search-ol: Agentic search-enhanced large reasoning models. *CoRR*, abs/2501.05366, 2025a. doi: 10.48550/ARXIV.2501.05366. URL https://doi.org/10.48550/arXiv.2501.05366.
- Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability. *CoRR*, abs/2504.21776, 2025b. doi: 10.48550/ARXIV.2504.21776. URL https://arxiv.org/abs/2504.21776.
- OpenAI. Learning to reason with llms. https://openai.com/index/learning-to-reason-with-llms, September 2024.
- OpenAI. Introducing deep research. https://openai.com/index/introducing-deep-research, 2025a.
- OpenAI. Openai gpt-5. https://openai.com/gpt-5/, July 2025b.
- Yunpeng Ren, Wenxin Hu, Ziao Wang, Xiaofeng Zhang, Yiyuan Wang, and Xuan Wang. A hybrid deep generative neural model for financial report generation. *Know.-Based Syst.*, 227 (C), September 2021. ISSN 0950-7051. doi: 10.1016/j.knosys.2021.107093. URL https://doi.org/10.1016/j.knosys.2021.107093.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *CoRR*, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.
- Jiabin Tang, Tianyu Fan, and Chao Huang. AutoAgent: A Fully-Automated and Zero-Code Framework for LLM Agents, 2025. URL https://arxiv.org/abs/2502.05957.
- Xunzhu Tang, Kisub Kim, Yewei Song, Cedric Lothritz, Bei Li, Saad Ezzini, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé. CodeAgent: Autonomous communicative agents for code review. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 11279–11313, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.632. URL https://aclanthology.org/2024.emnlp-main.632/.
- Yong-En Tian, Yu-Chien Tang, Kuang-Da Wang, An-Zi Yen, and Wen-Chih Peng. Template-based financial report generation in agentic and decomposed information retrieval. In Nicola Ferro, Maria Maistro, Gabriella Pasi, Omar Alonso, Andrew Trotman, and Suzan Verberne (eds.), Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2025, Padua, Italy, July 13-18, 2025, pp. 2706–2710. ACM, 2025. doi: 10.1145/3726302.3730253. URL https://doi.org/10.1145/3726302.3730253.
- Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, ACL 2023,

 Toronto, Canada, July 9-14, 2023, pp. 10014–10037. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.ACL-LONG.557. URL https://doi.org/10.18653/v1/2023.acl-long.557.

- Haoyu Wang, Yujia Fu, Zhu Zhang, Shuo Wang, Zirui Ren, Xiaorong Wang, Zhili Li, Chaoqun He, Bo An, Zhiyuan Liu, and Maosong Sun. Llmxmapreduce-v2: Entropy-driven convolutional test-time scaling for generating long-form articles from extremely long resources. *CoRR*, abs/2504.05732, 2025. doi: 10.48550/ARXIV.2504.05732. URL https://doi.org/10.48550/arxiv.2504.05732.
- Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Executable code actions elicit better llm agents. In *Forty-first International Conference on Machine Learning*, 2024a.
- Yidong Wang, Qi Guo, Wenjin Yao, Hongbo Zhang, Xin Zhang, Zhen Wu, Meishan Zhang, Xinyu Dai, Min Zhang, Qingsong Wen, Wei Ye, Shikun Zhang, and Yue Zhang. Autosurvey: Large language models can automatically write surveys. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 15, 2024, 2024b. URL http://papers.nips.cc/paper_files/paper/2024/hash/d07a9fc7da2e2ec0574c38d5f504d105-Abstract-Conference.html.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. *CoRR*, abs/2201.11903, 2022. URL https://arxiv.org/abs/2201.11903.
- Yingqian Wu, Qiushi Wang, Zefei Long, Rong Ye, Zhongtian Lu, Xianyin Zhang, Bingxuan Li, Wei Chen, Liwen Zhang, and Zhongyu Wei. Finteam: A multi-agent collaborative intelligence system for comprehensive financial scenarios. *arXiv preprint arXiv:2507.10448*, 2025.
- Yijia Xiao, Edward Sun, Di Luo, and Wei Wang. Tradingagents: Multi-agents llm financial trading framework, 2025. URL https://arxiv.org/abs/2412.20138.
- Hongyang Yang, Boyu Zhang, Neng Wang, Cheng Guo, Xiaoli Zhang, Likun Lin, Junlin Wang, Tianyu Zhou, Mao Guan, Runjia Zhang, et al. Finrobot: An open-source ai agent platform for financial applications using large language models. *arXiv preprint arXiv:2405.14767*, 2024.
- Zhaorui Yang, Bo Pan, Han Wang, Yiyao Wang, Xingyu Liu, Minfeng Zhu, Bo Zhang, and Wei Chen. Multimodal deepresearcher: Generating text-chart interleaved reports from scratch with agentic framework, 2025. URL https://arxiv.org/abs/2506.02454.
- Shunyu Yao, Jeffrey Zhao, Dian Yu, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. In *NeurIPS 2022 Foundation Models for Decision Making Workshop*, 2022. URL https://openreview.net/forum?id=tvI4u1ylcqs.
- Wentao Zhang, Yilei Zhao, Chuqiao Zong, Xinrun Wang, and Bo An. Finworld: An all-inone open-source platform for end-to-end financial ai research and deployment. *arXiv* preprint arXiv:2508.02292, 2025.

APPENDIX A Statement on the Use of Large Language Models (LLMs) **B** Further Analysis B.1.2 **C** Implementation Details C.3C.6 **D** A Case of Company Research Question **E** Report Gallery

Table 4: Overall evaluation results with 95% confidence intervals (subscript). **Bold** denotes the highest score, Underlined denotes the second highest.

Model		Factual			Analytical		Presentation			Avg.
	Cons.	Faith.	T-I.	Rich.	Cover.	Ins.	Logic	Lang.	Vis.	
				LLM with	h Search Too	ols				
GPT-5 w/ Search	5.95 _{±0.48}	6.35 _{±0.39}	4.77 _{±0.72}	5.43 _{±0.58}	4.52 _{±0.51}	5.09 _{±0.49}	6.53 _{±0.27}	5.87 _{±0.35}	3.90 _{±0.79}	5.38 _{±0.51}
Claude-4.1-Sonnet	$5.78_{\pm0.52}$	$5.92_{\pm 0.55}$	$\overline{3.55_{\pm 0.65}}$	$5.58_{\pm0.49}$	$5.25_{\pm0.51}$	$5.01_{\pm 0.46}$	$6.34_{\pm0.26}$	$6.07_{\pm0.40}$	$\overline{2.59_{\pm 0.51}}$	$5.12_{\pm 0.48}$
DeepSeek-R1	$6.26 {\pm} _{0.36}$	$5.92 \!\pm\! 0.44$	$4.08 \!\pm\! 0.37$	$6.68 \!\pm\! 0.26$	$6.33 {\pm} 0.34$	$6.62 {\scriptstyle \pm 0.41}$	$7.03 _{\pm 0.20}$	$6.79 _{\pm 0.29}$	$3.35 \!\pm\! 0.45$	$5.90_{\pm 0.35}$
				Deep Re	search Ager	ıt				
Grok Deep	4.71 _{±0.81}	5.72±0.59	4.21 _{±0.57}	$4.90_{\pm 0.55}$	4.03 ± 0.58	4.35 ± 0.55	$5.87_{\pm0.42}$	5.61±0.48	3.76±0.53	4.79 _{±0.56}
Perplexity Deep	$5.02_{\pm0.61}$	$5.74_{\pm0.63}$	4.03 ± 0.97	$3.88_{\pm0.60}$	$3.40_{\pm0.53}$	$3.65_{\pm 0.59}$	$5.47_{\pm0.44}$	4.92 ± 0.47	$3.42_{\pm 0.97}$	4.39 ± 0.65
Gemini-2.5-Pro	$5.92_{\pm0.61}$	$6.66_{\pm0.56}$	$4.32_{\pm 0.91}$	$6.19_{\pm 0.65}$	$6.03_{\pm 0.61}$	$5.74_{\pm0.62}$	$6.77_{\pm0.40}$	$6.70_{\pm0.43}$	$3.23_{\pm 0.95}$	5.73 ± 0.64
OpenAI Deep	$\pmb{6.87} _{\pm 0.52}$	$\underline{6.78_{\pm0.34}}$	$4.58 _{\pm 0.51}$	$\underline{6.79_{\pm0.35}}$	$\underline{6.83_{\pm0.30}}$	$7.33_{\pm 0.40}$	$7.56_{\pm 0.25}$	$7.58_{\pm 0.31}$	$3.66_{\pm 0.50}$	$6.44_{\pm 0.39}$
FinSight (ours)	$6.84_{\pm0.59}$	7.59 _{±0.52}	7.84 _{±0.52}	8.49 _{±0.47}	8.44 _{±0.50}	7.78 _{±0.48}	7.82 _{±0.38}	7.98 _{±0.33}	8.57 _{±0.57}	7.93 _{±0.49}

A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we use Large Language Models (LLMs) as a general-purpose assistance tool. The primary role of the LLM is to aid in improving the clarity and readability of the text, as well as to accelerate the implementation of our research ideas. Specific applications include: (1) Language and Grammar Correction: Polishing sentence structure, correcting grammatical erros, and refining word choices to enhance the overall quality of the writing. (2) Paraphrasing and Style Refinement: Rephrasing sentences and paragraphs to ensure consistency in tone and style throughout the paper. (3) Code Implementation Assistance: Generating code snippets and providing debugging support to help implement the proposed algorithms and experimental setups.

It should be noted that all core research concepts, experimental design, data analysis, and conclusions are developed exclusively by the human authors. Any content or suggestions generated by the LLM, including code, are critically checked, and substantially edited by the authors to ensure accuracy. The authors take full responsibility for the final content of this paper.

B FURTHER ANALYSIS

B.1 STABILITY ANALYSIS AND CONFIDENCE INTERVALS

To rigorously validate our LLM-based evaluation framework, we conducted a comprehensive stability analysis covering three aspects: (1) confidence intervals across repeated runs, (2) dimension-specific variance analysis, and (3) cross-model verification for bias mitigation.

B.1.1 CONFIDENCE INTERVALS ACROSS REPEATED RUNS

To measure the sensitivity of our evaluation to stochastic variations, we repeated the evaluation process three times using Gemini-2.5-Pro as the judge model. For each run, we use the same evaluation prompt and rubric but with different random seeds. The 95% Confidence Intervals (CI) are calculated as $\mu \pm 1.96 \times \sigma/\sqrt{n}$ where n=3.

As shown in Table 4, the 95% confidence intervals are consistently within ± 1.0 point across all metrics, demonstrating the stability of our evaluation protocol. We attribute this to the robust evaluation design that anchors scoring against a provided "Golden Report" and utilizes a detailed, list-wise grading rubric.

B.1.2 DIMENSION-SPECIFIC VARIANCE ANALYSIS

We further analyzed the standard deviation across specific evaluation dimensions to understand which aspects of report quality are more reliably assessed by LLM judges.

Table 5: Average standard deviation across all models for each evaluation dimension.

Dimension	Avg. Std.	Stability Level
Structural Logic (Logic)	0.675	High
Professional Language (Lang.)	0.848	High
Analytical Insight (Ins.)	0.932	High
Information Coverage (Cover.)	0.966	High
Core Conclusion Consistency (Cons.)	1.010	Medium
Information Richness (Rich.)	1.058	Medium
Textual Faithfulness (Faith.)	1.213	Medium
Chart Expressiveness (Vis.)	1.340	Lower
Text-Image Coherence (T-I.)	1.470	Lower

Table 5 reveals important patterns: (1) **Structural and linguistic metrics** (e.g., *Structural Logic*, *Analytical Insight*) exhibit high stability with Std < 1.0, indicating that LLM judges reliably assess writing quality. (2) **Factual metrics** (e.g., *Textual Faithfulness*) show moderate variance, reflecting inherent difficulty in verifying factual claims. (3) **Visual metrics** (e.g., *Text-Image Coherence*, *Chart Expressiveness*) display slightly higher variance, as multimodal assessment involves more subjective judgment. Despite these variations, the overall ranking of methods remains consistent across runs.

B.1.3 Cross-Model Verification for Bias Mitigation

To investigate whether Gemini-2.5-Pro exhibited "self-preference bias" (favoring its own outputs), we employed GPT-5 as an independent evaluator using the identical prompt and rubric.

Table 6: Cross-model evaluation comparison between GPT-5 and Gemini-2.5-Pro as judges.

Method	Score (GPT-5)	Score (Gemini)	Rank (GPT-5)	Rank (Gemini)
GPT-5 w/ Search	6.63	5.38	4	5
Claude-4.1-Sonnet w/ Search	4.71	5.12	7	6
DeepSeek-R1 w/ Search	6.75	5.90	3	3
Grok Deep Search	4.71	4.79	8	7
Perplexity Deep Research	6.08	4.39	6	8
OpenAI Deep Research	6.19	5.73	5	4
Gemini-2.5-Pro Deep Research	6.85	6.44	2	2
FinSight (ours)	8.04	7.93	1	1

As shown in Table 6, the ranking order remains highly consistent between the two judges (Kendall's $\tau=0.764,\,p=0.008$). Notably, even when evaluated by GPT-5, Gemini-2.5-Pro Deep Research retains the second-place position, and FinSight consistently achieves the top rank. This confirms that FinSight's superior performance is attributable to objective report quality rather than evaluator bias.

B.2 QUANTITATIVE VISUAL ANALYSIS

To rigorously quantify the **presentation quality** and validate the effectiveness of our **Iterative Vision-Enhanced Mechanism**, we implement three reference-free Image Quality Assessment (IQA) metrics Hasler & Süsstrunk (2003):

- Colorfulness: Measures the chromatic distinction between visual elements, computed as $\sqrt{\sigma_{rg}^2 + \sigma_{yb}^2} + 0.3 \times \sqrt{\mu_{rg}^2 + \mu_{yb}^2}$, where rg = R G and yb = 0.5(R + G) B.
- RMS Contrast: Measures luminance contrast using the root-mean-square of pixel intensities, correlating with the legibility of labels and grid lines.
- Edge Density: Measures information density versus visual clutter using Canny edge detection, computed as the ratio of edge pixels to total pixels.

We argue that pixel-wise metrics (e.g., MSE, SSIM) are ill-suited for chart evaluation, as different rendering engines produce large pixel discrepancies even when plotting identical data. The IQA metrics above provide a more meaningful assessment of visual quality.

Table 7: Quantitative visual quality comparison. Higher Colorfulness and Contrast indicate better aesthetic quality; Edge Density reflects information density.

Method	Colorfulness	Contrast	Edge Density
FinSight (Full) w/o Iterative Vision Mechanism	32.35 15.81	31.71 15 47	0.0056 0.0027

As shown in Table 7, our Iterative Vision-Enhanced Mechanism approximately doubles the scores across all three dimensions, objectively validating that the VLM critic loop significantly improves the aesthetic quality and information density of the generated charts.

B.3 ANALYSIS OF REPORT LENGTH AND QUALITY

To further investigate the characteristics of the generated reports, we analyze the relationship between report length and overall quality score, as illustrated in Figure 7. The plot shows that the outputs from our method are concentrated in the top-right quadrant, which indicates that our generated reports are not only comprehensive and of substantial length (typically over 20,000 words) but also of superior quality. We attribute this strong and consistent performance to our proposed two-stage writing framework. By first generating a concise Chain-of-Analysis, the model can then compose the final report based on richer, well-structured information, ensuring both analytical depth and coherence.

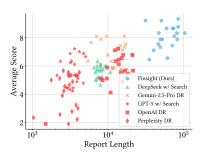


Figure 7: Correlation between report length and quality score across different methods.

In contrast, baseline methods exhibit significant limitations. Simpler approaches like LLM with search tool, which often rely on single-pass generation, are typically constrained to shorter reports. Meanwhile, other deep research agents such as OpenAI DR and Perplexity DR display a wide scatter of data points across the plot, which signifies a critical lack of consistency. For these methods, a greater length does not reliably translate into higher quality, highlighting the effectiveness of our structured, two-stage approach.

Length-Controlled Evaluation. To address potential length bias in LLM-based evaluations, we conducted an additional experiment with strict length constraints. We applied a truncation strategy to limit FinSight's output to approximately 10,000 words, aligning it with baseline models.

Table 8: Length-controlled evaluation results. FinSight (10k) represents reports truncated to 10,000 words.

Method	Cons.	Faith.	T-I.	Rich.	Cover.	Ins.	Logic	Lang.	Vis.	Avg.
OpenAI DR	5.60	7.45	4.90	6.35	6.40	5.90	6.90	6.85	4.65	6.11
Gemini-2.5-Pro DR	7.10	6.80	4.65	7.45	7.75	7.85	7.65	7.85	4.25	6.82
FinSight (Full)	6.85	7.50	7.85	8.70	8.30	8.45	8.05	8.10	9.00	8.09
FinSight (10k)	6.20	6.70	7.00	6.60	6.75	7.05	6.60	7.50	8.05	<u>6.93</u>

As shown in Table 8, even with forced truncation (which naturally penalizes coherence and completeness), FinSight (10k) achieves an overall score of 6.93, surpassing Gemini-2.5-Pro (6.82) and significantly outperforming OpenAI Deep Research (6.11). This demonstrates that FinSight's performance gain derives from high-quality content synthesis rather than mere verbosity.

C IMPLEMENTATION DETAILS

C.1 BASELINES DETAILS

We mainly compare our method with the following two types of baselines:

(1) LLMs with Search Tools.

- OpenAI GPT-5 w/Search: The latest OpenAI's GPT model with web search API for research question.
- Claude-4.1-Sonnet w/Search The latest Anthropic's reasoning LLM with web search API for research question.
- DeepSeek-R1 w/ Search: The DeepSeek's LLM integrated with web search API for research question.

(2) Deep Research Agents.

- Grok Deep Search: The xAI's Deep Search applications, powered by the latest Grok model.
- **Perplexity Deep Research**: A commercial AI research assistant integrating multi-step search and analysis, optimized for rapid information aggregation.
- OpenAI Deep Research: A multi-step web research agent built on ChatGPT that searches, analyzes, and synthesizes information from multiple sources to produce research-grade reports with citations.
- **Gemini-2.5-Pro Deep Research**: Google's advanced research agent featuring multi-turn planning, deep web navigation, and multi-source evidence integration.

We evaluate these baselines directly on their official API and web applications. For consistency across different systems, we use the following unified prompt template to get the report. As commercial "black-box" systems, we have no control over their internal search routing or region settings. For our method, we set the Google Search API region to "China" to align with the benchmark dataset (A-share and HK-stock companies). We utilized English prompts for task instructions across all models, while keeping entity names (e.g., company names) in their original Chinese characters to ensure correct query interpretation.

We argue this setting is fair and potentially disadvantageous to FinSight for two reasons: (1) **Relevance over Bias**: Retrieval quality is driven primarily by query language and specificity rather than region settings. The China region setting was necessary to retrieve specific local filings. (2) **Commercial Advantage**: Commercial deep research systems often have access to high-quality search resources and curated financial databases with sophisticated internal query rewriting. In contrast, FinSight relies solely on the open Google Search API.

PROMPT

Please help me write a detailed research report on the corporate finance of {topic}, which should be rich in both text and charts. Give me the standardized citations at the end of the report (including serial numbers and corresponding references).

C.2 DETAILS OF FINSIGHT

Backbone For Multi-source Data Collection Agent, Deep Search Agent and Data Analysis Agent, we use the DeepSeek-V3 as the backbone model. For Report Generation Agent, we use DeepSeek-R1 as the backbone model. The maximum input length is 81,920 tokens, and the maximum output length is 16,384 tokens.

Data Collection We implement the financial api tool based on akshare ² package in Python. For web search, we use the Google Search API, with the region set to China and the number of retrieved

²https://github.com/akfamily/akshare

results fixed at the top 10. For web content acquisition, we employ Playwright ³ to simulate a browser for webpage content extraction.

Retrieval We use <code>Qwen3-Embedding-0.6B</code> to generate embeddings for data and CoA segments. Then we use the cosine similarity to select the relevant data and CoA segments for each section.

Iterative Vision-Enhanced Mechanism We use the <code>Qwen2.5-VL-72B</code> as the critic vision-language model in the chart generation stage. To balance effectiveness and cost, we perform three iterations of the critic process.

Ablation Study We conduct ablation study on 5 company questions, which includes: Cambricon Technologies, Li Auto-W, Pop Mart, 3SBio, China Mobile. Some variants are as follows:

- w/o Iteration Vision-Enhanced Mechanism We remove the iterative refinement process and plot charts in a single pass.
- w/o Two-Stage Writing Framework We only concatenate the CoA segments to output the final report.
- w/o Dynamic Search-Enhanced Strategy We remove the Dynamic Search-Enhanced Strategy from the Data Collection and Report Generation process.

C.3 CITATION ACCURACY EVALUATION

To rigorously evaluate the faithfulness of generated citations, we conducted a comprehensive manual verification study.

Methodology. Human experts checked the top 50 citations in each generated report to verify whether the cited source actually supported the generated claim. For each citation, annotators classified it as *Accurate* (the source directly supports the claim), *Partially Accurate* (the source is related but does not fully support the claim), or *Inaccurate* (the source is irrelevant or contradicts the claim). We report the overall accuracy as the proportion of Accurate citations.

Table 9: Citation verification results across all company-level and industry-level tasks.

i-2.5-Pro DR	Gemini-2.5	FinSight	Metric
414 % (289/414)		469 72 92 % (342/469)	Total Citations Checked
ŀ	69.81	72.92 % (342/469)	Overall Accuracy

As shown in Table 9, even while generating a higher volume of citations, FinSight maintains higher accuracy. We attribute this to our **Two-Stage Writing Framework** and generative retrieval mechanism, which identifies references during the drafting process rather than via post-hoc appending.

Citation Authority Analysis. We further analyzed source quality by classifying citations into three authority levels:

- **High Authority**: Government/Regulatory bodies (SEC, IMF), Official Company Filings, Top Academic/Research Institutions.
- **Medium Authority**: Mainstream Financial Media (Bloomberg, Reuters), Known Market Research Firms.
- Low Authority: Social Media, Personal Blogs, Content Farms, or unverified aggregators.

FinSight utilizes High Authority sources at a rate comparable to commercial baselines (\sim 36.5%). The slightly higher usage of Low Authority sources compared to OpenAI DR reflects our reliance on open web search versus proprietary filtered databases, indicating a direction for future refinement.

³https://playwright.dev/

1026 1027

Table 10: Distribution of citation authority across different methods.

1031 1032

1033

1037 1038

1041 1042 1043

1046 1047

1051

1052 1053

1056 1057

1061 1062

1067

1075

1077

1034 1035 1036

1039 1040

1044 1045

1048 1049 1050

1054 1055

1059

1063

1064

1066

1068 1069 1070

1071 1072

1074

1078 1079

Model High Medium **Total** Low Gemini-2.5-Pro DR 312 (36.7%) 304 (35.8%) 233 (27.4%) 849 OpenAI DR 348 (35.0%) 504 (50.7%) 142 (14.3%) 994 FinSight 334 (36.5%) 319 (34.8%) 263 (28.7%) 916

C.4 KEY FACT RECALL EVALUATION

Directly measuring the factuality of long reports is challenging due to the absence of strict ground truth. To quantify factual accuracy, we introduced a Golden Facts Evaluation methodology.

Methodology. We extracted 13 core financial indicators from the professional Golden Reports as ground truth, covering: (1) Profitability (Gross Margin, Net Margin), (2) Growth (Revenue Growth, Profit Growth), (3) Financial Health (Cash Flow, Debt Ratio), (4) Valuation (PE Ratio, PB Ratio), and (5) Efficiency (ROE, ROA). Human annotators then manually verified how many of these specific data points were accurately retrieved and reported by each model across companylevel tasks.

Table 11: Key financial information recall across methods.

Method	Avg. Hits (out of 13)	Recall Rate	Relative	
FinSight	7.1	54.6%	_	
Gemini-2.5-Pro DR	5.0	38.5%	-29.6%	
OpenAI DR	3.9	30.0%	-45.1%	

FinSight achieves significantly higher recall rate, demonstrating superior coverage of critical financial data compared to commercial deep research systems.

CONSTRUCTION OF THE FINANCIAL REPORT GENERATION BENCHMARK

Questions We select the most popular five A-share companies, five Hong Kong-stock companies, and ten representative industries from https://www.djyanbao.com as the benchmark research questions. These companies and industries cover a diverse set of market sectors and provide a comprehensive foundation for evaluating the effectiveness of deep research systems.

Golden Referenced Report To establish human expert-level benchmark, we collect the latest equity and industry research reports from well-known Chinese securities firms, as shown in Table 12. These golden references cover both company-level and industry-level analyses across A-shares, Hong Kong stocks, and major industries.

C.6 EVALUATION METRICS

We further illustrate the metrics we used for evaluation:

- (1) **Factual Metrics** Measure the textual quality and factual accuracy of the final report.
 - Core Conclusion Consistency: Whether the core conclusions in the generated report are consistent with those in the reference report.
 - Textual Faithfulness: Whether the arguments in the report are properly supported by citations from the reference.
 - Text-Image Coherence: Whether the report integrates images into the discussion, and whether the textual and visual descriptions align.

Table 12: Golden Referenced Reports from Chinese Securities Firms

Market	Company / Industry	Securities Firm
A-shares	SMIC (688981)	Soochow Securities
	Cambricon Technologies (688256)	Donghai Securities
	China Mobile (600941)	Zhongtai Securities
	Skshu Paint (603737)	Huatai Securities
	Yiwu China Commodities City (600415)	Guolian Minsheng Securities
Hong Kong Stocks	Pop Mart (09992)	Zhongtai Securities
	SenseTime (00020)	Zhongtai Securities
	Li Auto-W (02015)	Huayuan Securities
	3SBio (01530)	Huatai Securities
	UBTECH Robotics (09880)	Guohai Securities
Industries	Semiconductor Industry	Kaiyuan Securities
	Food & Beverage Industry	Huachuang Securities
	Basic Chemical Industry	Zhongtai Securities
	Steel Industry	Orient Securities
	Construction & Decoration Industry	Guosheng Securities
	Environmental Protection & Public Utilities (Controlled Nuclear Fusion)	Huachuang Securities
	Light Manufacturing (Durable Consumer Goods)	Guotai Haitong Securities
	K12 Education Industry	Guosheng Securities
	Media Industry (Short Drama Overseas Expansion)	Soochow Securities
	Transportation (Cross-border E-commerce Logistics)	Maigao Securities

(2) Analysis Effectiveness Measure whether the financial report provides sufficient information and insights for investors.

- **Information Richness**: The number of distinct information points included in the report.
- Coverage: The extent to which key information from the golden reference report is covered.
- **Analytical Insight**: Whether the report provides critical analysis, original insights, and forward-looking recommendations.
- (3) **Presentation Quality** Measure the presentation quality of the final report.
- **Structural Logic**: The logical organization of each section and the overall structural soundness of the report.
- Language Professionalism: Whether the language conforms to financial terminology, using the golden report as a reference.
- Chart Expressiveness: The effectiveness of charts in supporting the narrative, including their informativeness and aesthetic quality.

C.7 LLM EVALUATION PROCESS

We adopt Gemini-2.5-Pro as the backbone evaluation model. To ensure fair comparison across reports, we employ a list-wise evaluation strategy, where the model is provided with all candidate reports along with the golden reference report and assigns scores accordingly. The nine metrics mentioned above can be divided into two parts, one is unrelated to the golden report and the other is related to the golden report. For these two types, we have designed two types of prompts, which are listed below.

1134 **Evaluation Instruction for Golden Report Irrelevant Metrics** 1135 1136 # [TASK] Your task is to act as an expert financial analyst and editor. You will perform a rigorous, **comparative 1137 evaluation** of a list of financial research reports. Your goal is to produce a structured critique for each 1138 report based on how effectively it addresses the central **Research Question**, using the provided **Golden 1139 Standard Report** as a quality benchmark. 1140 # (INPUTS) 1141 * **Research Question: ** Research Question * **Golden Standard Report: ** Given in file format, the one starting with 'golden' is the 'golden standard report' * **Reports to Evaluate: ** Reports 1142 # [EVALUATION METHODOLOGY] 1143 To ensure fairness and accuracy, you must follow this three-step process for **each report** in the 'Reports to 1144 Evaluate' list: 1145 1. **Step 1: Establish the Benchmark (Internal Thought Process)** 1146 * For each of the six evaluation dimensions, first thoroughly analyze the **Golden Standard Report**. Identify its key characteristics, depth, and quality to create a mental benchmark for what constitutes a high-quality, 1147 professional report (which corresponds to a score of 7). 1148 2. **Step 2: Comparative Analysis (Internal Thought Process)** 1149 * Now, analyze the report currently being evaluated. For each dimension, find concrete evidence (e.g., specific 1150 quotes, data points, chart quality, structural features). * **Directly compare** this evidence against the 1151 benchmark established in Step 1. Note where the report meets, exceeds, or falls short of the Golden Standard. 3. **Step 3: Score and Justify (Final Output Generation)** 1152 * Based on the comparison in Step 2, assign a score from 1 to 10 for the dimension, following the 'Benchmark-1153 Based Scoring' rules below. * Write a **concise, one-sentence rationale** that justifies your score by 1154 referencing your comparative findings. 1155 # [SCORING GUIDELINES] 1156 Adhere strictly to these principles to maintain objectivity: * **Benchmark-Based Scoring:** 1157 * **The Golden Standard Report is the benchmark for a score of 7.** * A report demonstrating a **similar 1158 level of quality**, depth, and execution as the Golden Standard on a specific dimension should receive a score 1159 of **7**. * Scores of **8-10** are reserved for reports that **demonstrably exceed** the Golden Standard in 1160 that dimension (e.g., providing deeper insights, more comprehensive data, or superior visualizations). * Scores 1161 of **1-6** indicate that the report **falls short** of the Golden Standard's quality in that dimension, with the score reflecting the degree of the gap. 1162 * **Justification for Extremes:** Scores of **9-10** (exceptional) or **1-2** (critically flawed) require a 1163 particularly strong and specific justification in the rationale. 1164 # [EVALUATION FRAMEWORK and CRITERIA] 1165 ### **Dimension 1: Information Richness (Score 1-10)** 1166 * **Definition:** Measures the concentration of substantive, verifiable facts and data points relevant to the research question, while minimizing filler content. 1167 ### **Dimension 2: Textual Faithfulness (Score 1-10)** 1168 * **Definition: ** Measures whether significant claims, data, and forecasts are verifiably supported by provided 1169 "References / Data Sources". 1170 ### **Dimension 3: Text-Image Coherence (Score 1-10)** 1171 * **Definition:** Assesses if charts and tables are consistent with the text and if the text provides meaningful interpretation that supports the core analysis. 1172 ### **Dimension 4: Analytical Insight (Score 1-10)** 1173 * **Definition: ** Evaluates the quality of the analysis, focusing on critical thinking, original insights, and 1174 actionable, forward-looking conclusions that directly address the research question. 1175 ### **Dimension 5: Structural Logic (Score 1-10)** 1176 * **Definition:** Measures the structural integrity and logical flow of the argument, assessing if the report builds a clear and compelling case from evidence to conclusion. 1177 ### **Dimension 6: Chart & Table Expressiveness (Score 1-10)** 1178 * **Definition: ** Focuses on the quality of data visualizations themselves—their clarity, ability to reveal 1179 patterns, and effectiveness in communicating key information. 1180 # [OUTPUT FORMAT] Provide your evaluation in the following strict JSON format. **For each score, you must provide a brief, one-1181 sentence rationale.** Do not add any conversational text outside of this structure. Use the file name of each 1182 1183 Now start your evaluation of the given reports. Carefully read each report and give a score.

22

1188 **Evaluation Instruction for Golden Report Relevant Metrics** 1189 1190 **[ROLE]** You are an expert financial analyst and editor, specializing in the comparative analysis of research 1191 **[TASK]** Your task is to rigorously evaluate a list of **Generated Reports** by comparing each one against 1192 a **Benchmark Report** (a professionally written 'gold standard'). You will assess each Generated Report's 1193 quality across three key dimensions on a scale of 1 to 10, producing a structured JSON output with scores and 1194 justifications. 1195 **[INPUTS]** 1. ** 'Benchmark Report' **: A high-quality, professional research report that serves as the "gold standard" for 1196 this evaluation. All comparisons should be made against this document. The file name of the benchmark report 1197 begins with "golden_". 2. ***Generated Reports'**: A list of one or more reports to be evaluated against the 1198 Benchmark Report. 3. ** Report ID **: An identifier for each Generated Report. Use the file name as the 1199 report ID. **[EVALUATION METHODOLOGY]** To ensure fairness and accuracy, you must follow this three-step process for **each Generated Report**: 1201 1. **Step 1: Establish the Benchmark (Internal Thought Process)** 1202 * For each of the three evaluation dimensions, first thoroughly analyze the **Benchmark Report**. Identify its key characteristics, depth, and quality to create a mental benchmark for what constitutes a score of **7**. 2. **Step 2: Comparative Analysis (Internal Thought Process)** * Now, analyze the Generated Report. For each dimension, find concrete evidence (e.g., specific conclusions, data points included/omitted, linguistic style). * **Directly compare** this evidence against the benchmark established in Step 1. Note where the report meets, exceeds, or falls short of the Benchmark Report. 1207 3. **Step 3: Score and Justify (Final Output Generation)** 1208 * Based on the comparison in Step 2, assign a score from 1 to 10 for the dimension, following the 'SCORING 1209 GUIDELINES' below. * Write a **concise, one-sentence rationale** that justifies your score by referencing 1210 your comparative findings. **[SCORING GUIDELINES]** 1211 Adhere strictly to these principles to maintain objectivity: 1212 ***Benchmark-Based Scoring;** * **The Benchmark Report is the standard for a score of 7.** * A report 1213 demonstrating a **similar level of quality**, depth, and execution as the Benchmark Report on a specific 1214 dimension should receive a score of **7**. * Scores of **8-10** are reserved for reports that **demonstrably 1215 exceed** the Benchmark Report in that dimension (e.g., providing a more nuanced conclusion, broader data coverage, or more sophisticated language). * Scores of **1-6** indicate that the report **falls short** of the 1216 Benchmark Report's quality in that dimension, with the score reflecting the degree of the gap. * **Justification 1217 for Extremes:** Scores of **9-10** (exceptional) or **1-2** (critically flawed) require a particularly strong 1218 and specific justification in the rationale. 1219 **[EVALUATION FRAMEWORK & CRITERIA]** ### **Dimension 1: Core Conclusion & Data Consistency (Score 1-10)** ***Definition: ** Measures the alignment of the Generated Report's core thesis, key arguments, and supporting data points with those presented in the Benchmark Report. ### **Dimension 2: Information Coverage (Score 1-10)** **Definition:** Assesses the extent to which the Generated Report includes the key information points, 1224 topics, and analytical angles present in the Benchmark Report. 1225 ### **Dimension 3: Professional Language & Tone (Score 1-10)** * **Definition: ** Evaluates the linguistic quality of the Generated Report, using the Benchmark Report's 1226 writing style, tone, and vocabulary as the standard for professional financial analysis. 1227 **[OUTPUT FORMAT]** Provide your evaluation in the following strict JSON format. For each score, you 1228 must provide a brief, one-sentence rationale that explains the score relative to the benchmark. Do not add any

C.8 HUMAN EVALUATION PROCESS

conversational text outside of this structure.

1229

1230

1231 1232 1233

1235

1236 1237

1239

1240

1241

To validate our automated evaluation and substantiate claims about report quality, we conducted a comprehensive human evaluation study.

Now start your evaluation of the given reports. Carefully read each report and give a score.

We recruited **6 graduate students with financial backgrounds** (majoring in Finance, Economics, or related fields) to serve as expert annotators. To save costs, we selected the two strongest baselines, **Gemini-2.5-Pro Deep Research** and **OpenAI Deep Research**, to compare against FinSight. Each annotator reviewed a random subset of 10 research topics, evaluating all three systems' outputs for each topic. In reviewing process, raters were provided with "Golden Reports" (professional analyst reports from top-tier securities firms) as ground truth references to anchor their judgments.

Scoring Protocol. To manage cognitive load when evaluating long-form reports, raters scored on a 0–5 scale with 0.5 increments across three consolidated dimensions: Factual (combining Consistency, Faithfulness, Text-Image Coherence), Analytical (combining Richness, Coverage, Insight), and Presentation (combining Logic, Language, Visualization). Scores were scaled ($\times 2$) to align with our 0–10 automated metrics.

Table 13: Human evaluation scores (scaled to 0-10).

Model	Factual	Analytical	Presentation	Total
OpenAI DR	5.93	5.81	4.75	5.50
Gemini-2.5-Pro DR	6.86	6.73	4.73	6.11
FinSight	6.68	7.17	7.48	7.11

Table 14: Human-LLM alignment and inter-rater reliability metrics.

Dimension	Pearson r	Krippendorff's α
Factual	0.6360	0.4667
Analytical	0.6003	0.4752
Presentation	0.6757	0.8570
Total Score	0.7587	0.6474

We calculated Inter-Rater Reliability using Krippendorff's Alpha (α) and Human-LLM Alignment using Pearson correlation coefficient (r). Our key findings are as follows: (1) FinSight achieves the highest total score (7.11), significantly outperforming both commercial baselines. (2) The strong positive correlation between human and LLM scoring (Pearson r>0.75 for Total Score) validates the reliability of our automated evaluation framework. (3) The overall inter-rater reliability $(\alpha=0.64)$ indicates solid consensus among experts, with exceptionally high agreement in the Presentation dimension $(\alpha=0.86)$, confirming that FinSight's multimodal capabilities provide objectively recognizable advantages.

The instruction for human raters is as follows.

Evaluation Instruction for Human Raters

General Instructions

Thank you for participating in this evaluation. Please assess each report independently based on the three core dimensions defined below. Each dimension is scored on a 1 to 5 point scale, allowing for half-points (e.g., 3.5).

- 5 points (Excellent): Significantly exceeds expectations; outstanding performance in all aspects.
- 4 points (Good): Solid and reliable; comprehensively meets all requirements for a professional report.
- 3 points (Passable): Fundamentally adequate, but with clear deficiencies in some areas.
- 2 points (Poor): Contains serious flaws; fails to deliver core value.
- 1 point (Very Poor): Contains almost no usable information; logically incoherent or factually incorrect.

Dimension 1: Factual - Accuracy & Comprehensiveness

Definition: Assesses the **truthfulness**, **completeness**, and **objective evidence** of the information provided in the report. This dimension concerns the solidity of the report's foundation.

2 (Poor)

1 (Very Poor)

Score	Evaluation Criteria	
5 (Excellent)	Information is extremely dense, facts are cross-verified and accurate, all key topics are covered, and crucial data is clearly supported by sources.	
4 (Good)	Information is solid, facts are generally accurate, most key topics are covered, and major dat points are supported by sources.	
3 (Passable)	Contains basic facts, but coverage is insufficient (e.g., missing key information points), of there are minor factual errors / missing sources.	
2 (Poor)	Contains numerous factual errors or severe gaps in information; most claims are not supported by data or sources.	
(Very Poor)	Filled with unverified information, obvious factual errors, or large-scale content omissions.	
Definition: Ass	on 2: Analytical - Depth & Logic esses the quality of analysis, insightfulness, and argumentative structure of the report. This erns whether the report provides added value beyond a simple recitation of facts. Evaluation Criteria	
Definition: Ass dimension conc Score	esses the quality of analysis, insightfulness, and argumentative structure of the report. This erns whether the report provides added value beyond a simple recitation of facts.	
Definition: Assidimension conc	esses the quality of analysis, insightfulness, and argumentative structure of the report. This erns whether the report provides added value beyond a simple recitation of facts. Evaluation Criteria Insights are profound, drawing unique and forward-looking conclusions from the data. The	

Dimension 3: Presentation - Quality & Professionalism

arguments and evidence; the structure is chaotic.

coherent but not sufficiently rigorous.

Definition: Assesses the **readability**, **effectiveness of charts**, and **professionalism of the language**. This dimension concerns whether the report can be understood efficiently and clearly.

Analysis is superficial or contains logical leaps. There is a weak connection between

Almost no analysis, or filled with logical contradictions. Fails to form a coherent argument.

Score	Evaluation Criteria	
5 (Excellent)	Language is precise, professional, and authoritative. Charts are exceptionally well-design perfectly complementing the text and greatly enhancing the argument.	
4 (Good)	Language is professional and fluent. Charts are clear, easy to understand, and effectively support the text's points; figure-text consistency is good.	
3 (Passable)	Language is generally professional but occasionally verbose or inappropriate. Chart quality is average (e.g., unclear, low information), or the connection to the text is weak.	
2 (Poor)	Language is unprofessional or contains many errors. Chart quality is poor (e.g., misleading, unreadable), or there is a serious disconnect between figures and text.	
1 (Very Poor)	Language is confusing and difficult to read. No charts are used, or the charts provided are completely ineffective.	

D A CASE OF COMPANY RESEARCH QUESTION

To demonstrate the practical application of our system, this section shows the case of **SenseTime Technology (0020.HK**), a leading artificial intelligence company in China.

We present the collecting tasks of the Data Collection process in Table 15, and an analytical tasks of the Data Analysis process in Table 16.

Table 15: The predefined and brainstormed data collection tasks.

Data Collection

```
1361
1362
      1 Predefined Tasks:
      2 "company": [
1363
            {"name": "Balance Sheet"},
1364
            {"name": "Income Statement"},
1365
            {"name": "Cash Flow Statement"},
1366
            {"name": "Basic Stock Information"},
            {"name": "Shareholder Structure"},
            {"name": "Stock Price"},
1368
            {"name": "Stock-related Financial Data"},
      9
1369
            {"name": "CSI 300 Daily Index Data"},
     10
1370
            {"name": "Hang Seng Daily Index Data"},
     11
            {"name": "NASDAQ Daily Index Data"},
1371
     12
            {"name": "Investment Rating",
1372
     13
            "description": "Collect analyst investment ratings and target prices
     14
1373
            from major securities firms (e.g., CITIC Securities, CICC). Select
1374
           the most frequent rating across institutions."
1375
            },
1376
     16
            {"name": "Price-to-Sales Ratio (PS)",
            "description": "Collect the company's PS data (PS = Stock Price /
     17
1377
            Sales per Share)."
1378
            },
1379
            {"name": "Return on Equity (ROE, %)",
     19
1380
            "description": "Collect the company's ROE data, defined as (Net
     20
1381
            Income Attributable to Shareholders / Equity) or equivalently (Net
           Profit Margin x Asset Turnover x Equity Multiplier)."
     21
1383
            { "name": "Competitor Data",
1384
            "description": "Collect comparable data from 5-8 major peer
1385
            companies, including financial and operational indicators."
1386
     24
     25 ]
1387
     26
1388
     27 Brainstormed Tasks: [
1389
            {"name": "Growth Data for AI Subfields in 2024"},
1390
            {"name": "The Development History of The SenseTime and Main Business
1391
            " }
     30 ]
1392
1393
```

Table 16: The illustration of data analysis process and CoA output of a task.

1405 1406

Data Analysis (We show a predefine task of data analysis, and its CoA output.)

1407 1408 1409

Predefined Task 1: Company Development History and Main Business Analysis Required Data: Years and corresponding company achievements.

1410

Description: Organize the company's key milestones by year (e.g., founding, expansions, product launches, strategic shifts, and M&A) and present them as a timeline with annotated events. Also summarize its current core business scope, including main products, business segments, and market positioning.

1412 1413

1411

CoA Output:

1414 1415

1416

1420

1421

SenseTime: Evolution from Computer Vision Pioneer to AI Platform Enterprise ### Executive Summary

1417 1418 1419 As a global leading artificial intelligence software company, SenseTime has grown into an AI giant valued at over USD 10 billion since its founding in 2014. With the mission of "persisting in originality and enabling AI to advance human progress", the company has built a comprehensive AI ecosystem covering four major business segments: Smart Business, Smart City, Smart Life, and Smart Auto, through 11 years of continuous innovation and business expansion [Source: SenseTime Group Company Profile]. By 2024, SenseTime employed 3,756 people, with operations spanning over 20 cities worldwide and R&D centers in Hong Kong, Shanghai, Beijing, and Shenzhen [Source: SenseTime Basic Information].

1422 1424

1425

1426

1427

The company's growth trajectory reflects a typical path of technology firms: from technical breakthroughs, to productization, then to platformization and ecosystemization. Its IPO on the Hong Kong Stock Exchange in 2021 (Ticker: 0020.HK) marked the beginning of a new capital-intensive phase, while the launch of the "Riyadh New" large model system in 2023 signified its strategic pivot toward generative AI [Source: Development History Search Data]. Currently, SenseTime reports annual revenue of RMB 3.772 billion, maintaining technological leadership in computer vision and artificial intelligence [Source: Stock 0020] Income Statement Data].

1428 1429 1430

1431

1432

1436

Development History Analysis

Early Stage of Founding and Technology Accumulation (2014–2016)

1433 1434 1435

Founded on October 15, 2014, in the Cayman Islands by the CUHK Multimedia Lab team, SenseTime initially focused on core R&D in computer vision and deep learning [Source: SenseTime Basic Information]. In 2015, it launched its first facial recognition algorithm and completed its first funding round, laying the foundation for subsequent commercialization. By 2016, it had become the world's most valuable AI unicorn, reflecting strong capital market recognition.

1437 1438

@import "SenseTime Development Timeline (2014-2025), horizontal axis = year, vertical axis = milestone importance, annotated with key events (milestone_df)"

1439 1441

Productization and Market Expansion (2017–2019)

1442 1443 1444

In 2017, the launch of the SenseAR augmented reality platform marked the transition from pure research to productization. By 2018, it had completed Series C financing with a valuation exceeding USD 4.5 billion. In 2019, it rolled out Smart City solutions, partnering with key domestic cities and expanding its scope from technology output to integrated solutions.

1445

Platformization and Capitalization (2020–2022)

1446 1447 1448

In 2020, the release of the SenseCore AI Infrastructure introduced the concept of industrializing AI, aiming to reduce the cost of AI production factors. On December 30, 2021, SenseTime was listed on the Hong Kong Stock Exchange Main Board, raising about HKD 6 billion [Source: SenseTime IPO Search Data]. In 2022, it launched the "Riyadh New" foundation model system, officially entering the generative AI space and advancing toward multimodal development.

1449 1450 1451

1452

Ecosystemization and Deepening Applications (2023–2025)

1454

In 2023, the company released the "SenseChat" large language model, further completing its model matrix. In 2024, its Smart Auto business grew rapidly, with partnerships across major automakers. By 2025, SenseTime continued to optimize its large model technologies and achieved deep application deployments in healthcare, finance, and manufacturing.

1455

Core Business Structure Analysis

Smart Business (35%)

Core Products: SenseFoundry Enterprise Ark, AI Content Generation Platform Market Positioning: Provides AI solutions for enterprise digital transformation, focusing on finance, retail, and manufacturing. This is the main revenue driver, contributing about 35% of revenue in 2024 [Source: Business Segment Data].

Smart City (30%)

Core Products: City Ark, traffic management, and surveillance systems

Market Positioning: Provides smart governance and public service solutions. Established partnerships with major cities, gaining competitive advantages in smart transportation and public safety.

Smart Life (20%)

Core Products: SenseMARS Metaverse Platform, mobile AI applications

Market Positioning: Consumer-facing AI applications and metaverse ecosystem. Focuses on AR/VR and mobile internet scenarios, with strong growth potential.

Smart Auto (15%)

Core Products: SenseAuto Platform, autonomous driving solutions

Market Positioning: Provides intelligent driving and V2X systems for automakers. This segment grew rapidly in 2024, becoming a new growth engine [Source: Smart Auto Data].

@import "SenseTime 2024 Revenue Breakdown Pie Chart, showing four business segments (business_df)"

Technical Strength and Competitive Advantages

SenseTime possesses deep academic roots and originality in AI technologies. The company has built full-stack AI capabilities across perception intelligence, decision intelligence, content generation, and content enhancement [Source: Company Profile].

By 2024, it had over 8,000 AI-related patents, maintaining leadership in computer vision, large model training, and AI chips [Source: Patent Data].

Core Competitive Advantages:

- 1. Technological Originality: Commitment to independent fundamental research and development
- 2. Platformization Capability: SenseCore enables AI industrial-scale production
- 3. Ecosystem Completeness: Full product portfolio covering four major domains
- 4. Talent Density: A world-class AI R&D team

Market Position and Prospects

Industry data show SenseTime as a global leader in computer vision, ranking among top players in market share. In 2024, it was positioned in the Leaders Quadrant of the AI maturity curve, highly rated in both innovation and execution [Source: AI Market Growth Data 2024].

Future Directions:

- Large Model Enhancement: Continuous optimization of the "Riyadh New" large model system
- Vertical Integration: Deepened applications in finance, healthcare, and manufacturing
- International Expansion: Strengthening presence in Southeast Asia and the Middle East
- Tech Convergence: Driving integration of AI with IoT and blockchain

@import "SenseTime Revenue Growth Trend (2020-2024), showing revenue growth from RMB 3.446B to RMB 3.772B (income_statement)"

Conclusion

Through 11 years of development, SenseTime has evolved from a single computer vision technology provider into a comprehensive AI platform enterprise. Its trajectory reflects a clear progression: technology-driven, product iteration, platform building, and ecosystem expansion. With balanced business segments and strong technological capabilities, SenseTime holds a favorable competitive position in the AI industrialization wave.

Looking forward, with continuous AI evolution and expanding applications, SenseTime is poised to play a more significant role in the global AI market. To remain competitive, the company must sustain R&D investment, deepen vertical applications, and enhance international collaborations in response to intensifying market and technological challenges.

E REPORT GALLERY

We have presented an overview of the report generated by ours here, and the complete report can be obtained from https://anonymous.4open.science/r/FinSight-6739/.

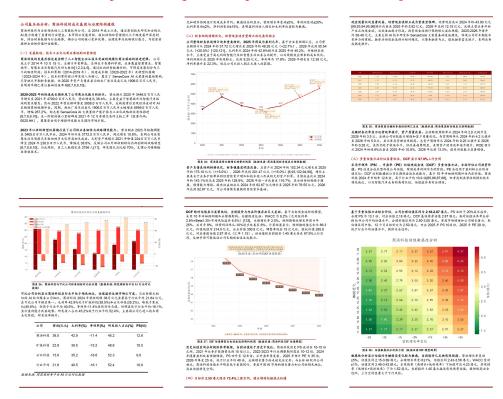


Figure 8: The final report of The SenseTime (part).

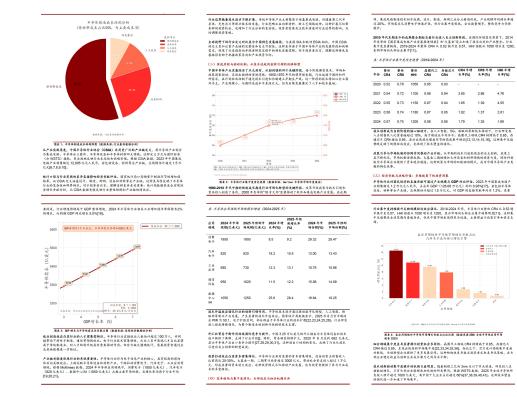


Figure 9: The final report of semiconductor industry (part).

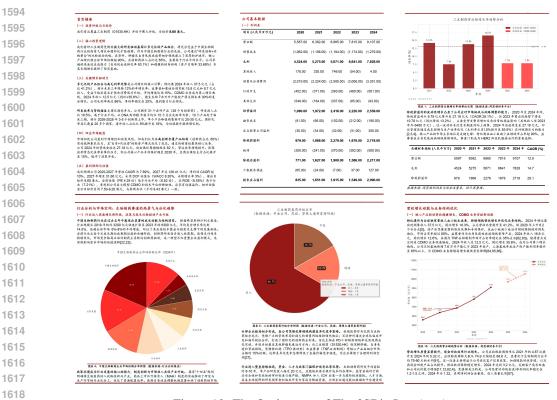


Figure 10: The final report of The 3SBio Inc. (part).

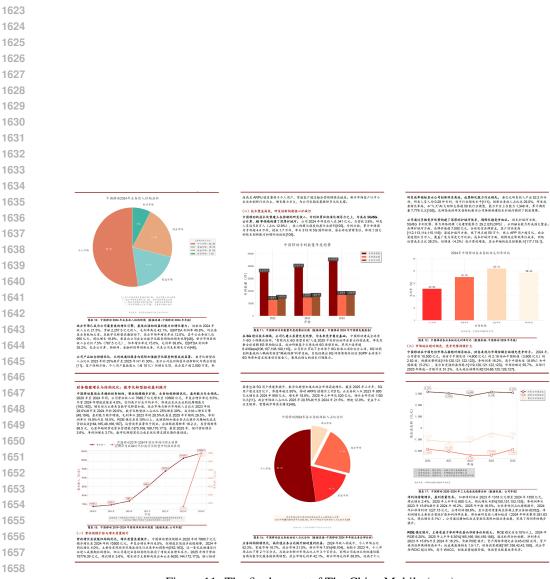


Figure 11: The final report of The China Mobile (part).