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Abstract

There is a well known intrinsic trade-off between the fairness of a representation
and the performance of classifiers derived from the representation. In this paper
we propose a new method to compute the optimal Pareto front of this trade off.
In contrast to the existing methods, this approach does not require the training of
complex fair representation models.
Our approach is derived through three main steps: We analyze fair representations
theoretically, and derive several structural properties of optimal representations.
We then show that these properties enable a reduction of the computation of the
Pareto Front to a compact discrete problem. Finally, we show that these compact
approximating problems can be efficiently solved via off-the shelf concave-convex
programming methods.
In addition to representations, we show that the new methods may also be used to
directly compute the Pareto front of fair classification problems. Moreover, the
proposed methods may be used with any concave performance measure. This is
in contrast to the existing reduction approaches, developed recently in fair classi-
fication, which rely explicitly on the structure of the non-differentiable accuracy
measure, and are thus unlikely to be extendable.
The approach was evaluated on several real world benchmark datasets and compares
favorably to a number of recent state of the art fair representation and classification
methods.

1 Introduction

Fair representations are a central topic in the field of Fair Machine Learning, Mehrabi et al. (2021),
Pessach and Shmueli (2022),Chouldechova and Roth (2018). Since their introduction in Zemel et al.
(2013), Fair representations have been extensively studied, giving rise to a variety of approaches
based on a wide range of modern machine learning methods, such GANs, variational auto encoders,
numerous variants of Optimal Transport methods, and direct variational formulations. See the papers
Feldman et al. (2015), Madras et al. (2018), Gordaliza et al. (2019); Zehlike et al. (2020), Song et al.
(2019), Du et al. (2020), Zhao and Gordon (2022), Jovanović et al. (2023), Dehdashtian et al. (2024),
for a sample of existing methods.

For a given representation learning problem and a target classification problem, since the fairness
constraints reduce the space of feasible classifiers, the best possible classification performance will
usually be lower as the fairness constraint becomes stronger. This phenomenon is known as the
Fairness-Performance trade-off. Assume that we have fixed a way to measure fairness. Then for
a given representation learning method, one is often interested in the fairness-performance curve
(γ,E(γ)). Here, γ is the fairness level, and E(γ) is the classification performance of the method at
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Figure 1: Fair Representation Problem Setting.

that level. The curve (γ,E(γ)) where E(γ) is the best possible performance over all representations
and classifiers under the constraint is known as the Fairness-Performance Pareto Front.

As indicated by the above discussion, representation learning methods typically involve models with
high dimensional parameter spaces, and complex, possibly constrained non-convex optimisation
algorithms. As such, these methods may be prone to local minima and sensitivity to a variety of
hyper-parameters, such as architecture details, learning rates, and even initializations. While the
representations produced by such methods may often be useful, it nevertheless may be difficult to
decide whether their associated Fairness-Performance curve is close to the true Pareto Front.

In this paper we propose a new method to compute the optimal Pareto front, which does not require
the training of complex fair representation models. In other words, we show that, perhaps somewhat
surprisingly, the computation of the Pareto Front can be decoupled from that of the representation,
and only relies on learning of much simpler, unconstrained classifiers on the data. To achieve this,
we first show that the optimal fair representations satisfy a number of structural properties. While
these properties may be of independent interest, here we use them to express the points on the Pareto
Front as the solutions of small discrete optimisation problems. These problems, known as concave
minimisation problems Benson (1995), have been extensively studied and can be efficiently solved
using modern dedicated optimisation frameworks, Shen et al. (2016).

We now describe the results in more detail. Let X ∈ X and A ∈ A denote the data features and the
sensitive attribute, respectively. We assume that A is binary, while X may take values in an arbitrary
space X , typically with X = Rd. In addition, we have a target variable Y , taking values in a finite set
Y . We are then interested in representations that maximise the performance of prediction of Y , under
the fairness constraint. The representation is denoted by Z, and is typically expressed by constructing
the conditional distributions P (Z|X = x,A = a), for a ∈ {0, 1}. The problem setting is illustrated
in Figure 1.

Our approach consists of three main steps: We first observe that one can map the data features
(x, a) ∈ X × A to a much smaller space ∆Y of distributions on the set of label values Y , without
loosing any information necessary for the computation of the Pareto front. The mapping is done by
means of the optimal Bayes classifier. This result is referred to as Factorization Lemma, Section
3.2, where the mapping is done via the optimal Bayes classifier. Similar arguments were recently
implicitly used in the study of fair classification tradeoffs, (Xian et al., 2023; Wang et al., 2023), but
were restricted to classification and to accuracy loss (Section 2).

The advantage of working with a small space such as ∆Y is that it can be easily discretized. For
instance, if Y = 0, 1, then we essentially have ∆Y = [0, 1], which is descretised trivially. We note
that other, data dependent discretisation schemes, such as clustering, maybe possible for problems
involving highly multi label targets. Alternatively, one can also consider the dataset itself as a grid, a
view that is typically taken by transportation based approaches, e.x. Gordaliza et al. (2019), Xian
et al. (2023).

Next, assuming the data is discretized and finite, we ask how large the represntation space Z
should be, in order to support both optimal performance and fairness? For instance, we believe the
answer to the following question is not apriori obvious: Can representations on infinite spaces be
approximated, in terms of performance and fairness, by representations on finite and bounded spaces
Z? These questions are addressed by the Invertibility Theorem, Section 3.3, which asserts that all
optimal representations may be taken in a certain canonical form, which we term invertible. This

2



result, in conjunction with an additional approximation lemma, is used in Section 4.1 to construct
representations with any desired degree of approximation.

Finally, based on these results in Section 4.1 we also introduce the MIFPO (Model Independent
Fairness-Performance Optimization), a discrete optimisation problem that is essentially equivalent
to a computation of the fairness-performance tradeoff on a discrete set. We show that in this
situation MIFPO is a concave minimisation problem with linear constraints, and we solve it using the
disciplined convex-concave programming framework, DCCP, Shen et al. (2016).

We evaluate our approach on standard fairness benchmark datasets and compare its fairness-
performance curve to multiple state-of-the-art fair representation methods. We also compare MIFPO
to the fairness-performance Pareto front of fair classifiers1. As expected, MIFPO effectively serves
as an upper bound on almost all other algorithms in both cases.

To summarise, the contributions of this paper are as follows: (a) We derive several new structural
properties of optimal fair representations. (b) We use these properties to construct a model indepen-
dent problem, MIFPO, which can approximate the Pareto Front of arbitrary high dimensional data
distributions, but is much simpler to solve than direct representation learning for such distributions.
(c) We illustrate the approach on real world fairness benchmarks.

The rest of this paper is organised as follows: Section 2 discusses the literature and related work. In
Section 3 we discuss the theoretical results, including factorization and the Invertibility Theorem.
The MIFPO problem construction and the full Pareto Front computation algorithm are provided in
Section 4. Experimental results are presented in Section 5, and we conclude the paper in Section 6.
All proofs are provided in the Supplementary Material.

2 Literature and Prior Work

We refer to the book Barocas et al. (2023), and surveys Mehrabi et al. (2021),Du et al. (2020), for a
general overview of representations. Tradeoffs in particular where explicitly studied in Song et al.
(2019), Balunović et al. (2022a), Zhao and Gordon (2022), Jovanović et al. (2023),Dehdashtian et al.
(2024), among others.

In this paper we use the total variation based fairness constraints, similarly to the line of work in
Madras et al. (2018), Zhao and Gordon (2022), Balunović et al. (2022a), Jovanović et al. (2023).
Other constraints used in the literature include entropy based constraints, Song et al. (2019), or RKHS
based independence test constraints, Dehdashtian et al. (2024).

As discussed earlier, the vast majority of the work above concentrates on finding neural network
based fair representations via involved optimization schemes with possible local minima, which may
be hard to analyze. This highlights the usefulness of our approach direct approach to the computation
of the Pareto front, which has clear theoretical grounding, and in which sources of approximation
error are well understood and may be controlled.

Relations between fairness and performance were studied in Zhao and Gordon (2022). In particular,
for perfectly fair representations, they derived lower bounds on the accuracy in terms of the difference
of the base rates between the groups. However, this work did not introduce new algorithms for
the computation of fair representations or of the associated Pareto front. The extension of the
considerations in this paper to the full front was carried in Xian et al. (2023) for classification (see
below).

The accuracy fairness tradeoff has also been extensively studied in the context of fair classification
(without representations), see for instance Agarwal et al. (2018), Kim et al. (2020) , Alghamdi et al.
(2022), Xian et al. (2023), Wang et al. (2023), for a sample of recent approaches. In particular, the
papers Xian et al. (2023), Wang et al. (2023) are state of the art, and are also the most closely related
to our methods, among the existing work.

Similarly to our approach, the analysis in these two papers starts with the estimation of the prob-
abilities P (Y |X,A), which are then used to compute the constrained performance. However, the
subsequent steps are different. Crucially, the analysis in both Xian et al. (2023) and Wang et al.
(2023) relies critically on the properties of the accuracy as the performance metric. Consequently,

1See Sections 2 and 3.2 for the relation between our representation framework and fair classification results.
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it can not be extended to general concave performance measures, such as the standard (minus) log
loss, for instance. Roughly speaking, in the appropriate sense, accuracy largely ignores classification
probabilities. This allows the simple description of classifiers as small confusion matrices in Wang
et al. (2023) (extending the approach of Kim et al. (2020)), and the restriction of the distributions
to the vertices of the simplex in Xian et al. (2023). The special structure of accuracy is highlighted
also in our Lemma 3.1, where we show that classifiers with accuracy may be effectively described
by representations using only 2 points. We conclude that even when restricted to classification, our
approach analyses a fundamentally more complex situation compared to previous work. On the other
hand, Xian et al. (2023) and Wang et al. (2023) support non binary sensitive attributes and group
labels, while such an extension for our methods is out of scope for this paper. A comparison of
computational complexities for these algorithms may be found in Supplementary J.

3 Structure of Fair Representations

In this Section we describe several theoretical properties of fair representations. In Section 3.1
we introduce the problem setup and the necessary notation. In Section 3.2 we discuss relations to
classification with accuracy loss and the factorization result, which allows to reduce the size of the
representation space. The Invertibility Theorem is introduced in Section 3.3.

3.1 Problem Setting

Let A be a binary sensitive variable, and let X be an additional feature random variable, with values
in a set X , typically with X = Rd. Assume also that there is a target variable Y with finitely many
values in a set Y , jointly distributed with X,A.

A representation Z of (X,A) is defined as a random variable taking values in some space Z , with
(i) distribution given through Pθ (Z|X,A), where θ are the parameters of the representation, and
(ii) such that conditioned on (X,A), Z is independent of the rest of the variables of the problem. In
particular, we have

Z ⊥⊥ Y |(X,A), (1)
where ⊥⊥ denotes statistical independence.

Fairness in this paper will be measured by the Total Variation distance. For two distributions, µ, ν on
Rd, with densities fµ, fν , respectively, this distance is defined as

∥µ− ν∥TV =
1

2
sup

g s.t. ∥g∥∞≤1

∫
g(x) · [fµ(x)− fν(x)] dx =

1

2

∫
|fµ(x)− fν(x)| dx. (2)

Note that
∫
|fµ(x)− fν(x)| dx is in fact the L1 distance, and the equivalence ∥·∥TV = 1

2 ∥·∥L1
is

well known, see Cover and Thomas (2012).

For a ∈ {0, 1}, let µa be the distribution of Z given A = a, i.e. µa(·) := P (Z = ·|A = a). We
denote the distance induced by the representation as DTV (Z) = ∥µ0 − µ1∥TV , and for γ ≥ 0, we
say that the representation Z is γ-fair iff

DTV (Z) = ∥µ0 − µ1∥TV ≤ γ (Fairness Condition). (3)

Note that (3) is a quantitative relaxation of the “perfect fairness” condition in the sense of statistical
parity, which requires Z ⊥⊥ A. Specifically, observe that by definition, Z ⊥⊥ A iff (3) holds with
γ = 0 (i.e. µ0 = µ1). In addition, as shown in Madras et al. (2018), (3) implies several other common
fairness criteria, in particular, bounds on demographic parity and equalized odds metrics for any
downstream classifier built on top of Z.

Next, we describe the measurement of information loss in Y due to the representation. Let h : ∆Y →
R be a continuous and concave function on the set of probability distributions on Y , ∆Y . The quantity
h(P (Y |X = x)) will measure the best possible prediction accuracy of Y conditioned on X = x, for
varying x. As an example, consider the case of binary Y , Y = {0, 1}. Every point in ∆Y can be
written as (p, 1− p) for p ∈ [0, 1], and we may choose h to be the optimal binary classification error,

h((1− p, p)) = min(p, 1− p). (4)

Another possibility it to use the entropy, h((1− p, p)) = p log p+ (1− p)log(1− p). The average
uncertainty of Y is given by Ex∼Xh(P (Y |X = x)). Note that this notion does not depend on a
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particular classifier, but reflects the performance the best classifier can possibly achieve (under
appropriate cost).

The goal of fair representation learning is then to find representations Z that for a given γ ≥ 0 satisfy
the constraint (3), and under that constraint minimize the objective E = Eθ given by

Eθ = Ez∼Zh(P (Y |Z = z)). (5)

That is, the representation should minimise the optimal Y prediction error (using Z) under the fairness
constraint.

The curve that associates to every 0 ≤ γ ≤ 1 the minimum of (5) over all representations Z which
satisfy (3) with γ is referred to as the Pareto Front of the Fairness-Performance trade-off.

In supplementary material Section A we show that for any representation, Ez∼Zh(P (Y |Z = z)) ≥
Ex∼Xh(P (Y |X = x)), i.e. representations generally decrease or maintain the performance.

3.2 Classification and Factorization

In this section we show that the Pareto front of binary classifiers, with accuracy performance and
statistical parity fairness measure, can be computed from the Pareto front of representations with total
variation fairness measure. In fact, Lemma 3.1 below states that both Pareto fronts amount to the
same curve. As discussed in Section 1, this equivalence implies that MIFPO can be used to evaluate
fair classifiers, in addition to fair representations.

For a binary classifier Ŷ of Y , with (X,A) as features. The prediction error is defined as usual by
ϵ(Ŷ ) := P

(
Ŷ ̸= Y

)
. The statistical parity of Ŷ is defined as

DSP (Ŷ ) :=
∣∣∣P(Ŷ = 1|A = 1

)
− P

(
Ŷ = 1|A = 0

)∣∣∣ . (6)

Lemma 3.1. Let Ŷ be a classifier of Y , let the representation uncertainty measure be given by (4).
Then there is a representation given by a random variable Z on a set Z with |Z| = 2, such that

Ez∼Zh(P (Y |Z = z)) ≤ ϵ(Ŷ ) and ∥µ0 − µ1∥TV ≤ DSP (Ŷ ). (7)

Conversely, for any given representation Z, there is a classifier Ŷ of Y as a function of Z (and thus
of (X,A)), such that

ϵ(Ŷ ) ≤ Ez∼Zh(P (Y |Z = z)) and DSP (Ŷ ) ≤ ∥µ0 − µ1∥TV . (8)

The Proof of Lemma 3.1 is presented in Supplementary Material Section I.

We now describe the Factorization result. Let f∗ : X ×A → ∆Y be the Bayes optimal classifier of
Y given X,A. That is, for every x ∈ X , a ∈ A, f∗(x, a) is the conditional distribution of Y given
x, a, i.e. f∗(x, a) = P (Y = ·|X = x,A = a). Denote by (X ′, A) a new pair of random variables,
taking values in ∆Y ×A, given by (X ′, A) = (f∗(X,A), A).
Lemma 3.2 (Factorization). For any representation Z of (X,A), there is a representation Z ′ of
(X ′, A), such that

Ez′∼Z′h(P (Y |Z ′ = z′)) ≤ Ez∼Zh(P (Y |Z = z)) and DTV (Z
′) ≤ DTV (Z). (9)

In words, for every representation Z, we can find a representation Z ′ that only accesses (x, a) through
the value f∗(x, a), and is at least as good in terms of both fairness and performance. Equivalently,
this means that any two points (x1, a) and (x2, a) with coinciding conditional Y distribution may
be treated as identical for the purposes of constructing optimal representations. As a result, to find
optimal tradeoffs, we can only consider the representations Z ′ on the small space ∆Y ×A, rather
than Z on the much bigger space X ×A.

Observations related to Lemma 3.2 were made in the context of classification in Kim et al. (2020),Xian
et al. (2023), and Wang et al. (2023), which also start from the Bayes optimal classifier. Lemma 3.2
generalizes these observations to representations and to general losses. The proof may be found in
Supplementary K.
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(a) (b)

Figure 2: (a) The MIFPO Setting (b) Distribution of P (Y = 1|X,A) for each group across datasets.

3.3 The Invertibility Theorem

In this section we define the notion of invertibility for representations, and show that considering
invertible representations is sufficient for computing the Pareto front.

A representation Z on a set Z is invertible if for every z ∈ Z and every a ∈ {0, 1}, there is at most
one x ∈ X such that P (Z = z|X = x,A = a) > 0. In words, a representation is invertible, if any
given z can be produced by at most two original features (x, a), and at most one for each value a.
For z ∈ Z , we say that an (x, a) is a parent of z if P (Z = z|X = x,A = a) > 0.
Theorem 3.1. Let Z be any representation of (X,A) on a set Z . Then there exists an invertible
representation Z ′ of (X,A), on some set Z ′, such that

Ez′∼Z′h(P (Y |Z ′ = z′)) ≤ Ez∼Zh(P (Y |Z = z)) and DTV (Z
′) = DTV (Z). (10)

In words, for every representation, we can find an invertible representation of the same data which
satisfies at least as good a fairness constraint, and has at least as good performance as the original. In
particular, this implies that when one searches for optimal performance representations, it suffices to
only search among the invertible ones.

The proof proceeds by observing that if an atom z ∈ Z has more than one parent for a fixed a,
then one can split this atom into two, with each having less parents. However, the details of this
construction are somewhat intricate and the full argument can be found in Section C.

Although in this paper we concentrate on the case of binary sensitive variable, we note that Theorem
3.1 may be extended to multi valued attributes, with a similar argument. In that case, invertibility
would mean that every z ∈ Z would still have at most two parents, u, v, corresponding to different
values a, a′ of A.

4 The Model Independent Optimization Problem

In this Section we motivate and introduce the MIFPO optimisation problem, and then discuss the full
Pareto front computation procedure starting from the raw data.

4.1 MIFPO Definition

For the purposes of this Section, we assume that the x feature space X is finite. In the next section,
Section 4.2, we describe how we obtain such finite spaces by using the factorization result and
discretizing ∆Y . Note, however, that the full original, possibly high dimensional feature space X , is
never discretized.

Write S0 = {(x, 0) | x ∈ X} = X × {0}, and similarly S1 = X × {1}, for the two halves of the
full feature space, X ×A = S0 ∪ S1.

Parameters: The MIFPO parameters model the data distribution and are as follows: (a) the probabil-
ity distributions β0 ∈ ∆S0 and β1 ∈ ∆S1 , on S0 and S1 respectively, modeling P ((X,A)|A = 0)
and P ((X,A)|A = 1) respectively, i.e. the distribution of the data features on each sensitive sub-
group. (b) The subgroup proportions αa = P (A = a), and (c) the conditional Y distributions,
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ρu, ρv ∈ ∆Y , modeling ρu = P (Y = ·|(X,A) = u) when a = 0 or ρv = P (Y = ·|(X,A) = v)
when a = 1.

Representation Space: Perhaps the first question one can ask when constructing a representation of
the data as above is: How large the representation space should be? We now answer this question
using the theory of Section 3.

Fix an integer k ≥ 2. The representation space Z will be a finite set which can be written as
Z = S0 × S1 × [k], (11)

where [k] := {1, 2, . . . , k}. That is, every point z ∈ Z corresponds to some triplet (u, v, j), with
u ∈ S0, v ∈ S1, j ∈ [k]. To explain this choice, recall that by the Invertibility result, we know that we
may consider only invertible representations. In such representations, every point z ∈ Z is indexed
by a pair of parents (u, v) ∈ S0 × S1, suggesting that we may index the points by S0 × S1 to begin
with. Next, for a given such pair (u, v), we may ask how many points z should have the same pair
(u, v) as their parents? In Supplementary Section D, we show that using k points for every pair, we
can obtain uniform approximation over all representations. That is, given a degree of approximation
ε, Lemma D.1 provides a bound on k which is sufficient to obtain such approximation. While such
a bound would clearly depend on ε, we not that it does note depend on the sizes |S0| , |S1|. These
considerations explain the choice of (11) as the representation space. We have used k = 5 in all
experiments.

Variables: The variables of the problem model the representation itself. They will be de-
noted by rau,v,j for (u, v, j) ∈ Z and a ∈ A, and model the probabilities rau,v,j =
P (Z = (u, v, j)|(X,A) = s), where either a = 0 and s = u ∈ S0, or a = 1 and s = v ∈ S1

for some v ∈ X . That is, for a = 0, points u transition to (u, v, j) for some v ∈ S1, j ∈ [k], and
similarly for a = 1, points v transition to (u, v, j) for some u ∈ X , j ∈ [k]. This notation preserves
our convention that (u, v, j) ∈ Z has u and v as its only parents. The situation is illustrated in Figure
2(a).

Note that the variables represent probabilities, and thus satisfy the following constraints:
rau,v,j ≥ 0, ∀(u, v, j) ∈ Z,∀a ∈ A (12)∑
v∈S1,j∈[k]

r0u,v,j = 1 ∀u ∈ S0 and
∑

u∈S0,j∈[k]

r1u,v,j = 1 ∀v ∈ S1 (13)

Performance Objective and Fairness Constraints: With these preparations, we are ready to write
the performance cost (5) in the new notation:

Er =
∑

z=(u,v,j)

[
α0β0(u)r

0
u,v,j + α1β1(v)r

1
u,v,j

]
· h

(
ρuα0β0(u)r

0
u,v,j + ρvα1β1(v)r

1
u,v,j

α0β0(u)r0u,v,j + α1β1(v)r1u,v,j

)
.

(14)
Indeed, observe that due to the structure of our representations, every z has two parents, and we have
P (Z = z) =

(
α0β0(u)r

0
u,v,j + α1β1(v)r

1
u,v,j

)
. Similarly, P (Y |Z = z) is computed via

P (Y |z) =
∑
x,a

P (Y |x, a, z)P (a, x|z) =
∑
x,a

P (Y |x, a)P (z|a, x)P (a, x) /P (z) ,

and substituted inside h to obtain (14). As we show in Supplementary E, the cost (14) is a concave
function of the variables r.

We now proceed to discuss the fairness constraint. Recall that we define µa(z) = P (Z = z|A = a),
for a ∈ {0, 1}. For z = (u, v, j) we have then µa((u, v, j)) = βa(u)r

a
u,v,j , for a ∈ {0, 1}, and we

can write

DTV (Z) = ∥µ0 − µ1∥TV =
1

2

∑
z

|µ0(z)− µ1(z)| =
1

2

∑
(u,v,j)

∣∣β0(u)r
0
u,v,j − β1(v)r

1
u,v,j

∣∣ (15)

and the Fairness constraint, for a given γ ∈ [0, 1], is thus simply
1

2

∑
(u,v,j)

∣∣β0(u)r
0
u,v,j − β1(v)r

1
u,v,j

∣∣ ≤ γ. (16)

We now summarise the full MIFPO problem.
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Definition 4.1 (MIFPO). For a fixed finite ground set X ×A = S0 ∪ S1, the problem parameters
are the weight α0, the distributions β0, β1, on S0 and S1 respectively, and the distributions ρx ∈ ∆Y
for every x ∈ S0 ∪ S1. The problem variables are

{
r0u,v,j , r

1
u,v,j

}
(u,v,j)∈Z as defined above. We are

interested in minimizing the concave function (14), subject to the constraints (12), (13), and (16).

The relationship between MIFPO and the Optimal Transport problem is detailed in Supplementary B.

Finally, observe that the MIFPO constraints above linear, with (16) being equivalent to two linear
inequality constraints. We note that these constraints may be replace by equivalent linear equality
constraints, via appropriate slack variables, which is more convenient in practice. See Supplementary
F for details.

4.2 The Full Algorithm

In this Section we summarize the full Pareto front computation algorithm, including the estimation of
the MIFPO parameters α,β and ρ as discussed above.

Let D = {((xi, ai), yi)}i≤N be the dataset, and write Da = {((xi, ai), yi) ∈ D | ai = a}, so that
D = D0 ∪D1.

The algorithm proceeds in the following steps: Step 1: we learn the probability estimators c0, c1 :
Rd → ∆Y , separately on D0 and D1. These estimators should approximate the optimal Bayes
classifier (Section 3.2). Note that such estimation of probabilities is well studied, and is known as
calibration, see Niculescu-Mizil and Caruana (2005), Kumar et al. (2019), (Berta et al., 2024).

Step 2: (Discretization and Parameter estimation) For a given integer L > 0, the space ∆Y is
discretized into L bins. This corresponds to taking the ground sets S0, S1 in MIFPO to be of size
L. The data Da is then mapped into the L bins using ca. The distribution βa(w) is then simply
measures the proportion of points {ca(x)}(x,a)∈Da

that fall into bin w ≤ L. Finally, for every bin w,
we choose an arbitrary point inside that bin as the representative distribution, ρw. The parameters αa

are estimated simply by αa = |Da| / |D|. Note that for binary Y , ∆Y is simply the interval [0, 1],
which is trivial to discretize. See Figure 2(b) for an example of such histograms on real data. We note
that one could easily consider more complex discretization schemes, such as clustering, which could
be applied efficiently to multi label problems. See Supplementary J for a discussion.

Step 3: For a given a fairness threshold γ > 0, we can now construct the MIFPO instance, Definition
4.1, with |S0| = |S1| = L, the additional approximation parameter k, and α, β, ρ as discussed above.
As discussed in Section 4.1, we found it sufficient to use k = 5 throughout the paper. The MIFPO is
then solved using the existing methods, as detailed in Section 5. The full algorithm is schematically
show as Algorithm 1, Supplementary H.1.

5 Experiments

Our approach requires two main computational components: building calibrated classifiers to evaluate
ca, and solving the discrete optimization problem described in Section 4.2. For the calibrated classifier,
we have used XGBoost (Chen et al., 2015), with Isotonic Regression calibration, as implemented
in sklearn, Pedregosa et al. (2011). Next, as discussed in Sections 1, 4.1, MIFPO is a concave
minimisation problem, under linear constraints. To solve its, we have used the DCCP framework
and the associated solver (Shen et al., 2016, 2024), which are based on the combination of convex-
concave programming (CCP) Lipp and Boyd (2016) and disciplined convex programming, Grant
et al. (2006). We note that although local minima are theoretically possible, the above framework
is well-established, and the concave structure can be exploited to allow finding optimal solutions
in most practical cases, (Shen et al., 2016). In particular, our results do not indicate local minima
issues. However, it may also be worth noting that MIFPO could in principle be also solved with
the classical branch-and-bound methods, Benson (1995), which may be slower but do guarantee the
global optimum solution.

Throughout the experiments, we use the missclassification error loss h given by (4). Additional
implementation details may be found in Supplementary Section H.

Our experimental validation of MIFPO encompasses three standard fairness benchmarks: the Health
dataset alongside two variants of ACSIncome—one restricted to California (ACSIncome-CA) and
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Figure 3: Comparison of fairness-accuracy trade-offs across three benchmark datasets: Health (left),
ACSIncome-CA (middle), and ACSIncome-US (right). MIFPO’s Pareto front is represented as a solid
line with markers. The horizontal axis represents the fairness constraint (statistical parity distance),
while the vertical axis shows prediction accuracy.

another spanning the entire United States (ACSIncome-US). In Figure 3 we evaluate MIFPO against
five state-of-the-art fair representation techniques: CVIB (Moyer et al., 2019), FCRL (Gupta et al.,
2021), FNF (Balunović et al., 2022b), sIPM (Kim et al., 2023), and Fare (Jovanović et al., 2023).
Each competitive approach was tuned across diverse hyperparameter settings to generate a spectrum
of representations balancing fairness and accuracy. Moreover, we evaluated MIFPO against several
fair-classification methods on multiple datasets as presented in the Supplementary Section H.

The empirical results presented in Figure 3 demonstrate MIFPO’s effectiveness relative to prior
approaches. MIFPO consistently achieves performance equal to or superior than the baseline methods
across almost all operating points. Furthermore, MIFPO provides a significant methodological
advantage through its ability to characterize the complete Pareto frontier. In the figure, MIFPO’s
performance is visualized as a solid line with points that trace the entire Pareto front, while com-
peting algorithms are represented as individual points corresponding to different hyperparameter
configurations.

5.1 Implementation

All evaluations can be found at https://github.com/bp6725/
Efficient-Fair-Pareto-Paper. The MIFPO algorithm’s source code is available in the
https://github.com/bp6725/FairPareto repository. The algorithm is also implemented as the
"FairPareto" Python package on PyPI, which provides a scikit-learn compatible API for computing
optimal fairness-performance Pareto fronts. The package supports two usage modes: a tabular mode
with automatic classifier training and calibration given a sensitive attribute column, and a second
mode for any data type (images, text) where users provide pre-trained classifiers for each sensitive
group. This enables researchers to benchmark their fair classification methods against theoretical
optimality with minimal code and make informed decisions about fairness-performance trade-offs.
The package is open-source, available on PyPI, and includes comprehensive documentation with
examples for both tabular and image data.

6 Conclusions, Limitations, And Future Work

In this paper we have introduced new fundamental properties of optimal fair representations. In
particular, these are the first theoretical results that allow approximation of the Pareto front for
arbitrary concave performance measures. We have used these results to develop a model independent
procedure for the computation of Fairness-Performance Pareto front from data, demonstrated the
procedure on real datasets, and have shown that it may be used as a benchmark for other representation
learning algorithms.
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We now discuss limitations and a few possible directions for future work. This work primarily
concentrated on binary sensitive attribute A and binary Y , with the aim to develop the underlying
new principles in the simplest case first. As discussed earlier (Sections 1, J), the multi-label case may
be treated by more elaborate discretizations. We also noted that the Invertibility Theorem holds for
multi valued sensitive attributes as well, which allows to extend the approximation analysis to that
case too. Both of these steps, however, would increase the MIFPO problem size. On the other hand,
it is also worth noting that this size does not depend directly neither on the feature dimension d, nor
on the sample size N and thus the problem scales well in that sense.

In view of these observations, we believe it would be of interest to study the following question on
the true complexity of the tradeoff evaluation: Suppose we are given access to the Bayes optimal
classifier of the data, f∗. This encapsulates, in a sense, most of the “continuous” information of
the problem. Then, how scalable can Pareto estimation methods be made theoretically, in terms of
|Y| , |A|, while still maintaining controllable approximation bounds?
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implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
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of the paper (regardless of whether the code and data are provided or not)?
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one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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to reproduce that algorithm.
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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with the final version of the paper. The datasets used are publicly available.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We supply all the necessary details for the reproduction of the results. Further-
more, the full details will be included as part of the published code.
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
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• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
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Answer: [Yes]
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experiments of this paper together run in under day on a standard desktop.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have examined the Code of Ethics and verified that the research conforms
with the code.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Answer: [NA]
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not see reasonable scenarios in which release of our code may be risky.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets are precisely referenced.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
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13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets this time. As mentioned earlier, the implementa-
tion of the methods in this paper will be released with the final version of the paper.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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well as details about compensation (if any)?
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• Including this information in the supplemental material is fine, but if the main contribu-
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Monotonicity of Loss Under Representations

As discussed in Section 3.1, we observe that representations can not increase the performance of the
classifier (i.e decrease the loss).

Lemma A.1. For every (Y,X,A), every representation Z as above, and concave h,

Ez∼Zh(P (Y |Z = z)) ≥ E(x,a)∼(X,A)h(P (Y |X = x,A = a)). (17)

Note that the right hand-side above can be considered a “trivial" representation, Z = (X,A).

In what follows, to simplify the notation we use expressions of the form P (x, a|z) to denote the formal
expressions P (X = x,A = a|Z = z), whenever the precise interpretation is clear from context.

Proof. For every value y ∈ Y , we have

P (Y = y|Z = z) =
∑
a

∫
dx P (Y = y|x, a, z) ∂P (x|a, z)

∂x
P (a|z) (18)

=
∑
a

∫
dx P (Y = y|x, a) ∂P (x|a, z)

∂x
P (a|z) (19)

= E(x,a)∼(X,A)|Z=zP (Y = y|x, a) . (20)

Here, on line (18), ∂P(x|a,z)
∂x is the density of P (x|a, z) with respect to dx. Crucially, the transition

from (18) to (19) is using the property (1). The transition (19) to (20) is a change of notation. Using
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(20) and the concavity of h, we obtain

Ez∼Zh(P (Y |Z = z)) ≥ Ez∼ZE(x,a)∼(X,A)|Z=zh (P (Y |x, a)) (21)

= E(x,a)∼(X,A)h(P (Y |X = x,A = a)). (22)

B MIFPO and Optimal Transport

In this Section we discuss the relation between the MIFPO minimisation problem, Definition 4.1,
and the problem of Optimal Transport (OT). General background on OT may be found in Peyré et al.
(2019). We discuss the similarity between OT and the minimisation of (14) under the constraint
(16) with γ = 0, i.e. the perfectly fair case. In this case, (16) is equivalent to the condition
β0(u)ru,v,j = β1(v)rv,u,j , for all (u, v, j) ∈ Z . Next, note that thus in is case the expression for
P (Y |Z = (u, v, j)) is

ρuα0β0(u)ru,v,j + ρvα1β1(v)rv,u,j
α0β0(u)ru,v,j + α1β1(v)rv,u,j

=
ρuα0 + ρvα1

α0 + α1
, (23)

and this is independent of the variables r! Therefore we can write the cost (14) as

∑
u,v

(α0 + α1)h

(
ρuα0 + ρvα1

α0 + α1

)
1

2

∑
j≤k

β0(u)ru,v,j + β1(v)rv,u,j

 . (24)

Note further that for fixed u, v, the different j’s in this expression play similar roles and could be
effectively merged as a single point.

The cost (24) has several similarities with OT. First, in both problems we have two sides, S0 and
S1, and we have a certain fixed loss associated with "matching" u and v. In case of (24), this loss is
(α0 + α1)h

(
ρuα0+ρvα1

α0+α1

)
, which describes the information loss incurred by colliding u and v in the

representation. And second, similarly to OT, (24) it is linear in the variables r. Linear programs are
conceptually considerably simpler than minimisation of the concave objective (14).

C Proof Of Theorem 3.1

In this Section we prove Theorem 3.1.

To keep the notation and the main argument concise, we prove the result under the assumption that
(X,A) is finitely supported. Since no assumptions are made on the cardinalities of the supports, the
general measurable case follows by standard approximation arguments.

We now introduce the additional notation necessary for the proof. Let S0, S1 be finite disjoint sets,
where Sa represents the values of (X,A) when A = a, for a ∈ {0, 1}. Denote S = S0 ∪ S1. We are
assuming that there is a probability distribution ζ on S, and A is the random variable A = 1{s∈S1}.
X is defined as taking the values s ∈ S, with P (X = s) = ζ(s). Further, the variable Y is defined
to take values in a finite set Y , and for every s ∈ S, its conditional distribution is given by ρs ∈ ∆Y .
That is, P (Y = y|X = s,A = a) = ρs(y) = ρs,a(y). 2 This completes the description of the data
model.

For a ∈ {0, 1} we denote αa = P (A = a) = ζ(Sa), and βa(s) = P (X = s|A = a). Observe that
βa(s) = 0 if s /∈ Sa, and βa(s) = ζ(s)/ζ(Sa) if s ∈ Sa.

We now describe the representation. The representation will take values in a finite set Z . For
every s ∈ S and z ∈ Z , let Ta(z, s) = P (Z = z|X = s,A = a) be the conditional probability of
representing s as z. Ta are sometimes referred as the transition kernels of the representation. For

2Note that there is a slight redundancy in the notation P (Y = y|X = s,A = a) here, since a is determined
by s. However, to retain compatibility with the standard notation, literature, we specify them both. This is
similar to the continuous situation, in which although A is technically part of the features, X and A are specified
separately.
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fixed (X,A), the Ta’s fully define the distribution of the representation Z and we shall refer to the
representation as T or as Z in interchangeably. Finally, for a ∈ {0, 1} denote

µa(z) = Taβa = P (Z = z|A = a) =
∑
s∈Sa

βa(s)Ta(z, s). (25)

With the new notation, a representation T is invertible if for every z ∈ Z and every a ∈ {0, 1}, there
is at most one s ∈ Sa such that Ta(z, s) > 0. In words, a representation is invertible, if any given z
can be produced by at most two original features s, and at most one in each of S0 and S1.

Given a representation T and z ∈ Z , we say that an s ∈ S is a parent of z if Ta(z, s) > 0 for the
appropriate a.

Proof Of Theorem 3.1. Assume T is not invertible. Then there is a z ∈ Z which has at least two
parents in either S0 or S1. Assume without loss of generality that z has two parents in S0. Let

U = {s ∈ S0 | T0(z, s) > 0} , V = {s ∈ S1 | T1(z, s) > 0} (26)

be the sets of parents of z in S0 and S1 respectively. Chose a point x ∈ U , and denote by Ur = U\{x}
the remainder of U . By assumption we have |Ur| ≥ 1. We also assume that |V | > 0. The easier case
|V | = 0 will be discussed later.

Now, we construct a new representation, T ′. The range of T ′ will be Z ′ = Z \ z ∪ {z′, z′′}. That is,
we remove z and add two new points. Denote

κ = P (x|z, a = 0) =
β0(x)T0(z, x)∑
s∈U β0(s)T0(z, s)

. (27)

Then T ′ is defined as follows:

T ′
a(h, s) = Ta(h, s) for all a ∈ {0, 1}, all s ∈ S and all h ∈ Z \ {z}

T ′
0(z

′, x) = T0(z, x)

T ′
0(z

′′, u) = T0(z, u) for all u ∈ Ur

T ′
1(z

′, v) = κT1(z, v) for all v ∈ V

T ′
1(z

′′, v) = (1− κ)T1(z, v) for all v ∈ V .

(28)

All values of T ′ that were not explicitly defined in (28) are set to 0. In words, on the side of S0, we
move all the parents of z except x to be the parents of z′′, while z′ will have a single parent, x. On
the S1 side, both z′ and z′′ will have the same parents as z, with transitions multiplied by κ and 1−κ
respectively. The multiplication by κ is crucial for showing both inequlaities in (10).

Note that T ′ can be though of as splitting z into z′ and z′′, such that z′ has one parent on the S0 side,
and z′′ has strictly less parents than z had. Once we show that T ′ satisfies (10), it is clear that by
induction we can continue splitting T ′ until we arrive at an invertible representation which can no
longer be split, thus proving the Lemma.

In order to show (10) for T ′, we will sequentially show the following claims:

P (z) = P (z′) + P (z′′) and P (z′) = κP (z) (29)

P (a|z) = P (a|z′) = P (a|z′′) for a ∈ {0, 1} (30)
for a = 1 P (s|z, a) = P (s|z′, a) = P (s|z′′, a) ∀s ∈ S

for a = 0, s ∈ Ur

{
P (x|z′, a) = 1 P (x|z′′, a) = 0

P (s|z′, a) = 0 P (s|z′′, a) = (1− κ)−1P (s|z, a)
(31)

P (Y |z) = κP (Y |z′) + (1− κ)P (Y |z′′) (32)

P (z)h(P (Y |z)) ≥ P (z′)h(P (Y |z′)) + P (z′′)h(P (Y |z′′)) (33)

|µ0(z)− µ1(z)| = |µ′
0(z

′)− µ′
1(z

′)|+ |µ′
0(z

′′)− µ′
1(z

′′)| . (34)

Here the probabilities involving z′, z′′ refer to the representation T ′. Observe that the left hand side
of (33) is the contribution of z to the performance cost Et∼Zh(P (Y |Z = t)) of T , while the right
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hand side of (33) is the contribution of z′, z′′ to the performance cost of T ′. Since all other elements
t ∈ Z have identical contributions, this shows the first inequality in (10). Similarly, recall that

∥µ0 − µ1∥TV =
1

2

∑
t∈Z

|µ0(t)− µ1(t)| , (35)

and thus the left hand side of (34) is the contribution of z to ∥µ0 − µ1∥TV , with the right hand
side being the contribution of z′, z′′ to ∥µ′

0 − µ′
1∥TV , therefore yielding the claim ∥µ′

0 − µ′
1∥TV =

∥µ0 − µ1∥TV .

Claim (29): By definition,

P (z′) = α0β0(x)T
′
0(z

′, x) + α1

∑
s∈V

β1(s)T
′
1(z

′, s) (36)

= α0β0(x)T0(z, x) + κα1

∑
s∈V

β1(s)T1(z, s) (37)

= κα0

∑
s∈U

β0(s)T0(z, s) + κα1

∑
s∈V

β1(s)T1(z, s) (38)

= κP (z) . (39)

Similarly, by definition we have

P (z′′) = α0

∑
s∈Ur

β0(s)T0(z, s) + (1− κ)κα1

∑
s∈V

β1(s)T1(z, s), (40)

and summing this with (37), we obtain P (z) = P (z′) + P (z′′).

Claim (30): Note that it is sufficient to prove the claim for a = 0 since the probabilities sum to 1.
Write

P (a = 0|z) = P (a = 0, z)

P (z)
(41)

=
α0

∑
s∈U β0(s)T0(z, s)

P (z)
(42)

=
κ · α0

∑
s∈U β0(s)T0(z, s)

κ · P (z)
(43)

=
α0β0(x)T0(z, x)

P (z′)
(44)

= P (a = 0|z′) . (45)

Similarly,

P (a = 0|z) = P (a = 0, z)

P (z)
(46)

=
α0

∑
s∈U β0(s)T0(z, s)

P (z)
(47)

=
(1− κ) · α0

∑
s∈U β0(s)T0(z, s)

(1− κ) · P (z)
(48)

=
α0

∑
s∈Ur β0(s)T0(z, s)

P (z′′)
(49)

= P (a = 0|z′′) . (50)
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Claim (31): For a = 1, let us show P (s|z, a) = P (s|z′, a).

P (s|z, a = 1) =
α1β1(s)T1(z, s)

α1

∑
s′∈V β1(s′)T1(z, s′)

(51)

=
κα1β1(s)T1(z, s)

κα1

∑
s′∈V β1(s′)T1(z, s′)

(52)

=
α1β1(s)T

′
1(z, s)

α1

∑
s′∈V β1(s′)T ′

1(z, s
′)

(53)

= P (s|z′, a = 1) . (54)

The statement P (s|z, a) = P (s|z′′, a) is shown similarly. Next, for a = 0, we have P (x|z′, a) = 1
and P (x|z′′, a) = 0 by the definition of the coupling T ′. Moreover, for s ∈ Ur, P (s|z′, a) = 0 also
follows by the definition of T ′. Finally, write

P (s|z′′, a = 0) =
α0β0(s)T

′
0(z

′′, s)∑
s∈Ur α0β0(s′)T ′

0(z
′′, s′)

(55)

=
α0β0(s)T0(z, s)∑

s∈Ur α0β0(s′)T0(z, s′)
(56)

=
α0β0(s)T0(z, s)

(1− κ)
∑

s∈U α0β0(s′)T0(z, s′)
(57)

= (1− κ)−1P (s|z, a = 0) . (58)

Claim (32): We first observe that for any representation (and any z),

P (Y = y|Z = z) =

∑
s,a P (Y = y, s, a, z)

P (z)
(59)

=

∑
s,a P (Y = y|s, a)P (s, a, z)

P (z)
(60)

=
∑
a

P (a|z)

[∑
s∈Sa

P (Y = y|s, a)P (s|a, z)

]
, (61)

where we have used the property (1) for the transition (59)-(60). Now, using (31), for a = 1 we have∑
s∈S1

P (Y = y|s, a = 1)P (s|a = 1, z) =
∑
s∈S1

P (Y = y|s, a = 1)P (s|a = 1, z′)

=
∑
s∈S1

P (Y = y|s, a = 1)P (s|a = 1, z′′) . (62)

For a = 0, we have for z′ using (31):∑
s∈S0

P (Y = y|s, a = 1)P (s|a = 1, z′) = P (Y = y|x, a = 1) . (63)

For a = 0 and z′′ we have∑
s∈S0

P (Y = y|s, a = 1)P (s|a = 1, z′′) =
∑
s∈Ur

P (Y = y|s, a = 1)P (s|a = 1, z′′) (64)

= (1− κ)−1
∑
s∈Ur

P (Y = y|s, a = 1)P (s|a = 1, z)

(65)

where we have used (31) again on the last line.

Combining (62),(63),(65), and using (30) and the general expression (61), we obtain the claim (32).

Claim (33): This follows immediately from (32) by using (29) and the concavity of h.
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Claim (34): By definition, for every representation, µa(z) = P (Z = z|a) = P(z|a)P(z)
P(a) . Thus, using

(29),(30) we have for a ∈ {0, 1},

µa(z
′) = κµa(z) and µa(z

′′) = (1− κ)µa(z), (66)

which in turn yields (34).

It remains only to recall that we have derived (33),(34) under the assumption that |V | > 0. That is,
we assumed that the point z which fails invertability on S0 has some parents in S1. The case when
|V | = 0, i.e. there are no parents in S1 can be treated using a similar argument, but is much simpler.
Indeed, in this case one can simply split z into z′ and z′′ and splitting the S0 weight between them as
before, without the need to carefully balance the interaction of probabilities with S1 via κ.

D Uniform Approximation and Two Point Representations

As discussed in Sections 1,4.1, we are interested in showing that all optimal invertible representations,
no matter which, and no matter on which set Z ′, can be approximated using a representation with the
following property: For every u ∈ S0, v ∈ S1, there are at most k points z ∈ Z that have (u, v) as
parents, see Figure 2(a). Here k would depend only on the desired approximation degree, but not
on Z ′, or on the exact representation we are approximating. We therefore refer to this result as the
Uniform Approximation result. Its implications for practical use were discussed in Section 4.1.

The notation used in this Section was introduced in the beginning of Section C.

To proceed with the analysis, in what follows we introduce the notion of two-point representation.
The main result is given as Lemma D.1 below.

This Section uses the notation of Section 3.3. Let T be an invertible representation, let u ∈ S0, v ∈ S1

be some points, and denote by Zuv =
{
zj
}k
1

the set of all points z ∈ Z which have u and v as
parents. Denote by

wu =

k∑
j=1

β0(u)T0(z
j , u) and wv =

k∑
j=1

β1(v)T1(z
j , v) (67)

the total weights of β0 and β1 transferred by the representation from u and v respectively to Zuv.
Recall that ρu, ρv denote the distributions of Y conditioned on u, v. We call the situation above,
i.e. the collection of numbers

({
β0(u)T0(z

j , u)
}
j≤k

,
{
β1(v)T1(Z

j , v)
}
j≤k

)
, a two point repre-

sentation, since it describes how the weight from the points u, v is distributed in the representation,
independently of the rest of the representation. The contribution of Zuv to the global performance
cost is

Euv,T :=
∑
j≤k

P
(
zj
)
h(P

(
Y |zj

)
) (68)

=
∑
j≤k

(
α0β0(u)T0(z

j , u) + α1β1(v)T1(z
j , v)

)
h

(
α0β0(u)T0(z

j , u)ρu + α1β1(v)T1(z
j , v)ρv

α0β0(u)T0(zj , u) + α1β1(v)T1(zj , v)

)
,

(69)

while its contribution to the fairness condition is

Fuv,T =
1

2

∑
j≤k

∣∣β0(u)T1(z
j , u)− β1(v)T1(z

j , v)
∣∣ . (70)

Let us now consider two extreme cases of two-point representations. Assume that the total amounts
of weight to be represented, wu, wv are fixed. The first case is when k = 1, and this is the maximum
fairness case, since in this case the weights wu, wv overlap as much as possible. Indeed, the
contributions to the fairness penalty and performance cost in this case are

|wu − wv| and (α0wu + α1wv)h

(
α0wuρu + α1wvρv

α0wu + α1wv

)
(71)
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respectively. The other extreme case is when wu and wv do not overlap at all. This case be realised
with k = 2, by sending all wu to z1 and all wv to z2. The fairness and performance contributions
would be

wu + wv and α0wu · h (ρu) + α1wv · h (ρv) , (72)
respectively. Note that the fairness penalty is the maximum possible, while the performance cost
is the minimum possible (indeed, this is the cost before the representation, and any representation
can only increase it, by Lemma A.1). We thus observed that each two points u, v, with fixed total
weight wu, wv , can have their own Pareto front of performance-fairness. One could, in principle, fix a
threshold γuv , |wu − wv| ≤ γuv ≤ wu + wv for the fairness penalty (70), and obtain a performance
cost between that in (71) and (72). However, it is not clear how large the number of points k should
be in order to realise such intermediate representations. In the following Lemma we show that one
can uniformly approximate all the points on the two-point Pareto front using a fixed number of points,
that depends only on the function h. This means that in practice one can choose a certain number n
of z points, and have guaranteed bounds on the possible amount of loss incurred with respect to all
representations of all other sizes.
Lemma D.1. For every ε > 0, there a number n = nε depending only
on the function h, with the following property: For every two-point representation({

β0(u)T0(z
j , u)

}
j≤k

,
{
β1(v)T1(Z

j , v)
}
j≤k

)
, with total weights wu, wv, there is a two point

representation T ′ on a set Z ′
u,v , with the same total weights, such that |Z ′

uv| ≤ n, and such that

Fuv,T ′ ≤ Fuv,T and Euv,T ′ ≤ Euv,T + 2(wu + wv)ε. (73)

Proof. To aid with brevity of notation, define for j ≤ k

cj0 = α0β0(u)T0(z
j , u), cj1 = α1β1(v)T1(z

j , v). (74)

Then we can write

Euv,T =
∑
j≤k

(cj0 + cj1) · h

(
cj0ρu + cj1ρv

cj0 + cj1

)
, Fuv,T =

1

2

∑
j≤k

∣∣Λcj∣∣ , (75)

where Λ is the vector Λ = (α−1
0 ,−α−1

1 ), cj = (cj0, c
j
1), and Λcj is the inner product of the two.

Observe that the cost Euv,T depends on cj mainly through the fractions cj0
cj0+cj1

. Our strategy thus
would be to approximate all k of such fractions by a δ-net of a size independent of k. To this end, set

pj =
cj0

cj0 + cj1
(76)

and define huv : [0, 1] → R by

huv(p) = h(pρu + (1− p)ρv). (77)

Since h is continuous (by assumption), and defined on a compact set, it is uniformly continuous, and
so is huv. By definition, this means there is a δ > 0 such that for all p, p′ with |p− p′| ≤ δ, it holds
that |huv(p)− huv(p

′)| ≤ ε. Let us now choose {xi}ni=1 to be a δ net on [0, 1]. For every i ≤ n set

Γi =
{
j |

∣∣pj − xi

∣∣ ≤ δ, and i is minimal with this property
}
. (78)

That is, Γi is the set of indices j such that pj is approximated by xi. Using xi we construct the
representation T ′ as follows: For a ∈ {0, 1} set

c′ia =
∑
j∈Γi

cja. (79)

For n new points, zi ∈ Z ′
uv, set T ′

0(z
′i, u) = c′i0 /β0(u), T ′

1(z
′i, v) = c′i1 /β1(v). Note that the total

weights are preserved,
∑

i≤n c
′i
0 = wu and

∑
i≤n c

′i
1 = wv .

Next, for every j ∈ Γi we have ∣∣∣∣∣ cj0
cj0 + cj1

− xi

∣∣∣∣∣ ≤ δ. (80)
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Thus ∣∣∣∣ c′i0
c′i0 + c′i1

− xi

∣∣∣∣ =
∣∣∣∣∣∣
∑

j∈Γj

[
cj0 − (cj0 + cj1)xi

]
c′i0 + c′i1

∣∣∣∣∣∣ ≤
∑

j∈Γj
δ(cj0 + cj1)

c′i0 + c′i1
= δ. (81)

Next, observe that by the construction of xi,∣∣∣∣∣Euv,T −
∑
i

(c′i0 + c′i1 )huv(xi)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
i

∑
j∈Γi

(cj0 + cj1)huv(p
j)−

∑
i

(c′i0 + c′i1 )huv(xi)

∣∣∣∣∣∣ (82)

≤
∑
i

∑
j∈Γi

(cj0 + cj1)ε (83)

= (wu + wv)ε. (84)

In addition,∣∣∣∣∣Euv,T ′ −
∑
i

(c′i0 + c′i1 )huv(xi)

∣∣∣∣∣ =
∣∣∣∣∣∑

i

(c′i0 + c′i1 )huv(
c′i0

c′i0 + c′i1
)−

∑
i

(c′i0 + c′i1 )huv(xi)

∣∣∣∣∣ (85)

≤ (wu + wv)ε, (86)

where we have used (81) in the last transition.

Combining the two inequalities yields the second part of (73),

|Euv,T ′ − Euv,T | ≤ 2(wu + wv)ε. (87)

Finally, note that

∑
i

∣∣Λc′i∣∣ =∑
i

∣∣∣∣∣∣
∑
j∈Γj

Λcj

∣∣∣∣∣∣ (88)

≤
∑
i

∑
j∈Γj

∣∣Λcj∣∣ (89)

=
∑
j

∣∣Λcj∣∣ , (90)

yielding the first part of, and thus completing the proof of, statement (73).

It remains to observe that above we have used a δ net for huv, which depends on ρu, ρv. However,
we can directly build an appropriate δ-net in full range of h, the simplex ∆Y , which would produce
bounds valid for all u, v. Indeed, let δ′ be such that |h(ν)− h(ν)| ≤ ε for all µ, ν ∈ ∆Y with
∥u− v∥1 ≤ δ′. Observe that the map p 7→ pρv + (1− p)ρu is 2-Lipschitz from R to ∆Y equipped
with the ∥·∥1 norm, for any u, v ∈ ∆Y . Thus, choosing δ = 1

2δ
′, we have |huv(p)− huv(p

′)| ≤ ε if
|p− p′| ≤ δ. This completes the proof of the Lemma.

E Concavity Of Er

Note that the variables r appear in (14) both as coefficients multiplying h and inside the arguments of
h, in a fairly involved manner. Nevertheless, the cost turns out to still retain an interesting structure,
as it is concave, if h is. We record this in the following Lemma.
Lemma E.1. If h : ∆Y → R is concave, then of every ρ1, ρ2 ∈ ∆Y the function g : R2 → R, given
by g((c1, c2)) = (c1 + c2)h(

c1ρ1+c2ρ2

c1+c2
) is concave.

Proof. It is sufficient to show that for every c, c′ ∈ R2, we have g((c+ c′)/2) ≥ 1
2 (g(c) + g(c′). To

this end, define the map F : R2 → ∆Y by

F (c) =
c1ρ1 + c2ρ2
c1 + c2

(91)
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and note that

F ((c+ c′)/2) = F (c)
c1 + c2

c1 + c2 + c′1 + c′2
+ F (c′)

c′1 + c′2
c1 + c2 + c′1 + c′2

. (92)

It then follows that

g((c+ c′)/2) =
1

2
(c1 + c2 + c′1 + c′2)h(F ((c+ c′)/2)) (93)

=
1

2
(c1 + c2 + c′1 + c′2)h

(
F (c)

c1 + c2
c1 + c2 + c′1 + c′2

+ F (c′)
c′1 + c′2

c1 + c2 + c′1 + c′2

)
(94)

≥ 1

2
(c1 + c2 + c′1 + c′2)

[
c1 + c2

c1 + c2 + c′1 + c′2
h(F (c)) +

c′1 + c′2
c1 + c2 + c′1 + c′2

h(F (c′))

]
(95)

=
1

2
(g(c) + g(c′)) . (96)

F MIFPO Equality Constraint

As noted in the main text, although the inequality constraint (16) is convex in the variables r, and can
be incorporated directly into most optimisation frameworks, it may be significantly more convenient
to work with equality constraints. Using the following Lemma, we can find equivalent equality
constraints in a particularly simple form.

Lemma F.1. Let µ0, µ1 ∈ ∆Z be two probability distributions over Z and fix some γ ≥ 0. If
∥µ0 − µ1∥TV = γ then there exist ϕ0, ϕ1 ∈ ∆Z such that µ0 + γϕ0 = µ1 + γϕ1. In the other
direction, if there exist ϕ0, ϕ1 ∈ ∆Z such that µ0 + γϕ0 = µ1 + γϕ1, then ∥µ0 − µ1∥TV ≤ γ.

The proof may be found in Section G.

As consequence of this result, if we find distributions ϕ0, ϕ1 ∈ ∆Z such that µ0 + γϕ0 = µ1 + γϕ1

holds, then we know that (16) also holds, and conversely, if (16) holds, then distributions as above
exist.

Using this observation, we introduce new variables, ϕ0
u,v,j and ϕ1

u,v,j , for every (u, v, j) ∈ Z , which
correspond to ϕ0((u, v, j)) and ϕ1((u, v, j)) respectively. These variables will be required to satisfy
the following constraints:

ϕ0
u,v,j ≥ 0, ϕ1

u,v,j ≥ 0 ∀(u, v, j) ∈ Z (97)∑
u,v,j

ϕ0
u,v,j = 1 and

∑
u,v,j

ϕ1
u,v,j = 1 (98)

β0(u)r
0
u,v,j + γϕ0

u,v,j = β1(v)r
0
v,u,j + γϕ1

u,v,j ∀(u, v, j) ∈ Z. (99)

Here the first two lines encode the fact that ϕ0, ϕ1 are probabilities, while the third line encodes the
fairness constraint, as discussed above.

G Additional Proofs

Proof Of Lemma F.1

Proof. For this proof it is more convenient to work with the ℓ1 norm ∥·∥1 directly. Recall that
∥µ0 − µ1∥TV = 1

2 ∥µ0 − µ1∥1 and that

∥µ0 − µ1∥1 =
∑
z

|µ0(z)− µ1(z)| . (100)
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Assume that ∥µ0 − µ1∥1 = 2γ. Define the functions ϕ̄0(z) = 1{µ1≥µ0}(z) · (µ1(z)− µ0(z)) and
ϕ̄1(z) = 1{µ0≥µ1}(z) · (µ0(z)− µ1(z)). Note that we then have∑

z

ϕ̄0(z) =
∑
z

ϕ̄1(z) = γ. (101)

Indeed, define
η(z) = 1{µ0≥µ1}(z) · µ1(z) + 1{µ1≥µ0}(z) · µ0(z). (102)

Clearly, η + ϕ̄0 = µ1 and thus
∑

z η(z) + ϕ̄0(z) = 1. Similarly,
∑

z η(z) + ϕ̄1(z) = 1. Therefore
we have ∑

z

ϕ̄0(z) =
∑
z

ϕ̄1(z). (103)

Note also that we can write

2γ = ∥µ0 − µ1∥1 =
∑
z

|µ0(z)− µ1(z)| =
∑
z

(
ϕ̄0(z) + ϕ̄1(z)

)
, (104)

which combined with (103) yields (101).

Next, we can also directly verify that

µ0 + ϕ̄0 = µ1 + ϕ̄1, (105)

and thus setting ϕ0 = γ−1ϕ̄0, ϕ1 = γ−1ϕ̄1 completes the proof of this direction.

In the other direction, given ϕ0, ϕ1 ∈ ∆Z such that µ0 + γϕ0 = µ1 + γϕ1, we have∑
z

|µ0(z)− µ1(z)| = γ
∑
z

|ϕ1(z)− ϕ0(z)| ≤ 2γ, (106)

thus completing the proof.

H Experiments

This section describes additional evaluation details and experiments with fair classifiers. In SectionH.1
we provide the main algorithm figure, and discuss technical implementation details. Section H.2
contains the comparison to a number of fair classifiers, and Section H.3 discusses implementation of
the entropy cost h within the DCCP framework.

H.1 Implementations and computational details

Algorithm 1 MIFPO Implementation

Input: Data {(xi, ai, yi)}i≤N , integers L, k.
For a ∈ {0, 1} denote Xa = {xi | ai = a}.

1. Learn calibrated classifiers
c0, c1 : Rd → [0, 1], such that
ca(x) ∼ P (Y = 1|X = x,A = a)

2. Construct the histograms {βa(l)}Ll=1,
a ∈ {0, 1}, for the sets
Ha = {ca(x) | (x, a) ∈ Da} ⊂ [0, 1].
Choose bin representatives {ρl}Ll=1

3. Solve MIFPO, given by Definition 4.1,
with parameters k and
{βa(l)}Ll=1, {ρl}Ll=1, αa = |{i | ai = a}| /N .

The Pareto front evaluation requires two main parts - building a calibrated classifier required for
evaluating ca = P (Y |X,A = a), and later solving the optimization problem MIFPO (see Algorithm
1).
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Figure 4: Comparing common fair classification pipelines to the MIFPO Pareto front, for LSAC,
COMPAS, and ADULT datasets. For FGBM and LGBM+Post Process methods, each point represents
a trade-off obtained at a single hyper-parameter configuration.

For a calibrated classifier, we are using standard model calibration. Model calibration is a well-
studied problem where we fit a monotonic function to the probabilities of some base model so that
the probabilities will reflect real probabilities, that is, P (Y |X). Here, we used Isotonic regression
(Berta et al., 2024) for model calibration with XGBoost (Chen et al., 2015) as the base model. For
training the XGBoost model, a GridSearchCV approach is employed to find the best hyperparameters
from a specified parameter grid, using 3-fold cross-validation.

The experiments were conducted on a system with an Intel Core i9-12900KS CPU (16 cores, 24
threads), 64 GB of RAM, and an NVIDIA GeForce RTX 3090 GPU.

H.2 Additional Evaluations

Following the equivalence between the Pareto fronts of fair binary classification and representations
for the accuracy cost (Section 3.1), we evaluated the accuracy-fairness trade-off for some common
fair classification algorithms. For our evaluation, we selected the most widely used algorithms based
on GitHub repository stars and citation counts in the literature, demonstrating the importance of our
proposed method in comparison to common approaches. We also evaluate FairFront, a more recent
approach introduced in Wang et al. (2023).

Fair classifiers generally fall into pre-processing, in-processing, and post-processing categories.
Pre- and post-processing types often utilize standard classifiers as part of their fair classification
pipeline. We specifically evaluated two widely adopted algorithms, representing different categories:
FairGBM Cruz et al. (2023): An in-processing method where a boosting trees algorithm (LightGBM)
is subjected to pre-defined fairness constraints. Balanced-Group-Threshold Jang et al. (2021): A
post-processing method which adjusts the threshold per group to obtain a fairness criterion. For
FairGBM, we used the original implementation provided by the authors. For Balanced-Group-
Threshold post-processing, we utilized implementations available via Aequitas Saleiro et al. (2018), a
popular bias and fairness audit toolkit.

We conducted our evaluation using three of the most common datasets in this field, which are known
to have relevance to real-world decision-making processes: the Adult dataset (income prediction),
COMPAS (recidivism prediction), and LSAC (law school admission).

It is important to note that, as a rule, common fairness classification methods are not designed to
control the fairness-accuracy trade-off explicitly. Instead, in most cases, these methods rely on
rerunning the algorithm for a wide range of hyperparameter settings, in the hope that different
hyperparameters would result in different fairness-accuracy trade-off points. However, there typically
is no direct known and controlled relation between hyperpatameters and the obtained fairness-accuracy
trade-off. For FairGBM, we utilized the hyperparameter ranges specified in the original paper, Cruz
et al. (2023). In the case of the balancing post-processing method, we conducted a grid search over
the full range of all possible hyperparameters to ensure a comprehensive analysis.

Figure 4 shows the MIFPO computed Pareto front, and all hyperparameter runs of the two algorithms
above, with accuracy evaluated on the test set. These experiments demonstrate the following two
points: (a) The standard classifiers achieve a considerably lower accuracy than what is theoretically
possible at a given fairness level. (b) the existing methods are also unable to present solutions for
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Figure 5: Comparing FairFront to MIFPO accuracy-fairness tradeoff on two curated datasets.

the full range of the statistical parity values. The values from the FGBM and the post-processing
algorithms all have statistical parity ≤ 0.2. Similarly to to the case of fair representations, these
results emphasize the limitations of current fair classifiers in achieving optimal trade-offs between
accuracy and fairness across the full range of fairness values.

Additionally, we add a comparison to FairFront (Wang et al., 2024), which, similarly to our work,
depends on estimates of P (Y |X). See the discussion in Section 2. We note, however, that the utility
of this comparison is limited due to the very strict setup defined in that paper, which cannot be applied
to natural datasets. Specifically: 1) The implementation in Wang et al. (2023) requires creating a
finite discrete space by binning over the full Rd feature space3, which allows for perfect modeling
of the distribution P (Y |X) (by simple counting). This is not normally possible on real datasets in
practice. 2) The binning itself was performed manually for each dataset separately, and we were
unable to discern the logic behind the selected parameters. 3) To allow reasonable binnig, the true
dimensions of the data are manually reduced, again by picking features manually for each dataset.
Due to these issues, it was practically impossible to apply the method in Wang et al. (2023) to other
standard datasets, or even to the datasets used in Wang et al. (2023) but with standard features.

Nonetheless, for the sake of comparison, we compared MIFPO and FairFront on the same restricted,
preprocessed version of the datasets that FairFront used, with the same bin-based probability estimator.
The results are shown in Figure 5.

H.3 Minimization of Concave Functions under Convex Constraints and the Entropy Loss

As described in figure 5, we used the disciplined convex concave programming (DCCP) framework
and the associated solver, (Shen et al., 2016, 2024) for solving the concave minimization with convex
constraints problem.

Minimizing concave functions under convex constraints is a common problem in optimization theory.
Unlike convex optimization where global minima can be readily found, in concave minimization
problems we only know that the local minimas lie on the boundaries of the feasible region defined
by the convex constraints. While techniques such as branch-and-bound algorithms, cutting plane
methods, and heuristic approaches are often employed, here we used the framework of DCCP which
gain a lot of popularity in recent years.

The DCCP framework extends disciplined convex programming (DCP) to handle nonconvex problems
with objective and constraint functions composed of convex and concave terms. The idea behind a
"disciplined" methodology for convex optimization is to impose a set of conventions inspired by basic
principles of convex analysis and the practices of convex optimization experts. These "disciplined"
conventions, while simple and teachable, allow much of the manipulation and transformation required
for analyzing and solving convex programs to be automated. DCCP builds upon this idea, providing
an organized heuristic approach for solving a broader class of nonconvex problems by combining DCP
principles with convex-concave programming (CCP) methods, and is implemented as an extension to
the CVXPY package in Python.

While convenient, the use of the disciplined framework bears some limitations. Mainly, generic
operations like element-wise multiplication are not under the allowed set of operations (and for

3This is completely different from the discretizaton of ∆Y used in MIFPO. The space Rd is the feature space,
and is much larger than ∆Y .
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obvious reasons), which limits the usability. Notice, that for the prediction accuracy measure
h(p) = min(p, 1− p) this is not a problem, but for the entropy classification error h((1− p, p)) =
−p log p− (1− p) log(1− p), this is more challenging. Nevertheless, here we show that the standard
DCCP framework allows for entropy classification error.

Lemma H.1. Let a = (1− α)V(v)rv,z and b = α · U(u)ru,z , with pv = pa and pu = pb.

We can write the cost function under the entropy accuracy error as:

(a+ b) · entropy
(
a · pa + b · pb

a+ b

)
= entropy(a · (1− pa) + b · (1− pb)) + entropy(a · pa + b · pb)− entropy(a+ b)

Proof.

entropy(x) = entropy(x, 1− x) = x [log(x)− log(1− x)] + log(1− x)

Thus,

entropy

(
a · pa + b · pb

a+ b

)
=

a · pa + b · pb
a+ b

[
log

(
a · pa + b · pb

a+ b

)
− log

(
1− a · pa + b · pb

a+ b

)]
+ log

(
1− a · pa + b · pb

a+ b

)
=

a · pa + b · pb
a+ b

[log(a · pa + b · pb)− log(a+ b− a · pa − b · pb)]

+ log(a+ b− a · pa − b · pb)− log(a+ b)

Hence :

(a+ b) · entropy
(
a · pa + b · pb

a+ b

)
= (a+ b) ·

[
a · pa + b · pb

a+ b
[log(a · pa + b · pb)− log(a+ b− a · pa − b · pb)]

]
+ (a+ b) · log(a+ b− a · pa − b · pb)
− (a+ b) · log(a+ b)

= entropy(a · pa + b · pb)− (a · pa + b · pb) · log(a+ b− a · pa − b · pb)
+ (a+ b) · log(a+ b− a · pa − b · pb)− entropy(a+ b)

Finally, the expression can be written as:

= entropy(a+ b− a · pa − b · pb) + entropy(a · pa + b · pb)− entropy(a+ b)

= entropy(a · (1− pa) + b · (1− pb)) + entropy(a · pa + b · pb)− entropy(a+ b)

Given the element-wise entropy function x · (1− x) is with known characteristics and under the dccp
framework, we can use the entropy error for our cost using :

=entropy((1− α)V(v)rv,z · (1− pv) + α · U(u)ru,z · (1− pu))

− entropy((1− α)V(v)rv,z · pv + α · U(u)ru,z · pu)
− entropy((1− α)V(v)rv,z + α · U(u)ru,z)
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I Fair Classifiers As Fair Representations

As discussed in Section 3.1, Pareto front of binary classifiers with statistical parity can be computed
from the Pareto front of representations with total variation fairness distance. In this Section we
provide the proof of this result, Lemma 3.1. The Lemma and the related notation are restated here for
convenience.

For a binary classifier Ŷ of Y , its prediction error is defined as usual by ϵ(Ŷ ) := P
(
Ŷ ̸= Y

)
. The

statistical parity distance of Ŷ is defined as

∆SP (Ŷ ) :=
∣∣∣P(Ŷ = 1|A = 1

)
− P

(
Ŷ = 1|A = 0

)∣∣∣ . (107)

Let the uncertainy measure h be defined by (4). Note that the first part of the Lemma does use the
special properties of this h and does not necessarily hold for other costs h.
Lemma I.1. Let Ŷ be a classifier of Y . Then there is a representation given by a random variable Z
on a set Z with |Z| = 2, such that

Ez∼Zh(P (Y |Z = z)) ≤ ϵ(Ŷ ) and ∥µ0 − µ1∥TV ≤ ∆SP (Ŷ ). (108)

Conversely, for any given representation Z, there is a classifier Ŷ of Y as a function of Z (and thus
of (X,A)), such that

ϵ(Ŷ ) ≤ Ez∼Zh(P (Y |Z = z)) and ∆SP (Ŷ ) ≤ ∥µ0 − µ1∥TV . (109)

Proof. Let us begin with the second part of the Lemma, inequalities (109). Given a representation
Z, ϵ(Ŷ ) ≤ Ez∼Zh(P (Y |Z = z)) follows since Ez∼Zh(P (Y |Z = z)) is the error of the optimal
classifier of Y as a function of Z. We choose Ŷ to be such an optimal classifier and thus satisfy the
above inequality, with equality. Next, the second inequality in (109) holds for for any classifier Ŷ
derived from Z. The argument below is a slight generalisation of the argument in Madras et al. (2018).
Define f(z) = P

(
Ŷ = 1|Z = z

)
. Note that for a ∈ {0, 1}, P

(
Ŷ = 1|A = a

)
=
∫
f(z)dµa(z).

Thus

P
(
Ŷ = 1|A = 0

)
− P

(
Ŷ = 1|A = 1

)
=

∫
f(z)dµ0(z)−

∫
f(z)dµ1(z) (110)

≤ sup
g||g|≤1

∣∣∣∣∫ g(z)dµ0(z)−
∫

g(z)dµ1(z)

∣∣∣∣ (111)

= ∥µ0 − µ1∥TV , (112)

where we have used |f | ≤ 1 in the second line. Repeating the argument also for P
(
Ŷ = 1|A = 1

)
−

P
(
Ŷ = 1|A = 0

)
, we obtain the second inequality in (109).

We now turn to the first statement, (108). Let Ŷ be a classifier of Y as a function of (X,A).
Observe that thus by definition P

(
Ŷ |X,A

)
induces a distribution on the set {0, 1}, and thus may be

considered as a representation Z := Ŷ of (X,A) on that set. We now relate the properties of this Z
as a representation to the quantities ϵ(Ŷ ) and ∆SP (Ŷ ). Similarly to the argument above, the first
part of (108) follows since Ez∼Zh(P (Y |Z = z)) is the best possible error over all classifiers. For
the second part, note that since Ŷ is binary, we have

P
(
Ŷ = 1|A = 0

)
− P

(
Ŷ = 1|A = 1

)
= −P

(
Ŷ = 0|A = 0

)
+ P

(
Ŷ = 0|A = 1

)
. (113)

It follows that

∥µ0 − µ1∥TV =
1

2

∑
v∈{0,1}

∣∣∣P(Ŷ = v|A = 0
)
− P

(
Ŷ = v|A = 1

)∣∣∣ (114)

=
∣∣∣P(Ŷ = 1|A = 0

)
− P

(
Ŷ = 1|A = 1

)∣∣∣ (115)

= ∆SP (Ŷ ), (116)
where we have used (113) for the second to third line transition. This completes the proof of the
second part of (108).
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J Computational Complexities

In this Section we discuss alternative discretization schemes for the MIFPO algorithm. We also
discuss various complexity aspects of the classification algorithms Xian et al. (2023) and Wang et al.
(2023) and relate them to the complexity of MIFPO.

In Section 4.2 we described a data independent discretization of ∆Y by binning. While effective
for small label sets Y , larger sets would require a different approach. One alternative is to cluster
the data instead of binning ∆Y itself. Indeed, by choosing cluster centers {ηi}M1 ⊂ ∆Y , such
that each data point {f∗(x, a)}(x,a)∈D is well approximated by one the centers (or just most points
are approximated), we can guarantee arbitrarily good approximation of the true Pareto front. The
cardinality M of such clustering would depend on the intrinsic dimension of the data, which we
typically expect to be lower than the full dimension of ∆Y , due to the Manifold Hypothesis, Fefferman
et al. (2016).

Another possibility is to not use any explicit discretization, and instead to use each data point as a
separate bin (equivalently, we use the points themselves as the cluster centers {ηi}). In this case,
the complexity scales with the size of the dataset, but not with the dimensions of ∆Y . The MIFPO
construction in Section 4.1 implies that MIFPO in this case would have O(N2) variables for a dataset
of size N . While not applicable for large N , this is similar to the complexity of a variety of often
used algorithms. Classical example of such complexity is the Spectral Clustering. We also observe
that Xian et al. (2023), a recent state of the art fairness classification algorithm mentioned above, also
has such complexity.

Indeed, the approach in Xian et al. (2023) involves the computation of a certain transportation plan
between data points, and the encoding of such plans also requires O(N2) variables. Thus problem
sizes occuring in MIFPO would be smaller or equal to those in Xian et al. (2023), despite the fact
that MIFPO is solving a considerably more general problem (see Section 2).

Finally, the algorithm in Wang et al. (2023) involves optimization in the space of confusion matrices,
with dimensions of size |A| · |Y| × |Y|. As discussed in Section 2, the reduction of the problem to
confusion matrices of possible due to special properties of the classification problem and the accuracy
loss.

The algorithm in Wang et al. (2023), FairFront, is an iterative algorithm, where each iteration involves
solving a certain difference-of-convex (DC) program which is constructed from a full dataset. The
class of DC programs is equivalent to that convex-concave programs considered in this paper (see
Shen et al. (2016)). In fact, similarly to MIFPO, the algorithm in Wang et al. (2023) also uses DCCP,
Shen et al. (2016), although applied to a different problem.

In each iteration, the solution of DC program is then used to add new constraints to a certain main
convex program. While it is proved that asymptotically this process converges to the optimal front,
there are no bounds on the number of iterations. This may lead to the convex solver crashing due to
too many constraints, and in fact we have observed such crashes in our evaluation.

To summarize 4, MIFPO involves solving one convex-concave problem, with size which may be
independent of the data size. In contrast, FairFront involves iteratively solving convex-concave
problems and a main convex program, where the number of terms in the objective of each convex-
concave problem scales with the size of the data, and the number of constraints grows in the convex
problem grows with iterations, thus making the iterations progressively harder.

K Factorization

In this Section we the factorization result, Lemma 3.2. We restate the result for convenience.

Recall that f∗(x, a) denotes the Bayes optimal classifier of Y , i.e. f∗ : X ×A → ∆Y is given by

f∗(x, a) := P (Y = ·|X = x,A = a) . (117)

We define a new variable X ′, with values in ∆Y , by X ′ := f∗(X,A).

4In this Section we have discussed the theoretical complexity aspects of FairFront. Additional details
pertaining to the official implementation of Wang et al. (2023) may be found in Section H.2.

34



Lemma K.1 (Factorization). For any representation Z of (X,A), there is a representation Z ′ of
(X ′, A), such that

Ez′∼Z′h(P (Y |Z ′ = z′)) = Ez∼Zh(P (Y |Z = z)) and DTV (Z
′) ≤ DTV (Z). (118)

Proof. The representation Z ′ of X ′, A will be defined as follows: For σ ∈ ∆Y , a ∈ A, z ∈ Z set:

P (Z ′ = z|X ′ = σ,A = a) := P (Z = z|X ′ = σ,A = a) (119)
= P (Z = z|f∗(X, a) = σ,A = a) (120)

where the second line is the definition and is added for clarity. To see intuition behind this definition
note that we have

P (Z ′ = z|X ′ = σ,A = a) = P (Z = z|f∗(X, a) = σ,A = a) (121)

=
∑
x∈X

P (Z = z|X = x, f∗(x, a) = σ,A = a)P (X = x|f∗(x, a) = σ,A = a)

=
∑
x∈X

P (Z = z|X = x,A = a)P (X = x|f∗(x, a) = σ,A = a)

(122)

In words, for a fixed a, to compute P (Z ′ = z|X ′ = σ,A = a) we effectively collect all x such that
f∗(x, a) = σ and average all of their representations. Equivalently, all points x with the same σ are
merged into one point, and their representations summed up according to their relative weight.

We will now show that neither the performance nor the fairness condition change under this operation.

Since DTV (Z) is defined solely in terms of the distributions P (Z = ·|A = a), to show that
DTV (Z) = DTV (Z

′) it is enough to show that

P (Z = ·|A = a) = P (Z ′ = ·|A = a) ∀a ∈ A. (123)

To this end, we have

P (Z ′ = z|A = a) =
∑
σ

P (Z ′ = z|X ′ = σ,A = a)P (X ′ = σ|A = a) (124)

=
∑
σ

P (Z = z|X ′ = σ,A = a)P (X ′ = σ|A = a) (125)

= P (Z = z|A = a) . (126)

where the transition (124) to (125) is by the definition of Z ′. Thus we have shown that DTV (Z) =
DTV (Z

′).

Next, note that the above argument implies also that P (Z = z) = P (Z ′ = z). Thus, in order to show
the performance equality,

Ez′∼Z′h(P (Y |Z ′ = z′)) = Ez∼Zh(P (Y |Z = z)), (127)

it is enough to show that P (Y |Z ′ = z) = P (Y |Z = z) for every z ∈ Z . Further, again since
P (Z = ·) = P (Z ′ = ·), we can show that

P (Y = y, Z ′ = z) = P (Y = y, Z = z) (128)
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for all z ∈ Z, y ∈ Y . Write

P (Y = y, Z = z) (129)

=
∑
a

∑
x

P (Y = y,X = x,A = a, Z = z) (130)

=
∑
a

∑
x

P (Y = y|X = x,A = a, Z = z)P (X = x,A = a, Z = z) (131)

=
∑
a

∑
x

P (Y = y|X = x,A = a, Z = z)P (Z = z|X = x,A = a)P (X = x,A = a) (132)

=
∑
a

∑
x

P (Y = y|X = x,A = a)P (Z = z|X = x,A = a)P (X = x,A = a) (133)

=
∑
a

∑
σ

∑
x|f∗(x,a)=σ

P (Y = y|X = x,A = a)P (Z = z|X = x,A = a)P (X = x,A = a)

(134)

=
∑
a

∑
σ

σ(y)P (X ′ = σ,A = a)
∑

x|f∗(x,a)=σ

P (Z = z|X = x,A = a)
P (X = x,A = a)

P (X ′ = σ,A = a)

(135)

=
∑
a

∑
σ

σ(y)P (X ′ = σ,A = a)
∑

x|f∗(x,a)=σ

P (Z = z|X = x,A = a)P (X = x|X ′ = σ,A = a))

(136)

=
∑
a

∑
σ

σ(y)P (X ′ = σ,A = a)P (Z ′ = z|X ′ = σ,A = a) (137)

=
∑
a

∑
σ

σ(y)P (Z ′ = z,X ′ = σ,A = a) (138)

=
∑
a

∑
σ

P (Y = y|X ′ = σ,A = a)P (Z ′ = z,X ′ = σ,A = a) (139)

= P (Y = y, Z ′ = z) . (140)

Here, the transition (132)-(133) is due to the independence condition (1). On line (134) we split the
sum over x into sum over subsets {x | f∗(x, a) = σ} and an outer some over all σ. The transition
(136)-(137) is due to the equality (122)-(121). Finally, for the transition (137)-(138), we have used
the fact that

σ(y) = P (Y = y|X ′ = σ,A = a) , (141)
which holds by definition of X ′. Similarly to the earlier discussion on merging of x with similar
value of f∗, the above argument proceeded by regrouping the summation over x by the value of
f∗(x, a). The computation thus showed that this process yields the definition of Z ′. In particular, this
regrouping process and equation (141) explain why the space ∆Y is special and all representations
may be factored through it. This completes the proof of the Lemma.

In the above argument we have used the summation over σ, i.e.
∑

σ . . .. This is formally possible
when (X,A) has a discreet distribution. The full general case may be obtained simply by replacing
the summation by integration and conditioning on σ by the general conditional expectation operator.
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