
DARTS without a Validation Set: Optimizing the
Marginal Likelihood

Miroslav Fil1∗ Binxin Ru1 Clare Lyle1 Yarin Gal1

1 OATML Group, Department of Computer Science, University of Oxford, UK

Abstract

The success of neural architecture search (NAS) has historically been limited by
excessive compute requirements. While modern weight-sharing NAS methods
such as DARTS are able to finish the search in single-digit GPU days, extract-
ing the final best architecture from the shared weights is notoriously unreliable.
Training-Speed-Estimate (TSE), a recently developed generalization estimator with
a Bayesian marginal likelihood interpretation, has previously been used in place of
the validation loss for gradient-based optimization in DARTS. This prevents the
DARTS skip connection collapse, which significantly improves performance on
NASBench-201 and the original DARTS search space. We extend those results by
applying various DARTS diagnostics and show several unusual behaviors arising
from not using a validation set. Furthermore, our experiments yield concrete exam-
ples of the depth gap and topology selection in DARTS having a strongly negative
impact on the search performance despite generally receiving limited attention in
the literature compared to the operations selection.

1 Introduction

Neural architecture search (NAS) algorithms have been able to automatically find network archi-
tectures that outperform the best human designs in test set performance on several benchmarks,
making it an important subfield of AutoML [10, 23]. However, earliest specialized NAS methods
using evolutionary algorithms [22] or reinforcement learning [32] required thousands of GPU days
to achieve good performance because each architecture was trained separately. Weight-sharing
algorithms such as ENAS [21] or DARTS [18], in which all the architectures share the same set of
weights in a large supernetwork, have reduced the computational cost to single-digit GPU days while
often delivering better performance. However, identifying the single best architecture based on the
shared weights is known to be unstable [2, 18, 30]. DARTS in particular suffers from overfitting
to too many skip connections [28], and Dong et al. [7] have shown that DARTS might even select
architectures with all skip connections and no parameter-based operations.

Most weight-sharing NAS extracts the best architecture out of the supernetwork either by evaluating
the validation accuracy of single architectures with weights inherited from the supernetwork [17, 13],
or by explicitly optimizing the validation loss end-to-end in a differentiable fashion as in DARTS
[18]. However, the performance of architectures using the shared weights tends to be significantly
different from their performances when trained separately [2, 30], which makes it difficult to identify
the standalone best architecture.

Ru et al. [24] have shown that Training-Speed-Estimate (TSE), a recent generalization estimator
based on Bayesian model selection [20] that does not require a validation set, can be used to provide

∗Correspondence to miroslav.fil@cs.ox.ac.uk.

5th Workshop on Meta-Learning at NeurIPS 2021, held virtually.



high fidelity yet computationally cheap early-stopping estimates of architecture test set performance
in non-weight-sharing NAS. They also showed promising results on TSE being applicable to various
weight-sharing NAS algorithms. Our work extends those results by providing additional benchmarks
of TSE applied to DARTS (TSE-DARTS) and its variants on the NASBench-series. The main novelty
of our work lies in showing that using TSE both improves performance and fundamentally changes
the behavior of DARTS, thus expanding the insights from previous work on explaining DARTS [28,
25].

2 Background

We first introduce the basics behind DARTS and TSE, and then follow up by showing how to
efficiently compute the gradients of TSE to use for the differentiable optimization in DARTS.

2.1 DARTS

DARTS [18] searches for a single architecture cell that is stacked repeatedly to form the final network.
Such search space design is ubiquitous in modern NAS work [21, 22, 17]. A cell in the DARTS
search space is simply a directed acyclic graph (DAG) with 7 nodes. The DAG is fully connected,
and every edge between a pair of nodes (i, j) represents one operation o from the 8 operations in
the search space (such as skip connections, zero op, convolution or max pool). The output xj of
intermediate nodes in the DAG is equal to a sum of the operations corresponding to all the edges
(·, j) with input xi:

xj =
∑
i<j

o(i,j)(xi) (1)

During the search, DARTS relaxes the constraint that each edge (i, j) must represent only a single
operation, and instead uses a softmax with learnable weights α to make the sum differentiable.
Therefore, the node output is a mixture of all the available operations at once defined as

o(i,j) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(x). (2)

DARTS searches for normal and reduction cells. Most of the network is composed of normal cells,
whereas there are two reduction cells in total at 1/3 and 2/3 of the network depth. The difference is
that reduction cells have all operations with stride two. The whole architecture encoding can thus
be expressed as α = (αnormal, αreduce). DARTS formulates the optimization of the weights w and
architecture α as a bi-level optimization problem

min
α

Lval(w
∗(α), α) (3a)

s. t. w∗(α) = argminwLtrain(w,α) (3b)

Ltrain and Lval are losses on the train and validation sets, respectively. This formulation is equivalent
to the training loops in other problems such as meta-learning [11] or gradient-based hyperparameter
optimization [1]. The optimal weights w∗ are approximated by only a single step of SGD, which
means that the architecture gradients actually descend Lval(w − η∇wLtrain(w,α)). At the end of
training, the supernetwork is discretized into a single architecture by taking argmax over each edge to
select the operation that has the highest edge within the softmax. It is therefore implicitly assumed
that the most useful operations will simultaneously have the highest weights. In practice, selecting
the architecture this way is known to result in too many skip connections [28, 5], which frequently
results in poor performance of the final architecture.

2.2 TSE

TSE is defined as the sum over training losses during a model’s optimization. Let D =
{(x1, y1), (x2, y2), .., (xn, yn)} be the training dataset, fθt(xi(t)) represent a model’s output for
the training sample xi(t) in the t-th iteration with θt being the model weights at time t, L be a loss
function and T be the total training iterations. We define TSE as:

TSE =

T∑
t=1

L(fθt(xi(t)), yi(t)). (4)

2



Lyle et al. [20] have shown that TSE provably corresponds to an evidence lower bound in Bayesian
linear regression, making it an estimate of the marginal likelihood. For non-linear models such
as neural networks, TSE is a theoretically-inspired metric that was already shown to be useful as
a predictor of generalization in NAS by Ru et al. [24]. Similar optimization-based generalization
estimators have also been noted to correlate well with generalization by Jiang et al. [15].

It is possible to integrate TSE into DARTS by replacing descent of the validation loss gradient
∇Lval(w∗(α), α) by descending the TSE gradient. Note that optimizing TSE amounts to minimizing
the sum over training losses during training. Therefore, when using TSE-DARTS, no validation
set is required, and we only use the training set to find both the weights and the architecture. We
compute TSE over T = 100 SGD iterations and iteratively update the architecture as in normal
DARTS. Algorithm 1 shows the TSE-DARTS training loop, which simply uses different gradients for
updating the architecture compared to the original DARTS training loop [18]. We discuss how to
compute the TSE gradient in Section 2.3.

Algorithm 1: TSE-DARTS

Create mixed operations o(i,j) parameterized by α(i,j) for each edge (i, j)
Set T=100 steps of unrolling for computing TSE
while not converged do

1. Approximate the optimal weights w∗ with T steps of SGD by computing
wT = w0 − η

∑T
t=0∇wLtrain(f(xt, wt, α), yt);

2. Update architecture α by descending TSE gradient via Eq. (6);
3. Update the original weights with T steps of SGD
wT = w0 − η

∑T
t=0∇wLtrain(f(xt, wt, α), yt) using the new architecture encoding;

end

2.3 Computing the TSE gradient

While optimizing TSE instead of the validation loss is conceptually simple, obtaining the TSE
gradients is very computationally demanding in practice. Naively computing TSE gradient re-
quires differentiating through the whole training history to compute gradients with respect to the
architecture α, which leads to O(T ) memory requirements due to the workings of reverse-mode
auto-differentiation [1]. This would make it impossible to use large-scale networks. Precisely, the
exact gradient for the final training loss at time T after training with SGD is equal to (proof is included
in Appendix A):

∇αLTtrain =
∂LTtrain
∂α

+
∂LTtrain
∂w

(−η
∑

0≤j≤T

([
∏

0≤k<j

I − η ∂
2LT−k−1train

∂w∂w
]
∂2LT−j−1train

∂w∂α
)), (5)

where we abbreviate Ltrain(f(xT , wT , α), yT ) as LTtrain. The TSE gradient would be equivalent
to summing such gradients over all the time steps 0, 1, .., T . Instead, we follow Ru et al. [24], who
proposed to use a first-order approximation for each training loss gradient that only includes the direct
gradient ∂L

T
train

∂α from Eq. (12) at each time step. The whole TSE gradient can then be approximated
as

∇αTSE = ∇α(L0
train + L1

train + ..+ LTtrain) ≈
T∑
t=1

∂Lttrain
∂α

(6)

This form of the TSE gradient has several advantages. Most importantly, the ∇αLttrain can be
computed for free concurrently with the weights gradients. As a result, computing the approximate
TSE gradient has the same time and memory costs as normal training via backprop. An example
implementation is shown in Appendix D.

3 Experiments

We first show the performance of TSE-DARTS compared to baseline DARTS on NASBench-201 [7]
and NASBench-1shot1 [27]. While those search spaces are small, they tabulate the ground truth test
set performance of every architecture in the search space. The tabular nature of those benchmarks

3



CIFAR10

NASBench-201 SPOS [17] 91.05 (0.66)
GDAS [8] 93.23 (0.58)
ENAS [21] 93.76 (0.00)
DARTS [18] 65.38 (7.84)
TSE-DARTS 92.66 (0.00)

NB101-3 DARTS [18] 93.35 (0.01)
TSE-DARTS 87.87 (0.00)

Table 1: Summary of the performance of TSE-DARTS on NASBench-201 and NASBench-1shot1
search space 3 (abbreviated as NB101-3). TSE-DARTS has a much stronger performance than
DARTS on NASBench-201 as it is able to avoid collapsing to all skip connections. However, DARTS
does better on NB101-3 because of better topology as discussed in Section 3.3.

makes it especially viable to use those spaces for diagnosing the behavior of TSE-DARTS, which
we do in Sections 3.3 and 3.4 as our main empirical contribution. For the DARTS search space, we
retrain our best architectures using the 600 epochs training protocol as originally used by DARTS
[18]. Moreover, we use the DARTS search protocol, where we first run the search four times, retrain
all the resulting architectures once, and then retrain the best out of the four for three more seeds to
compute its mean ground truth test set accuracy. We also evaluate TSE versions of DrNAS [4] and
PDARTS [5]. Our experiments with TSE algorithms always reuse the default parameters from their
corresponding public implementations.

3.1 NASBench-201 and NASBench-1shot1

Searching on NASBench-201 [7] is a notorious example of DARTS overfitting to skip connections
as the final selected architecture often contains only skip connections with no parameter-based
operations. This makes DARTS have a consistently poor performance. Table 1 shows that using
TSE-DARTS is able to prevent the skip connection collapse and achieve 92.66% test set accuracy,
which is competitive with other weight-sharing algorithms such as GDAS [8] or SPOS [17] in
NASBench-201. On the other hand, DARTS has a strong performance on all three search spaces
from NASBench-1shot1 [27], from which we show results on search space 3, denoted as NB101-3.
Note that none of the search spaces have skip connections in the operations set, hence DARTS cannot
overfit to them. In comparison, TSE-DARTS fares poorly on this benchmark. Section 3.3 shows
that this is due to picking cells that are too deep rather than due to the operations choice, which is
unusual given the consistent overfitting to skip connections in normal DARTS. Appendix B includes
results on additional NASBench-201 datasets and NASBench-1shot1 search spaces, which are mostly
analogous to those already shown.

3.2 DARTS search space and the role of depth

Table 2 shows the results of TSE-DARTS on the original DARTS search space. The best architecture
found by TSE-DARTS achieves 2.73% test set accuracy, which is a marginal improvement over the
2.76% of second-order DARTS. However, it is a significant improvement compared to the 3.00%
of first-order DARTS, which is particularly notable since both TSE-DARTS and first-order DARTS
have the same compute and memory requirements. Moreover, TSE-DARTS finds very different
architectures compared to normal DARTS. Even in the DARTS search space, there is no overfitting
to skip connections for TSE-DARTS. Instead, the discovered architectures tend to be very heavy on
separable convolutions, often with no parameter-free operations at all. The best architecture found by
TSE-DARTS is visualized in Appendix C.

We hypothesize that skip connections are never chosen because they are unnecessary in the DARTS
search setup, which uses a shallow search supernetwork. In contrast, note that skip connections
are known to be more beneficial for deeper architectures [14, 16]. The search uses only 8 layers in
the supernetwork even though the evaluation with retraining from scratch is done using 20 layers
networks. This inequity between the search and evaluation networks is often referred to as the depth
gap. To test whether TSE-DARTS would pick skip connections with a deeper search supernetwork,
we also ran the search using 20 layers (denoted as TSE-DARTS-20) instead of the original 8 layers.

4



8 layers eval
(% err. rate)

20 layers eval
(% err. rate)

DARTS (1st) [18] 4.87 (0.18) 3.00 (0.14)
DARTS (2nd) [18] 4.91 (0.22) 2.76 (0.09)
DrNAS [4] 4.47 (0.28) 2.46 (0.03)
PC-DARTS [26] 4.31 (0.03) 2.57 (0.07)
PDARTS [5] 4.47 (0.15) 2.50
iDARTS [29] 4.35 (0.09) 2.37 (0.03)

TSE-DARTS 4.64 (0.22) 2.73 (0.12)
TSE-DrNAS 4.35 (0.19) 2.90 (0.14)
TSE-PDARTS 4.61 (0.22) 3.19 (0.12)
TSE-DARTS-20 4.47 (0.18) 2.68 (0.04)
DARTS-20 (first-order) 5.06 (0.39) 2.89 (0.11)

Table 2: Summary of performances of TSE variants against baselines in the DARTS search space.
TSE-DARTS outperforms the baseline DARTS, but the results from applying it to other state-of-the-art
algorithms are mixed. DARTS (1st) and (2nd) refer to first and second-order DARTS, respectively.

Figure 1c compares the number of skip connections for TSE-DARTS and TSE-DARTS-20. The
increased depth clearly favors picking a moderate amount of skip connections without overfitting to
them as in original DARTS, whereas the shallow TSE-DARTS has no skip connections whatsoever.
The best architecture of TSE-DARTS-20 has standalone test accuracy of 2.68%, further improving
on the 2.73% of TSE-DARTS. We also benchmarked first-order DARTS-20, which reached 2.89%
final test set accuracy, improving on the 3.00% of original first-order DARTS.

To better assess the effects of depth gap, we also trained the standalone architectures from scratch
using 8 layers for the evaluation. This again completely eliminates the depth gap except that now both
the search and evaluation networks are shallow. Table 2 shows the results with 8 layers evaluation
using the same architectures discovered by each search algorithm as the corresponding 20 layers
evaluation. In this setup, the TSE variants consistently improve on their baseline versions. This
is true particularly for TSE-DrNAS, which has a weak performance of 2.90% in the original 20
layers evaluation setup, but top tier results in 8 layers evaluation. Because some of the TSE variants
significantly improve in the 8 layers evaluation but are close or worse than the respective baselines
using 20 layers evaluation, it suggests that the architectural optimum with 8 layers networks can be
quite different from the 20 layers optimum. Hence, even if the search algorithm itself is improved, it
might still lead to worse results in the DARTS 20 layers evaluation if the search only uses 8 layers,
since the performance gains might not transfer across different depths due to the depth gap.

Related work including PDARTS [5] and DrNAS [4] tries to tackle the depth gap by progressively
deepening the search network while removing some operations from the operations set during multiple
phases of the search. We also tried to do this and tested TSE-PDARTS, but we found the resulting
architectures to be very poor with only 3.19% accuracy. Furthermore, the final architectures never
had any skip connections because the skip connections already got removed from the search space
while the network was still shallow. This suggests that even though the progressive deepening
might be a key factor in PDARTS’s impressive 2.50% performance, the improvement might not
necessarily be coming from reducing the depth gap since the architectures found by TSE-DARTS-20
and TSE-PDARTS are very different.

It thus appears that searching without the depth gap can be more effective compared to progressive
deepening. DARTS keeps the search supernetwork small primarily because of excessive memory
requirements due to the continuous relaxation. However, the full-depth search is computationally
feasible when using techniques such as gradient accumulation, which allows to trade-off extra
compute time for memory, or partial channel connections as in PC-DARTS [26]. The TSE-DARTS-
20 search only takes around 1 day to complete, which is the same as second-order DARTS, and around
23GB of VRAM when using the original 64 batch size. Note that optimizing TSE has the added
advantage of making DARTS less memory-intensive due to not using any second-order gradients,
hence making it easier to use higher depth supernetworks. At the same time, searching with full depth

5



(a) Normal cell (8 layers) (b) Normal cell (20 layers) (c) # of skip

Figure 1: When searching on the DARTS search space, baseline DARTS is biased towards shallow
architectures. Architectures found by TSE-DARTS tend to be significantly deeper for both 8 and
20 layers search as shown in a) and b), respectively. The range of depth in the DARTS space is
[2, 5], hence DARTS attains the minimum depth possible in the normal cell. c) shows the number
of skip connections, where we note that TSE-DARTS-20 picks a stable, moderate amount of skip
connections while DARTS overfits to them over time.

supernetworks might even be computationally cheaper overall if it were to improve on the search
instability in DARTS, reducing the number of seeds that need to be ran to obtain good results.

3.3 Bias towards shallow architectures

In Section 3.2, we investigated the effect of the number of layers in the supernetwork considered as a
fixed hyperparameter. Now, we investigate the depth of the architectural cells themselves which is
determined by the search. Shu et al. [25] have shown that DARTS tends to be biased towards shallow
cells. This is explained by shallower architectures having smoother loss landscapes, which makes
them easier to train. DARTS favors them since the gradient-based search is naturally greedy towards
architectures which train fast one step ahead.

Following Shu et al. [25], we measure depth as the length of the longest path from input to output
within the cell DAG. Figure 1 shows that TSE-DARTS tends to select significantly deeper cells
than normal DARTS. This is inconsistent with the intuition that DARTS is biased towards shallow
architectures because they train faster, since optimizing TSE means that the bias towards architectures
which achieve low training loss faster should be even more prominent. We propose an explanation for
this paradox in Section 3.4. Additionally, we found the depth of TSE-DARTS-20 architectures to be
inbetween DARTS and TSE-DARTS, whereas DARTS-20 again found the shallowest cells, same as
normal DARTS. It appears that TSE-DARTS with both 8 and 20 layers maintains a roughly constant
total depth of the network since searching with 8 cells finds deep individual cells whereas searching
with 20 cells finds shallower cells.

Next, we consider the selection of skip connections, which have been shown to make the loss
landscapes of deep neural networks smoother as deep networks tend to otherwise have very non-
smooth loss regions [16]. Therefore, TSE-DARTS-20 picking more skip connections can also be
interpreted in the context of smoothing the loss landscapes, which only becomes necessary when the
search supernetwork has 20 layers. Skip connections might have limited utility with only 8 layers
because the network is still shallow, and hence are not selected by TSE-DARTS. Our results would
thus suggest that the bias towards shallow architectures observed by Shu et al. [25] is more strongly
related to the higher loss landscape smoothness of such architectures rather than skip connections
making the architecture train faster, which is often believed to be the reason for DARTS’s bias
towards skip connections [31, 5]. Otherwise, TSE-DARTS would have even stronger overfitting to
skip connections than normal DARTS, which is the opposite of what happens empirically.

We further show that the poor results of TSE-DARTS on NASBench-1shot1 are caused by finding
architectures with excessive depth. Both DARTS and TSE-DARTS find architectures which are
predominantly if not all 3x3 convolutions, but the performance of DARTS is high because it finds the
shallowest cells possible. Note that NASBench-1shot1 search spaces contain no skip connections,
which makes it impossible for DARTS to overfit to them. Figure 2a shows the performance of the
architectures selected by DARTS and TSE-DARTS on NB101-3 alongside the cell depth, where
lower depth clearly correlates with better performance.

6



(a) NB101-3 - test acc. and depth (b) NB101-3 - dom. eigenvalue

Figure 2: a) TSE-DARTS only gets worse over time on NB101-3 whereas baseline DARTS achieves
top tier performance. Note the strong negative correlation between depth and final performance
because both algorithms select 3× 3 convolutions for most if not all operations during the search. In
b), we expand the results of Zela et al. [28] as discussed in Section 3.4, and show that TSE-DARTS
has decreasing eigenvalues along with decreasing performance at the same time.

Overall, DARTS consistently finds shallow architectures even without any skip connections in the
search space while TSE-DARTS finds deep cells. Whether this leads to good or bad performance then
depends on the search space. The results here also highlight that selecting the cell topology can be a
serious issue in differentiable NAS as the poor performance of TSE-DARTS on NASBench-1shot1 is
almost entirely caused by the suboptimal cell topology. However, most work on improving DARTS
focuses on the skip connection collapse rather than improving the topology selection.

3.4 Eigenvalues of the architecture Hessian

Zela et al. [28] argue that the skip connection overfitting in DARTS is related to the growing dominant
eigenvalues of the architecture Hessian. We additionally confirm the trend of rising eigenvalues for
DARTS on the NASBench search spaces [6, 27], which have been released after the original work by
Zela et al. [28]. On the other hand, we also show that the behavior of TSE-DARTS eigenvalues is
much more varied.

We first reproduce experiments on the reduced S2 search space proposed by Zela et al. [28], which
contains only skip connections and 3× 3 separable convolutions for two operations total. Figure 3
shows that TSE-DARTS picks zero skip connections even on this space whereas DARTS severely
overfits to skip connections. DARTS-20 overfits to skip connections even more while TSE-DARTS-20
chooses a small but nonzero number of skip connections, which attests to skip connections being more
prominent when the search supernetwork is deep. The architecture eigenvalues increase for DARTS
but stay at low levels for TSE-DARTS. Figure 2 shows the same experiment on NB101-3, where
we see that the eigenvalues for TSE-DARTS actually go down but so does its performance, whereas
DARTS has rising eigenvalues and rising performance. On NASBench-201, the eigenvalues increase
for both DARTS and TSE-DARTS. However, the performance keeps improving for TSE-DARTS but
it gets worse over time for DARTS. We visualize the NASBench-201 results in Appendix E.

Overall, it appears that the eigenvalue phenomenon observed by Zela et al. [28] also has significant
differences for DARTS and TSE-DARTS. While DARTS always has rising eigenvalues and simul-
taneously overfits to skip connections, neither appears to be the case for TSE-DARTS. A potential
explanation might be that TSE-DARTS is more biased towards architectures with smooth loss land-
scapes as proposed by Shu et al. [25], which by definition results in smaller architecture Hessian
eigenvalues by the virtue of the search algorithm finding architectures without excessively sharp loss
regions. This would be in disagreement with the observation in Section 3.3 showing that TSE-DARTS
discovers deeper architectures, which should instead have less smooth loss landscapes. Nonetheless,
we see that in practice, DARTS has higher eigenvalues despite finding shallower architectures. A
plausible explanation might be that the architecture depth is confounded by the architecture selection
in DARTS being suboptimal as we had explicitly shown in Section 3.3. The TSE-DARTS bias
towards deep architectures might then be caused by the architecture selection procedure rather than

7



(a) S2 space - dom. eigenvalue (b) S2 space - # of skip

Figure 3: a) The architecture eigenvalues of TSE-DARTS on the S2 search space do not increase
unlike in DARTS. b) shows that the increased search supernetwork depth further exacerbates the
overfitting to skip connections for DARTS-20, which picks up to 16 out of 16 operations as skip
connections. TSE-DARTS-20 is able to avoid it, and picks a moderate amount of skip connections in
the final architecture while shallow TSE-DARTS chooses zero skip connections at all times.

the optimization itself. An explicit treatment of cell topology could therefore allow to better reconcile
our results with those of Shu et al. [25] and Zela et al. [28]. That said, note that analyzing the
supernetwork eigenvalues already has the advantage of being independent of architecture selection,
and TSE-DARTS having smaller architecture eigenvalues can also be understood as supporting
evidence for TSE-DARTS to be finding shallow architectures.

4 Conclusion

In this work, we analyzed TSE-DARTS, a variant of DARTS where the architecture is updated to
minimize TSE rather than validation loss. Our results show that TSE-DARTS tends to have a stronger
performance than DARTS, and we demonstrated that TSE-DARTS also has several interesting
qualitative behaviors. In particular, it is free of the skip connection collapse that is known to be a
major issue in DARTS. We applied several DARTS diagnostics previously proposed in the literature
and shown that TSE-DARTS has fundamentally different biases than the original DARTS. TSE-
DARTS appears to be finding significantly deeper architectures than DARTS [25], and its architecture
Hessian eigenvalues appear to have different trajectories depending on the search space, whereas the
DARTS eigenvalues rise consistently as observed by Zela et al. [28]. Our experiments also yielded
a concrete example of the depth gap that cannot be fixed with progressive deepening [5, 4], where
TSE-DARTS with an increased number of layers in the search supernetwork starts selecting skip
connections despite not picking any otherwise. We have also shown that the DARTS architecture
selection via argmax on the architecture coefficients can lead to problems with the cell topology
rather than just the selected operations as is commonly assumed.

Ultimately, while TSE-DARTS is able to outperform the baseline DARTS, it appears to have its own
distinct set of problems, and it cannot be trivially applied to other state-of-the-art DARTS variants to
further advance their performance. However, the follow-up work on DARTS might be effectively
overfitted to fixing DARTS’s problems, which are no longer present in TSE-DARTS. It is possible
that if the same amount of attention was devoted to fixing the problems of TSE-DARTS, it could
achieve much better performance. Such extensions are an interesting direction for future work.

8



Acknowledgments and Disclosure of Funding

Binxin Ru was supported by the Clarendon Scholarship. Clare Lyle was supported by the Open
Philantropy Foundation AI Fellows Program.

References
[1] Atilim Gunes Baydin et al. “Automatic Differentiation in Machine Learning: a Survey”. In:

Journal of Machine Learning Research 18.153 (2018), pp. 1–43. ISSN: 1533-7928.
[2] Gabriel Bender et al. “Understanding and simplifying one-shot architecture search”. In: Inter-

national Conference on Machine Learning. PMLR, 2018, pp. 550–559.
[3] James Bergstra and Yoshua Bengio. “Random Search for Hyper-Parameter Optimization”. In:

Journal of Machine Learning Research 13.10 (2012), pp. 281–305. ISSN: 1533-7928.
[4] Xiangning Chen et al. “Dr{NAS}: Dirichlet Neural Architecture Search”. In: International

Conference on Learning Representations. 2021.
[5] Xin Chen et al. “Progressive differentiable architecture search: Bridging the depth gap be-

tween search and evaluation”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019, pp. 1294–1303.

[6] Xuanyi Dong and Yi Yang. “NAS-Bench-201: Extending the Scope of Reproducible Neural
Architecture Search”. In: arXiv:2001.00326 [cs] (Jan. 15, 2020). arXiv: 2001.00326.

[7] Xuanyi Dong and Yi Yang. “Nas-bench-201: Extending the scope of reproducible neural
architecture search”. In: arXiv preprint arXiv:2001.00326 (2020).

[8] Xuanyi Dong and Yi Yang. “Searching for A Robust Neural Architecture in Four GPU Hours”.
In: arXiv:1910.04465 [cs] (Oct. 16, 2019). arXiv: 1910.04465.

[9] Xuanyi Dong et al. “NATS-Bench: Benchmarking nas algorithms for architecture topology and
size”. In: IEEE transactions on pattern analysis and machine intelligence (2021). Publisher:
IEEE.

[10] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. “Neural architecture search: A survey”.
In: The Journal of Machine Learning Research 20.1 (2019). Publisher: JMLR. org, pp. 1997–
2017.

[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks”. In: International Conference on Machine Learning. Interna-
tional Conference on Machine Learning. ISSN: 2640-3498. PMLR, July 17, 2017, pp. 1126–
1135.

[12] Luca Franceschi et al. “Forward and Reverse Gradient-Based Hyperparameter Optimization”.
In: International Conference on Machine Learning. International Conference on Machine
Learning. ISSN: 2640-3498. PMLR, July 17, 2017, pp. 1165–1173.

[13] Zichao Guo et al. “Single path one-shot neural architecture search with uniform sampling”. In:
European Conference on Computer Vision. Springer, 2020, pp. 544–560.

[14] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). ISSN: 1063-6919. June 2016, pp. 770–778. DOI:
10.1109/CVPR.2016.90.

[15] Yiding Jiang et al. “Fantastic Generalization Measures and Where to Find Them”. In: Eighth
International Conference on Learning Representations. Apr. 2020.

[16] Hao Li et al. “Visualizing the Loss Landscape of Neural Nets”. In: Advances in Neural
Information Processing Systems 31 (2018).

[17] Liam Li and Ameet Talwalkar. “Random search and reproducibility for neural architecture
search”. In: Uncertainty in Artificial Intelligence. PMLR, 2020, pp. 367–377.

[18] Hanxiao Liu, Karen Simonyan, and Yiming Yang. “DARTS: Differentiable Architecture
Search”. In: International Conference on Learning Representations. 2018.

[19] Jonathan Lorraine, Paul Vicol, and David Duvenaud. “Optimizing Millions of Hyperparame-
ters by Implicit Differentiation”. In: International Conference on Artificial Intelligence and
Statistics. International Conference on Artificial Intelligence and Statistics. ISSN: 2640-3498.
PMLR, June 3, 2020, pp. 1540–1552.

9

https://arxiv.org/abs/2001.00326
https://arxiv.org/abs/1910.04465
https://doi.org/10.1109/CVPR.2016.90


[20] Clare Lyle et al. “A Bayesian Perspective on Training Speed and Model Selection”. In:
Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33.
Curran Associates, Inc., 2020, pp. 10396–10408.

[21] Hieu Pham et al. “Efficient Neural Architecture Search via Parameter Sharing”. In:
arXiv:1802.03268 [cs, stat] (Feb. 11, 2018). arXiv: 1802.03268.

[22] Esteban Real et al. “Regularized evolution for image classifier architecture search”. In: Pro-
ceedings of the aaai conference on artificial intelligence. Vol. 33. Issue: 01. 2019, pp. 4780–
4789.

[23] Pengzhen Ren et al. “A Comprehensive Survey of Neural Architecture Search: Challenges and
Solutions”. In: ACM Computing Surveys 54.4 (May 22, 2021), 76:1–76:34. ISSN: 0360-0300.
DOI: 10.1145/3447582.

[24] Binxin Ru et al. “Speedy Performance Estimation for Neural Architecture Search”. In:
arXiv:2006.04492 [cs, stat] (June 7, 2021). arXiv: 2006.04492.

[25] Yao Shu, Wei Wang, and Shaofeng Cai. “Understanding Architectures Learnt by Cell-based
Neural Architecture Search”. In: Eighth International Conference on Learning Representations.
Apr. 2020.

[26] Yuhui Xu et al. “PC-DARTS: Partial Channel Connections for Memory-Efficient Architecture
Search”. In: International Conference on Learning Representations. 2019.

[27] Arber Zela, Julien Siems, and Frank Hutter. “NAS-Bench-1Shot1: Benchmarking and Dissect-
ing One-shot Neural Architecture Search”. In: Eighth International Conference on Learning
Representations. Apr. 2020.

[28] Arber Zela et al. “Understanding and Robustifying Differentiable Architecture Search”. In:
International Conference on Learning Representations. 2019.

[29] Miao Zhang et al. “iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients”. In: arXiv:2106.10784 [cs] (June 20, 2021). arXiv: 2106.10784.

[30] Yuge Zhang, Quanlu Zhang, and Yaming Yang. “How Does Supernet Help in Neural Architec-
ture Search?” In: arXiv:2010.08219 [cs] (May 5, 2021). arXiv: 2010.08219.

[31] Pan Zhou et al. “Theory-Inspired Path-Regularized Differential Network Architecture Search”.
In: Advances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc.,
2020, pp. 8296–8307.

[32] Barret Zoph et al. “Learning transferable architectures for scalable image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2018, pp. 8697–
8710.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See the Conclusions section.
(c) Did you discuss any potential negative societal impacts of your work? [No] Our work

has no direct societal impact.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Appendix
A, which proves our only theoretical result

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A,
which proves our only theoretical result.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tary material.

10

https://arxiv.org/abs/1802.03268
https://doi.org/10.1145/3447582
https://arxiv.org/abs/2006.04492
https://arxiv.org/abs/2106.10784
https://arxiv.org/abs/2010.08219


(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] Most hyperparameters are defaults from the corresponding benchmarks.
We specified the parameters specific to our method.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All tabular results include error bars and so do the figures
where clarity allows.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] We specified the search and
evaluation costs of our methods as well as the baselines.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite all the
NASBench and other relevant baseline code implementations of methods that we adapt.
We used no other relevant data or models apart from well-known public datasets such
as CIFAR10.

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable?

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Derivation of the exact TSE gradient

The derivation here is analogous to those in other work involving differentiation through optimization
[19, 12]. Assume we optimize the weights by SGD, then the weights wT after T time steps from
initial w0 can be written as

wT = w0 − η
T∑
t=0

∇wLtrain(f(xt, wt, α), yt) (7)

With this in mind, we will now compute the final training loss gradient after T iterations
∇αLtrain(f(xT , wT , α), yT ) as the first step to computing the TSE gradients, where we abbre-
viate Ltrain(f(xT , wT , α), yT ) as LTtrain:

∇αLTtrain =
∂LTtrain
∂α

+
∂LTtrain
∂w

∂wT
∂α

(8)

The ∂LT
train

∂α is sometimes referred to as the direct gradient, and the ∂LT
train

∂w
∂wT

∂α is also known as the
indirect gradient or hypergradient. Now given the expression for wT given in Eq. (7), we calculate

∂wT
∂α

=
∂

∂α
(wT−1 − η

∂LT−1train

∂w
)

=
∂wT−1
∂α

− η(∂
2LT−1train

∂w∂α

∂α

∂α
+
∂2LT−1train

∂w∂w

∂wT−1
∂α

)

= −η ∂
2LT−1train

∂w∂α
+ (I − η ∂

2LT−1train

∂w∂w
)
∂wT−1
∂α

(9)

11



The ∂wT−1

∂α at the end of Eq. (9) gives a recurrent relation that can be further expanded to give

∂wT
∂α

= −η ∂
2LT−1train

∂w∂α
+ (I − η ∂

2LT−1train

∂w∂w
)(−η ∂

2LT−2train

∂w∂α
+ (I − η ∂

2LT−2train

∂w∂w
)
∂wT−2
∂α

)

= −η ∂
2LT−1train

∂w∂α
− η(I − η ∂

2LT−1train

∂w∂w
)
∂2LT−2train

∂w∂α
+

∏
0≤k<2

[I − η ∂
2LT−k−1train

∂w∂w
]
∂wT−2
∂α

(10)

If we unroll the whole history until w0, for which it holds ∂w0

∂α = 0, we get a string of summands that
can be summarized as

∂wT
∂α

= −η
∑

0≤j≤T

([
∏

0≤k<j

I − η ∂
2LT−k−1train

∂w∂w
]
∂2LT−j−1train

∂w∂α
) (11)

In total, we have that Eq. (8) is equivalent to

∇αLTtrain =
∂LTtrain
∂α

+
∂LTtrain
∂w

(−η
∑

0≤j≤T

([
∏

0≤k<j

I − η ∂
2LT−k−1train

∂w∂w
]
∂2LT−j−1train

∂w∂α
)) (12)

This is the exact unrolled differentiation hypergradient using the last training loss. The TSE gradient
computed over T steps of training is simply equal to a sum of the individual training loss gradients:

∇αTSE =

T∑
t=0

(
∂Lttrain
∂α

+
∂Lttrain
∂w

(−η
∑

0≤j≤t

([
∏

0≤k<j

I − η ∂
2Lt−k−1train

∂w∂w
]
∂2Lt−j−1train

∂w∂α
))) (13)

B Additional results on NASBench-201 and NASBench-1shot1

We also show the results of TSE-DARTS on all the three datasets in NASBench-201 [6] and all the
three search spaces in NASBench-1shot1 [27]. For NASBench-201, we additionaly show that training
for 150 rather than 50 epochs still retains strong performance and the robustness to skip connection
collapse holds even over longer training.

CIFAR10 CIFAR100 ImageNet16-120

REA [22] 94.02 (0.31) 72.23 (0.95) 45.77 (0.80)
Random Search [3] 93.90 (0.26) 71.86 (0.89) 45.28 (0.97)
SPOS [17] 91.05 (0.66) 68.26 (0.96) 40.69 (0.36)
GDAS [8] 93.23 (0.58) 68.17 (2.50) 39.40 (0.00)
ENAS [21] 93.76 (0.00) 70.67 (0.62) 41.44 (0.00)
DrNAS [4] 93.76 (0.00) 68.82 (2.06) 41.44 (0.00)
DARTS (first-order) [18] 59.84 (7.84) 61.26 (4.43) 37.88 (2.91)
DARTS (second-order) [18] 65.38 (7.84) 60.49 (4.95) 36.79 (7.59)

TSE-DARTS 92.66 (0.00) 68.13 (2.18) 36.60 (0.00)
TSE-DARTS (150 epochs) 89.89 (2.52) 71.03 (0.66) 33.75 (0.00)
TSE-DrNAS 93.76 (0.00) 71.11 (0.00) 41.44 (0.00)
Table 3: Baseline DARTS overfits to all skip connections on NASBench-201, which leads to very
poor performance. TSE-DARTS prevents this and achieves 92.66% test set accuracy. Most baselines
were reprinted from Dong et al. [9] except the DrNAS results, which are our own. Notably, we were
unable to reproduce the original results from Chen et al. [4] with near-perfect performance using the
public code.

12



NB101-1 NB101-2 NB101-3

DARTS 93.33 (0.01) 93.37 (0.00) 93.35 (0.01)
TSE-DARTS 91.86 (0.68) 90.15 (0.00) 87.87 (0.00)

Table 4: On NASBench-1shot1, the performance of TSE-DARTS is quite weak overall and signif-
icantly trails baseline DARTS on all the three search spaces. NB101-1, NB101-2 and NB101-3
abbreviate the NASBench-1shot1 search spaces 1, 2 and 3, respectively.

C Best discovered architectures by TSE-DARTS

Figure 4 shows the final best architectures found by TSE-DARTS and TSE-DARTS-20. Notably,
TSE-DARTS finds significantly deeper architectures for both the normal and reduction cells than
TSE-DARTS-20.

(a) TSE-DARTS-8 - normal cell

(b) TSE-DARTS-20 - normal cell

(c) TSE-DARTS-8 - reduction cell

(d) TSE-DARTS-20 - reduction cell

Figure 4: Overview of the best normal and reduction cells found by TSE-DARTS-8 and TSE-DARTS-
20 on the DARTS search space.

13



D TSE-DARTS implementation

We showcase an example PyTorch implementation of Algorithm 1 (TSE-DARTS) to demonstrate
that TSE is very easy to implement on top of standard training loops. The most important part is on
lines 12-17, which show that it is trivial to accumulate the approximate TSE gradient by not zeroing
out the architecture gradients after each weight update. All implementations of TSE-DARTS variants
proceed analogously to this example.

1 def train_TSE(train_queue, network, criterion, w_optimizer, a_optimizer, T=100):
2 train_iter = iter(train_queue)
3 network.train()
4
5 for unrolling_step in range(math.ceil(len(train_queue)/T)):
6 # format_input_data outputs a list of T (input, output) pairs
7 all_base_inputs, all_base_targets = format_input_data(train_iter, T=T)
8 network.zero_grad()
9 model_init = deepcopy(network.state_dict()) # Save weights before unrolling so they can be restored later

10
11 # Step 1 of Algorithm 3 - do the unrolling over 100 steps to collect TSE gradient
12 for (base_inputs, base_targets) in zip(all_base_inputs, all_base_targets):
13 logits = network(base_inputs)
14 base_loss = criterion(logits, base_targets)
15 base_loss.backward()
16 w_optimizer.step() # Train the weights during unrolling as normal,
17 w_optimizer.zero_grad() # but the architecture gradients are not zeroed during the unrolling
18
19
20 # Step 2 of Algorithm 3 - update the architecture encoding using accumulated gradients
21 a_optimizer.step()
22
23 a_optimizer.zero_grad() # Reset to get ready for new unrolling
24 w_optimizer.zero_grad()
25
26 new_arch_params = deepcopy(network.arch_params) # Temporary backup for new architecture encoding
27
28 network.load_state_dict(model_init) # Old weights are loaded, which also reverts the architecture encoding
29 for p1, p2 in zip (network.arch_params, new_arch_params):
30 p1.data = p2.data
31
32 # Step 3 of Algorithm 3 - training weights after updating the architecture encoding
33 for (base_inputs, base_targets) in zip(all_base_inputs, all_base_targets):
34 logits = network(base_inputs)
35 base_loss = criterion(logits, base_targets)
36 base_loss.backward()
37 w_optimizer.step()
38
39 w_optimizer.zero_grad()
40 a_optimizer.zero_grad()

14



E Eigenvalues on NASBench-201

(a) NB201 - test acc. on CIFAR10 (b) NB201 - dom. eigenvalue

Figure 5: On NASBench-201, both DARTS and TSE-DARTS have rising eigenvalues. However, the
DARTS performance keeps going down while TSE-DARTS performance increases consistently.

15


	Introduction
	Background
	DARTS
	TSE
	Computing the TSE gradient

	Experiments
	NASBench-201 and NASBench-1shot1
	DARTS search space and the role of depth
	Bias towards shallow architectures
	Eigenvalues of the architecture Hessian

	Conclusion
	Derivation of the exact TSE gradient
	Additional results on NASBench-201 and NASBench-1shot1
	Best discovered architectures by TSE-DARTS
	TSE-DARTS implementation
	Eigenvalues on NASBench-201

