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Abstract001

The test-time scaling techniques demonstrate002
a potential direction to improve the reasoning003
abilities of LLMs by searching the reasoning004
space with a score function. Although the test-005
time scaling methods have been widely studied006
for math-reasoning tasks, the inference scaling007
capabilities of LLMs for commonsense reason-008
ing remain largely underexplored. In this work,009
we examine the scalability of inference scal-010
ing techniques for commonsense reasoning by011
using a pretrained entailment verifier model012
as the score function. We also propose a new013
inference scaling method, called CORE-EVO,014
which integrates the evolutionary search algo-015
rithm with LLMs. The CORE-EVO is capa-016
ble of tackling the shortcomings of the best-017
of-N and self-consistency, searching for the018
reasoning path in the local optima in reason-019
ing spaces, by performing evolutionary opera-020
tions and population refinement based on the021
entailment verification score. The experimen-022
tal results on CommonsenseQA, PIQA, and023
SocialIQA benchmarks show that our method024
is able to scale inference compute more effec-025
tively than other test-time scaling techniques026
at high inference scales. Notably, our method027
outperforms the best-of-N and self-consistency028
by a significant gap, about 4% and 3% respec-029
tively, in terms of average performance using030
the Llama3.1-8B language model.031

1 Introduction032

Recent advances in large language models (LLMs)033

have significantly enhanced performance on com-034

monsense reasoning tasks through increased model035

size, extensive pretraining (Grattafiori et al., 2024;036

Yang et al., 2024a), fine-tuning on high-quality037

instruction data (PENG et al., 2025; Ho et al.,038

2023; Kang et al., 2023), and prompt-tuning tech-039

niques (Wei et al., 2022b; Madaan et al., 2023;040

Zhang et al., 2023). Orthogonal to these ap-041

proaches, an emerging research direction is to lever-042

age the test-time scaling compute of LLMs (Wang043

et al., 2023; Snell et al., 2025) to enhance reason- 044

ing capabilities without additional training. This 045

direction builds on the premise that LLMs, having 046

been pretrained on massive web-scale data, may 047

already possess the internal knowledge required 048

for complex common-sense inference. However, 049

the inference scaling capabilities of LLMs for com- 050

monsense reasoning remain largely underexplored. 051

Current inference scaling techniques, such as 052

best-of-N sampling (Gui et al., 2024) and self- 053

consistency (Wang et al., 2023), aim to improve 054

the reasoning capabilities of pretrained LLMs by 055

identifying consistent and high-quality reasoning 056

paths. While effective, these methods share a key 057

limitation: their search strategies often converge to 058

local optima, as the sampled candidates tend to be 059

similar to one another. This constraint may hinder 060

the ability of pretrained LLMs to scale effectively 061

in discovering truly optimal reasoning paths. 062

To address these limitations, we propose a novel 063

algorithm, called COmmensense REasoning EVO- 064

lution (CORE-EVO), which incorporates evolution- 065

ary search (Lee et al., 2025) to move beyond local 066

optima and efficiently explore optimal reasoning 067

paths. The core idea of our method is illustrated in 068

Figure 1. CORE-EVO begins by initializing a pop- 069

ulation of reasoning paths sampled from an LLM, 070

and iteratively applies mutation or crossover opera- 071

tions to evolve the population over a fixed number 072

of rounds. We leverage the self-refinement capabil- 073

ities of LLMs to perform mutations, while prompt- 074

based strategies are used to implement crossovers. 075

After each evolutionary step, new reasoning paths 076

are assessed using a pretrained entailment veri- 077

fier (Sanyal et al., 2024) and incorporated into the 078

population. The population is then refined to retain 079

higher-quality candidates. Finally, the evolved rea- 080

soning paths from the last round are aggregated to 081

produce a consistent inference. 082

In contrast to best-of-N and self-consistency 083

methods, which typically search for reasoning 084
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Figure 1: A comparison between the CORE-EVO with other inference scaling techniques, Best-of-N and Self-
consistency. Each circle represents a sampled reasoning path. The big oval represents a population of reasoning
paths. The dashed oval demonstrates the majority vote procedure on a population.

paths near a local optimum in the reasoning space,085

CORE-EVO addresses the challenge of discover-086

ing solutions beyond local optima by iteratively087

evolving a population of reasoning paths. This en-088

ables more effective exploration of high-scoring089

regions in the reasoning space. Additionally,090

our method differs from the evolutionary search091

approach in (Lee et al., 2025) by tailoring the092

crossover, mutation, and fitness functions specifi-093

cally for commonsense reasoning.094

We empirically evaluate our method against com-095

petitive inference scaling techniques for pretrained096

LLMs on a range of commonsense reasoning tasks,097

covering both physical and social domains. Our098

experiments show that CORE-EVO produces more099

diverse reasoning paths than conventional meth-100

ods, facilitating the discovery of more accurate101

solutions using the same number of sampled paths.102

The results on the CommonsenseQA, PIQA, and103

SocialIQA benchmarks also demonstrate that our104

method significantly outperforms both best-of-N105

and self-consistency across two LLM backbones,106

the Llama3.1-8B and the Qwen1.5-7B, at different107

inference scaling levels. These findings highlight108

the superior capability of CORE-EVO in effectively109

exploring reasoning spaces for commonsense tasks.110

2 Method111

We introduce the CORE-EVO, a reasoning frame-112

work based on scaling test-time inference to ad-113

dress commonsense reasoning tasks. The CORE-114

EVO is developed according to the evolutionary115

algorithm that is inspired by the biological evo- 116

lutionary process. The main idea is to leverage 117

the power of LLMs to perform evolutionary opera- 118

tions, and then iteratively refine the population of 119

reasoning paths based on their fitness scores. Our 120

framework is a general test-time scaling method 121

that is able to adapt to any pretrained LLMs. The 122

overall framework is illustrated in the Algorithm. 1. 123

As shown in the Algorithm. 1, the proposed 124

framework makes use of a pretrained LLM to first 125

sample multiple reasoning paths R = {ri}Ni=1, 126

called initial population, for a given query Q and 127

compute corresponding fitness scores for sampled 128

reasoning paths. Then, a subsequence of the evolu- 129

tion operations is performed to enhance the initial 130

population. For each evolutionary round, we grow 131

the population by adding a new reasoning trace by 132

performing selection and then operating mutation 133

or crossover. At the end of the evolutionary round, 134

we refine the population by the procedure as fol- 135

lows. Given a list of reasoning paths R = {ri}N+1
i=1 136

and their corresponding scores S = {si}N+1
i=1 , we 137

define a permutation π : {1, 2, . . . , N + 1} → 138

{1, 2, . . . , N +1} such that sπ(1) ≥ sπ(2) ≥ . . . ≥ 139

sπ(N+1). The top-N elements are then selected as 140

Rk = {rπ(i) | i ∈ {1, 2, . . . , N}}. Finally, we 141

aggregate over the final population of reasoning 142

paths to achieve the answer 143

maj-vote(A) = argmax
A∈A

N∑
i=1

1(Ai = A) (1) 144
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Algorithm 1 Evolutionary search for commonsense reasoning
Require: A pretrained LLM f(·), population size N , a score function g(·), evolution rounds T , an input queryQ, and prompts
Tinit, Tmutation, Tcrossover .

1: Initialize population: R0 ← {ri}Ni=1 ∼ f(Q, Tinit, N), S0 ← {g(ri)}Ni=0 ▷ Sample N reasoning paths
2: for t = 1 to T do do
3: ϵ ∼ U(0, 1)
4: if ϵ ≤ 0.3 then
5: Selection: r1 ∼ Rt−1 ▷ Sample a reasoning path to perform mutation
6: Mutation: rnew ← f(Q, Tmutation, r1) ▷ Mutation based on prompting LLMs
7: else
8: Selection: r1, r2 ∼ Rt−1 ▷ Sample two reasoning paths to perform crossover
9: Crossover: rnew ← f(Q, Tcrossover, r1, r2) ▷ Crossover based on prompting LLMs

10: end if
11: Update population: Rt ← {Rt−1, rnew}, St ← {St−1, g(rnew)}
12: Refine population: get top-N reasoning path base on score Rt ← top-N(Rt) ▷ Refine population based on scores
13: end for
14: return the answer based on population RT , A ← argmaxA∈A

∑N
i=1 1(Ai = A)

2.1 Population Initialization145

We prompt a LLM f(·) with the query Q along146

with the initialization instruction, consists of a task147

instruction and a few demonstrated examples, Tinit.148

The LLM then generates multiple potential reason-149

ing paths by using sampling techniques, such as150

either nucleus or top-k sampling methods.151

R = f(Q, Tinit, N) (2)152

, where N is the number of individuals in a pop-153

ulation. The instruction T is a manual instruc-154

tion to guide the language model to generate sup-155

porting information to draw a plausible explana-156

tion (Liu et al., 2022) for the input query Q. We157

also demonstrate a few detailed reasoning paths in158

the instruction to steer the language model follow-159

ing the desired template. Our CoT is slightly differ-160

ent from the standard CoT (Wei et al., 2022b) by161

defining well-structured reasoning chains for com-162

monsense reasoning tasks. The reasoning chains163

are described as follows:164

• Step 1: Retrieve relevant knowledge regard-165

ing the query, such as the object or context166

being asked in the query.167

• Step 2: Gather retrieved knowledge from pre-168

vious steps and given options to simulate a169

realistic situation.170

• Step 3: Conduct a reasoning based on the171

simulated situation from Step 2 and draw a172

conclusion.173

Well-structured reasoning chains are critical to174

impacting the reasoning abilities of LLMs (Yao175

et al., 2023; Jin et al., 2024). (Liu et al., 2022)176

shows that the generated information from a pre-177

trained LLM is able to enhance commonsense rea-178

soning capabilities. Therefore, the rationale for the179

first three steps is to generate relevant knowledge 180

to assist language models in drawing correct and 181

plausible reasoning in the fourth step. We curate 182

and unify the design of the reasoning chain for 183

commonsense reasoning tasks to disentangle the 184

performance gain of prompt design. Furthermore, 185

the well-structured reasoning chains are more veri- 186

fiable by using a specialized language model that 187

is crucial in our framework to evaluate the fitness 188

score of each reasoning path. We utilize the above 189

reasoning chain structure for all of our experiments. 190

2.2 Selection Process 191

The reasoning path selected in the evolutionary 192

round t is sampled from the population of the previ- 193

ous round Rt−1 with the initial population at round 194

t = 0. In round t, given the population is N of rea- 195

soning paths Rt−1 = {ri}Ni=1 with the correspond- 196

ing score St−1 = {si}Ni=0, there are two selection 197

processes that could be used to sample reasoning 198

paths to perform evolution as follows 199

• Tournament selection: There are k individ- 200

uals Rk ⊂ Rt−1 randomly selected from the 201

population along with their score Sk ⊂ St−1, 202

and then the fittest individual is chosen from 203

the k sampled individuals using the score val- 204

ues r = argmaxr∈Rk Sk. 205

• Rottle-wheel selection: This method assigns 206

selection probability proportional to fitness 207

p(i) = si∑
sj∈St−1

sj
, where p(i) is the proba- 208

bility of selecting individual i, fi is its fitness, 209

and N is the population size. Then, a reason- 210

ing path r is sampled from Rt−1 based on the 211

distribution P = {p(i)}Ni=1. 212

We conduct an ablation study in the experiment 213

section to select the best selection technique for 214
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our framework.215

2.3 Evolutionary Operations216

There are prior works (Meyerson et al., 2024;217

Lehman et al., 2023) that demonstrate the capa-218

bility of LLMs to perform evolutionary operations219

for a wide range of language generation tasks. In-220

spired by these previous works, we prompt LLMs221

with detailed instructions to perform evolutionary222

operations, which are mutation and crossover op-223

erations. The prompts for evolutionary operations224

can be found in the Appendix. B225

Mutation operation. Given a parent reasoning226

trace r1, we operate a mutation by first prompting227

the language model with the parent reasoning trace228

along with the query Q and the reflection instruc-229

tion Treflect to acquire feedback230

F = f(Treflect,Q, r1) (3)231

. Then, the feedback F is concatenated with the232

mutation instruction Tmutaion to refine the parent233

reasoning trace234

rnew = f(Tmutation,F , r1, ) (4)235

. The feedback F plays a crucial role in the muta-236

tion operation to refine the parent reasoning trace237

for getting a more correct and plausible reasoning238

path (Madaan et al., 2023).239

Crossover operation. Given a pair of par-240

ent reasoning paths (r1, r2), we prompt the lan-241

guage model with a pair of parents along with the242

crossover instruction Tcrossover, which instructs to243

randomly mix reasoning steps between two parents,244

to generate a new reasoning path245

rnew = f(Q, Treflect, r1, r2) (5)246

2.4 Fitness function247

To measure the quality of reasoning paths, we lever-248

age the pretrained entailment verifier described249

in (Sanyal et al., 2024) as the fitness function. The250

entailment verifier-based language model is the251

Flan-T5-xxl language model (Chung et al., 2024)252

which is fintuned on a large amount of natural253

language inference tasks. The pretrained entail-254

ment verifier is capable of measuring the entail-255

ment score s(p, h) between a premise p and a hy-256

pothesis h. Given a query Q and a reasoning path257

r = {r1, . . . , rm} of m reasoning steps, the quality258

of the reasoning path is computed as follows259

g(r,Q) =

m∑
i=1

s(Q||r<i, ri),where r0 = ∅ (6)260

. The entailment score of the reasoning chain with 261

respect to the query reflects the quality of the rea- 262

soning chain to conclude with a plausible and cor- 263

rect answer. 264

3 Experiments 265

We design experiments to demonstrate the effec- 266

tiveness of our proposed framework in enhancing 267

the commonsense reasoning abilities of LLMs on 268

three popular benchmarks. Then, we demonstrate 269

the superior scalability of our methodology by com- 270

paring our approach with existing inference scaling 271

techniques. Finally, we perform a comprehensive 272

ablation study to analyze the contribution of each 273

component to the design choice of our method. 274

3.1 Experimental Setup 275

Benchmarks and baselines. We evaluate the per- 276

formance of our framework and baselines on three 277

commonsense reasoning benchmarks: PIQA (Bisk 278

et al., 2019), CommonsenseQA (Talmor et al., 279

2019), and Social IQA (Sap et al., 2019). We use 280

accuracy on these three benchmarks as the evalu- 281

ation metric. We compare our method against the 282

following baselines: Chain-of-though (CoT) (Wei 283

et al., 2022b), Best-of-N, Self-Refine (Madaan 284

et al., 2023), and Self-consistency (Wang et al., 285

2023). 286

Language models and sampling scheme. We 287

study the effectiveness of our method on two 288

LLMs: Llama3.1-8B (Grattafiori et al., 2024) and 289

Qwen1.5-7B (Bai et al., 2023) models. We also use 290

the Llama 3 family model, consisting of Llama3.2- 291

1B, Llama3.2-3B, and Llama3.1-8B models, to ex- 292

amine the influence of model parameters on our 293

method. To generate diverse reasoning paths, we 294

apply temperature sampling with temp=0.8 trun- 295

cated at the top-k (k=50) and top-p (p=0.7). The 296

sampling hyperpameters are applied to all afore- 297

mentioned large language models in all experi- 298

ments. We conduct an ablation study for searching 299

sampling hyperparameters in the appendix. A 300

3.2 Overall Performance 301

To validate the efficacy of our method, we evaluate 302

our method against baseline techniques on three 303

benchmarks: PIQA, CommonsenseQA, and Social 304

IQA. We configure our method with the number of 305

population N = 10 and the number of evolutionary 306

rounds T = 20 for the experimental results shown 307

in Table. 1. We run all experiments three times and 308

report the average results for all methods. 309
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Method PIQA CommonsenseQA SocialIQA Average

Llama3.1-8B

CoT 79.37 77.12 72.38 76.29
Best-of-N 74.64 80.34 75.23 76.73
Self-consistency 78.72 79.87 74.76 77.83
Self-refine (4-iterations) 76.92 78.82 74.21 76.65
Ours 84.65 81.98 76.25 80.96

Qwen1.5-7B

CoT 73.62 73.44 62.53 69.86
Best-of-N 79.44 75.94 63.66 73.01
Self-consistency 79.95 79.59 73.59 77.71
Self-refine (4-iterations) 75.26 74.21 62.94 70.80
Ours 80.99 81.67 74.64 79.1

Table 1: The commonsense reasoning accuracy of our method compared to baseline techniques on three benchmarks.
The result of CoT method is reported with the greedy decoding, and other method results are reported with the
sampling technique described in Section. 3.1. The number of generated reasoning paths of Best-of-N and self-
consistency is on par with the number of reasoning paths of our method for a fair comparison. All experiments are
run three times, and the average results are reported.

CommonsenseQA

Question If there is a place that is hot and arid, what could it be? A) Bland B) Lifeless C) Sandy D) Neutral E)
Freezing

Best-of-N Step 1: A hot and arid place could be a desert, which is characterized by its extreme heat and lack of
rainfall, resulting in arid conditions. The question asks for a description of a place that is hot and arid,
implying a geographical location with specific climate conditions. Step 2: For example, the Sahara
Desert in North Africa is a hot and arid region, known for its sandy dunes and extreme temperatures.
Step 3: Deserts are often associated with hot and arid conditions, making them a fitting description for
such a place. C

Self-consistency Step 1: The object is a place that is hot and arid, which suggests a region with extreme temperatures and
low humidity, often characterized by vast expanses of sand and limited vegetation. The question asks for
a possible description of such a place. Step 2: For example, a desert like the Sahara is hot and arid, and
it can be described as sandy due to its vast dunes of sand. Step 3: A place that is hot and arid is often
associated with sandy landscapes, which are typical of many deserts. C

CORE-EVO Step 1: A hot and arid place could be a desert, characterized by high temperatures, low humidity, and
limited vegetation. The question asks what type of place would have these characteristics. Step 2: For
example, a desert like the Sahara Desert is known for its hot and arid conditions, with vast expanses of
sandy dunes and limited plant life. Step 3: Deserts are often associated with extreme heat and aridity,
which matches the description provided in the question, and are also often described as lifeless due to
the harsh conditions and limited vegetation. B

Table 2: This qualitative example where the CORE-EVO provides a more accurate reasoning path over baselines.
The reasoning paths are selected based on the highest score in the population for each method. The issues with the
reasoning path are highlighted in red. The correct answer and accurate explanation are highlighted in blue.

The Table. 1 shows the overall performance of310

our CORE-EVO algorithm compared to other in-311

ference scaling techniques on three standard com-312

monsense reasoning benchmarks. We use the afore-313

mentioned setting for the CORE-EVO algorithm314

to generate 30 reasoning paths, 10 initial traces315

and 20 evolved traces, for each question. We also316

sample the same number of reasoning paths for the317

Best-of-N and self-consistency methods to have318

a fair comparison. Regarding the self-refinement319

method, we are able to perform a maximum of 4320

iterations for refinement due to the computational321

constraints. The self-refine method demonstrates322

a modest performance gain with the CoT method323

across the benchmarks, while both Best-of-N and 324

self-consistency techniques demonstrate substan- 325

tial performance improvements on average. Our 326

approach combines both the self-fine method and 327

the self-consistency method under the lens of the 328

evolutionary search algorithm. Therefore, it out- 329

performs the best scaling technique baseline, the 330

self-consistency method, by a large margin in aver- 331

age accuracy. In particular, our algorithm increases 332

the accuracy of the reasoning by ∼ 3% compared 333

to the self-consistency method for the Llama3.1-8B 334

model across benchmarks. 335

The Table. 3 illustrates the diversity of gener- 336

ated reasoning paths of baseline methods and our 337
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(a) (b)

Figure 2: The inference scaling experiment on CommonsenseQA and SocialIQA benchmark for Llama3.1-8B
model. At the scale of 5-reasoning paths, the CORE-EVO generates a population of 5 reasoning paths without
performing evolution on the population, thereby it resembles self-consistency at that scale. The setting for scale of
10, 20, and 30-reasoning paths of CORE-EVO are {N = 5, T = 5}, {N = 10, T = 10}, and {N = 10, T = 20},
respectively. All experiments are run three times, and the average results are reported.

Method CommonsenseQA
V ar(M)

SocialIQA
V ar(M)

Best-of-N 0.00305 0.0011
Self-consistency 0.00302 0.0011
CORE-EVO 0.00346 0.0019

Table 3: The experiment studies the diversity of gen-
erated reasoning paths N = 30. The reported metric
V ar(M) is the variance of the cosine similarity matrix
M between reasoning paths using the pretrained sen-
tence embedding model (Reimers and Gurevych, 2019).

method with a population size of N = 30. Our338

method is capable of generating a diverse set of339

reasoning paths, thus its variance on the cosine sim-340

ilarity matrix between reasoning paths is higher341

than the baselines. We also demonstrate qualitative342

examples in Table. 9 to show the capabilities of343

searching for a more plausible and accurate reason-344

ing path of our method. We conduct qualitative345

analysis in Appendix. C.346

3.3 Inference Scaling347

We conduct the inference scaling experiments to348

demonstrate the scalability of our algorithm com-349

pared to other inference scaling methods on the350

CommonsenseQA and Social IQA benchmarks for351

the Llama3.1-8B model. We perform experiments352

with respect to a varying number of sampled rea-353

soning paths (5, 10, 20, 30) and report the average354

accuracy for 3 runs. The sampling scheme is de-355

scribed in 3.1 to sample a diverse set of reasoning356

paths on different scales. Since the CORE-EVO357

has two parameters, population N and evolution-358

ary round T , which impact the number of sampling359

reasoning paths, therefore we adjust them to match360

the experimental setup. The setting for CORE-361

EVO are {N = 5, T = 0}, {N = 5, T = 5}, 362

{N = 10, T = 10}, and {N = 10, T = 20} on 363

the scale of 5, 10, 20, and 30 sampling reasoning 364

paths, respectively. 365

As shown in Figure. 2, our algorithm scales the 366

inference compute more effectively than both the 367

best-of-N and self-consistency methods on two 368

benchmarks for the Llama3.1-8B model. The per- 369

formance of the self-consistency method quickly 370

saturates after sampling 20 reasoning paths, while 371

the best-of-N shows a favorable increase in per- 372

formance in terms of inference scaling. At the 373

small scale, the CORE-EVO shows a marginal im- 374

provement compared to self-consistency, and it is 375

even surpassed by the best-of-N method on the So- 376

cialIQA benchmark. However, at higher scales, 20 377

and 30-reasoning paths, our method illustrates a 378

significant gap in terms of performance compared 379

with both best-of-N and self-consistency methods.

Model CoT CORE-REVO ∆

Llama3.1-8B 77.12 81.98 ↑ 4.86

Llama3.2-3B 72.71 79.25 ↑ 6.54

Llama3.2-1B 27.27 44.48 ↑ 17.21

Table 4: The experiment on the inference scaling ability
of different model sizes for the performance of CORE-
EVO on the CommonsenseQA benchmark.

380
The results in Table. 4 illustrates how infer- 381

ence performance scales across models of vary- 382

ing sizes, from 1 billion to 8 billion parameters. 383

We observe that performance improvements are in- 384

versely proportional to model size, indicating our 385

approach is more effective for smaller language 386

models. Notably, significant gains are achieved 387
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with smaller models, approximately 7% improve-388

ment for Llama3.2-3B and an impressive 17% for389

Llama3.2-1B.390

3.4 Ablation Studies391

Method CSQA SocialIQA Average

Standard CoT 75.54 71.23 73.38
Ours CoT 77.12 72.38 74.75

Table 5: The experiment on the impact of different
CoT techniques on CommonsenseQA(CSQA) and So-
cialIQA benchmarks using Llama3.1-8B.

Impact of Chain-of-thought techniques. We392

study the impact of different CoT prompting tech-393

niques. We compare our CoT technique, described394

in 2.1, with the standard CoT method, which basi-395

cally prompts the LLMs with a simple instruction396

"Let’s think step by step". As shown in Table. 5,397

our CoT technique outperforms the simple CoT398

method by about 1.5% average accuracy on two399

benchmarks. These results demonstrate that the400

structure CoT and the relevant generated knowl-401

edge are crucial for commonsense reasoning tasks.402

This experimental result aligns with previous stud-403

ies (Liu et al., 2022) that have shown that generated404

knowledge is able to enhance the reasoning abili-405

ties of LLMs.406

CSQA SIQA Average

CORE-EVO
w/ rottle-wheel 81.98 76.25 79.11(0.0)
w/ tournament 80.78 75.14 77.96(-1.15)

w/o mutation 79.93 74.16 77.04(-2.07)
w/o crossover 80.85 74.94 77.89(-1.22)

Table 6: The ablation studies for the contribution
of selection methods and evolutionary operation to
the CORE-EVO accuracy on CommonsenseQA (CSQA)
and SocialIQA (SIQA) benchmarks using Llama3.1-8B.

Impact of evolutionary operations and selec-407

tion methods. We study the contribution of each408

evolutionary operation and the selection methods409

to the CORE-EVO performance. As shown in Ta-410

ble. 6, the rottle-wheel selection method outper-411

forms the tournament selection method by 1.15%412

average accuracy on the CommonsenseQA and So-413

cial IQA benchmarks. Thus, we select the rottle-414

wheel as the selection method for our proposed415

method. There is a significant drop, approximately416

2%, in average accuracy when using only the417

crossover operation. This result shows that the mu-418

tation operation plays a crucial role in our method. 419

There is a similar observation with using only the 420

mutation operation, thus the trade-off between mu- 421

tation and crossover is critical for the CORE-EVO. 422

The Figure 5 demonstrates a comprehensive study 423

of the mutation-crossover tradeoff. 424

CSQA SIQA Average

CORE-EVO 81.98 76.25 79.11(0.0)
w/ quantile-α
(Gupta et al., 2024) 80.13 75.11 77.61(-1.50)
w/ logprob 79.89 74.82 77.35(-1.76)

Table 7: The ablation studies on the impact of different
fitness functions on the CORE-EVO accuracy on Com-
monsenseQA (CSQA) and SocialIQA (SIQA) bench-
marks using Llama3.1-8B.

Impact of fitness function. We study the impact 425

of different fitness functions on our method. We 426

utilize the quantile-α function (Gupta et al., 2024), 427

the normalized logprob function, and the entail- 428

ment verifier function described in section. 2.4 as 429

the fitness function. Both the quantile-α and the 430

normalized logprob function are used to measure 431

the confidence level of reasoning paths of language 432

models, while our fitness function measures the 433

overall entailment score of reasoning paths. The 434

results in Table. 7 shows that our fitness function is 435

more well-suited for the evolutionary search algo- 436

rithm. We also conduct an ablation study regarding 437

the ranking ability of those fitness function, the 438

results are shown in Table. 8 439

4 Related Work 440

4.1 Evolutionary Algorithm for LLMs 441

Recent research has investigated the integration 442

of large language models with evolutionary algo- 443

rithms for optimization tasks. This includes work 444

on numerical optimization (Liu et al., 2025; Brah- 445

machary et al., 2025) and combinatorial optimiza- 446

tion (Ye et al., 2024). Furthermore, evolutionary 447

search techniques have been applied to prompt op- 448

timization to enhance performance on downstream 449

tasks (Yuan et al., 2024; Fernando et al., 2024; Guo 450

et al., 2024). Notably, (Yuan et al., 2024) proposed 451

an agent-based method, called EvoAgent, by lever- 452

aging the power of LLMs to address several chal- 453

lenging NLP tasks. Another line of work is to lever- 454

age LLMs as evolutionary operators (Meyerson 455

et al., 2024; Lehman et al., 2023), facilitating the in- 456

tegration of evolutionary algorithms with powerful 457

language models for text generation applications. 458
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The recent work (Lee et al., 2025) represents the459

most closely related research to our approach. (Lee460

et al., 2025) introduces a novel approach to com-461

bine LLMs with evolutionary search algorithms462

to tackle natural language planning tasks. In con-463

trast, our work aims to overcome the commonsense464

reasoning shortcomings of LLMs by introducing465

a specialized score function tailored for common-466

sense reasoning tasks.467

4.2 Reasoning with LLMs468

The advent of Large Language Models has suc-469

cessfully tackled numerous complex NLP chal-470

lenges, including reasoning capabilities that ap-471

proach human-level performance. Researchers472

primarily employ two methodologies to harness473

LLMs for reasoning tasks: finetuning-based and474

prompt-based techniques.475

The finetuning-based approaches are pioneered476

by (Sanh et al., 2022; Wei et al., 2022a; Thoppilan477

et al., 2022) through fine-tuning on diverse NLP478

tasks and data, yielding impressive zero-shot perfor-479

mance on unseen tasks. The Orca (Mukherjee et al.,480

2023) and its advanced version (Mitra et al., 2023)481

demonstrated that smaller-scale LLMs are able to482

achieve sophisticated reasoning abilities through483

extensive instruction-based fine-tuning. Another484

line of work (Ho et al., 2023; Magister et al., 2023;485

Hsieh et al., 2023) is generating supervision data486

from larger and more capable language models to487

distill reasoning abilities to smaller models for ef-488

ficiency. To improve the generalization ability of489

out-of-domain, (PENG et al., 2025) proposed the490

ReGenesis framework to self-synthesize reasoning491

paths for post fine-tuning LLMs.492

As regards the prompt-based method, chain-of-493

thought (CoT) (Wei et al., 2022b) is the first method494

to facilitate the reasoning of LLMs by a step-by-495

step thinking process. (Kojima et al., 2022) intro-496

duced zero-shot CoT to eliminate the need for cu-497

rated high-quality reasoning paths for models fine-498

tuning. Building on this foundation, (Zhang et al.,499

2023) developed AutoCoT, which autonomously500

generates few-shot demonstrations with a CoT rea-501

soning structure to tackle the scalable issue of502

manual CoT methods. Additionally, several prior503

works (Agarwal et al., 2024; Yang et al., 2024b)504

employ in-context learning techniques to enhance505

the reasoning capabilities of pretrained language506

models.507

A new emerging direction is to scale the infer-508

ence time to improve the thinking abilities of lan-509

guage models. The Self-Refine framework pro- 510

posed by (Madaan et al., 2023) uses an iterative 511

process that improves reasoning by refining pre- 512

vious reasoning paths. A simple yet effective 513

method (Wang et al., 2023) is to generate a diverse 514

set of reasoning paths and then marginalize over 515

them to draw a conclusion. To enhance the strate- 516

gic planning ability of LLMs, previous works (Yao 517

et al., 2023; Hao et al., 2023) have explored the in- 518

tegration of tree-based structures with the thinking 519

process to enhance the strategic planning ability 520

of language models by systematically organizing 521

their reasoning processes. The recent study (Snell 522

et al., 2025) provides analysis and evidence indicat- 523

ing that scaling inference compute is more effec- 524

tive than scaling training compute, offering a novel 525

approach for developing more capable reasoning 526

agents. 527

5 Conclusion 528

We propose the COmmensense REasoning EVO- 529

lution method which is a general inference scal- 530

ing method to advance commonsense reasoning 531

capabilities of LLMs. Our method leverages the 532

self-feedback ability and prompting techniques of 533

LLMs to implement the mutation and crossover op- 534

erations for integrating the evolutionary search for 535

commonsense reasoning tasks. Our method is ca- 536

pable of addressing the limitations of the best-of-N 537

and self-consistency method, searching reasoning 538

paths in the local optima in reasoning spaces, by 539

iteratively performing evolutionary operations and 540

population refinement based on the pretrained en- 541

tailment verifier model. Our experimental results 542

demonstrate that the CORE-EVO outperforms in- 543

ference scaling baselines by a significant margin 544

in terms of accuracy on three popular benchmarks 545

across two LLM backbones, the Llama3.1-8B and 546

Qwen1.5-7B. 547

Limitations 548

We study the inference scaling ability of pretrained 549

LLMs for commonsense reasoning tasks. The re- 550

search goal is to advance the reasoning ability of 551

pretrained LLMs without requiring fine-tuning. Be- 552

low are the limitations of our work: 553

• Our method relies heavily on hand-crafted 554

prompts for different tasks, and the perfor- 555

mance of our method is bound by the perfor- 556

mance of base language models. 557
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• We are not able to systematically study the in-558

ference scaling ability of very large language559

models, which have more than 8 billion pa-560

rameters, on commonsense reasoning tasks561

due to time and computational constraints.562

• Our method requires generating a greater num-563

ber of tokens compared to alternative tech-564

niques, resulting in lower token efficiency.565

Ethics Statement566

We recognize that our proposed methodology may567

produce potentially misleading reasoning paths as568

a result of inherent biases present in the underlying569

language models. Although generating biased rea-570

soning is not the intended purpose of our approach,571

we acknowledge this limitation. This risk can be572

mitigated through two ways: careful design of in-573

put prompts, or thorough evaluation and selection574

of language models with reduced bias profiles. We575

remain committed to responsible development and576

application of our method while acknowledging577

these inherent challenges.578
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A Additional Ablation Study 831

A.1 Additional ablation studies 832

Figure 3: The experiment for choosing the sampling
temperature to initialize population with the setting
{N = 10, T = 20} for the CORE-EVO on the Com-
monsenseQA benchmark for Llama3.1-8B model

Figure 4: The experiment for choosing the number of
initial population for a fixed number of evolutionary
rounds T = 20 on the CommonsenseQA benchmark
for Llama3.1-8B model

The Figure. 3 illustrates the hyperparameter se- 833

lection for the sampling temperature parameter 834

for our method. The temperature at temp = 0.8 835

achieves the highest performance, therefore, all our 836

experiments are conducted using the temperature 837

of 0.8. The ablation study for choosing the number 838

of the initial population for our method is demon- 839

strated in Figure. 4. The number of population 840

N = 10 achieves the highest performance on the 841

CommonsenseQA benchmark, thus, it is used for 842

experiments throughout this work. 843

In Table. 8, we examine the effectiveness of 844

different fitness/rankin functions on the Com- 845

monsenseQA benchmark with Llama3.1-8B. We 846

searched for optimal reasoning paths using the best- 847

of-N approach with different fitness functions ap- 848

plied. Our findings show that the pretrained veri- 849

fier function delivers the highest average accuracy 850
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Figure 5: The experiment for mutation-crossover trade-
off on the CommonsenseQA benchmark for Llama3.1-
8B model

fitness function CSQA SIQA Average

pretrained verifier 80.34 75.23 77.79
quantile-α 78.54 74.61 76.57
logprob 77.17 73.86 75.51

Table 8: The ablation study on the effectiveness of
different fitness functions for Llama3.1-8B. The in-
ference scaling method is best-of-N with different fit-
ness/ranking functions to search for the best solution.

when compared to both the normalized logprob and851

the quantile-α methods.852

A.2 Computation853

We do not train any new model in this paper, and854

we instead propose a new inference scaling tech-855

nique. Inference is conducted on A100 GPUs and856

costs about 300 GPU hours in total. Our method857

is implemented with PyTorch and the Huggingface858

Transformers library.859

B Prompt 860

B.1 CommonsenseQA prompts 861

CommonsenseQA CoT Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.
You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Determine the object and its rele-
vant knowledge in detail. Also, determine
the context in the given question in detail.
Step 2. Randomly choose an option to
simulate an example using information
from previous steps. Try to be as specific
as possible.
Step 3. Conclude the answer based on
information from step 2. Answer by
choosing the most correct option. Strictly
output a single character.

Please response your answer by using
JSON format: <’step i’>: <content>..

<In-context examples>

Question: {input-question}
Answer:

862
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CommonsenseQA Crossover Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.
You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Determine the object and its rele-
vant knowledge in detail. Also, determine
the context in the given question in detail.
Step 2. Randomly choose an option to
simulate an example using information
from previous steps. Try to be as specific
as possible.
Step 3. Conclude the answer based on
information from step 2. Answer by
choosing the most correct option. Strictly
output a single character.

Please response your answer by using
JSON format: <’step i’>: <content>..

You will be given two reasoning paths. Ran-
domly mix the first three steps between two
reasoning paths, but keep the same step or-
ders. Please conclude the reasoning in step
4 based on the first three steps. Please re-
spond the answer by using JSON format
without explanation: <’step i’>: <content>.

Question: {input-question}
The first reasoning path: {path-1}
The second reasoning path: {path-2}
The new reasoning path:

863

CommonsenseQA Reflection Prompt

Instruction: You are an advanced reason-
ing agent that can improve based on self
refection. You will be given a previous
reasoning trial in which you were given
access to relevant context and a question
to answer. Please provide feedback on the
previous reasoning path. The feedback
indicates missing concepts. Provide a
concise and high-level feedback for the
previous reasoning path.

Context: {input-question}
Previous trial: {previous reasoning path}
Reflection:

864

CommonsenseQA Mutation Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.
You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Determine the object and its rele-
vant knowledge in detail. Also, determine
the context in the given question in detail.
Step 2. Randomly choose an option to
simulate an example using information
from previous steps. Try to be as specific
as possible.
Step 3. Conclude the answer based on
information from step 2. Answer by
choosing the most correct option. Strictly
output a single character.

Generate the new reasoning path based on
the reflection from the previous reasoning
path. Please refine the previous path and
correct any false claims. Please respond
the answer by using JSON format without
explanation: <’step i’>: <content>.

Question: {input-question}
Previous reasoning path: {previous rea-
soning path}
Reflection: {feedback}
The new reasoning path:

865
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B.2 PIQA prompts866

PIQA CoT Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.
You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Determine the object and its
physical properties in the question. Also,
determine the differences in the situation
between the two options.
Step 2. Simulate an example based on the
previous step’s information.
Step 3. Conclude the answer information
from step 1 and 2. Answer by choosing the
most correct option. Strictly output a single
character.

Please respond with the answer by using
JSON format: <’step i’>: <content>.

<In-context examples>

Question: {input-question}
Answer:

867

PIQA Crossover Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.
You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Determine the object and its
physical properties in the question. Also,
determine the differences in the situation
between the two options.
Step 2. Simulate an example based on the
previous step’s information.
Step 3. Conclude the answer information
from step 1 and 2. Answer by choosing the
most correct option. Strictly output a single
character.

Please respond with the answer by using
JSON format: <’step i’>: <content>.

You will be given two reasoning paths. Ran-
domly mix the first three steps between two
reasoning paths, but keep the same step or-
ders.

Please conclude the reasoning in step 4
based on the first three steps.

Question: {input-question}
The first reasoning path: {path-1}
The second reasoning path: {path-2}
The new reasoning path:

868

PIQA Reflection Prompt

Instruction: You are an advanced reason-
ing agent that can improve based on self
refection. You will be given a previous
reasoning trial for a physical situation in
which you were given access to relevant
context and a question to answer. Please
provide feedback on the previous reasoning
path. Provide a concise and high-level
feedback for the previous reasoning path.

Context: {input-question}
Previous trial: {previous reasoning path}
Reflection:

869
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PIQA Mutation Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.
You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Determine the object and its
physical properties in the question. Also,
determine the differences in the situation
between the two options.
Step 2. Simulate an example based on the
previous step’s information.
Step 3. Conclude the answer information
from step 1 and 2. Answer by choosing the
most correct option. Strictly output a single
character.

Generate the new reasoning path based on
the reflection from previous reasoning path.
Please refine the previous path and correct
any false claims. Please conclude the rea-
soning in step 4 based on the first three
steps.

Please respond with the answer by using
JSON format without explanation: <’step
i’>: <content>.

Question: {input-question}
Previous reasoning path: {previous rea-
soning path}
Reflection: {feedback}
The new reasoning path:

870

B.3 SIQA prompts 871

SIQA CoT Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.
You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Analyze the context and extract
factual knowledge based on the context.
Also, analyze the given question.
Step 2. Randomly choose an option to
simulate a situation using information from
the previous step.
Step 3. Conclude the answer based on
information from step 1 and 2. Answer by
choosing the most correct option. Strictly
output a single character.

Please respond with the answer by using
JSON format: <’step i’>: <content>.

<In-context examples>

Question: {input-question}
Answer:

872
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SIQA Crossover Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.
You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Analyze the context and extract
factual knowledge based on the context.
Also, analyze the given question.
Step 2. Randomly choose an option to
simulate a situation using information from
the previous step.
Step 3. Conclude the answer based on
information from step 1 and 2. Answer by
choosing the most correct option. Strictly
output a single character.

Please respond with the answer by using
JSON format: <’step i’>: <content>.

You will be given two reasoning paths. Ran-
domly mix the first three steps between two
reasoning paths, but keep the same step or-
ders.

Please conclude the reasoning in step 4
based on the first three steps.

Question: {input-question}
The first reasoning path: {path-1}
The second reasoning path: {path-2}
The new reasoning path:

873

SIQA Reflection Prompt

Instruction: You are an advanced reason-
ing agent that can improve based on self
refection. You will be given a previous
reasoning trial for social interaction in
which you were given access to relevant
context and a question to answer. Please
provide feedback on the previous reasoning
path. Provide a concise and high-level
feedback for the previous reasoning path.

Context: {input-question}
Previous trial: {previous reasoning path}
Reflection:

874

SIQA Mutation Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.
You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Analyze the context and extract
factual knowledge based on the context.
Also, analyze the given question.
Step 2. Randomly choose an option to
simulate a situation using information from
the previous step.
Step 3. Conclude the answer based on
information from step 1 and 2. Answer by
choosing the most correct option. Strictly
output a single character.

Generate the new reasoning path based on
the reflection from previous reasoning path.
Please refine the previous path and correct
any false claims. Please conclude the rea-
soning in step 4 based on the first three
steps.

Please respond with the answer by using
JSON format without explanation: <’step
i’>: <content>.

Question: {input-question}
Previous reasoning path: {previous rea-
soning path}
Reflection: {feedback}
The new reasoning path:

875
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C Qualitative Examples Analysis876

We perform a qualitative evaluation on a sample877

of 50 questions from the CommonsenseQA bench-878

mark to evaluate reasoning quality across differ-879

ent approaches. Our findings demonstrate that880

CORE-EVO generates significantly more nuanced881

and comprehensive reasoning paths compared to882

both best-of-N and self-consistency baselines. Fur-883

thermore, CORE-EVO incorporates supplemen-884

tary evidence and contextual details that facilitate885

more robust conclusion formation. The follow-886

ing examples illustrate the qualitative distinctions887

between CORE-EVO and baseline methods, self-888

consistency and best-of-N. Figure 10 demonstrates889

that while all methods correctly identify the answer,890

baseline approaches directly select the UK without891

sufficient justification. In contrast, our method fol-892

lows a more sophisticated and thorough reasoning893

process, explicitly considering Ireland as a poten-894

tial candidate before ultimately determining Great895

Britain as the correct answer.896
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CommonsenseQA

Question James was looking for a good place to buy farmland. Where might he look? A) Midwest B) Countryside
C) Estate D) Farming area E) Illinois

Best-of-N Step 1: Farmland is typically located in areas with a suitable climate and geography for agriculture,
often in rural or countryside settings. The question asks where James might look for a good place to
buy farmland, indicating a search for a specific geographic location. Step 2: For example, the Midwest
region in the United States is known for its fertile soil and favorable climate for farming, making it
an ideal location for buying farmland. Step 3: Farming areas or regions with suitable conditions for
agriculture are likely where James would find suitable farmland for purchase. D

Self-consistency Step 1: The object is farmland, which is a piece of land used for agriculture, typically for crops or
livestock. The question asks where James might look for a good place to buy farmland, suggesting a
location with suitable conditions for farming. Step 2: For example, the midwest region in the United
States is known for its fertile soil and suitable climate for farming, making it a prime location for buying
farmland. Step 3: Farming areas or regions with suitable climate and soil conditions are ideal for buying
farmland. D

CORE-EVO Step 1: Farmland is typically located in areas suitable for agriculture, often in rural regions with fertile
soil and adequate water supply. James was looking for a good place to buy farmland, indicating he is
seeking a location with suitable conditions for agriculture. Step 2: For example, The Midwest region in
the United States is known for its fertile plains and is often considered an ideal place to buy farmland
due to its suitable climate and soil conditions. Step 3: The Midwest region offers suitable conditions
for agriculture, including fertile soil and adequate water supply, making it a prime location for buying
farmland. A

Table 9: This qualitative example where the CORE-EVO provides a more accurate reasoning path over baselines.
The reasoning paths are selected based on the highest score in the population for each method. The issues with the
reasoning path are highlighted in red. The correct answer and accurate explanation are highlighted in blue.

CommonsenseQA

Question What island country is ferret popular? A) Own home B) North Carolina C) Great britain D) Hutch E)
Outdoors

Best-of-N Step 1: Ferrets are popular pets in many countries, but they are often associated with the United Kingdom,
where they have been kept as companions for centuries. The question asks which island country ferrets
are popular in, indicating a specific geographic location. Step 2: For example, in the United Kingdom,
particularly in England, ferrets are a common household pet and are often kept in domestic settings. Step
3: The popularity of ferrets as pets in the UK is well-documented, and they are often associated with
British culture. C

Self-consistency Step 1: The object is a ferret, a domesticated mammal known for its playful and curious nature, often
kept as pets. The question asks in which island country ferrets are popular pets. Step 2: For example,
in the United Kingdom, particularly in England, ferrets are relatively popular pets, and their care and
housing are well-documented. Step 3: The UK, including England, has a history of keeping ferrets as
pets, and they are relatively well-known in the country. C

CORE-EVO Step 1: The object is a ferret, a domesticated mammal known for its playful and curious nature, often
kept as pets. The question asks in which island country ferrets are popular, specifying a country that
is both an island and has a notable ferret population. Step 2: For example, while Ireland is an island
country with a known ferret population, it is not the correct answer choice. Step 3: Instead, the answer
choice C, Great Britain, is a more accurate match, as ferrets are popular pets in the UK, including in
England, Scotland, and Wales, which are part of Great Britain. Great Britain meets the criteria of being
an island country and has a known ferret population, making it a suitable answer, and it is also the correct
answer choice. C

Table 10: This qualitative example where the CORE-EVO provides a more accurate reasoning path over baselines.
The reasoning paths are selected based on the highest score in the population for each method. The issues with the
reasoning path are highlighted in red. The correct answer and accurate explanation are highlighted in blue.
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