
Effectiveness of Kinesthetic Sensing in In-Hand Rotation of Objects
with an Eccentric Center of Mass

Chanyoung Ahn, Sungwoo Park, and Donghyun Hwang

Abstract— In-hand manipulation is a key capability for
dexterous control, yet it becomes challenging when the mass
or center of mass (CoM) of an object is not well known.
Such intrinsic properties are difficult to infer precisely through
visual sensing alone, which limits the reliability of manipulation
strategies. This study investigates how kinesthetic sensing can
support in-hand rotational tasks by enabling reinforcement
learning (RL) agents to adjust to variations in object dy-
namics, particularly weight and center of mass. Our method
incorporates both proprioceptive signals, such as joint angles,
and kinesthetic data, joint forces and torques, captured from
sensors embedded in a four-finger robotic hand. To reduce the
dimensionality of the input space while retaining the relevant
dynamics, we applied Principal Component Analysis (PCA).
The resulting policy demonstrates improved adaptability. In
the simulation, the manipulation success rates increased by
2.09 and 2.40 times on six and twelve previously unseen CoM
configurations, respectively. In addition, kinesthetic detection
improves performance 1.52 times in ten known configurations.
These findings indicate that kinesthetic feedback contributes
substantially to robust and generalizable in-hand manipula-
tion. To access our data and video, please visit our project
page: https://cold-young.github.io/kinesthetic_
rotation/.

I. INTRODUCTION

Robotic hands, having higher degrees of freedom than typ-
ical grippers, can perform sophisticated in-hand manipulation
tasks such as precisely reorienting objects and adaptively
grasping them in complex environments [1], [2]. To automate
these tasks, recent studies increasingly utilize reinforcement
learning (RL) and imitation learning (IL), along with sensory
inputs such as vision and tactile feedback [3], [4], [5].
Despite these efforts, reliably manipulating diverse objects
remains challenging, particularly due to variations in intrinsic
properties [1].

Relying solely on visual sensing often leads to poor perfor-
mance, especially when handling internal object properties
like an eccentric CoM configuration. To address this limita-
tion, we propose using proprioceptive and kinesthetic feed-
back, enabling the robot to physically perceive and adaptively
respond to object variations [6], [7]. Although prior work has
briefly explored kinesthetic feedback for object recognition
and limited manipulation tasks [6], our research specifically
investigates its effectiveness for adapting to changes in CoM
during in-hand rotation.
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Fig. 1: In-hand rotation tasks of objects with varying weight
and an eccentric CoM. The robotic hand manipulates cylin-
drical objects and estimates center of mass using kinesthetic
feedback from force/torque (F/T) sensors embedded in the
fingers.

To effectively handle the high-dimensional nature of sen-
sory data, we apply Principal Component Analysis (PCA)
for state representation, motivated by previous successful
studies [8], [9]. In this study, we systematically analyze how
kinesthetic feedback affects policy learning and performance
in RL-based in-hand rotation tasks with objects having
varying intrinsic properties.

In this study, we leverage kinesthetic feedback to facilitate
in-hand object rotation, particularly for objects with varying
weight and an eccentric CoM. We analyze the role of kines-
thetic feedback in RL-based approaches of in-hand rotation
tasks, demonstrating how it influences task performance and
policy learning under changing object properties.

The main contributions are as follows.

• We demonstrate how kinesthetic feedback enables per-
ception and adaptation to intrinsic object properties,
such as weight and CoM, for in-hand rotation tasks.

• We evaluate in-hand rotation performance using kines-
thetic feedback under 15 unseen weight and CoM
conditions to assess adaptability.

• We analyze the effectiveness of state representation
techniques in improving RL performance and increasing
success rates in manipulation tasks.

https://cold-young.github.io/kinesthetic_rotation/
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Fig. 2: Overall learning system architecture. To achieve adap-
tive in-hand rotation of cylindrical objects with an eccentric
CoM, the robotic agent receives proprioceptive data, object
pose, kinesthetic feedback, and a specified goal orientation.
Based on these inputs, the agent outputs a 16-dimensional
action corresponding to target joint angles. Further details
are provided in Section II.

Fig. 3: In-hand rotation with eccentric objects. During infer-
ence, the robotic hand rotates cylindrical objects toward the
goal orientation within a rollout period of 5 seconds. The
agent receives higher rewards for achieving more successful
goal orientations.

II. KINESTHETIC SENSING FOR IN-HAND ROTATION
WITH ECCENTRIC COM

This study aims to validate the role of kinesthetic sensing,
derived from F/T feedback from sensors located at the base
joints of the fingers, in in-hand rotation tasks, as illustrated
in the concept image in Fig. 1. An overview of our RL
framework is illustrated in Fig. 2. To achieve this, we design
the framework to acquire downward-facing rotation skills, as
shown in Fig. 3.

Our approach leverages privileged observations, incorpo-
rating object pose data, proprioceptive signals, and kines-
thetic feedback from four force/torque (F/T) sensors em-
bedded in the finger joints. These privileged observations
improve state estimation accuracy and facilitate effective
policy learning, enabling adaptation to real-world scenarios.

A. Problem Formulation

We define the in-hand rotation problem as a Markov
Decision Process, denoted as M = (S,A,R,P), where S
represents the state space, A the action space, R the reward
function, and P the transition dynamics. Since R and P are

TABLE I: Observations. The three-axis kinesthetic observa-
tions are collected at three time steps. The sensors are located
at the joints near the base of the fingers, as indicated by the
orange dotted circles in Fig. 5 (b).

Joint angles qt

Object pose (xt, Rt)

Goal orientation Rgoal

Delta rotation R−1
goalRt

Fingertip pose (xfinger
t , Rfinger

t )

Previous target q̄t

F/T sensing (∆ot,∆ot−1,∆ot−2)

unknown to the robot, The robotic hand agent perceives a
state st at each step t and generates an action at = π(st)
based on the current policy π. The agent then receives a
reward rt = R(st, at, st+1). Its objective is to maximize the
discount return

∑T
t=0 γ

trt, where γ is the discount factor.
The elements of this MDP as defined as follows.

1) State: the state of the system consists of the joint po-
sition of the robotic hand platform qt ∈ R16 with difference
of force feedback sensor as observation ot ∈ {−1.5, 1.5}12.
and the previous position target q̄t ∈ R16. Since the F/T
sensing data at one step may not be sufficient for control,
we also stack it with other three historical states as the input
when we use a multilayer perception (MLP) as the policy
network. The detail observation ot passed to the policy is
shown in Table I.

2) Action: at each timestep, the policy network outputs a
relative command at ∈ R16, which the PD controller uses
to adjust the hand’s joint positions, updating the target as
q̃t+1 = q̃t + at. To ensure smooth finger movements and
prevent conflicts between consecutive actions, we apply an
exponential moving average for target updates: q̃t+1 = q̃t +
at, where ãt = ηat + (1 − η)ãt−1, t ≥ 1 and ã0 = 0. Our
experiments show that setting η = 0.035 provides stable
performance. The PD controller runs at a control frequency
of 30 Hz.

3) Reward: we design a reward function that is able to
rotate the object in a smooth and transferable way. The
reward function used in this work is a weighted mixture of
several components.

r = ω1rrot + ω2rfall + ω3rcont + ω4rvel

+ ω5rdist + ω6rgoal.
(1)

The reward function comprises six components, each
designed to guide the agent’s behavior toward successful
in-hand rotation. The first term, rrot, provides a positive
signal based on the alignment between the object’s current
orientation and the target pose. The second component, rfall,
imposes a penalty when the object falls from the table,
as illustrated in Fig. 3. The third term, rcont, discourages
contact between the object and the table surface, promoting
free-space rotation during rollouts. The fourth reward, rvel,
penalizes overly fast rotations in simulation, encouraging



Fig. 4: Training and test objects with eccentric CoM dataset.
(Left) Illustration of the cylindrical object, where we vary
intrinsic properties such as CoM position and mass. (Right)
The dataset consists of nine training objects (green circles)
with three different mass values: 50 g, 100 g, and 150 g. The
six test objects (red circles) have unknown intrinsic attributes,
particularly mass, with three objects weighing 80 g and the
other three weighing 300 g.

smoother trajectories that can be reliably transferred to the
real world. The fifth component, rdist, offers a positive
reward based on the normalized distance between the current
and goal poses, increasing as the object approaches the target.
Finally, rgoal is a sparse reward granted when the agent
successfully completes the rotation task.

III. EXPERIMENTAL SETUP

s

A. Experimental Setup

Our goal is to evaluate the influence of kinesthetic sensing
on in-hand rotation tasks. To achieve this, we design a learn-
ing environment for a downward-facing rotation task using
Isaac Lab [10]. We use 25 cylindrical objects with varying
mass and CoM positions to investigate the role of kinesthetic
sensing in in-hand manipulation. To analyze its effectiveness,
we train three policies with different observation settings:
(1) a baseline policy using only privileged information, such
as object pose and robot joint angles; (2) a policy that
incorporates privileged information along with kinesthetic
sensing differences over three timesteps; and (3) a policy
similar to the second but utilizing PCA as an encoder to
represent kinesthetic data in a lower-dimensional space while
preserving meaningful correlations.

Hardware Setup. We use a four-fingered robotic hand
platform [11]. The robotic hand platform is capable of
kinesthetic feedback using a three-axis F/T sensor on each
finger, as shown in Fig. 5. It weighs approximately 550 g and
has a maximum payload capacity of around 3 kg. Each joint
of the robotic hand is controlled by a PD position controller
with a control frequency of 120 Hz. The target position
commands are converted to torque using a PD controller (Kp

Fig. 5: Illustration of robotic hand platform capable of
kinesthetic feedback at each finger. (a), (b), and (c) show
the three-axis F/T sensor embedded into the robotic hand
platform for kinesthetic feedback, the robotic hand platform,
and the robotic finger, respectively.

= 1.0, Kd = 0.1). Each episode consists of 150 control steps,
corresponding to a duration of 5 senconds.

B. Training Procedure

We train our control policy using the proximal policy
optimization (PPO) algorithm [12] with a multilayer per-
ceptron (MLP) for both the policy and value networks. For
simulation, we use Isaac Sim with Isaac Lab [10], setting the
timestep to dt = 1/120 s with four simulation sub-steps. The
simulation runs 4096 parallel environments, and the policy
executes actions every four steps, corresponding to a 30 Hz
control frequency.

Policies are trained for 40K steps using the skrl RL
library [13]. All results are obtained using five random seeds,
tested across 500 rollouts with 100 parallel environments. All
experiments are conducted on single RTX 4090 GPU.

C. Baselines

We evaluate three baselines to assess the role of kinesthetic
sensing in learning in-hand manipulation skills. All baselines
share the same environment, goal, and reward settings,
differing only in their observation modalities.

Proprioception. The policy uses only privileged observa-
tions, including robot joint angles, object pose, and target
goal. The total state dimension is 75.

Proprioception+Kinesthesia. This policy extends the first
baseline by incorporating kinesthetic sensing. Kinesthetic
feedback consists of three-axis F/T information from the
robotic hand’s phalanges. To emphasize dynamic changes,
we use the difference between the current and previous
kinesthetic readings and apply a three-step time stack. This
approach helps capture transient signals such as slip and
contact by leveraging correlations in sensory data. The total
state dimension is 111.

Proprioception+Kinesthesia with PCA. This policy
builds upon the second baseline but incorporates PCA as an
encoder to compress kinesthetic sensing data. By reducing
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Fig. 6: Performance Evaluation on Pre-trained Samples. We evaluate our policies on 10 objects with varying mass and CoM
positions, measuring the number of successful rotations to the target orientation over 500 inferences. We test five policy seeds
trained on these 10 objects. The results indicate that incorporating kinesthetic sensing improves performance compared to
policies without it. Notably, using PCA to represent and compress kinesthetic data further enhances performance, achieving
even higher performance.

dimensionality while preserving key correlations, we aim to
demonstrate that structuring sensory data enhances manipula-
tion performance by capturing intrinsic object properties such
as mass and CoM. The total state dimension is 93, as PCA
reduces the force feedback data from 36 to 18 dimensions.

D. Performance Evaluation on Pre-trained Samples

First, we evaluate three baseline policies using ten objects
that were included in the training process to compare their
performance. We train the policies with five random seeds
and 40K steps. As shown in Fig. 6, in the evaluation of
trained objects, the policy incorporating kinesthetic sensing
outperforms the policy without sensor input. This suggests
that kinesthetic sensing enhances performance by providing
additional state information, similar to real-world scenarios
where only proprioceptive and F/T data from the robotic
hand are available.

When combining PCA with kinesthetic data, we observe
an overall improvement in performance. However, for ob-
jects already encountered during training, the difference in
performance between this approach and other baselines is not
substantial. In particular, the Proprioception + Kinesthesia
with PCA configuration increased the number of successful
manipulations by 1.52-fold improvement compared to using
proprioception alone.

E. Performance Evaluation on Novel Samples

We evaluate the same three policies on two datasets of
previously unseen objects. These objects share the same
geometric shape but differ in intrinsic properties such as mass
and CoM. The policies are tested under conditions where the
objects have different weights—80 g and 300 g—compared
to the training set.

A key observation is that kinesthetic sensing becomes
increasingly beneficial as the object’s weight increases. For
the 80 g objects (A, C, and E in Fig. 4 (right)), all three
baselines perform relatively well, even though the objects are
novel. However, when manipulating the 300 g objects (B, D,
and F in Fig. 4 (right)), there is a sharp drop in performance
for all policies except the one that incorporates PCA with
kinesthetic data. This likely occurs because, as object weight
increases, correctly estimating the CoM becomes crucial for

TABLE II: Results of the In-Hand Rotation Experiment: The
number of successful manipulations within a fixed time limit
(5 seconds) for 10 pre-trained and 15 novel samples.

Max Reward
(mean)

Pre-trained
Samples

Fig. 6

Unknown
Mass

Fig. 8 (a)

Unknown
CoM Positions

Fig. 8 (b)

Proprioception
419.05
± 92.41

4.47
± 1.14

3.29
± 0.95

2.90
± 0.77

Proprioception
+ Kinesthesia

477.30
± 143.31

5.01
± 1.75

3.73
± 1.26

3.35
± 1.19

Proprioception
+ Kinesthesia

with PCA

569.71
± 104.59

6.78
± 1.24

6.87
± 1.35

6.95
± 1.36

effective manipulation. Unlike other approaches, the PCA-
based representation accounts for sensor correlations, rather
than just including raw kinesthetic data, thereby mitigating
performance degradation. The Proprioception + Kinesthesia
with PCA configuration improved the number of successful
manipulations by 2.09 times compared to proprioception
alone.

In addition, we conducted experiments with 12 novel CoM
configurations to examine performance variations when the
CoM changes while keeping the object’s weight constant at
100 g (as in pre-training). The absolute radius r remained
fixed (Fig. 4 (left)), but the CoM configuration was system-
atically varied along different axes, from [−r, 0,−dcom] to
[r, 0, dcom], and from [0,−r,−dcom] to [0, r, dcom], resulting
in 12 different configurations.

IV. RESULTS & CONCLUSION

Our experiments demonstrate that kinesthetic sensing
significantly enhances in-hand manipulation performance,
particularly when handling objects with varying mass and
CoM. On pre-trained objects, the Proprioception + Kines-
thesia policy outperformed the proprioception-only baseline,
achieving a 1.52-fold increase in successful manipulations
when combined with PCA-based data encoding as shown in
Table II.

Our findings highlight the critical role of kinesthetic sens-
ing in RL-based in-hand manipulation. Kinesthetic feedback
enables more stable and adaptable manipulation by providing
essential information about an object’s dynamic properties.



Furthermore, applying PCA to structure kinesthetic data
improves learning efficiency and performance by preserving
key correlations while reducing dimensionality.
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APPENDIX

A. Limitations & Future Work

This research still has several limitations. First, we did
not deploy the policy on a real robotic platform due to
the sim-to-real gap. Kinesthetic sensing data can differ
significantly between simulation and real-world. To partially
address this, we used differential features of tactile sensing.
However, bridging this gap requires mapping real sensor data
to simulation sensing. In future work, we plan to develop
a sensing transfer model, following approaches similar to
[14]. Additionally, the current policy assumes access to the
object’s pose as part of the state. To remove this assumption,

Fig. 7: Test objects with eccentric CoM. (a) Ten training
objects with varying center of mass locations; result are
shown in Fig. 6. (b) Six test objects with unseen masses
(80g and 300g); corresponding results are shown in Fig. 8.
(c) Twelve test objects, including three known objects, used
to evaluate performance under unseen CoM positions; results
are shown in Fig. 8.

we intend to incorporate a vision sensor and a perception
model to estimate the object pose directly from visual input.

Secondly, while we used PCA to encode kinesthetic
feedback, we did not explore other representation learning
methods like autoencoder-based models. Our focus in this
study was to analyze the effectiveness of kinesthetic feed-
back. However, we are also interested in applying more
advanced representation learning techniques. In particular,
we observed that PCA is limited in handling multi-modal
sensor data, as it assumes linear and orthogonal relationships
between modalities. To address this, we aim to develop a
multi-modal representation model that can jointly encode
kinesthetic feedback, joint angles, joint torques, and other
sensing modalities.

B. Performance Evaluation on Novel Samples

We evaluated the three policies on two test sets to validate
their generality (see Fig. 7). The results are shown in Table
II and Fig. 8.



Fig. 8: Simulation Performance of Our Policy with 15 unknown objects. (a) Performance on six novel objects with identical
shapes but different intrinsic properties, evaluated at two masses (80 g, 300 g). Performance declines for heavier objects when
kinesthetic data is not combined with PCA. (b) Performance on 12 novel objects with different CoM positions. Kinesthetic
sensing improves manipulation success, while performance decreases as the CoM shifts higher.
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