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Abstract

The test-time scaling techniques demonstrate
a potential direction to improve the reasoning
abilities of LLMs by searching the reasoning
space with a score function. Although the test-
time scaling methods have been widely studied
for math-reasoning tasks, the inference scaling
capabilities of LLMs for commonsense reason-
ing remain largely underexplored. In this work,
we examine the scalability of inference scal-
ing techniques for commonsense reasoning by
using a pretrained entailment verifier model
as the score function. We also propose a new
inference scaling method, called CORE-EVO,
which integrates the evolutionary search algo-
rithm with LLMs. The CORE-EVO is capa-
ble of tackling the shortcomings of the best-
of-N and self-consistency, searching for the
reasoning path in the local optima in reason-
ing spaces, by performing evolutionary opera-
tions and population refinement based on the
entailment verification score. The experimen-
tal results on CommonsenseQA, PIQA, and
SociallQA benchmarks show that our method
is able to scale inference compute more effec-
tively than other test-time scaling techniques
at high inference scales. Notably, our method
outperforms the best-of-N and self-consistency
by a significant gap, about 4% and 3% respec-
tively, in terms of average performance using
the Llama3.1-8B language model.

1 Introduction

Recent advances in large language models (LLMs)
have significantly enhanced performance on com-
monsense reasoning tasks through increased model
size, extensive pretraining (Grattafiori et al., 2024;
Yang et al., 2024a), fine-tuning on high-quality
instruction data (PENG et al., 2025; Ho et al.,
2023; Kang et al., 2023), and prompt-tuning tech-
niques (Wei et al., 2022b; Madaan et al., 2023;
Zhang et al., 2023). Orthogonal to these ap-
proaches, an emerging research direction is to lever-
age the test-time scaling compute of LLMs (Wang

et al., 2023; Snell et al., 2025) to enhance reason-
ing capabilities without additional training. This
direction builds on the premise that LLMs, having
been pretrained on massive web-scale data, may
already possess the internal knowledge required
for complex common-sense inference. However,
the inference scaling capabilities of LLMs for com-
monsense reasoning remain largely underexplored.

Current inference scaling techniques, such as
best-of-N sampling (Gui et al., 2024) and self-
consistency (Wang et al., 2023), aim to improve
the reasoning capabilities of pretrained LLMs by
identifying consistent and high-quality reasoning
paths. While effective, these methods share a key
limitation: their search strategies often converge to
local optima, as the sampled candidates tend to be
similar to one another. This constraint may hinder
the ability of pretrained LLMs to scale effectively
in discovering truly optimal reasoning paths.

To address these limitations, we propose a novel
algorithm, called COmmensense REasoning EVO-
lution (CORE-EVO), which incorporates evolution-
ary search (Lee et al., 2025) to move beyond local
optima and efficiently explore optimal reasoning
paths. The core idea of our method is illustrated in
Figure 1. CORE-EVO begins by initializing a pop-
ulation of reasoning paths sampled from an LLM,
and iteratively applies mutation or crossover opera-
tions to evolve the population over a fixed number
of rounds. We leverage the self-refinement capabil-
ities of LLMs to perform mutations, while prompt-
based strategies are used to implement crossovers.
After each evolutionary step, new reasoning paths
are assessed using a pretrained entailment veri-
fier (Sanyal et al., 2024) and incorporated into the
population. The population is then refined to retain
higher-quality candidates. Finally, the evolved rea-
soning paths from the last round are aggregated to
produce a consistent inference.

In contrast to best-of-N and self-consistency
methods, which typically search for reasoning
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Figure 1: A comparison between the CORE-EVO with other inference scaling techniques, Best-of-N and Self-
consistency. Each circle represents a sampled reasoning path. The big oval represents a population of reasoning
paths. The dashed oval demonstrates the majority vote procedure on a population.

paths near a local optimum in the reasoning space,
CORE-EVO addresses the challenge of discover-
ing solutions beyond local optima by iteratively
evolving a population of reasoning paths. This en-
ables more effective exploration of high-scoring
regions in the reasoning space. Additionally,
our method differs from the evolutionary search
approach in (Lee et al., 2025) by tailoring the
crossover, mutation, and fitness functions specifi-
cally for commonsense reasoning.

We empirically evaluate our method against com-
petitive inference scaling techniques for pretrained
LLM:s on a range of commonsense reasoning tasks,
covering both physical and social domains. Our
experiments show that CORE-EVO produces more
diverse reasoning paths than conventional meth-
ods, facilitating the discovery of more accurate
solutions using the same number of sampled paths.
The results on the CommonsenseQA, PIQA, and
SociallQA benchmarks also demonstrate that our
method significantly outperforms both best-of-N
and self-consistency across two LLM backbones,
the Llama3.1-8B and the Qwen1.5-7B, at different
inference scaling levels. These findings highlight
the superior capability of CORE-EVO in effectively
exploring reasoning spaces for commonsense tasks.

2 Method

We introduce the CORE-EVO, a reasoning frame-
work based on scaling test-time inference to ad-
dress commonsense reasoning tasks. The CORE-
EVO is developed according to the evolutionary

algorithm that is inspired by the biological evo-
lutionary process. The main idea is to leverage
the power of LLMs to perform evolutionary opera-
tions, and then iteratively refine the population of
reasoning paths based on their fitness scores. Our
framework is a general test-time scaling method
that is able to adapt to any pretrained LLMs. The
overall framework is illustrated in the Algorithm. 1.

As shown in the Algorithm. 1, the proposed
framework makes use of a pretrained LLM to first
sample multiple reasoning paths R = {r;}}¥,,
called initial population, for a given query Q and
compute corresponding fitness scores for sampled
reasoning paths. Then, a subsequence of the evolu-
tion operations is performed to enhance the initial
population. For each evolutionary round, we grow
the population by adding a new reasoning trace by
performing selection and then operating mutation
or crossover. At the end of the evolutionary round,
we refine the population by the procedure as fol-

lows. Given a list of reasoning paths R = {r; f\;'{l

and their corresponding scores S = {s;}V 1!, we
define a permutation = : {1,2,...,N + 1} —
{1,2,..., N +1} such that Sr(1) > Sr(2) > ... 2>
Sr(N4+1)- The top-N elements are then selected a

Ry = {rz@ | © € {1,2,...,N}}. Finally, we
aggregate over the final population of reasoning

paths to achieve the answer

N
maj-vote(A) = arg 313}; 14, =A) (1)



Algorithm 1 Evolutionary search for commonsense reasoning

Require: A pretrained LLM f(+), population size N, a score function g(-), evolution rounds 7', an input query Q, and prompts

%nit 9 Tmutation ) %rossover .

1: Initialize population: Ry < {r;}}_, ~ £(Q, Tinit, N), So < {g(r:) }o

2: fort =1to7T dodo
e~U(0,1)
if ¢ < 0.3 then

Selection: 71 ~ R;_1

Mutation: Tnew < f(Q7 7:nutation7 Tl)
else

Selection: 71,72 ~ Ry_1

Crossover: rnew < f(Q, Terossover; T1,72)
10: end if

CRIINE W

> Sample N reasoning paths

> Sample a reasoning path to perform mutation
> Mutation based on prompting LLMs

> Sample two reasoning paths to perform crossover
> Crossover based on prompting LLMs

11: Update population: R: < {Ri¢—1,Tnew}> St < {St—1, 9(Tnew)}

12: Refine population: get top-N reasoning path base on score R; < top-N(R;)

13: end for

> Refine population based on scores

14: return the answer based on population Rr, A < argmaxaca > v, 1(A; = A)

2.1 Population Initialization

We prompt a LLM f(-) with the query Q along
with the initialization instruction, consists of a task
instruction and a few demonstrated examples, 7;p;z.
The LLM then generates multiple potential reason-
ing paths by using sampling techniques, such as
either nucleus or top-k sampling methods.

R = f(Q, Tinit, N) 2

, where NNV is the number of individuals in a pop-
ulation. The instruction 7 is a manual instruc-
tion to guide the language model to generate sup-
porting information to draw a plausible explana-
tion (Liu et al., 2022) for the input query Q. We
also demonstrate a few detailed reasoning paths in
the instruction to steer the language model follow-
ing the desired template. Our CoT is slightly differ-
ent from the standard CoT (Wei et al., 2022b) by
defining well-structured reasoning chains for com-
monsense reasoning tasks. The reasoning chains
are described as follows:

* Step 1: Retrieve relevant knowledge regard-
ing the query, such as the object or context
being asked in the query.

* Step 2: Gather retrieved knowledge from pre-
vious steps and given options to simulate a
realistic situation.

* Step 3: Conduct a reasoning based on the
simulated situation from Step 2 and draw a
conclusion.

Well-structured reasoning chains are critical to
impacting the reasoning abilities of LLMs (Yao
et al., 2023; Jin et al., 2024). (Liu et al., 2022)
shows that the generated information from a pre-
trained LLM is able to enhance commonsense rea-
soning capabilities. Therefore, the rationale for the

first three steps is to generate relevant knowledge
to assist language models in drawing correct and
plausible reasoning in the fourth step. We curate
and unify the design of the reasoning chain for
commonsense reasoning tasks to disentangle the
performance gain of prompt design. Furthermore,
the well-structured reasoning chains are more veri-
fiable by using a specialized language model that
is crucial in our framework to evaluate the fitness
score of each reasoning path. We utilize the above
reasoning chain structure for all of our experiments.

2.2 Selection Process

The reasoning path selected in the evolutionary
round ¢ is sampled from the population of the previ-
ous round R;_; with the initial population at round
t = 0. In round ¢, given the population is NV of rea-
soning paths R;—1 = {r;}); with the correspond-
ing score S;_1 = {s;}¥,, there are two selection
processes that could be used to sample reasoning
paths to perform evolution as follows
* Tournament selection: There are k individ-
vals R¥ ¢ R,y randomly selected from the
population along with their score S* C S;_1,
and then the fittest individual is chosen from
the k& sampled individuals using the score val-
ues r = arg max,.. gk S¥.
* Rottle-wheel selection: This method assigns
selection probability proportional to fitness

Si

p(i) = Sen 15’ where p(i) is the proba-

bility of selecting individual ¢, f; is its fitness,
and N is the population size. Then, a reason-
ing path r is sampled from R;_; based on the
distribution P = {p(i)},.
We conduct an ablation study in the experiment
section to select the best selection technique for



our framework.

2.3 Evolutionary Operations

There are prior works (Meyerson et al., 2024;
Lehman et al., 2023) that demonstrate the capa-
bility of LLMs to perform evolutionary operations
for a wide range of language generation tasks. In-
spired by these previous works, we prompt LLMs
with detailed instructions to perform evolutionary
operations, which are mutation and crossover op-
erations. The prompts for evolutionary operations
can be found in the Appendix. B

Mutation operation. Given a parent reasoning
trace 71, we operate a mutation by first prompting
the language model with the parent reasoning trace
along with the query Q and the reflection instruc-
tion 7Ty.¢ f1ect to acquire feedback

F = f(,];eflech Q7 7’1) (3)

. Then, the feedback F is concatenated with the
mutation instruction Tpqtaion to refine the parent
reasoning trace

= f(Tmutati(ma ]:a 1, ) (4)

. The feedback F plays a crucial role in the muta-
tion operation to refine the parent reasoning trace
for getting a more correct and plausible reasoning
path (Madaan et al., 2023).

Crossover operation. Given a pair of par-
ent reasoning paths (r1,72), we prompt the lan-
guage model with a pair of parents along with the
crossover instruction 7erossover, Which instructs to
randomly mix reasoning steps between two parents,
to generate a new reasoning path

Tnew = f(Qa ﬁeflecty 1, 7"2) 5

2.4 Fitness function

Tnew

To measure the quality of reasoning paths, we lever-
age the pretrained entailment verifier described
in (Sanyal et al., 2024) as the fitness function. The
entailment verifier-based language model is the
Flan-T5-xx1 language model (Chung et al., 2024)
which is fintuned on a large amount of natural
language inference tasks. The pretrained entail-
ment verifier is capable of measuring the entail-
ment score s(p, h) between a premise p and a hy-
pothesis h. Given a query Q and a reasoning path
r = {rl,...,r™} of m reasoning steps, the quality
of the reasoning path is computed as follows

Zs (Q||r=t,7%),where r* = @ (6)

i=1

. The entailment score of the reasoning chain with
respect to the query reflects the quality of the rea-
soning chain to conclude with a plausible and cor-
rect answer.

3 Experiments

We design experiments to demonstrate the effec-
tiveness of our proposed framework in enhancing
the commonsense reasoning abilities of LLMs on
three popular benchmarks. Then, we demonstrate
the superior scalability of our methodology by com-
paring our approach with existing inference scaling
techniques. Finally, we perform a comprehensive
ablation study to analyze the contribution of each
component to the design choice of our method.

3.1 Experimental Setup

Benchmarks and baselines. We evaluate the per-
formance of our framework and baselines on three
commonsense reasoning benchmarks: PIQA (Bisk
et al., 2019), CommonsenseQA (Talmor et al.,
2019), and Social IQA (Sap et al., 2019). We use
accuracy on these three benchmarks as the evalu-
ation metric. We compare our method against the
following baselines: Chain-of-though (CoT) (Wei
et al., 2022b), Best-of-N, Self-Refine (Madaan
et al., 2023), and Self-consistency (Wang et al.,
2023).

Language models and sampling scheme. We
study the effectiveness of our method on two
LLMs: Llama3.1-8B (Grattafiori et al., 2024) and
Qwenl.5-7B (Bai et al., 2023) models. We also use
the Llama 3 family model, consisting of Llama3.2-
1B, Llama3.2-3B, and Llama3.1-8B models, to ex-
amine the influence of model parameters on our
method. To generate diverse reasoning paths, we
apply temperature sampling with temp=0.8 trun-
cated at the top-k (k=50) and top-p (p=0.7). The
sampling hyperpameters are applied to all afore-
mentioned large language models in all experi-
ments. We conduct an ablation study for searching
sampling hyperparameters in the appendix. A

3.2 Overall Performance

To validate the efficacy of our method, we evaluate
our method against baseline techniques on three
benchmarks: PIQA, CommonsenseQA, and Social
IQA. We configure our method with the number of
population N = 10 and the number of evolutionary
rounds 7" = 20 for the experimental results shown
in Table. 1. We run all experiments three times and
report the average results for all methods.



Method PIQA CommonsenseQA  SociallQA  Average
CoT 79.37 77.12 72.38 76.29
Best-of-N 74.64 80.34 75.23 76.73
Llama3.1-8B | Self-consistency 78.72 79.87 74.76 77.83
Self-refine (4-iterations) | 76.92 78.82 74.21 76.65
Ours 84.65 81.98 76.25 80.96
CoT 73.62 73.44 62.53 69.86
Best-of-N 79.44 75.94 63.66 73.01
Qwenl.5-7B | Self-consistency 79.95 79.59 73.59 77.71
Self-refine (4-iterations) | 75.26 74.21 62.94 70.80
Ours 80.99 81.67 74.64 79.1

Table 1: The commonsense reasoning accuracy of our method compared to baseline techniques on three benchmarks.
The result of CoT method is reported with the greedy decoding, and other method results are reported with the
sampling technique described in Section. 3.1. The number of generated reasoning paths of Best-of-N and self-
consistency is on par with the number of reasoning paths of our method for a fair comparison. All experiments are

run three times, and the average results are reported.

CommonsenseQA

Question If there is a place that is hot and arid, what could it be? A) Bland B) Lifeless C) Sandy D) Neutral E)
Freezing

Best-of-N Step 1: A hot and arid place could be a desert, which is characterized by its extreme heat and lack of

rainfall, resulting in arid conditions. The question asks for a description of a place that is hot and arid,
implying a geographical location with specific climate conditions. Step 2: For example, the Sahara
Desert in North Africa is a hot and arid region, known for its sandy dunes and extreme temperatures.
Step 3: Deserts are often associated with hot and arid conditions, making them a fitting description for
such a place. C

Self-consistency

Step 1: The object is a place that is hot and arid, which suggests a region with extreme temperatures and
low humidity, often characterized by vast expanses of sand and limited vegetation. The question asks for
a possible description of such a place. Step 2: For example, a desert like the Sahara is hot and arid, and
it can be described as sandy due to its vast dunes of sand. Step 3: A place that is hot and arid is often
associated with sandy landscapes, which are typical of many deserts. C

CORE-EVO

Step 1: A hot and arid place could be a desert, characterized by high temperatures, low humidity, and
limited vegetation. The question asks what type of place would have these characteristics. Step 2: For
example, a desert like the Sahara Desert is known for its hot and arid conditions, with vast expanses of
sandy dunes and limited plant life. Step 3: Deserts are often associated with extreme heat and aridity,
which matches the description provided in the question, and are also often described as lifeless due to
the harsh conditions and limited vegetation. B

Table 2: This qualitative example where the CORE-EVO provides a more accurate reasoning path over baselines.
The reasoning paths are selected based on the highest score in the population for each method. The issues with the
reasoning path are highlighted in red. The correct answer and accurate explanation are highlighted in blue.

The Table. 1 shows the overall performance of
our CORE-EVO algorithm compared to other in-
ference scaling techniques on three standard com-
monsense reasoning benchmarks. We use the afore-
mentioned setting for the CORE-EVO algorithm
to generate 30 reasoning paths, 10 initial traces
and 20 evolved traces, for each question. We also
sample the same number of reasoning paths for the
Best-of-N and self-consistency methods to have
a fair comparison. Regarding the self-refinement
method, we are able to perform a maximum of 4
iterations for refinement due to the computational
constraints. The self-refine method demonstrates
a modest performance gain with the CoT method

across the benchmarks, while both Best-of-N and
self-consistency techniques demonstrate substan-
tial performance improvements on average. Our
approach combines both the self-fine method and
the self-consistency method under the lens of the
evolutionary search algorithm. Therefore, it out-
performs the best scaling technique baseline, the
self-consistency method, by a large margin in aver-
age accuracy. In particular, our algorithm increases
the accuracy of the reasoning by ~ 3% compared
to the self-consistency method for the Llama3.1-8B
model across benchmarks.

The Table. 3 illustrates the diversity of gener-
ated reasoning paths of baseline methods and our
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Figure 2: The inference scaling experiment on CommonsenseQA and SociallQA benchmark for Llama3.1-8B
model. At the scale of 5-reasoning paths, the CORE-EVO generates a population of 5 reasoning paths without
performing evolution on the population, thereby it resembles self-consistency at that scale. The setting for scale of
10, 20, and 30-reasoning paths of CORE-EVO are {N = 5,7 = 5}, {N = 10,7 = 10}, and {N = 10,T = 20},
respectively. All experiments are run three times, and the average results are reported.

CommonsenseQA SociallQA
Method Var(M) Var(M)
Best-of-N 0.00305 0.0011
Self-consistency 0.00302 0.0011
CORE-EVO 0.00346 0.0019

Table 3: The experiment studies the diversity of gen-
erated reasoning paths N = 30. The reported metric
Var(M) is the variance of the cosine similarity matrix
M between reasoning paths using the pretrained sen-
tence embedding model (Reimers and Gurevych, 2019).

method with a population size of N = 30. Our
method is capable of generating a diverse set of
reasoning paths, thus its variance on the cosine sim-
ilarity matrix between reasoning paths is higher
than the baselines. We also demonstrate qualitative
examples in Table. 9 to show the capabilities of
searching for a more plausible and accurate reason-
ing path of our method. We conduct qualitative
analysis in Appendix. C.

3.3 Inference Scaling

We conduct the inference scaling experiments to
demonstrate the scalability of our algorithm com-
pared to other inference scaling methods on the
CommonsenseQA and Social IQA benchmarks for
the Llama3.1-8B model. We perform experiments
with respect to a varying number of sampled rea-
soning paths (5, 10, 20, 30) and report the average
accuracy for 3 runs. The sampling scheme is de-
scribed in 3.1 to sample a diverse set of reasoning
paths on different scales. Since the CORE-EVO
has two parameters, population N and evolution-
ary round 7', which impact the number of sampling
reasoning paths, therefore we adjust them to match
the experimental setup. The setting for CORE-

EVO are {N = 5,7 = 0}, {N = 5,T = 5},
{N =10,T = 10}, and {N = 10,7 = 20} on
the scale of 5, 10, 20, and 30 sampling reasoning
paths, respectively.

As shown in Figure. 2, our algorithm scales the
inference compute more effectively than both the
best-of-N and self-consistency methods on two
benchmarks for the Llama3.1-8B model. The per-
formance of the self-consistency method quickly
saturates after sampling 20 reasoning paths, while
the best-of-N shows a favorable increase in per-
formance in terms of inference scaling. At the
small scale, the CORE-EVO shows a marginal im-
provement compared to self-consistency, and it is
even surpassed by the best-of-N method on the So-
ciallQA benchmark. However, at higher scales, 20
and 30-reasoning paths, our method illustrates a
significant gap in terms of performance compared
with both best-of-N and self-consistency methods.

Model ‘ CoT CORE-REVO A

Llama3.1-8B | 77.12 81.98 1 4.86
Llama3.2-3B | 72.71 79.25 1 6.54
Llama3.2-1B | 27.27 44.48 1T17.21

Table 4: The experiment on the inference scaling ability
of different model sizes for the performance of CORE-
EVO on the CommonsenseQA benchmark.

The results in Table. 4 illustrates how infer-
ence performance scales across models of vary-
ing sizes, from 1 billion to 8 billion parameters.
We observe that performance improvements are in-
versely proportional to model size, indicating our
approach is more effective for smaller language
models. Notably, significant gains are achieved



with smaller models, approximately 7% improve-
ment for Llama3.2-3B and an impressive 17% for
Llama3.2-1B.

3.4 Ablation Studies

Method CSQA SociallQA Average
Standard CoT 75.54 71.23 73.38
Ours CoT 77.12 72.38 74.75

Table 5: The experiment on the impact of different
CoT techniques on CommonsenseQA(CSQA) and So-
ciallQA benchmarks using Llama3.1-8B.

Impact of Chain-of-thought techniques. We
study the impact of different CoT prompting tech-
niques. We compare our CoT technique, described
in 2.1, with the standard CoT method, which basi-
cally prompts the LLLMs with a simple instruction
"Let’s think step by step". As shown in Table. 5,
our CoT technique outperforms the simple CoT
method by about 1.5% average accuracy on two
benchmarks. These results demonstrate that the
structure CoT and the relevant generated knowl-
edge are crucial for commonsense reasoning tasks.
This experimental result aligns with previous stud-
ies (Liu et al., 2022) that have shown that generated
knowledge is able to enhance the reasoning abili-
ties of LLMs.

‘ CSQA SIQA Average
CORE-EVO
w/ rottle-wheel 81.98 76.25 79.11(0.0)
w/ tournament 80.78 75.14  77.96(-1.15)
w/0o mutation 79.93 74.16 77.04(-2.07)
w/o crossover 80.85 74.94 77.89(-1.22)

Table 6: The ablation studies for the contribution
of selection methods and evolutionary operation to
the CORE-EVO accuracy on CommonsenseQA (CSQA)
and SociallQA (SIQA) benchmarks using Llama3.1-8B.

Impact of evolutionary operations and selec-
tion methods. We study the contribution of each
evolutionary operation and the selection methods
to the CORE-EVO performance. As shown in Ta-
ble. 6, the rottle-wheel selection method outper-
forms the tournament selection method by 1.15%
average accuracy on the CommonsenseQA and So-
cial IQA benchmarks. Thus, we select the rottle-
wheel as the selection method for our proposed
method. There is a significant drop, approximately
2%, in average accuracy when using only the
crossover operation. This result shows that the mu-

tation operation plays a crucial role in our method.
There is a similar observation with using only the
mutation operation, thus the trade-off between mu-
tation and crossover is critical for the CORE-EVO.
The Figure 5 demonstrates a comprehensive study
of the mutation-crossover tradeoff.

CSQA SIQA Average
CORE-EVO 81.98 76.25 79.11(0.0)
w/ quantile-c
(Gupta et al., 2024) 80.13 75.11 77.61(-1.50)
w/ logprob 79.89 74.82  77.35(-1.76)

Table 7: The ablation studies on the impact of different
fitness functions on the CORE-EVO accuracy on Com-
monsenseQA (CSQA) and SociallQA (SIQA) bench-
marks using Llama3.1-8B.

Impact of fitness function. We study the impact
of different fitness functions on our method. We
utilize the quantile-« function (Gupta et al., 2024),
the normalized logprob function, and the entail-
ment verifier function described in section. 2.4 as
the fitness function. Both the quantile-a and the
normalized logprob function are used to measure
the confidence level of reasoning paths of language
models, while our fitness function measures the
overall entailment score of reasoning paths. The
results in Table. 7 shows that our fitness function is
more well-suited for the evolutionary search algo-
rithm. We also conduct an ablation study regarding
the ranking ability of those fitness function, the
results are shown in Table. 8

4 Related Work
4.1 Evolutionary Algorithm for LLMs

Recent research has investigated the integration
of large language models with evolutionary algo-
rithms for optimization tasks. This includes work
on numerical optimization (Liu et al., 2025; Brah-
machary et al., 2025) and combinatorial optimiza-
tion (Ye et al., 2024). Furthermore, evolutionary
search techniques have been applied to prompt op-
timization to enhance performance on downstream
tasks (Yuan et al., 2024; Fernando et al., 2024; Guo
et al., 2024). Notably, (Yuan et al., 2024) proposed
an agent-based method, called EvoAgent, by lever-
aging the power of LLMs to address several chal-
lenging NLP tasks. Another line of work is to lever-
age LLMs as evolutionary operators (Meyerson
etal., 2024; Lehman et al., 2023), facilitating the in-
tegration of evolutionary algorithms with powerful
language models for text generation applications.



The recent work (Lee et al., 2025) represents the
most closely related research to our approach. (Lee
et al., 2025) introduces a novel approach to com-
bine LLMs with evolutionary search algorithms
to tackle natural language planning tasks. In con-
trast, our work aims to overcome the commonsense
reasoning shortcomings of LLMs by introducing
a specialized score function tailored for common-
sense reasoning tasks.

4.2 Reasoning with LLMs

The advent of Large Language Models has suc-
cessfully tackled numerous complex NLP chal-
lenges, including reasoning capabilities that ap-
proach human-level performance. Researchers
primarily employ two methodologies to harness
LLMs for reasoning tasks: finetuning-based and
prompt-based techniques.

The finetuning-based approaches are pioneered
by (Sanh et al., 2022; Wei et al., 2022a; Thoppilan
et al., 2022) through fine-tuning on diverse NLP
tasks and data, yielding impressive zero-shot perfor-
mance on unseen tasks. The Orca (Mukherjee et al.,
2023) and its advanced version (Mitra et al., 2023)
demonstrated that smaller-scale LLMs are able to
achieve sophisticated reasoning abilities through
extensive instruction-based fine-tuning. Another
line of work (Ho et al., 2023; Magister et al., 2023;
Hsieh et al., 2023) is generating supervision data
from larger and more capable language models to
distill reasoning abilities to smaller models for ef-
ficiency. To improve the generalization ability of
out-of-domain, (PENG et al., 2025) proposed the
ReGenesis framework to self-synthesize reasoning
paths for post fine-tuning LL.Ms.

As regards the prompt-based method, chain-of-
thought (CoT) (Wei et al., 2022b) is the first method
to facilitate the reasoning of LLLMs by a step-by-
step thinking process. (Kojima et al., 2022) intro-
duced zero-shot CoT to eliminate the need for cu-
rated high-quality reasoning paths for models fine-
tuning. Building on this foundation, (Zhang et al.,
2023) developed AutoCoT, which autonomously
generates few-shot demonstrations with a CoT rea-
soning structure to tackle the scalable issue of
manual CoT methods. Additionally, several prior
works (Agarwal et al., 2024; Yang et al., 2024b)
employ in-context learning techniques to enhance
the reasoning capabilities of pretrained language
models.

A new emerging direction is to scale the infer-
ence time to improve the thinking abilities of lan-

guage models. The Self-Refine framework pro-
posed by (Madaan et al., 2023) uses an iterative
process that improves reasoning by refining pre-
vious reasoning paths. A simple yet effective
method (Wang et al., 2023) is to generate a diverse
set of reasoning paths and then marginalize over
them to draw a conclusion. To enhance the strate-
gic planning ability of LLMs, previous works (Yao
et al., 2023; Hao et al., 2023) have explored the in-
tegration of tree-based structures with the thinking
process to enhance the strategic planning ability
of language models by systematically organizing
their reasoning processes. The recent study (Snell
et al., 2025) provides analysis and evidence indicat-
ing that scaling inference compute is more effec-
tive than scaling training compute, offering a novel
approach for developing more capable reasoning
agents.

5 Conclusion

We propose the COmmensense REasoning EVO-
lution method which is a general inference scal-
ing method to advance commonsense reasoning
capabilities of LLMs. Our method leverages the
self-feedback ability and prompting techniques of
LLMs to implement the mutation and crossover op-
erations for integrating the evolutionary search for
commonsense reasoning tasks. Our method is ca-
pable of addressing the limitations of the best-of-N
and self-consistency method, searching reasoning
paths in the local optima in reasoning spaces, by
iteratively performing evolutionary operations and
population refinement based on the pretrained en-
tailment verifier model. Our experimental results
demonstrate that the CORE-EVO outperforms in-
ference scaling baselines by a significant margin
in terms of accuracy on three popular benchmarks
across two LLM backbones, the Llama3.1-8B and
Qwenl.5-7B.

Limitations

We study the inference scaling ability of pretrained
LLMs for commonsense reasoning tasks. The re-
search goal is to advance the reasoning ability of
pretrained LLMs without requiring fine-tuning. Be-
low are the limitations of our work:

* Our method relies heavily on hand-crafted
prompts for different tasks, and the perfor-
mance of our method is bound by the perfor-
mance of base language models.



* We are not able to systematically study the in-
ference scaling ability of very large language
models, which have more than 8 billion pa-
rameters, on commonsense reasoning tasks
due to time and computational constraints.

* Our method requires generating a greater num-
ber of tokens compared to alternative tech-
niques, resulting in lower token efficiency.

Ethics Statement

We recognize that our proposed methodology may
produce potentially misleading reasoning paths as
a result of inherent biases present in the underlying
language models. Although generating biased rea-
soning is not the intended purpose of our approach,
we acknowledge this limitation. This risk can be
mitigated through two ways: careful design of in-
put prompts, or thorough evaluation and selection
of language models with reduced bias profiles. We
remain committed to responsible development and
application of our method while acknowledging
these inherent challenges.
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A Additional Ablation Study
A.1 Additional ablation studies

CommmonsenseQA
198

Accuracy (%)

02 06 08
Sampling Temperature

Figure 3: The experiment for choosing the sampling
temperature to initialize population with the setting
{N =10,T = 20} for the CORE-EVO on the Com-
monsenseQA benchmark for Llama3.1-8B model
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Figure 4: The experiment for choosing the number of
initial population for a fixed number of evolutionary
rounds 7' = 20 on the CommonsenseQA benchmark
for Llama3.1-8B model

The Figure. 3 illustrates the hyperparameter se-
lection for the sampling temperature parameter
for our method. The temperature at temp = 0.8
achieves the highest performance, therefore, all our
experiments are conducted using the temperature
of 0.8. The ablation study for choosing the number
of the initial population for our method is demon-
strated in Figure. 4. The number of population
N = 10 achieves the highest performance on the
CommonsenseQA benchmark, thus, it is used for
experiments throughout this work.

In Table. 8, we examine the effectiveness of
different fitness/rankin functions on the Com-
monsenseQA benchmark with Llama3.1-8B. We
searched for optimal reasoning paths using the best-
of-N approach with different fitness functions ap-
plied. Our findings show that the pretrained veri-
fier function delivers the highest average accuracy
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Figure 5: The experiment for mutation-crossover trade-
off on the CommonsenseQA benchmark for Llama3.1-
8B model

fitness function CSQA SIQA  Average
pretrained verifier | 80.34  75.23 77.79
quantile-« 78.54  74.61 76.57
logprob 77.17  73.86 75.51

Table 8: The ablation study on the effectiveness of
different fitness functions for Llama3.1-8B. The in-
ference scaling method is best-of-N with different fit-
ness/ranking functions to search for the best solution.

when compared to both the normalized logprob and
the quantile-o methods.

A.2 Computation

We do not train any new model in this paper, and
we instead propose a new inference scaling tech-
nique. Inference is conducted on A100 GPUs and
costs about 300 GPU hours in total. Our method
is implemented with PyTorch and the Huggingface
Transformers library.
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B Prompt

B.1 CommonsenseQA prompts

CommonsenseQA CoT Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.

You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Determine the object and its rele-
vant knowledge in detail. Also, determine
the context in the given question in detail.
Step 2. Randomly choose an option to
simulate an example using information
from previous steps. Try to be as specific
as possible.

Step 3. Conclude the answer based on
information from step 2. Answer by
choosing the most correct option. Strictly
output a single character.

Please response your answer by using
JSON format: <’step i’>: <content>..

<In-context examples>

Question: {input-question}
Answer:




CommonsenseQA Crossover Prompt CommonsenseQA Reflection Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.

You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Determine the object and its rele-
vant knowledge in detail. Also, determine
the context in the given question in detail.
Step 2. Randomly choose an option to
simulate an example using information
from previous steps. Try to be as specific
as possible.

Step 3. Conclude the answer based on
information from step 2. Answer by
choosing the most correct option. Strictly
output a single character.

Please response your answer by using
JSON format: <’step i’>: <content>..

You will be given two reasoning paths. Ran-
domly mix the first three steps between two
reasoning paths, but keep the same step or-
ders. Please conclude the reasoning in step
4 based on the first three steps. Please re-
spond the answer by using JSON format
without explanation: <’step i’>: <content>.

Question: {input-question}

The first reasoning path: {path-1}
The second reasoning path: {path-2}
The new reasoning path:
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Instruction: You are an advanced reason-
ing agent that can improve based on self
refection. You will be given a previous
reasoning trial in which you were given
access to relevant context and a question
to answer. Please provide feedback on the
previous reasoning path. The feedback
indicates missing concepts. Provide a
concise and high-level feedback for the
previous reasoning path.

Context: {input-question}
Previous trial: {previous reasoning path}
Reflection:

CommonsenseQA Mutation Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.

You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Determine the object and its rele-
vant knowledge in detail. Also, determine
the context in the given question in detail.
Step 2. Randomly choose an option to
simulate an example using information
from previous steps. Try to be as specific
as possible.

Step 3. Conclude the answer based on
information from step 2. Answer by
choosing the most correct option. Strictly
output a single character.

Generate the new reasoning path based on
the reflection from the previous reasoning
path. Please refine the previous path and
correct any false claims. Please respond
the answer by using JSON format without
explanation: <’step i’>: <content>.

Question: {input-question}

Previous reasoning path: {previous rea-
soning path}

Reflection: {feedback}

The new reasoning path:




B.2 PIQA prompts

PIQA CoT Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.

You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Determine the object and its
physical properties in the question. Also,
determine the differences in the situation
between the two options.

Step 2. Simulate an example based on the
previous step’s information.

Step 3. Conclude the answer information
from step 1 and 2. Answer by choosing the
most correct option. Strictly output a single
character.

Please respond with the answer by using
JSON format: <’step i’>: <content>.

<In-context examples>

Question: {input-question}
Answer:

14

PIQA Crossover Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.

You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Determine the object and its
physical properties in the question. Also,
determine the differences in the situation
between the two options.

Step 2. Simulate an example based on the
previous step’s information.

Step 3. Conclude the answer information
from step 1 and 2. Answer by choosing the
most correct option. Strictly output a single
character.

Please respond with the answer by using
JSON format: <’step i’>: <content>.

You will be given two reasoning paths. Ran-
domly mix the first three steps between two
reasoning paths, but keep the same step or-
ders.

Please conclude the reasoning in step 4
based on the first three steps.

Question: {input-question}

The first reasoning path: {path-1}

The second reasoning path: {path-2}
The new reasoning path:

PIQA Reflection Prompt

Instruction: You are an advanced reason-
ing agent that can improve based on self
refection. You will be given a previous
reasoning trial for a physical situation in
which you were given access to relevant
context and a question to answer. Please
provide feedback on the previous reasoning
path. Provide a concise and high-level
feedback for the previous reasoning path.

Context: {input-question}
Previous trial: {previous reasoning path}
Reflection:




PIQA Mutation Prompt B.3 SIQA prompts

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.

You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Determine the object and its
physical properties in the question. Also,
determine the differences in the situation
between the two options.

Step 2. Simulate an example based on the
previous step’s information.

Step 3. Conclude the answer information
from step 1 and 2. Answer by choosing the
most correct option. Strictly output a single
character.

Generate the new reasoning path based on
the reflection from previous reasoning path.
Please refine the previous path and correct
any false claims. Please conclude the rea-
soning in step 4 based on the first three
steps.

Please respond with the answer by using
JSON format without explanation: <’step
i’>: <content>.

Question: {input-question}

Previous reasoning path: {previous rea-
soning path}

Reflection: {feedback}

The new reasoning path:
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SIQA CoT Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.

You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Analyze the context and extract
factual knowledge based on the context.
Also, analyze the given question.

Step 2. Randomly choose an option to
simulate a situation using information from
the previous step.

Step 3. Conclude the answer based on
information from step 1 and 2. Answer by
choosing the most correct option. Strictly
output a single character.

Please respond with the answer by using
JSON format: <’step i’>: <content>.

<In-context examples>

Question: {input-question}
Answer:




SIQA Crossover Prompt SIQA Mutation Prompt

Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.

You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Analyze the context and extract
factual knowledge based on the context.
Also, analyze the given question.

Step 2. Randomly choose an option to
simulate a situation using information from
the previous step.

Step 3. Conclude the answer based on
information from step 1 and 2. Answer by
choosing the most correct option. Strictly
output a single character.

Please respond with the answer by using
JSON format: <’step i’>: <content>.

You will be given two reasoning paths. Ran-
domly mix the first three steps between two
reasoning paths, but keep the same step or-
ders.

Please conclude the reasoning in step 4
based on the first three steps.

Question: {input-question}

The first reasoning path: {path-1}

The second reasoning path: {path-2}
The new reasoning path:

SIQA Reflection Prompt

Instruction: You are an advanced reason-
ing agent that can improve based on self
refection. You will be given a previous
reasoning trial for social interaction in
which you were given access to relevant
context and a question to answer. Please
provide feedback on the previous reasoning
path. Provide a concise and high-level
feedback for the previous reasoning path.

Context: {input-question}
Previous trial: {previous reasoning path}
Reflection:
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Instruction: You are a helpful assistant.
You are able to understand commonsense
knowledge and answer related common-
sense questions perfectly.

You should reason your answer step by step
concisely. Here are the reasoning steps:

Step 1. Analyze the context and extract
factual knowledge based on the context.
Also, analyze the given question.

Step 2. Randomly choose an option to
simulate a situation using information from
the previous step.

Step 3. Conclude the answer based on
information from step 1 and 2. Answer by
choosing the most correct option. Strictly
output a single character.

Generate the new reasoning path based on
the reflection from previous reasoning path.
Please refine the previous path and correct
any false claims. Please conclude the rea-
soning in step 4 based on the first three
steps.

Please respond with the answer by using
JSON format without explanation: <’step
1’>: <content>.

Question: {input-question}

Previous reasoning path: {previous rea-
soning path}

Reflection: {feedback}

The new reasoning path:




C Qualitative Examples Analysis

We perform a qualitative evaluation on a sample
of 50 questions from the CommonsenseQA bench-
mark to evaluate reasoning quality across differ-
ent approaches. Our findings demonstrate that
CORE-EVO generates significantly more nuanced
and comprehensive reasoning paths compared to
both best-of-N and self-consistency baselines. Fur-
thermore, CORE-EVO incorporates supplemen-
tary evidence and contextual details that facilitate
more robust conclusion formation. The follow-
ing examples illustrate the qualitative distinctions
between CORE-EVO and baseline methods, self-
consistency and best-of-N. Figure 10 demonstrates
that while all methods correctly identify the answer,
baseline approaches directly select the UK without
sufficient justification. In contrast, our method fol-
lows a more sophisticated and thorough reasoning
process, explicitly considering Ireland as a poten-
tial candidate before ultimately determining Great
Britain as the correct answer.

17



CommonsenseQA

Question James was looking for a good place to buy farmland. Where might he look? A) Midwest B) Countryside
C) Estate D) Farming area E) Illinois

Best-of-N Step 1: Farmland is typically located in areas with a suitable climate and geography for agriculture,
often in rural or countryside settings. The question asks where James might look for a good place to
buy farmland, indicating a search for a specific geographic location. Step 2: For example, the Midwest
region in the United States is known for its fertile soil and favorable climate for farming, making it
an ideal location for buying farmland. Step 3: Farming areas or regions with suitable conditions for
agriculture are likely where James would find suitable farmland for purchase. D

Self-consistency | Step 1: The object is farmland, which is a piece of land used for agriculture, typically for crops or
livestock. The question asks where James might look for a good place to buy farmland, suggesting a
location with suitable conditions for farming. Step 2: For example, the midwest region in the United
States is known for its fertile soil and suitable climate for farming, making it a prime location for buying
farmland. Step 3: Farming areas or regions with suitable climate and soil conditions are ideal for buying
farmland. D

CORE-EVO Step 1: Farmland is typically located in areas suitable for agriculture, often in rural regions with fertile
soil and adequate water supply. James was looking for a good place to buy farmland, indicating he is
seeking a location with suitable conditions for agriculture. Step 2: For example, The Midwest region in
the United States is known for its fertile plains and is often considered an ideal place to buy farmland
due to its suitable climate and soil conditions. Step 3: The Midwest region offers suitable conditions
for agriculture, including fertile soil and adequate water supply, making it a prime location for buying
farmland. A

Table 9: This qualitative example where the CORE-EVO provides a more accurate reasoning path over baselines.
The reasoning paths are selected based on the highest score in the population for each method. The issues with the
reasoning path are highlighted in red. The correct answer and accurate explanation are highlighted in blue.

CommonsenseQA

Question What island country is ferret popular? A) Own home B) North Carolina C) Great britain D) Hutch E)
Qutdoors

Best-of-N Step 1: Ferrets are popular pets in many countries, but they are often associated with the United Kingdom,

where they have been kept as companions for centuries. The question asks which island country ferrets
are popular in, indicating a specific geographic location. Step 2: For example, in the United Kingdom,
particularly in England, ferrets are a common household pet and are often kept in domestic settings. Step
3: The popularity of ferrets as pets in the UK is well-documented, and they are often associated with
British culture. C

Self-consistency | Step 1: The object is a ferret, a domesticated mammal known for its playful and curious nature, often
kept as pets. The question asks in which island country ferrets are popular pets. Step 2: For example,
in the United Kingdom, particularly in England, ferrets are relatively popular pets, and their care and
housing are well-documented. Step 3: The UK, including England, has a history of keeping ferrets as
pets, and they are relatively well-known in the country. C

CORE-EVO Step 1: The object is a ferret, a domesticated mammal known for its playful and curious nature, often
kept as pets. The question asks in which island country ferrets are popular, specifying a country that
is both an island and has a notable ferret population. Step 2: For example, while Ireland is an island
country with a known ferret population, it is not the correct answer choice. Step 3: Instead, the answer
choice C, Great Britain, is a more accurate match, as ferrets are popular pets in the UK, including in
England, Scotland, and Wales, which are part of Great Britain. Great Britain meets the criteria of being
an island country and has a known ferret population, making it a suitable answer, and it is also the correct
answer choice. C

Table 10: This qualitative example where the CORE-EVO provides a more accurate reasoning path over baselines.
The reasoning paths are selected based on the highest score in the population for each method. The issues with the
reasoning path are highlighted in red. The correct answer and accurate explanation are highlighted in blue.
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