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Abstract

The impressive achievements of transformers
force NLP researchers to delve into how these
models represent the underlying structure of
natural language. In this paper, we propose a
novel standpoint to investigate the above issue:
using typological similarities among languages
to observe how their respective monolingual
models encode structural information. We aim
to layer-wise compare transformers for typo-
logically similar languages to observe whether
these similarities emerge for particular layers.
For this investigation, we propose to use Cen-
tered Kernel Alignment to measure similarity
among weight matrices. We found that syntac-
tic typological similarity is consistent with the
similarity between the weights in the middle
layers, which are the pretrained BERT layers to
which syntax encoding is generally attributed.
Moreover, we observe that a domain adaptation
on semantically equivalent texts enhances this
similarity among weight matrices.

1 Introduction

Natural language processing (NLP) is dominated
by powerful but opaque deep neural networks. The
rationale behind this trend is that deep architec-
ture training allows rules and structural information
about language to emerge directly from sentences
in the target language, sacrificing the interpretable
and transparent definition of language regularities.
Some exceptions exist where structural syntactic
information is explicitly encoded in multilayer per-
ceptrons (Zanzotto et al., 2020) with relevant re-
sults on unseen sentences (Onorati et al., 2023).
Yet, pre-trained transformers (Vaswani et al., 2017;
Devlin et al., 2019) are offered as versatile univer-
sal sentence/text encoders that contain whatever is
needed to solve any downstream task. These mod-
els outperform all other models nearly consistently
after fine-tuning or domain-adaptation (Jin et al.,
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2022). However, there is no guarantee that when
considering languages that share similar structures,
the models for those languages will represent those
structures in the same way.

Conversely, decades of studies in NLP have cre-
ated symbol-empowered architectures where every-
thing is explicitly represented. These architectures
implement different levels of linguistic analysis:
morphology, syntax, semantics, and pragmatics are
a few subdisciplines of linguistics that shaped how
symbolic-based NLP has been conceived. In this
case, a linguistic model of a language – a set of
rules and regularities defining its behavior – di-
rectly influences the system processing that lan-
guage. Understanding whether linguistic models
emerge in opaque pre-trained transformer architec-
ture is a compelling issue.

Probing transformers have mainly been used to
investigate whether these model classical linguistic
properties of languages. Probing consists of prepar-
ing precise sets of examples – probe tasks – and,
eventually, observing how these examples activate
transformers. In this way, BERT (Devlin et al.,
2019) contextual representations have been tested
to assess their ability to model syntactic informa-
tion and morphology (Tenney et al., 2019; Gold-
berg, 2019; Hewitt and Manning, 2019; Jawahar
et al., 2019; Coenen et al., 2019; Edmiston, 2020),
also comparing different monolingual BERT mod-
els (Nikolaev and Pado, 2022; Otmakhova et al.,
2022).

In this study, we take a different standpoint to in-
vestigate if traces of linguistic models are encoded
in monolingual BERT models: using linguistically-
motivated typological similarities among languages
(Dryer and Haspelmath, 2013), we aim to layer-
wise compare transformers for different languages
to observe whether these similarities emerge be-
tween weight matrices for particular layers. For
this investigation, we propose to use Centered Ker-
nel Alignment to measure similarity among weight
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Latin: Hostes (S - ‘Enemies’) castra (O – ‘the
camp’) oppugnant (V – ‘attack’)

Japanese: Maria-san (S – ‘Mary’) wa (particle) sarada
(O – ‘salad’) wo (particle) tabemasu (V –
‘eats’)

Turkish: Maria (S – ‘Mary’) elmayi (O – ‘the apple’)
yiyor (V – ‘eats’)

Italian: Maria ‘Maria’ (S) mangia ‘eats’ (V) la mela
‘the apple’ (O) ’

Table 1: Syntactic property of languages: the basic order
of constituents - subject (S), direct object (O) and verb
(V) - in a clause

matrices (Kornblith et al., 2019). We discovered
that syntactic typological similarity is consistent
with the similarity among weights in the middle
layers both in pretrained models and in domain-
adapted models after performing domain adaption
on a parallel corpus.

2 Background and related work

Although different, natural languages show more
or less evident similarities at all levels of analy-
sis - phonetics, morphology, syntax, and seman-
tics - due to the fact that “human language capac-
ity is a species-specific biological property, essen-
tially unique to humans, invariant among human
groups, and dissociated from other cognitive sys-
tems” (Chomsky, 2017). Hence, some properties,
called “language universals”, are shared by all nat-
ural languages: for example, all spoken languages
use vowels, all languages have nouns and verbs.
Some properties, on the other hand, are common
among groups of languages, and are called “univer-
sal tendencies”: for instance, many languages have
nasal consonants. (Greenberg, 2005; Haspelmath,
2001a,b). A classification of languages enables us
to organize the shared characteristics of languages.

Languages are classified in two main ways: ty-
pological classification and genealogical classifica-
tion. Language typology is the branch of linguistics
that, studying universal tendencies of languages
(Comrie, 1989; Song, 2010), maps out “the vari-
ation space filled by the languages of the world”
and finds “regular patterns and limits of variation”
(Haspelmath, 2001a). These typological patterns
can be used to classify all languages at different
levels of linguistic analysis. Therefore, a typolog-
ical classification enhances the shared structures
among languages.

Typological classification differs from the ge-
nealogical (or genetic) one, which aims to catego-
rize languages originating from a common ancestor

(Lehmann, 2013; Dunn, 2015). Indeed, languages
belonging to a genealogical family can share spe-
cific typological properties or not. Likewise, lan-
guages that appear similar, according to a specific
typological category, can be genealogically linked
or not. For example, Latin, Japanese and Turk-
ish are final-verb languages, whereas Italian is not,
despite being directly derived from Latin (see ex-
amples in Table 1).

In this work, we focus on typological classifica-
tion because it directly describes languages as a set
of rules of composition of words from the syntactic
point of view and morphemes in the morphological
analysis. In fact, in the following analysis, our aim
is to understand whether rules shared across simi-
lar languages are encoded into the corresponding
models.

Typological similarities between languages have
been previously investigated with probes in two
ways: (1) by using syntactic probes in comparing
the behavior of different monolingual BERT mod-
els (Nikolaev and Pado, 2022; Otmakhova et al.,
2022); and, (2) by searching shared syntax rep-
resentation in multilingual BERT (mBERT) (Chi
et al., 2020; Ravishankar et al., 2019; Singh et al.,
2019). Chi et al. (2020) suggest that mBERT has
a behavior similar to monolingual BERT since its
shared syntax representation can be found in mid-
dle layers. However, mBERT seems to separate
the representations for each language into different
subspaces (Singh et al., 2019). Hence, mBERT
is not exploiting typological similarities among
languages to build better language models: this
model does not exploit similarity among languages
to reuse part of the representation it builds across
different languages.

Another perspective to exploit similarity among
languages is to compare activation matrices of
transformers produced over probing examples. In
this case, the underlying assumption is that par-
allel sentences should have similar activation ma-
trices if languages are similar. To compare these
activation matrices, Canonical Correlation Anal-
ysis (CCA) (Hardoon et al., 2004), Singular Vec-
tor CCA (SVCCA) (Raghu et al., 2017), and Pro-
jection Weighted CCA (PWCCA) (Morcos et al.,
2018) have been widely used. More recently, Cen-
tered Kernel Alignment (CKA) (Kornblith et al.,
2019) measure has been proposed to quantify rep-
resentational similarity. Kornblith et al. (2019) also
claims that CCA and SVCCA are less adequate



for assessing similarity between representations be-
cause they are invariant to linear transformations.
Using these metrics, Vulić et al. (2020) compared
activation matrices derived from monolingual mod-
els for pairs of translated words: using CKA, it
measured the similarity between the representa-
tion of words in different languages. They noticed
that the similarity between the representations of
words is higher for more similar languages. Simi-
larities between mBERT activation matrices have
also been used to derive a phylogenetic tree of lan-
guages (Singh et al., 2019; Rama et al., 2020).

In our study, building on typological similari-
ties among languages and on the measures to com-
pare matrices, we aim to compare monolingual
BERTs by directly evaluating layer-wise the simi-
larities among parameters of BERTs for different
languages. To the best of our knowledge, this is
the first study using this idea to investigate whether
transformers replicate linguistic models without
probing tasks.

3 Method and Data

If languages are typologically similar for syntac-
tic or for morphological properties, their BERT
models should have some similar weight matrices
in some layers. This is our main intuition. Then,
in this section, we introduce a method to inves-
tigate the above intuition. Section 3.1 describes
the selected typological classification of languages
and how we use it to compute the similarity be-
tween languages. Section 3.2 briefly introduces the
subject of our study, BERT. Finally, Section 3.3
introduces a novel way, biCKA, to compare weight
matrices.

3.1 Selected typological similarity among
languages

To compute morphological and syntactic similarity
among languages, we use a typological classifica-
tion scheme that is used to generate metric feature
vectors for languages. The idea of representing
languages using feature vectors and then compar-
ing the similarity between these vectors is in line
with previous work, such as lang2vec (Littell et al.,
2017). In particular, we stem from WALS to gather
typological features of languages.

The World Atlas of Language Structures
(WALS) (Dryer and Haspelmath, 2013) aims at
classifying languages of the world on the basis
of typological criteria at all levels of linguistic

analysis. Languages in WALS are represented
as categorial feature-value vectors. Each feature
can assume two or more values 1. For instance,
the 20A Fusion of Selected Inflectional
Formatives assumes 7 possible values: 1.
Exclusively concatenative; 2 Exclusively
isolating; 3 Exclusively tonal; 4
Tonal/isolating; 5 Tonal/concatenative;
6 Ablaut/concatenative and 7
Isolating/concatenative. The feature
25B Zero Marking of A and P Arguments
allows only 2 possibilities: 1. Zero-marking and
2. Non-zero marking.

Since not all world languages are classified ac-
cording to each feature – as the list of languages
analyzed varies from feature to feature – we had
to integrate WALS. Specifically, we took into ac-
count all the 12 features classified under “Morphol-
ogy Area” and a selection of syntactic features of
WALS (see Tab. 2). Two linguists added the values
for features not defined by WALS.

Regarding morphological features in particular,
for Dutch, Romanian, and Swedish we added the
values of all features except 26A, which was the
only one already compiled in WALS for these lan-
guages; we also completed the missing features for
Italian except 26A and 27A.

In terms of syntactical features, we selected the
most important ones relating to word order (Song,
2012) – from 81A to 97A, Tab. 2 – and some repre-
sentative characteristics related to linguistic nega-
tion (143A, 143E, 143F, 144A). The last-mentioned
features about negative morphemes and words have
also been selected because these are fully speci-
fied for target languages. Unlike morphological
features, syntactic features are almost fully spec-
ified for all target languages. We only integrated
2 features with the following values: 84A (Italian,
Russian, Rumanian: 1 VOX, Persian: 3 XOV, Greek:
6 No dominant order); 93A (Italian and Dutch =
1 Initial interrogative phrase). The com-
plete list of categorical vectors for target languages
is available in Appendix A.1: these vectors are ex-
tracted from WALS and, eventually, integrated by
the two linguists.

Once we have defined all the values of the se-
lected WALS features, we can obtain vectors that
represent languages to get their similarity. We use
categorical WALS vectors for languages to gen-

1A complete description of each feature and its values can
be found on https://wals.info/feature

https://wals.info/feature


WALS ID Feature

Morphological features
20A Fusion of Selected Inflectional Formatives
21A Exponence of Selected Inflectional Formatives
21B Exponence of Tense-Aspect-Mood Inflection
22A Inflectional Synthesis of the Verb
23A Locus of Marking in the Clause
24A Locus of Marking in Possessive Noun Phrases
25A Locus of Marking: Whole-language Typology
25B Zero Marking of A and P Arguments
26A Prefixing vs. Suffixing in Inflectional Morphology
27A Reduplication
28A Case Syncretism
29A Syncretism in Verbal Person/Number Marking

Syntactic features
81A Order of Subject, Object and Verb
82A Order of Subject and Verb
83A Order of Object and Verb
84A Order of Object, Oblique, and Verb
85A Order of Adposition and Noun Phrase
86A Order of Genitive and Noun
87A Order of Adjective and Noun
88A Order of Demonstrative and Noun
92A Position of Polar Question Particles
93A Position of Interrogative Phrases in Content Questions
94A Order of Adverbial Subordinator and Clause
95A Relationship between the Order of Object and Verb and the

Order of Adposition and Noun Phrase
96A Relationship between the Order of Object and Verb and the

Order of Relative Clause and Noun
97A Relationship between the Order of Object and Verb and the

Order of Adjective and Noun
143A Order of Negative Morpheme and Verb
143E Preverbal Negative Morphemes
143F Postverbal Negative Morphemes
144A Position of Negative Word With Respect to Subject, Object,

and Verb

Table 2: Selected morphological and syntactic features
of WALS

erate metric vectors. Our approach is similar to
lang2vec (Littell et al., 2017). In particular, each
syntactic and morphological pair of feature-value
(f : v) is one dimension of this space, which is 1
for a language L if L has the feature f equal to the
value v. With this coding scheme, languages are
represented as boolean vectors.

Thus, the similarity σ(L1, L2) between two lan-
guages L1 and L2 can be computed as the similarity
between the language vectors L⃗1 and L⃗2, using the
cosine similarity (cos) as similarity measure:

σ(L1, L2) = cos(L⃗1, L⃗2)

This measure assesses the similarity between lan-
guages by counting the number of shared feature-
value pairs. We can compute two versions of
this measure – σsynt(L1, L2) and σmorph(L1, L2)
– which respectively compute similarity among lan-
guages using syntactic and morphological features.
Although this formulation is similar to lang2vec,
we encoded the WALS features directly into metric
vectors because lang2vec does not contain mor-
phological features and cannot benefit from our
integration of WALS for the syntactic feature.

Then, we can assess the typological similarity
of the languages as defined by linguists. We can
now investigate whether the same similarity holds
among different BERT models.

3.2 BERT Model in brief
Among the different transformer-based architec-
tures, BERT (Devlin et al., 2019) is the subject of
our study since it is a widely known architecture,
and many BERT models – in different languages
– are available. This section briefly describes how
it is organized in order to give names to weight
matrices at each layer.

BERT is a layered transformer-based model with
attention (Vaswani et al., 2017) that uses only the
Encoder block. Each layer of the Encoder block
is divided into two sub-layers. The first sub-layer,
called Attention Layer, heavily relies on the at-
tention mechanism. The second sub-layer (Feed
Forward Layer) is simply a feed-forward neural
network. Clearly, each sub-layer has its weight ma-
trices referred to in the rest of the paper as follows:

Attention
query Qi

key Ki

value Vi

attention output dense OAi

Feed Forward Network
intermediate dense DIi
output dense DOi

For each monolingual BERT for a
language L, weight matrices Wi =
{Qi,Ki, Vi, OAi, DIi, DOi} for i ∈ [0, . . . , 11]
should represent part of the linguistic model of L
after pre-training.

3.3 Bidimensional Centered Kernel
Alignment for Comparing Weight
Matrices

Centered kernel alignment (CKA) (Kornblith et al.,
2019) is a metric used to compare similarities be-
tween representations, that is, activation matrices
of the deep neural network. Linear CKA measure
is defined as follows:

CKA(X,Y ) =
||Y TX||2F

||XTX||F ||Y TY ||F
(1)

where X and Y are n× p matrices and denote acti-
vations of p neurons for n examples. The key idea
behind this metric is to determine the similarity
between pairs of elements and then compare the
similarity structures. As presented by Kornblith
et al. (2019), computing the numerator in Equa-
tion 1 is proportional to computing the similarity,
using the dot product between the linearized ver-
sion (which is referred to as vec) of the matrices



as similarity measure, of the estimated covariance
matrices XXT and Y Y T for mean-centered acti-
vation matrices X and Y :

vec(XXT )T · vec(Y Y T ) = trace(XXTY Y T ) = ||Y TX||2F
(2)

where vec(A) is the linearization of a matrix A
and, thus, vec(XXT )T · vec(Y Y T ) is the equiva-
lent of the Frobenius product between two matrices.
Then, CKA is suitable to compare matrices of rep-
resentations of sentences as it is possible to derive
relations between rows of the two matrices as these
represent words.

Among the different methods, CKA is chosen
because it allows one to compare matrices with
p ≥ n. Other metrics that are invariant to invertible
linear transformations, such as CCA and SVCCA,
instead assign the same similarity value to any pair
of matrices having p ≥ n (Kornblith et al., 2019).
Moreover, the columns of the analyzed weight ma-
trices are characterized by high multicollinearity. If
one feature is a linear combination of others, then
also the covariance matrix has some row that is
linear combination of others and hence is rank defi-
cient. This makes difficult in this setting the use of
PWCCA since it requires the computation of CCA
and, consequently, the inversion of the covariance
matrices.

However, in the case of weight matrices, CKA
is not suitable as both rows and columns of these
matrices play an important role in determining the
output of the network. For example, during the
computation of the self-attention in a layer i, given
Xi−1 the output of the previous layer, the product
between the query activation matrix Xi−1Qi and
the key activation matrix (transposed) Xi−1Ki is
often described as a function of column vectors
of Qi and Ki as Xi−1Qi(Xi−1Ki)

T . However,
the attention mechanism is implicitly computing
the product QiK

T
i (where rows of Qi and Ki are

compared). Hence, both covariance matrices of
rows and columns describe something about the
input transformation and need to be studied.

Indeed, given a pair of weight matrices W1 and
W2, both the similarity W1W

T
1 with respect to

W2W
T
2 and the similarity of W T

1 W1 with respect
to W T

2 W2 may play an important role in determin-
ing the similarity between the two weight matrices.

Hence, we introduce bidimensional CKA,
biCKA, a variant of CKA that compares matri-
ces considering rows and columns.

Firstly, given a weight matrix W , we define the

following block diagonal matrix F (W ) as follows:

F (W ) =

[
W 0

0 W T

]

Then, biCKA, our solution to compute the similar-
ity between weight matrices, is defined as follows:

biCKA(W1,W2) = CKA(F (W1), F (W2)))

Hence:

biCKA(W1,W2) ∝

∝ vec

([
W1W

T
1 0

0 W T
1 W1

])T

· vec
([

W2W
T
2 0

0 W T
2 W2

])

biCKA(W1,W2) – relying on the normalized
similarity between the block covariance matrices of
F (W1) and F (W2) – takes into account the similar-
ity between rows and columns of weight matrices
W1 and W2.

Given a pair of weight matrices, W1 and W2,
biCKA is our solution to compute their similarity.

4 Experiments

4.1 Experimental set-up
The aim of the experiments is to use typological
similarity between languages to determine whether
some BERT layers encode morphological or syn-
tactic information.

Our working hypothesis is the following: given
a set of pairs of languages (L1, L2), a particu-
lar matrix W of a BERT layer encodes syntac-
tic or morphological information if the similar-
ity biCKA(WL1 ,WL2) between that particular
weight matrix of BERTL1 and BERTL2 correlates
with the typological similarities σsynt(L1, L2) or
σmorph(L1, L2), respectively. To evaluate the cor-
relation, we compared two lists of pairs ranked
according to biCKA(WL1 ,WL2) and σ(L1, L2)
by using the Spearman’s correlation coefficients.

To select languages for the sets of language pairs,
we used Hugging Face2 that offers a considerable
repository of pre-trained BERTs for a variety of
languages. Hence, we had the possibility to select
typologically diverse languages for our investiga-
tion. Languages are listed along with the respective
pretrained monolingual model (retrieved from the
Hugging Face repository using the transformers
library (Wolf et al., 2020)).

We selected the following European languages,
listed above, according to genealogical criteria:

2https://huggingface.co/models

https://huggingface.co/models


• Indo-European Romance (or
Neo-Latin) languages: Italian
(ITA), bert-base-italian-cased
(Schweter, 2020c); French (FRE),
bert-base-french-europeana-cased
(Schweter, 2020b); Spanish (SPA),
bert-base-spanish-wwm-cased
(Cañete et al., 2020); Romanian (ROM),
bert-base-romanian-cased-v1 (Du-
mitrescu et al., 2020);

• Indo-European Germanic languages:
English (ENG), bert-base-uncased
(Devlin et al., 2019); Swedish (SWE),
bert-base-swedish-cased (Malm-
sten et al., 2020); German (GER),
bert-base-german-cased (Deepset, 2019);
Dutch (DUT), bert-base-dutch-cased
(de Vries et al., 2019);

• Indo-European Slavic languages: Russian
(RUS), rubert-base-cased (Kuratov and
Arkhipov, 2019);

• Indo-European Hellenic languages: Greek
(GRK), bert-base-greek-uncased-v1 Kout-
sikakis et al. (2020);

• Non-Indo-European languages: Turk-
ish (TUR), bert-base-turkish-cased
(Schweter, 2020a); Finnish (FIN),
bert-base-finnish-cased-v1 Virtanen
et al. (2019)

In addition, we included Persian (or Farsi) (PRS),
belonging to the Indo-Iranian branch with the corre-
sponding model bert-fa-base-uncased by Fara-
hani et al. (2020), which is one of the most repre-
sentative Indo-European language spoken outside
the European continent.

Given the above list of languages, we performed
three different sets of experiments:

1. FULL - all pairs of languages in the list are
considered in the set;

2. FOCUSED - first, we cluster languages in
groups and then only pairs of languages from
different groups are retained;

3. DOMAIN ADAPTED - on a selected set of lan-
guage pairs, we perform domain adaption of
the models on sentences from a parallel cor-
pus.

The FULL experiments aim to detect where
BERT models for typological similar languages
may encode syntactic and morphological features,
using WALS-based similarity among languages
and our novel biCKA among weight matrices.

The FOCUSED experiments on clustering lan-
guages aim to be more specific in describing
whether some weight matrices encode specific lin-
guistic information. Indeed, despite being all Euro-
pean, selected languages show different typological
features. Hence, these languages may be clustered
according to their WALS similarity on typological
vectors. Then, we identified distinctive features
among pairs of clusters by comparing the features
Gini impurity (Ceriani and Verme, 2012) of each
cluster and their union. Given two clusters, such
as S1 and S2, the most interesting features will
be those features that distinguish the two clusters.
The impurities of these features in S1 and S2 are
as low as possible and, at the same time, present
in each cluster a lower impurity than the impurity
measured in the union of clusters S1∪S2. Among
these interesting features, we will refer to features
that take entirely different values between clusters
as polarizing features. Once those features are de-
tected, to understand if they are encoded by a given
matrix, to compute ranked lists of language pairs,
we selected pairs of languages belonging to dif-
ferent clusters. The intuition is that the similarity
between these pairs of languages, and, thus, Spear-
man’s correlation between ranked lists, is mainly
affected by polarizing features.

Finally, the last DOMAIN ADAPTED experiment
shows how models behave in a setting closer to
the ideal one, with shared training procedure and
training data. Since data are semantically identi-
cal, the only differences are in morphological and
typological features, which hence we hypothesize
should be represented similarly by models trained
on similar texts. Domain adaptation is performed
by fine-tuning each model on Masked Language
Modeling task. The data used are from the Eu-
roParl corpus (Koehn, 2005), a large-scale parallel
corpus of proceedings of the European Parliament.
Hence, we focus on languages spoken in the Eu-
ropean Union, excluding Turkish, Russian, and
Persian in this analysis since no translation is avail-
able for these languages. Each model is trained
for four epochs on a subset of sentences that has a
translation in all languages (50k sentences).



5 Results and Discussion

This section reports the results of the three sets
of experiments: FULL - all pairs of languages
(Sec. 5.1); FOCUSED - only pairs from different
clusters (Sec. 5.2); DOMAIN ADAPTED - analysis
is performed after domain adaptation on a parallel
corpus (Sec. 5.3).

5.1 Correlation between Matrices in all
Languages: the FULL approach

(a) Syntactic Similarities

(b) Morphological Similarities

Figure 1: Spearman’s correlation coefficient over all
language pairs ranked with typological features and
with weight matrix similarities. Rows are the matrices
types, and columns are the layers. Values closer to +1
are in red, closer to 0 are in black, and values closer to
−1 are in blue. Statistically significant results with a
p− value < 0.01 are labeled with ∗.

Experiments in the FULL configuration – using
all pairs of languages in a single set – have relevant
results showing that typological similar languages
led to similar models. In particular, the syntactic
spaces in WALS correlate with specific layers in
BERT (see Fig. 1).

Syntactic properties seem to emerge in middle
layers (Fig. 1a) for content matrices OA and V of

the attention sub-layer. In fact, matrices OA4, V5,
OA5, OA6 achieve a Spearman’s value higher than
the fixed threshold, respectively, 0.60, 0.52, 0.66,
and 0.55. The higher correlation value is 0.66 for
OA5. All Spearman’s are tested against the null hy-
pothesis of the absence of linear correlation and are
statistically significant with a p-value smaller than
0.01 with a Student t-test. These results align with
the probing experiments that assessed the predomi-
nance of middle layers in the encoding of syntactic
information (Tenney et al., 2019).

Morphological properties instead show up in a
single matrix V3. The correlation between typolog-
ical space and the matrix is moderate, that is, 0.55.
Moreover, the correlation seems to be moderately
stable until the layer 7 on these matrices V .

This analysis confirms our hypothesis that syn-
tactically similar languages induce similar models
and that this can be observed directly on weight
matrices at layers 4, 5, and 6, as expected since
probing tasks detect syntax in middle layers (Ten-
ney et al., 2019).

5.2 FOCUSED analysis: measuring
Extra-Cluster Correlation

Experiments on correlations of the ranked list of
language pairs extracted from different language
clusters aim to study whether specific linguistic
features are related to specific weight matrices in
BERT.

For this set of experiments, we performed
a K-means clustering of languages (see Ap-
pendix A.2) for both syntactic and morphological
typological spaces. Four clusters emerged for
the syntactic typological space of languages, and
three clusters emerged on the morphological
one. The clusters (S) generated from syntac-
tic features are: S1 = {ITA, FRE, SPA, ROM},
S2 = {ENG, FIN, SWE, RUS, GRK}, S3 =
{TUR, PRS} and S4 = {GER, DUT}. The
clusters (M ) generated from morphologi-
cal space are: M1 = {ITA, FRE, SPA, ROM},
M2 = {ENG, SWE, GER, DUT} and M3 =
{TUR, FIN, PRS, RUS, GRK}.

The Spearman’s correlation is reported for each
matrix in the different layers, for both syntactic
(Fig. 2a) and morphological (Fig. 2b) clustering:
we focus here on results obtained by comparing the
larger clusters since the Spearman’s correlations
are negatively affected by smaller cluster size. A
complete list of correlations can be found in Ap-



(a) Syntactic Similarities on Clusters S1 and S2

(b) Morphological Similaritie on Clusters M1 and M3

Figure 2: Each matrix shows Spearman’s correlation
coefficients for extra-cluster typological similarities and
weight matrix similarities. Rows are the matrices types,
and columns are the layers. Values closer to +1 are
in red, closer to 0 are in black, and values closer to
-1 are in blue. Statistically significant results with a
p− value < 0.01 are labeled with ∗.

pendix A.2.

From the syntactic point of view, the two larger
clusters S1 and S2 show an interesting pattern (see
Fig. 2a). The threshold of 0.5 is exceeded by the
matrices in layers from 4 to 8, with a peak of 0.77 in
layer 5 on matrix V5. These values are statistically
significant with a p-value lower than 0.01. Those
results confirm what has been observed in the pre-
vious section. Hence, these matrices may encode
the polarizing features 87A Order of Adjective
and Noun and 97A Relationship between the
Order of Object and Verb and the Order of
Adjective and Noun.

From the morphological point of view (see
Fig. 2), language pairs from M1-M3 lead to
interesting results. Investigating the morpholog-
ical clustering, less regular patterns can be found
by looking at Spearman’s correlation coefficient.

In fact, Spearman’s coefficients are above the
threshold across multiple layers and are statisti-
cally significant with a peak at layer 0 (Q0 ma-
trix). However, a high correlation can also be ob-
served in other layers, with no clear descending
trend. Some of the polarizing and nearly polar-
izing features are 29A Syncretism in Verbal
Person/Number Marking, 21A Exponence of
Selected Inflectional Formatives, 23A
Locus of Marking in the Clause.

Although these results are not conclusive, these
experiments on clusters of similar languages estab-
lish a possible new way to investigate the linguistic
properties of BERT.

5.3 Correlations after Domain Adaptation on
Parallel Corpus: the DOMAIN ADAPTED
approach

(a) Syntactic Similarities before domain adaptation

(b) Syntactic Similarities after domain adaptation

Figure 3: Spearman’s correlation coefficient over Eu-
ropean language pairs ranked with typological features
and with weight matrix of domain adapted BERT simi-
larities 3b and of pretrained BERT similarities. Rows
are the matrices types, and columns are the layers. Val-
ues closer to +1 are in red, closer to 0 are in black, and
values closer to -1 are in blue. Statistically significant
results with a p− value < 0.01 are labeled with ∗.



In this section, we observe Spearman’s corre-
lation on a subset of models after domain adap-
tion. As described in Section 4.1, we analyze here
models adapted on a parallel corpus with Masked
Language Modeling task. When selecting models
for the FULL setup, we observed that they were
all pretrained on a wide variety of sources and do-
mains. However, dissimilar pretraining data could
negatively affect the analyzed correlations. Our
hypothesis is that conditioning models’ weights
on semantically equivalent sentences can lead to
a clearer analysis of syntactic similarities across
typological similar languages. We focus here on
syntactic analysis since it leads to more interesting
results in all set of experiments, while morpholog-
ical analysis for completeness is reported in the
Appendix A.3.

Our hypothesis is confirmed by the syntactic
analysis experiments since the positive trend is
confirmed across the middle layers, and relatively
higher statistically significant correlation coeffi-
cients can be observed (Figure 3). We can identify
a positive trend from layer 2 to layer 6 on matrix
DI , and on matrices V and OA with smaller yet
consistent positive values on the same layers. The
average increase in correlation from layer 2 to layer
6 is 0.18. Moreover, the correlations do not tend to
increase on the latter layers (especially layers 10
and 11), which are the layers generally associated
with semantic tasks.

These experiments give us an important confir-
mation that the typological similarity across dif-
ferent models, while being present in pretrained
models, is enhanced by conditioning weights to se-
mantically equivalent data, which thus differ only
syntactically and morphologically.

6 Conclusions

Understanding whether large language models en-
code linguistic models is a challenging and impor-
tant research question. Despite their flexibility and
their SOTA performances on multiple NLP tasks,
transformer-based models do not explicitly express
what they learn about language constructions and,
thus, it is hard to control their failures directly.

Our paper proposes a novel way to observe
BERT capability to encode linguistic models and
achieves two critical contributions: confirming syn-
tactic probing results from another point of view
and opening a new way to investigate specific lin-
guistic features in layers. Differently from all pre-

vious approaches, our methodology is based on
directly comparing layer-by-layer weight matrices
of BERTs and evaluating whether typological simi-
lar languages have similar matrices in specific lay-
ers. From a different standpoint, our experimental
results confirm that layers 4, 5, and 6 encode syn-
tactic linguistic information. Moreover, they also
suggest that the attention’s value matrix V and the
attention’s output layer are more important than
other matrices in encoding linguistic models. This
latter is an important and novel result. In fact, these
findings can be important because they can help
interpret the inner workings of these models to go
toward the so-called actionable explainability indi-
cating which matrix weights could be changed to
obtain a desired behavior. Moreover, this method-
ology could help to build a more informed archi-
tecture that takes advantage of the most promising
layers in multilingual models.

Hence, in future work, our findings could be
helpful: (1) for defining cross-language training
procedures that consider similarities between lan-
guages and between models, and (2) for fostering
ways to act in specific weight matrices of specific
layers of BERT to change the undesired behavior
of final BERT downstream systems. Moreover, this
methodology could be used on other transformer
architectures.

Limitations

To the best of our knowledge, this is the first
attempt to directly compute similarities between
weight matrices of BERT and to compare it with
an external resource. Hence, it has many possible
limitations.

The more important limitation can be due to
the fact that transformers, in general, and BERT,
in particular, could be mostly large memories of
pre-training examples. Hence, comparing weight
matrices at different layers could imply comparing
pre-training examples given to the different BERTs.
However, this is not only a limitation of our study.
Indeed, it could be a limitation for any linguistic
analysis of BERTs or other transformers.

The second limitation is the availability of mono-
lingual BERTs for low-resource languages, which
led to an analysis that is incomplete. The growing
availability of monolingual BERTs can solve this
issue and may require to re-do the experiments.

The third limitation is the incompleteness of
the World Atlas of Language Structures (WALS)



(Dryer and Haspelmath, 2013). Indeed, as this is
a growing linguistic resource, our results also de-
pend on the quality of the resource at the time of
download. For this reason, we selected languages
that may be controlled by our linguists.
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A Appendix

A.1 WALS and integration of morphological and syntactic features
In this Section we present the complete list of WALS features used in this work. The values listed in the
following tables are defined from the WALS website and, where needed, analyzed and inserted from the
linguist Felicia Logozzo, as also described in Section 3.1.

wals_code
81A

"Order of Subject,
Object and Verb"

82A
Order of Subject

and Verb

83A
Order of Object

and Verb

84A
"Order of Object

Oblique, and Verb"

85A
Order of Adposition

and Noun Phrase

86A
Order of Genitive

and Noun
ita 2 SVO 3 No dominant order 2 VO 1 VOX 2 Prepositions 2 Noun-Genitive
eng 2 SVO 1 SV 2 VO 1 VOX 2 Prepositions 3 No dominant order
tur 1 SOV 1 SV 1 OV 3 XOV 1 Postpositions 1 Genitive-Noun
fin 2 SVO 1 SV 2 VO 1 VOX 1 Postpositions 1 Genitive-Noun
swe 2 SVO 1 SV 2 VO 1 VOX 2 Prepositions 1 Genitive-Noun
prs 1 SOV 1 SV 1 OV 3 XOV 2 Prepositions 2 Noun-Genitive
ger 7 No dominant order 1 SV 3 No dominant order 6 No dominant order 2 Prepositions 2 Noun-Genitive
fre 2 SVO 1 SV 2 VO 1 VOX 2 Prepositions 2 Noun-Genitive
rus 2 SVO 1 SV 2 VO 1 VOX 2 Prepositions 2 Noun-Genitive
spa 2 SVO 3 No dominant order 2 VO 1 VOX 2 Prepositions 2 Noun-Genitive
dut 7 No dominant order 1 SV 3 No dominant order 6 No dominant order 2 Prepositions 2 Noun-Genitive
rom 2 SVO 1 SV 2 VO 1 VOX 2 Prepositions 2 Noun-Genitive
grk 7 No dominant order 3 No dominant order 2 VO 6 No dominant order 2 Prepositions 2 Noun-Genitive

wals_code
87A

Order of
Adjective and Noun

88A
Order of

Demonstrative and Noun

92A
Position of

Polar Question Particles

93A
Position of

Interrogative Phrases in Content Questions

94A
Order of

Adverbial Subordinator and Clause

95A
Relationship between

the Order of Object and Verb and
the Order of Adposition and Noun Phrase

ita 2 Noun-Adjective 1 Demonstrative-Noun 6 No question particle 1 Initial interrogative phrase 1 Initial subordinator word 4 VO and Prepositions
eng 1 Adjective-Noun 1 Demonstrative-Noun 6 No question particle 1 Initial interrogative phrase 1 Initial subordinator word 4 VO and Prepositions
tun 1 Adjective-Noun 1 Demonstrative-Noun 2 Final 2 Not initial interrogative phrase 5 Mixed 1 OV and Postpositions
fin 1 Adjective-Noun 1 Demonstrative-Noun 3 Second position 1 Initial interrogative phrase 1 Initial subordinator word 3 VO and Postpositions
swe 1 Adjective-Noun 1 Demonstrative-Noun 6 No question particle 1 Initial interrogative phrase 1 Initial subordinator word 4 VO and Prepositions
prs 2 Noun-Adjective 1 Demonstrative-Noun 1 Initial 2 Not initial interrogative phrase 1 Initial subordinator word 2 OV and Prepositions
ger 1 Adjective-Noun 1 Demonstrative-Noun 6 No question particle 1 Initial interrogative phrase 1 Initial subordinator word 5 Other
fre 2 Noun-Adjective 1 Demonstrative-Noun 1 Initial 1 Initial interrogative phrase 1 Initial subordinator word 4 VO and Prepositions
rus 1 Adjective-Noun 1 Demonstrative-Noun 3 Second position 1 Initial interrogative phrase 1 Initial subordinator word 4 VO and Prepositions
spa 2 Noun-Adjective 1 Demonstrative-Noun 6 No question particle 1 Initial interrogative phrase 1 Initial subordinator word 4 VO and Prepositions
dut 1 Adjective-Noun 1 Demonstrative-Noun 6 No question particle 1 Initial interrogative phrase 1 Initial subordinator word 5 Other
rom 2 Noun-Adjective 6 Mixed 6 No question particle 1 Initial interrogative phrase 1 Initial subordinator word 4 VO and Prepositions
grk 1 Adjective-Noun 1 Demonstrative-Noun 1 Initial 1 Initial interrogative phrase 1 Initial subordinator word 4 VO and Prepositions

wals_code

96A
Relationship between

the Order of Object and Verb and
the Order of Relative Clause and Noun

97A
Relationship between

the Order of Object and Verb and
the Order of Adjective and Noun

143A
Order of

Negative Morpheme and Verb

143E
Preverbal Negative Morphemes

143F
Postverbal Negative Morphemes

144A
"Position of Negative Word With

Respect to Subject, Object, and Verb"

ita 4 VO and NRel 4 VO and NAdj 1 NegV 1 NegV 4 None 2 SNegVO
eng 4 VO and NRel 3 VO and AdjN 1 NegV 1 NegV 4 None 2 SNegVO
tun 1 OV and RelN 1 OV and AdjN 4 [V-Neg] 4 None 2 [V-Neg] 20 MorphNeg
fin 4 VO and NRel 3 VO and AdjN 1 NegV 1 NegV 4 None 2 SNegVO
swe 4 VO and NRel 3 VO and AdjN 6 Type 1 / Type 2 1 NegV 1 VNeg 16 More than one position
prs 2 OV and NRel 2 OV and NAdj 3 [Neg-V] 2 [Neg-V] 4 None 20 MorphNeg
ger 5 Other 5 Other 6 Type 1 / Type 2 1 NegV 1 VNeg 16 More than one position
fre 4 VO and NRel 4 VO and NAdj 15 OptDoubleNeg 1 NegV 1 VNeg 19 OptDoubleNeg
rus 4 VO and NRel 3 VO and AdjN 1 NegV 1 NegV 4 None 2 SNegVO
spa 4 VO and NRel 4 VO and NAdj 1 NegV 1 NegV 4 None 2 SNegVO
dut 5 Other 5 Other 6 Type 1 / Type 2 1 NegV 1 VNeg 16 More than one position
rom 4 VO and NRel 4 VO and NAdj 1 NegV 1 NegV 4 None 2 SNegVO
grk 4 VO and NRel 3 VO and AdjN 1 NegV 1 NegV 4 None 16 More than one position

wals_code
20A

Fusion of Selected
Inflectional Formatives

21A
Exponence of Selected
Inflectional Formatives

22A
Inflectional Synthesis

of the Verb

23A
Locus of Marking

in the Clause

24A
Locus of Marking

in Possessive Noun Phrases

25A
Locus of Marking:

Whole-language Typology
ita 1 Exclusively concatenative 5 No case 3 4-5 categories per word 4 No marking 2 Dependent marking 5 Inconsistent or other
eng 1 Exclusively concatenative 5 No case 2 2-3 categories per word 2 Dependent marking 2 Dependent marking 2 Dependent-marking
tur 1 Exclusively concatenative 1 Monoexponential case 4 6-7 categories per word 2 Dependent marking 3 Double marking 5 Inconsistent or other
fin 1 Exclusively concatenative 2 Case + number 2 2-3 categories per word 2 Dependent marking 3 Double marking 5 Inconsistent or other
swe 1 Exclusively concatenative 5 No case 2 2-3 categories per word 4 No marking 2 Dependent marking 5 Inconsistent or other
prs 1 Exclusively concatenative 1 Monoexponential case 3 4-5 categories per word 3 Double marking 1 Head marking 5 Inconsistent or other
ger 1 Exclusively concatenative 2 Case + number 2 2-3 categories per word 2 Dependent marking 2 Dependent marking 2 Dependent-marking
fre 1 Exclusively concatenative 5 No case 3 4-5 categories per word 4 No marking 2 Dependent marking 5 Inconsistent or other
rus 1 Exclusively concatenative 2 Case + number 3 4-5 categories per word 2 Dependent marking 2 Dependent marking 2 Dependent-marking
spa 1 Exclusively concatenative 1 Monoexponential case 3 4-5 categories per word 3 Double marking 2 Dependent marking 5 Inconsistent or other
dut 1 Exclusively concatenative 5 No case 2 2-3 categories per word 4 No marking 2 Dependent marking 5 Inconsistent or other
rom 1 Exclusively concatenative 3 Case + referentiality 3 4-5 categories per word 2 Dependent marking 2 Dependent marking 2 Dependent-marking
grk 1 Exclusively concatenative 2 Case + number 3 4-5 categories per word 3 Double marking 3 Double marking 3 Double-marking

wals_code
26A

Prefixing vs. Suffixing
in Inflectional Morphology

27A
Reduplication

28A
Case Syncretism

21B
Exponence of

Tense-Aspect-Mood Inflection

25B
Zero Marking of

A and P Arguments

29A
Syncretism in

Verbal Person/Number Marking
ita 2 Strongly suffixing 3 No productive reduplication 3 Core and non-core 2 TAM+agreement 2 Non-zero marking 2 Syncretic
eng 2 Strongly suffixing 3 No productive reduplication 2 Core cases only 1 monoexponential TAM 2 Non-zero marking 2 Syncretic
tur 2 Strongly suffixing 1 Productive full and partial reduplication 4 No syncretism 1 monoexponential TAM 2 Non-zero marking 3 Not syncretic
fin 2 Strongly suffixing 3 No productive reduplication 3 Core and non-core 1 monoexponential TAM 2 Non-zero marking 3 Not syncretic
swe 2 Strongly suffixing 3 No productive reduplication 2 Core case only 1 monoexponential TAM 2 Non-zero marking 2 Syncretic
prs 3 Weakly suffixing 1 Productive full and partial reduplication 1 No case marking 1 monoexponential TAM 2 Non-zero marking 3 Not syncretic
ger 2 Strongly suffixing 3 No productive reduplication 3 Core and non-core 1 monoexponential TAM 2 Non-zero marking 2 Syncretic
fre 2 Strongly suffixing 3 No productive reduplication 3 Core and non-core 2 TAM+agreement 2 Non-zero marking 2 Syncretic
rus 2 Strongly suffixing 3 No productive reduplication 3 Core and non-core 1 monoexponential TAM 2 Non-zero marking 3 Not syncretic
spa 2 Strongly suffixing 3 No productive reduplication 3 Core and non-core 2 TAM+agreement 2 Non-zero marking 2 Syncretic
dut 2 Strongly suffixing 3 No productive reduplication 2 Core cases only 1 monoexponential TAM 2 Non-zero marking 2 Syncretic
rom 2 Strongly suffixing 3 No productive reduplication 3 Core and non-core 2 TAM+agreement 2 Non-zero marking 2 Syncretic
grk 2 Strongly suffixing 3 No productive reduplication 3 Core and non-core 3 TAM+agreement+diathesis 2 Non-zero marking 3 Not syncretic



A.2 Correlation Results on Clustered languages
Clustering of languages As described in 5.2, a K-means clustering of languages is performed
for both syntactic and morphological typological spaces. Four clusters emerged for the syn-
tactic typological space of languages, and three clusters emerged on the morphological one.

(a) (b)

Figure 4: t-SNE plot of clustering based on syntactic (4a) and morphological (4b) features extracted from WALS.

Results Analysis Here we report results between all syntactic and morpholocival clusters. In Figure 6
and Figure 5, one for each matrix, two different clusters are considered.
From the syntactic point of view, as described in Section 5.2, middle layers similarities are positively
correlated with typological similarities and this positive correlation can be observed also after clustering,
in Figure 6a, when a sufficient number of languages is considered. Results are very unstable when one of
the considered cluster is smaller (see Figure 6b - 6f). In fact, Spearman’s values that exceed the threshold
of 0.5 fluctuate too much across different layers and matrices and no pattern can be hence clearly observed.
Results are rarely statistically significant, with the exception of Q3 in Figure 6e. Hence, it is hard to assert
that the polarizing features of these clusters are encoded at some layers using Spearman’s correlation
coefficient.
From the morphological point of view (see Fig. 5), language pairs from M1-M3 and, marginally,
from M2-M3 lead to interesting results. Indeed, related ranked lists for pairs for these clusters show
extra-clustering Spearman’s coefficients that are above the threshold across multiple layers and that are
statistically significant. The rankings of pairs generated from M1-M3 and M2-M3 have peaks at layer 0
(Q0 matrix) and layer 3 (V3 matrix), respectively. However, a high correlation can also be observed in
other layers, with no clear descending trend.

(a) Clusters M1 and M2 (b) Clusters M1 and M3 (c) Clusters M2 and M3

Figure 5: Each matrix shows the Spearman’s correlation coefficients for extra-cluster morphological analysis, one
matrix for each pair of clusters, Mi and Mj . Values closer to +1 are in red, values closer to -1 in blue. Statistically
significant results with a p-value lower than 0.01 are labelled with ∗.



(a) Clusters S1 and S2 (b) Clusters S1 and S3 (c) Clusters S1 and S4

(d) Clusters S2 and S3 (e) Clusters S2 and S4 (f) Clusters S3 and S4

Figure 6: Each matrix shows the Spearman’s correlation coefficients for extra-cluster syntactic analysis, one matrix
for each pair of clusters, Si and Sj . Values closer to +1 are in red, and values closer to -1 in blue. Statistically
significant results with a p-value lower than 0.01 are labeled with ∗.

A.3 Correlation Results after Finetuning

(a) Spearman correlations in pretrained models (b) Spearman correlations in finetuned models

Figure 7
As described in Section 5.3, the typological similarities among languages has a positive correlation with
the similarity observed across different models, and this correlations are more clearly observed after
finetuning. With morphological analysis, conversely, we cannot draw further insights into the similarities
between the different models. On this smaller set of languages, no positive statistically significant
correlations can be observed either in pretrained models 7a or after finetuning 7b.


