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ABSTRACT

Multimodal Large Language Models (MLLMs) are evolving into sophisticated
agentic systems, engaging users in complex, multi-image scenarios. However,
current MLLMs are limited by object hallucination, generating information incon-
sistent with visual evidence. Existing benchmarks, largely designed for single-
image settings or offering only high-level multi-image assessments, fail to cap-
ture the nuanced causes of object hallucination, particularly under adversarial
conditions. To address this, we introduce the Multi-Image Object Hallucination
(MIOH) benchmark, a comprehensive framework specifically designed to diag-
nose MLLM vulnerabilities in complex multi-image contexts. MIOH integrates
four object-centric tasks (existence, counting, attribute, position) with four con-
trollable adversarial factors (visual context scale, perceptual difficulty, contextual
bias, and misleading textual context). Through our systematic evaluation using
MIOH, we reveal that even state-of-the-art models including GPT-5 and Gemini
Pro still suffer from significant performance degradation under adversarial condi-
tions, with models showing increased susceptibility to both false positive and false
negative hallucinations when visual and linguistic contexts become challenging.

1 INTRODUCTION

With recent advances, Multimodal Large Language Models (MLLMs) are capable of reasoning
over multiple images simultaneously. This task requires models not just to recognize content but
to integrate and synthesize information from a diverse set of isolated visual inputs. Despite recent
advancements, however, current MLLMs are limited by object hallucination, where models generate
plausible but factually inconsistent descriptions about objects in the queried images.

Multi-image scenarios create new challenges for accurate object recognition, since the model has to
simultaneously process increased visual complexity while creating coherent responses to the queries.
That is, the multi-image context makes the model more susceptible to object hallucination, e.g., in-
correctly associating objects across different images or losing track of object identity. As object
hallucination types and causes become increasingly complex in a multi-image setting, a more so-
phisticated approach is needed to assess model reliability.

In spite of the importance of object hallucination, no existing benchmarks have properly targeted
the challenges of object hallucination under multi-image contexts. On one hand, most existing
object hallucination benchmarks (e.g., POPE (Li et al., [2023d), CHAIR (Rohrbach et al.,|2018))) are
limited to simple, single-image settings, which are hard to reveal the failure modes that emerge only
in multi-image reasoning. Moreover, these benchmarks typically focus narrowly on existence and
basic counting tasks, without extending to other object-related aspects such as attribute and spatial
positioning that could provide more comprehensive evaluation of object hallucination. Also, their
evaluation approaches are either overly simplistic binary questions or broad free-form captioning
prompts like “describe this image”, providing limited insights into specific recognition capabilities
and being unable to effectively diagnose diverse hallucination patterns in MLLMs.

On the other hand, multi-image benchmarks like MMIU (Meng et al., 2024)) and MuirBench (Wang
et al., 2024a) are not designed to specifically assess robustness against object hallucination, failing
to isolate and analyze scenarios where object hallucination is likely to be exacerbated in multi-image
settings, e.g., contextually ambiguous image sequences, small target objects, or misleading linguistic
contexts.
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To narrow the gap between these two worlds, we introduce the Multi-Image Object Hallucination
(MIOH) benchmark, the first comprehensive evaluation framework specifically designed to assess
object hallucination under multi-image settings. Unlike existing benchmarks, MIOH systematically
integrates four foundational object-centric tasks (existence, counting, attribute, and position) with
diverse question types adapted to multi-image scenarios, including comprehensive, comparative, and
selective judgments, beyond simple binary questions. Furthermore, for more fine-grained diagnosis
on when and why models fail, we introduce controllable adversarial factors, allowing us to isolate
and analyze specific failure modes under multi-image contexts.

Our contributions are summarized as follows:

¢ We introduce MIOH, the first dedicated benchmark to systematically assess object hallucination
under multi-image contexts with fine-grained diagnostic capabilities.

* We systemically define and integrate a set of foundational object-centric tasks curated for
multi-image context, enabling thorough analysis beyond binary judgments.

* We design adversarial scenarios that potentially exacerbate hallucination in multiple images,
largely unexplored in prior object hallucination benchmarks.

2 RELATED WORK

Multimodal Large Language Models (MLLMs). Following the success of LLMs, MLLMs have
rapidly evolved through visual instruction tuning (Liu et al., [2023b), utilized by LLaVA (Liu et al.,
2023b) and extended by InstructBLIP (Dai et al.l [2023)) and MiniGPT-4 (Zhu et al., [2023). Early
MLLMs face challenges in cross-image reasoning due to limitations in visual token processing and
inter-image semantic modeling (L1 et al., 2023c; Dai et al., 2023} |Cha et al., [2024; |Alayrac et al.,
2022). Recent work (Jiang et al.}|2024; |L1 et al., 2024bj; |Laurencon et al., |2024; |Yao et al., 2024; Lu
et al.| [2025}; |Deitke et al.,|2025)) has enabled multi-image understanding. Mantis (Jiang et al.||2024),
LLaVA-NeXT-Interleave (Li et al.,2024b)), and Idefics3 (Laurencgon et al.,[2024)) leverage large-scale
image-text data at training, and Qwen2.5-VL (Bai et al.} [2025)), InternVL3.5 (Wang et al.}|2025)), and
Gemini-2.5-Pro (Comanici et al., [2025)) demonstrate powerful cross-image reasoning capabilities.

Object Hallucination in MLLMs. Object hallucination, defined as MLLMs generating plausi-
ble but inaccurate object descriptions inconsistent with visual inputs, remains a critical challenge
(Rohrbach et all [2018; Dai et al) 2022). Systematic analysis has pinpointed causes across the
MLLM pipeline: data-related issues such as annotation noise (Liu et al., |2023b), limitations of vi-
sion encoder in fine-grained semantics (Zhai et al.,[2023), insufficient modality alignment (Liu et al.,
2024a)), and inherited LLM biases such as weak context attention (Wang et al.} 2024c). Recent stud-
ies reveal additional visual vulnerabilities, e.g., perception of small or occluded objects (Zhang et al.}
2024al)), contextual bias due to object co-occurrence patterns (Li et al.,2023d) and semantic similari-
ties (Li et al.| | 2024a). MLLMs are also linguistically susceptible to sycophantic alignment with user
beliefs and context hijacking from misleading narratives (Zhao et al.,|2024; [Mehrotra et al., [2024)).

Mitigation strategies, e.g., data augmentation (Sarkar et al., 2024]), preference optimization (Zhang
et al., [2024b), and inference-time interventions (Zhao et al., 2025; |[He et al., [2025), have primarily
targeted single image scenarios. Multi-image contexts amplify hallucination challenges, requiring
models not only to recognize objects accurately, but to track them and maintain contextual consis-
tency across distinct images (Wu et al., 2024). This increased complexity requires a new benchmark
tailored to assess object hallucination on multiple images, which is the focus of our work.

Benchmarks for MLLMs. Early MLLM benchmarks focus on single-image scenarios across vari-
ous tasks including visual question answering, reasoning, and compositional understanding (Goyal
et al., 2017; |Fu et al.| 2023} [L1 et al., 2023a; [Liu et al.l 2023a; |2024b). Recently, several bench-
marks (Wang et al., 2024aj [Meng et al.| [2024; Liu et al} [2024c; Jiang et al.| [2024; [Fu et al.| 2024;
Li et al.,|2023b)) assess general reasoning capabilities across multiple images, though none of them
specifically target object hallucination.

In parallel, object hallucination has been addressed through specialized benchmarks, including dis-
criminative approaches using binary questions (Li et al., |2023d; |Guan et al., 2024) and generative
approaches directly assessing free-form descriptions (Rohrbach et al.| 2018} [Kaul et al., [2024b}; |Sun
et al., 2023 [Wang et al.| [2023). They typically focus on existence and basic counting tasks, with
limited coverage of attributes or spatial relations. Also, they predominantly employ simple binary
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Figure 1: Overview of our MIOH Benchmark. MIOH evaluates object hallucination in multi-
image contexts across four core tasks: existence, counting, attribute, and position. Each task in-
cludes three question types (comprehensive, comparative, and selective) designed to probe different
aspects of multi-image reasoning capabilities.

questions or captioning tasks, confined to single-image settings. Consequently, no existing frame-
works systematically evaluate object hallucination under multi-image contexts, leaving a critical gap
in assessing model reliability across complex scenarios.

3 OVERALL DESIGN OF OUR MIOH BENCHMARK

We introduce the Multi-Image Object Hallucination (MIOH) benchmark, designed to systemati-
cally evaluate object hallucination in MLLMs under multi-image contexts. MIOH is designed with
two tiers, one for measuring foundational capabilities of MLLM with general cases (Sec. , and
another to scrutinize the model’s ability to deal with particularly challenging examples (Se%

3.1 BENCHMARK FOR FOUNDATIONAL CAPABILITIES

We first define four core object-centric tasks that represent fundamental visual understanding capa-
bilities: existence, counting, attribute, and position. These tasks collectively cover the primary tasks
in existing object hallucination benchmarks (Rohrbach et al, 2018}, [Li et al} [2023d} [Lovenia et al.}
2023}, [Kaul et all, 2024a; [Wang et al., [2024b; [Chen et al., [2024) and serve as the foundation for
assessing object-centric capabilities of MLLMs (Fu et al., 2023} [Liu et al., 2024} Jing et al.| 2023}
Sun et al, 2023} [Qiu et al.} [2024}; [Wang et al, 20244} |Villa et al.| 2025).

In order to design our benchmark distinguished from single-image settings, it is important to require
MLLM models to perform deep reasoning on the multiple input images. For this, we design three
types of questions for more multifaceted evaluation, beyond simple binary ones: comprehensive
(collectively understanding information across all images), comparative (identifying differences be-
tween images), and selective (retrieving a particular image described by the question) abilities. Fig.[T]
illustrates questions in each category.

Existence. Verifying the presence or absence of a particular object is a fundamental test for object
hallucination, but existing benchmarks (Rohrbach et al} 2018}, [Li et al.,2023d; [Lovenia et al., 2023},
[Chen et al.}[2024) have centered this task on a single-image (Bai et al.,[2024). MIOH generalizes this

to multi-image scenarios, incorporating three types of questions: comprehensive questions to verify
presence of an object across the entire image set (e.g., in all or any images), comparative questions
focusing on differences between specific images (e.g., in Image 1 but not in Image 2), and selective
questions (e.g., in which image) to identify a specific image where an object appears.
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Counting. Beyond mere existence, a precise enumeration of a particular object is a common failure
point of MLLMs (Zhang et al. [2024a; (Gunjal et al., 2024; Jing et al., |2023; Tamarapalli et al.,
2025). Similarly to the above, comprehensive questions ask to collectively count across all images.
Comparative questions ask which image has the most or fewest instances, and selective questions
ask to find an image that contains an exact number of objects.

Attribute. This task is to assess the model’s more detailed and compositional understanding of the
scenes, requiring to bind visual properties (e.g., color, texture) with objects; e.g., distinguishing a
‘red car’ from just a ‘car’. Some benchmarks have touched attribute hallucination (Wang et al., 2023}
Kaul et al., 2024b; Bai et al.,[2024), but we fully integrate it as one of the fundamental tasks, on par
with Existence and Counting. Again, we design three types of questions: verifying the presence
of a specific combination of a particular attribute-object pair across the image set (comprehensive),
distinguishing attributes across images (comparative), and finding a particular image containing the
object with the correct attribute (selective).

Position. The last task presents the most complex challenge, evaluating a model’s understanding
of spatial relationships between two objects (e.g., ‘a doughnut in front of a dog’). Like attributes,
spatial relations introduce compositional complexity and demand accurate scene parsing beyond
object presence. Comprehensive questions test the consistency of a spatial relationship across all
images, while comparative questions identify changes in this relationship across images. Selective
questions ask a model to identify a specific image where the scene is depicted.

3.2 ADVERSARIAL PRESSURES AND DATASET CURATION

In addition to the standard questions covering general queries for MLLMs, we present another
benchmark containing a significantly more challenging set of tasks, intentionally designed with
adversarial pressure. In order to systematically probe the model’s vulnerabilities under particularly
challenging but still realistic conditions and to eventually diagnose the root causes of object halluci-
nation, MIOH features common visual and linguistic misleading factors detailed below. The visual
factors stem from challenges inherent to perceptual and contextual difficulties, while the lingual fac-
tor tests the model’s robustness against distracting textual contexts. A core premise of our design is
that MLLMs should be able to ground their answers in the provided images; therefore, we explicitly
prompt the model to prioritize the visual content, even when the accompanying text provides subtly
misleading or distracting information.

Visually Challenging Factors. First, inspired by findings that MLLMs struggle to identify infor-
mation across a large set of images (i.e., “Visual Haystack” problem) (Wu et al.| 2024)), we evaluate
the impact of visual context scale on object hallucination. Specifically, we vary the number of input
images for the same question and measure the performance degradation as the demand for robust
information integration exponentially increases.

Second, small or partially occluded objects tend to be harder to detect due to their low resolution
and lack of information (Zhang et al., | 2024a; |Liu et al.| |2025; Wei et al.| [2025). In addition to these
perceptually challenging examples (even to humans), we also curate samples that image encoders
pre-trained on large-scale datasets particularly suffer to detect, even if they might look obvious to
human eyes. They are for some reason hard to detect by a machine learning model, so testing the
MLLM performance on these images would be meaningful to gauge its robustness.

As the opposite case to the above, strong contextual bias might mislead the model to believe
presence of a particular object (Datta & Sundararaman, 2025} |Li et al.l|2023d};|2024a)). For instance,
from a scene of a kitchen with lots of typical kitchenware, a visual encoder might score high for a
frying pan which does not exist there, due to the imperfect visual encoder. To measure the robustness
of the MLLM s in such situation, we curate distracting samples exploiting contextual bias using co-
occurrence statistics and similarities measured by pre-trained encoders.

Lingual Challenging Factors. We aim to analyze how a misleading textual context could affect
visual judgment, even when the visual evidence is clear. This approach is grounded in the established
understanding that an interactive MLLM’s visual grounding can be compromised by prior context
or the user prompt (Park et al.l [2024; Qiu et al., 2024} |Cao et al., [2024; [Lin et al., 2024). We
analyze this vulnerability based on two aspects of linguistic pressure: whether the model tends to
align with a user’s subjective and uncertain belief (sycophantic pressure) (Zhao et al.,[2024), and
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Figure 2: MIOH Benchmark Construction Pipeline.

whether the model tends to obey a direct counterfactual assertion that contradicts with the visual
facts (instructional override) (Qiang et al., 2023} [Mehrotra et al., 2024).

4 DETAILED BENCHMARK CONSTRUCTION

In this section, we provide details how we curate data samples (Sec. , how we generate questions
(Sec.[.2)), and how we construct the adversarial benchmark (Sec. .

4.1 DATASET CURATION

Considering the importance of annotation quality in object hallucination benchmarks, we carefully
select three datasets that provide high-quality annotations for different object-centric tasks, address-
ing critical limitations in existing datasets. We utilize COCO-ReM (Singh et al.|[2024) for existence
and counting tasks to leverage its systematic re-annotation that addresses the original COCO’s in-
complete object masks, missing instances, and inaccurate bounding boxes. For attributes, we use
PACO (Ramanathan et al., [2023)), providing standardized attribute labels across diverse object cat-
egories. For spatial relations, we use SVG (Park et al., 2025), which offers positional relationship
annotations. Unlike existing scene graph datasets such as Visual Genome (Krishna et al.,[2017) and
GQA (Hudson & Manning}, 2019)), which typically provide only 1.5 relationships per subject due to
human labeling constraints and insufficient coverage of spatial relationships, SVG more completely
annotates scene-level relationship.

From this collection of datasets, we generate positive and negative samples for each task defined in
Sec. @ For Existence task, each question consists of an (IMAGE, OBJECT) pair, and it is labeled
as positive if the IMAGE contains the OBJECT, while negative otherwise. For Counting, an exam-
ple consists of (IMAGE, OBJECT, COUNT), and it is considered positive if the IMAGE presents the
target OBJECT exact number of COUNT times. The Attribute and Position tasks are similarly con-
structed with an example of (IMAGE, ATTRIBUTE, OBJECT) and of (IMAGE, OBJECT1, RELATION,
OBJECT?2), respectively, and we label them according to the correctness based on the ground-truth
annotations in the original datasets. In this way, we have a pool of positive and negative samples per
each task, which will be utilized to generate multi-image questions.

4.2 QUESTION GENERATION

Using the prepared positive and negative samples per task, we generate multi-image questions that
instantiate the three types of questions (comprehensive, comparative, and selective) across multi-
image contexts for each of the four core tasks. As all ingredients are ready, this step can be easily
automated by rule-based templates; e.g., for Counting, we construct a question by randomly select-
ing N IMAGEs containing a particular OBJECT, and the sum of COUNT per each example is the right
answer. Other tasks follow a similar procedure to generate the question and correct answer. All
questions are constructed in multiple-choice (MCQ) format by incorporating incorrect answers. We
also include the “None of the above” options to more precisely assess the model’s understanding.
Fig. [T]illustrates actual questions across all tasks and question types, and we provide the question
templates in Appendix [C]
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4.3 ADVERSARIAL BENCHMARK CONSTRUCTION

To create a particularly challenging benchmark, we additionally consider the level of difficulty of
each primitive example (Sec. [4.T). We construct each adversarial pressure in Sec.[3.2]as follows.

Visually Challenging Factors. For the visual context scale, we vary the number of images among
{2,4,8,10}. For the perceptual difficulty, we collect hard positive (HP) (IMAGE, OBJECT) pairs
such that the OBJECT is present but difficult to detect using the following two approaches: 1) Rule-
based filtering, to collect (IMAGE, OBJECT) pairs with small or heavily occluded bounding box or
segmentation mask for the OBJECT, and 2) CLIP-based semantic filtering, to select (IMAGE, OB-
JECT) pairs with abnormally low CLIP similarity between the IMAGE a text prompt “A photo of
OBJECT”. To implement the contextual bias, we take a statistical approach by collecting hard
negatives (HN) (IMAGE, OBJECT) pairs where the target OBJECT is absent but contextual cues mis-
leadingly suggest its presence. Specifically, we estimate the co-occurrence probability between all
object-pairs from the training data. We then collect (IMAGE, OBJECT) pairs that contain frequently
co-occurring objects but not the target OBJECT itself. We additionally apply CLIP-based semantic
confusion by identifying images that show high similarity with target prompts despite lacking the
actual object, creating scenarios where visual-text misalignment leads to false positive predictions.

When we generate the questions as described in Sec. we can gradually include these challenging
examples; for instance, when we create a question with [V images, O to NV challenging example may
be included in the final question, making it more challenging when it gets close to N.

Lingual Challenging Factors. For linguistic adversarial pressure, we prepend misleading textual
context to the question prompt. For sycophantic pressure, we use uncertain, personal tones express-
ing user beliefs that conflict with visual evidence (e.g., “I looked carefully but don’t see what I'm
looking for”). For instructional override, we employ authoritative, declarative statements that di-
rectly contradict visual facts (e.g., “Analysis confirms the target is not in these images”). These
contexts are strategically applied based on ground truth patterns to create visual-linguistic conflicts,
while maintaining the core instruction to prioritize visual evidence.

Quality Assurance and Validation. Despite using high-quality re-annotated datasets and system-
atic filtering, we have manually validated annotation errors and conceptual ambiguities. Each ques-
tion undergoes review by three independent reviewers, with majority vote resolution ensuring the
final benchmark’s reliability for MLLM hallucination assessment. After validation, the benchmark
consists of 20,518 questions across 82,412 images.

5 BENCHMARK RESULTS AND DISCUSSION

We conduct a comprehensive comparative study using our MIOH over the state-of-the-art MLLMs,
including GPT-5 (OpenAl 2025) and Gemini-2.5-Pro (Comanici et al.,2025)). Among open-source
models, we choose the LLaVA (Li et al.| |2024b) series, the Qwen (Bai et al.| [2025) series, InternVL
(Wang et al.l 2025), Phi-4-multimodal (Abouelenin et al., 2025), MiniCPM-V (Yao et al., [2024)),
Ovis-2.5 (Lu et al.l [2025), and Mantis-8B (Jiang et al., |2024). For reproducibility, the decoding
temperature is set to 0 for all experiments. All experiments were conducted on four NVIDIA A6000
GPUs.

5.1 OVERALL PERFORMANCE

We first present overall performance results demonstrating the extent of object hallucination chal-
lenges across different model categories and tasks. Tab. [I] reports the comprehensive evaluation
results over 30 models, revealing that multi-image object hallucination remains as significant chal-
lenge, with an overall average accuracy of only 37.0%. Not surprisingly, a clear performance gap
is measured between proprietary and open-source models. The leading models, Gemini-2.5 Pro
(60.9%) and GPT-5 (58.1%), set the state-of-the-art, but are still far from perfect. Top-performing
open-source models, such as Qwen2.5-VL-7B (48.2%) and MiniCPM-V-2.6 (46.9%), demonstrate
strong capabilities but lag behind the frontier models.

5.2 TASK-SPECIFIC VULNERABILITY

We conduct detailed analyses to identify specific failure patterns, characterize the impact of dif-
ferent adversarial pressures, and examine how visual-linguistic conflicts affect model behavior in
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Model Existence Counting
Easy HN HP NI LCS LCI Avg Easy HN HP NI LCS LCI Avg
Overall 64.1 585 57.2 293 38.7 36.5 49.1 29.8 29.1 263 189 29.5 168 254
GPT-5 90.7 819 77.3 553 88.0 449 735 537 519 39.8 356 574 63 403
Gemini-2.5 Pro 80.8 80.1 80.2 56.1 88.6 347 714 60.6 57.7 42.8 392 612 43 437
Qwen2-VL-2B 739 71.7 692 325 699 305 60.2 33.0 323 21.0 214 263 17.1 26.0
Qwen2.5-VL-3B 79.8 75.1 734 445 387 429 61.3 365 36.1 224 17.0 263 182 26.7
Qwen2-VL-7B 85.1 774 739 304 259 43.8 59.2 42.6 41.8 23,6 175 362 164 30.0
Qwen2.5-VL-7B 846 759 71.6 28.0 83.6 50.5 67.4 40.1 383 23.6 21.3 350 19.1 29.5
LLaVA-v1.6 (Mistral-7B) 374 67.1 412 - 554 28.1 452 267 238 267 - 274 137 243
LLaVA-Interleave (Qwen-0.5B) 40.1 38.8 33.8 23.0 304 56.7 37.5 255 289 23.8 164 243 20.7 235
LLaVA-Interleave (Qwen-7B) 41.5 48.1 737 32.1 344 230 44.8 303 30.1 294 20.6 31.0 21.7 274
LLaVA-Interleave (Qwen-7B-DPO) 64.6 479 587 314 487 43.8 533 31.7 335 30.1 184 292 222 27.7
LLaVA-OneVision (Qwen2-0.5B-SI) 37.8 42.6 36.6 309 539 56.0 429 24.0 222 240 185 254 23.1 22.8
LLaVA-OneVision (Qwen2-0.5B-0OV) 654 279 31.6 202 66.7 574 478 264 289 242 143 273 234 242
LLaVA-OneVision (Qwen2-7B-SI) 734 693 44.1 312 673 29.0 51.7 30.6 27.7 30.5 184 27.0 102 24.8
LLaVA-OneVision (Qwen2-7B-OV) 82.5 7577 58.6 27.7 263 222 488 29.0 25.1 27.6 19.8 233 17.6 23.8
LLaVA-OneVision (Qwen2-7B-OV-Chat) 83.0 75.9 46.1 27.3 33.8 284 49.2 30.6 26.1 269 209 234 175 243
InternVL3.5-1B 74.1 68.5 67.7 464 434 360 573 29.0 31.2 249 18.0 323 192 258
InternVL3.5-2B 52.6 48.6 483 23.0 449 425 444 224 237 209 172 224 167 203
InternVL3.5-4B 589 76.1 62.7 20.8 464 27.6 494 277 304 26.8 16.8 28.0 164 24.7
InternVL3.5-8B Pretrained 679 632 61.0 243 594 294 518 30.7 283 28.0 17.1 258 9.8 23.5
InternVL3.5-8B Instruct 684 614 734 322 633 373 559 333 319 289 154 358 13.6 264
InternVL3.5-8B MPO 68.5 619 746 20.2 346 232 48.6 33.8 314 295 153 26.1 159 254
InternVL3.5-8B 70.8 64.7 64.1 20.8 67.1 429 54.1 27.0 28.6 303 143 392 17.1 26.3
Mantis-8B (CLIP-Llama3) 475 562 414 242 39.0 29.1 403 24.1 252 243 203 239 18.0 22.5
Mantis-8B (SIGLIP-Llama3) 489 454 425 278 40.2 295 40.1 273 277 27.1 185 28.7 20.5 25.0
MiniCPM-Llama3-V-2.5 433 436 388 9.0 543 268 374 75 78 86 38 124 66 8.0
MiniCPM-V-2.6 84.1 76.8 73.6 44.8 46.5 43.1 63.1 325 319 253 157 315 189 25.6
Ovis2.5-2B 734 204 433 312 403 329 393 28.6 224 220 222 204 257 23.0
Ovis2.5-9B 80.1 21.6 463 313 43.6 43.6 432 32.0 235 351 230 278 27.8 29.0
Phi-4-multimodal 56.5 554 513 279 37.6 23.6 437 27.0 268 260 199 209 10.7 224
Model Attribute Position Overall
Easy HN HP NI LCS LCI Avg Easy HN HP NI LCS LCI Avg Avg
Overall 402 369 32.6 26.6 241 17.8 304 49.7 412 474 222 398 325 403 37.0
GPT-5 65.7 549 59.8 455 504 204 49.0 88.8 70.1 82.5 34.1 812 329 664 58.1
Gemini-2.5 Pro 652 56.1 57.5 46.6 627 25.6 529 869 669 80.5 37.6 87.1 580 714 60.9
Qwen2-VL-2B 57.6 53.1 519 252 39.6 21.6 433 72.0 589 71.6 220 394 239 515 46.5
Qwen2.5-VL-3B 56.2 494 52.6 268 257 19.1 404 79.0 63.5 73.7 220 549 36.0 58.6 48.0
Qwen2-VL-7B 61.0 50.8 50.1 28.5 19.8 219 404 845 634 78.1 21.7 432 339 58.0 48.0
Qwen2.5-VL-7B 53.7 458 473 27.1 295 21.8 388 77.7 57.7 70.6 214 399 286 52.6 482
LLaVA-v1.6 (Mistral-7B) 31.6 289 292 - 293 213 288 357 374 419 - 396 378 383 349
LLaVA-Interleave (Qwen-0.5B) 448 347 28.1 27.5 347 347 33.6 212 257 32.6 345 313 327 283 312
LLaVA-Interleave (Qwen-7B) 324 299 30.1 27.5 308 229 29.0 404 332 39.1 214 234 240 314 33.6
LLaVA-Interleave (Qwen-7B-DPO) 32.6 30.3 30.7 283 329 268 30.1 419 329 40.1 185 42.1 39.6 368 37.6
LLaVA-OneVision (Qwen2-0.5B-SI) 239 264 233 184 37.1 314 274 256 26.1 26.1 168 274 275 258 30.2
LLaVA-OneVision (Qwen2-0.5B-OV) 273 27.6 264 239 29.6 27.1 274 334 314 33.1 229 329 319 31.6 334
LLaVA-OneVision (Qwen2-7B-SI) 30.1 292 302 274 23.6 162 272 48.1 36.6 46.8 27.1 39.1 23.6 383 36.2
LLaVA-OneVision (Qwen2-7B-OV) 322 29.1 30.6 282 204 18.6 27.5 S5I.1 339 50.1 21.1 245 234 358 347
LLaVA-OneVision (Qwen2-7B-OV-Chat) 322 29.2 30.5 24.1 244 214 281 51.1 337 499 21.0 313 269 374 354
InternVL3.5-1B S51.5 49.1 212 236 489 24.1 38.0 74.6 594 73.0 327 30.6 479 554 453
InternVL3.5-2B 474 425 19.1 269 267 272 333 649 481 24.1 184 49.6 40.1 40.1 355
InternVL3.5-4B 427 36.1 37.5 329 356 275 35.6 319 249 599 192 329 342 340 36.7
InternVL3.5-8B Pretrained 409 358 287 323 266 205 30.1 41.0 399 46.8 28.1 379 276 363 36.3
InternVL3.5-8B Instruct 39.8 324 274 281 324 229 300 399 37.1 452 19.8 40.8 29.2 354 37.7
InternVL3.5-8B MPO 409 40.6 23.0 29.8 219 21.1 292 410 384 31.0 185 226 246 30.0 339
InternVL3.5-8B 362 244 433 357 352 19.8 31.8 822 39.1 46.5 350 49.6 26.1 459 404
Mantis-8B (CLIP-Llama3) 279 26.0 24.6 28.8 244 189 251 359 312 33.6 206 295 23.6 299 299
Mantis-8B (SIGLIP-Llama3) 28.6 279 258 275 254 19.7 25.6 363 319 349 195 30.7 229 30.6 30.7
MiniCPM-Llama3-V-2.5 356 34.6 31.6 10.1 164 165 26.0 53.0 519 52.8 150 29.1 259 41.8 29.6
MiniCPM-V-2.6 554 47.1 46.1 259 345 21.8 39.6 793 61.0 722 252 32,6 351 540 469
Ovis2.5-2B 246 45.6 343 254 309 264 308 352 20.7 43.6 31.0 48.6 48.6 37.8 334
Ovis2.5-9B 354 292 299 265 402 402 36.2 50.1 29.1 42.8 37.6 505 50.5 41.5 38.0
Phi-4-multimodal 382 38.1 359 254 254 17.8 309 532 489 529 227 326 240 41.6 354

Table 1: MLLM performance on MIOH benchmark. HN:
NI: Number of Images, LC: Linguistic Context (S: Sycophantic, I: Instructional override).

Hard Negatives, HP:

Hard Positives,

multi-image scenarios. Fig. [3] visualizes overall performance variance across the tasks. Existence
(49.1%) emerges as the most manageable task for most models, suggesting a basic level of object
recognition. In stark contrast, counting (25.4%) is a critical failure point across the board, with no
model surpassing 44% accuracy, highlighting a fundamental weakness in quantitative reasoning un-
der multi-image contexts. Attribute (30.4%) and position (40.3%) tasks reveal significant difficulty
as well, underscoring the challenges of compositional understanding.

Existence. While Existence is the highest-scoring task, model performance is brittle. The accuracy
on easy samples (64.1%) consistently drops on perceptually challenging objects (HP, 57.2%) or on
contextually misleading scenes (HN, 58.5%). This indicates that models’ understanding of object
presence is heavily reliant on clear, unambiguous visual cues and can be easily disrupted, leading to

false negative hallucinations.
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Figure 3: Performance visualization grouped by task, question types, and adversarial pressures.

Counting. The average accuracy of 25.4% confirms that counting is a core deficiency. Our sub-task
analysis reveals this is not limited to one failure mode; models struggle with both aggregating counts
across images and locating an image with a specific number of objects. This points to a fundamental
inability in quantitative grounding, especially on multiple scenes.

Attribute and Position. These tasks require binding objects to their properties or spatial relations,
a challenge of compositional reasoning. The low accuracy in the attribute task (30.4%) suggests that
MLLM models may recognize an object and an attribute separately but fail to confirm their visual
co-occurrence (e.g., seeing a ‘car’ and ‘red’ but hallucinating a ‘red car’). Similarly, the position task
scores slightly higher (40.3%), but it significantly degrades under Hard Negative pressure, indicating
that models often tend to ignore complex spatial relationships beyond mere existence.

5.3 IMPACT OF ADVERSARIAL PRESSURES

Most MLLMs turn out to be vulnerable on adversarial pressures we introduce, with linguistic ma-
nipulation and information overload to be the most impactful attack.

Visual Pressures. Starting from a baseline average accuracy of 45.9% on easy samples, visually
challenging examples lead to a moderate performance drop. On Hard Positives (HP), which test
perceptual robustness, the average accuracy slightly drops to 40.9%. Similarly, on Hard Negatives
(HN), its performance is 41.4%, a minor drop. This indicates general resilience to visual com-
plexity compared to other pressures. However, increasing the number of input images from 2 to 8
(NI(8) in Fig. [3) leads to a catastrophic performance drop across the board, plummeting to 24.2%
on average. While the top commercial models like GPT-5 (43.4%) and Gemini-2.5-Pro (45.5%)
handle the increased context far better than the average, their performance still substantially drop by
approximately 32.6% and 28.9% from their respective easy baselines.

Linguistic Manipulation. Misleading textual context turns out to be the most damaging pressure,
especially in how models weigh text against visual evidence. Again, a dramatic split in performance
is observed between commercial and open-source models. The latest commercial models are rel-
atively robust against Sycophantic Pressure (LC-S), where the model is tempted to agree with a
user’s uncertain belief. Gemini-2.5-Pro and GPT-5 score 76.0% and 70.2%, respectively, showing
strong resistance. However, their performance collapse under Instructional Override (LC-I), where
the prompt directly contradicts visual evidence, dropping to just 32.7% for Gemini and 27.6% for
GPT-5. This finding suggests that while these models are not easily swayed by suggestion, they are
highly vulnerable to being overridden by explicit, albeit false, instructions.

5.4 ACCURACY-ROBUSTNESS TRADE-OFF

As shown in Fig. [ our analysis uncovers a fundamental trade-off between achieving high accu-
racy on straightforward tasks and maintaining robust performance under adversarial pressures. In
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other words, a strong baseline performance does not guarantee robustness against object halluci-
nation. Open-source models with higher baseline accuracy often exhibit greater vulnerability to
adversarial conditions. The correlation analysis reveals a moderate positive relationship between
model size and performance on easy questions, but virtually no correlation between size and ro-
bustness, suggesting that simply scaling model parameters does not inherently improve resilience to
object hallucination. The top-performing open-source models on easy questions—Qwen2-VL-7B
and Qwen2.5-VL-7B—experience substantial robustness drops of -27.2% and -21.8%, respectively,
indicating that high capability models might be more susceptible to the adversarial pressures we
designed. This finding suggests that the ability to handle straightforward multi-image tasks does not
guarantee robustness against object hallucination.

5.5 MULTI-IMAGE CONTEXT AS A HALLUCINATION AMPLIFIER: AN ABLATION STUDY

To isolate the impact of multi-image processing on object hallucination, we conduct a controlled ab-
lation study focusing on the Existence task. Specifically, we compare two evaluation approaches for
identical visual content: comprehensive questions that require synthesizing information across all
images simultaneously (“Is there an OBJECT in any of these IMAGEs?”) vs. decomposed questions
that mirror the traditional single-image setting by asking each image separately (“Is there a OBJECT
in IMAGE?”) and combining the answers to determine overall presence. This design isolates whether
multi-image contexts introduce systematic errors beyond simple accumulation of individual image
processing mistakes.

The results in Fig. [5| reveal that individual image processing substantially outperforms simultane-
ous multi-image analysis, consistently across all models and scales. This indicates that multi-image
contexts significantly amplify object hallucination beyond what would be expected from error ac-
cumulation alone. The consistency of this penalty suggests that current MLLM training paradigms
fail to adequately address the object hallucination in cross-image reasoning.

6 CONCLUSION

We introduce MIOH, a comprehensive benchmark designed to provide robust evaluation of object
hallucination in multimodal LLMs within multi-image contexts. Through systematic analysis across
four object-centric tasks (Existence, Counting, Attribute, and Position) and four controllable adver-
sarial pressures, we reveal substantial vulnerabilities in current MLLMs when processing multiple
images simultaneously. Our experimental results demonstrate that even the state-of-the-art models
like GPT-5 and Gemini Pro exhibit significant performance degradation under adversarial condi-
tions, particularly when faced with perceptual ambiguity, contextual plausibility biases, and con-
flicting linguistic contexts. These findings highlight critical limitations of their ability to maintain
accurate object recognition across complex multi-image scenarios, underscoring the need for more
robust visual grounding mechanisms.
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LLM USAGE STATEMENT

Large Language Models were used as a controlled generation tool within our systematic bench-
mark construction methodology. We designed detailed frameworks for two types of linguistic pres-
sure (Sycophantic Pressure and Instructional Override) and created specific templates and system
prompts for each scenario type across our four object-centric tasks. Given the visual content and
answer choices, LLMs were instructed to generate contextual narratives that fit our predefined for-
mats and theoretical frameworks for testing linguistic bias in visual judgment. The LLMs served as
efficient content generators following our structured guidelines rather than as independent decision-
makers in the research design. All generated contexts were manually reviewed and validated to
ensure they met our experimental objectives and maintained appropriate quality standards for sys-
tematic evaluation. Additionally, we utilized LLM-based tools to assist with writing and grammar
correction during the preparation of this manuscript.
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APPENDIX

A  DETAILS ON DATASET CURATION

A.1 COCO-REM

Annotation Quality Issues in Original COCO. The original COCO dataset annotations contain
significant gaps that make them unsuitable for reliable object hallucination evaluation. These is-
sues include incomplete object masks, missing instances, and inaccurate bounding boxes that would
introduce systematic errors in our rule-based question generation framework.

COCO-ReM Improvements. COCO-ReM (Refined Masks) (Singh et al., 2024) addresses these
limitations through a comprehensive re-annotation process: (1) Mask boundary refinement using
the Segment Anything Model (SAM) to improve precision, (2) Missing instance detection using
advanced detection models to identify previously unlabeled objects, (3) Label correction through
systematic review and human validation, and (4) Enhanced object masks and bounding boxes pro-
viding more complete scene coverage.

Impact on Benchmark Quality. As demonstrated in RePOPE (Neuhaus & Heinl [2025)), high-
reliability annotations significantly impact ground truth accuracy, making this a crucial consideration
for benchmark design. The enhanced annotation quality in COCO-ReM ensures our existence and
counting questions have reliable ground truth labels, substantially reducing false negatives that could
arise from missed objects in original COCO annotations.

Object Count Limitations. During validation, we observed that even COCO-ReM’s accuracy de-
grades when object counts exceed certain thresholds. Specifically, images containing more than 10
objects showed decreased annotation reliability. To maintain benchmark integrity, we implemented
a conservative approach by limiting counting questions to images with 5 or fewer objects, ensuring
high reliability through validated annotations while preserving sufficient complexity for meaningful
MLLM evaluation.

A.2 PACO

Limitations of Existing Attribute Datasets. While various datasets address object attributes, they
suffer from systematic limitations: (1) Original COCO annotations lack standardized attribute label-
ing across object categories, (2) COCO Attributes (Patterson & Hays} [2016)) provides standardized
annotation but suffers from limited diversity in both object categories and attribute types, and (3) In-
sufficient coverage for comprehensive benchmark construction requiring comparison across diverse
objects and attributes.

PACO’s Comprehensive Approach. PACO (Parts and Attributes of Common Objects) (Ra-
manathan et al.| [2023)) provides a superior solution through: (1) Broader category coverage span-
ning a more diverse range of object types, (2) Systematic attribute annotation ensuring consistency
across identical objects, (3) Detailed annotation process that identifies constituent object parts and
labels their diverse attributes, and (4) Large-scale structured dataset resulting in comprehensive fine-
grained object understanding capabilities.

Advantages for Question Generation. PACO’s structured approach offers several key benefits:
systematic attribute labeling with sufficient scale and diversity to support robust question genera-
tion, extensive object-attribute combinations enabling comprehensive evaluation across diverse vi-
sual scenarios, standardized annotation framework ensuring consistent evaluation criteria across dif-
ferent object categories, and high-quality ground truth reducing ambiguity in attribute-based ques-
tion validation.

A3 SVG

Limitations of Existing Spatial Relation Datasets. Existing datasets for spatial relationship evalu-
ation suffer from critical annotation gaps: Visual Genome (Krishna et al.,|2017) and GQA (Hudson
& Manning| [2019) provide relation data but have incomplete spatial relationship coverage, miss-
ing relationships in ground truth annotations that exist visually but are not labeled, and annotation
inconsistencies that reduce reliability for systematic evaluation.
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SVG’s Multifaceted Approach. SVG (Synthetic Visual Genome) (Park et al., 2025) addresses
these limitations through comprehensive methodology: object detection integration for accurate en-
tity identification, scene graph enhancement to capture missing relationships, region descriptions
providing contextual relationship validation, depth information enabling more accurate spatial rea-
soning, region masks for precise relationship localization, VQA-based verification for non-spatial
relationships to ensure annotation quality, and systematic filtering to reduce incorrect relationship
annotations.

Key Advantages for Spatial Evaluation. SVG provides several critical improvements: (1) Richer
spatial relation coverage per subject compared to existing datasets, enabling more comprehensive
spatial reasoning evaluation, (2) Comprehensive filtering that systematically reduces incorrect re-
lationships, improving ground truth reliability, (3) Region mask-based verification enabling more
reliable relationship identification through visual evidence, and (4) High relation density minimiz-
ing the critical impact of missing positional relationships on question accuracy. These enhancements
make SVG particularly well-suited for generating position-based questions that can reliably assess
MLLM spatial reasoning capabilities in multi-image contexts, where accurate relationship identifi-
cation becomes even more challenging due to increased visual complexity.

B METADATA CONSTRUCTION

Hierarchical Organization Structure. Our metadata follows a systematic three-level organiza-
tion: (1) Task-specific property categorization where objects are categorized by relevant attributes,
relations, or counts, (2) Difficulty level classification with Easy/Hard Negative/Hard Positive assign-
ments based on visual and semantic complexity, and (3) Image identifier mapping where specific
image IDs are linked to categorized objects for efficient retrieval.

Rule-Based Filtering Criteria. We implement several filtering mechanisms: minimum bounding
box size requirements to ensure object visibility, occlusion level thresholds based on mask overlap
calculations, and image resolution considerations for consistent object detectability across different
image qualities. For difficulty classification, we define easy positives/negatives as clear, unambigu-
ous cases with high visibility and minimal contextual confusion, hard positives as present objects
with small size, high occlusion, or minimal contextual cues, and hard negatives as absent objects in
contexts with high co-occurrence bias or semantic similarity.

CLIP-Based Semantic Similarity Implementation. Our similarity score calculation involves text
prompt generation using standardized formats (“A photo of [object]”,“[attribute] [object]””), image
encoding through CLIP visual encoder, cosine similarity computation between text and image em-
beddings, and threshold determination through empirical validation on representative samples. This
metadata system enables rapid question synthesis while maintaining quality through automated fil-
tering based on rule-based criteria, semantic validation using CLIP similarity scores, systematic dif-
ficulty categorization across different visual reasoning scenarios, and efficient question generation
through pre-computed metadata lookup.

C BENCHMARK EXAMPLES

Fig.[I}Fig. ] provide qualitative examples from the MIOH benchmark, illustrating how questions are
formulated across our four core tasks and various adversarial pressures. Each example is designed
to test a specific aspect of an MLLM’s object-centric capabilities and robustness.

Existence Tasks.(Fig. [IL top section) assess the model’s fundamental ability to verify the presence
or absence of objects in a multi-image context. The comprehensive questions require collective
understanding across all images, such as determining which objects appear consistently. Examples
progress from straightforward cases (Easy: identifying sheep across pastoral scenes) to challeng-
ing scenarios including hard positives (small or occluded laptop detection in indoor scenes), hard
negatives (surf“board” detection in winter sports scenes), and linguistically complex contexts where
misleading textual information may interfere with visual judgment (e.g., “I wasn’t able to find the
thing I am looking for, but I’'m not sure... is there at least one banana in any of these images?”).

Counting Tasks.(Fig. I} bottom section) evaluate precise enumeration capabilities through selective
questions that require identifying specific images containing exact quantities of objects.The Easy
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Existence - Comprehensive

Figure I: Benchmark Examples 1. Existence and Counting Task

Which of the
following objects
appears in all of
these images?
Aty
B) toothbrush
©)dog
./ D)sheep
E) None of the above

Hard Negative

Is there at least
one surfboard in
any of these
images?

A) Yes, all of them

B) Yes, in some of them
©) No, in none of them
D) I don’t know

In which image
can you find
exactly 3
'zebra'(s)?

A) Image 1
B) Image 2
©) Image 3
D) Image 4
/ E) None of the above

Hard Negative

In which image
can you find
exactly 3
'elephant'(s)?

A) Image 1

B) Image 2

C) Image 3

D) Image 4.

E) None of the above

17

‘Which of the
following objects
appears in all of
these images?

+/ A)laptop
B) cell phone
©) baseball bat
D) carrot
E) None of the above

I wasn’t able to find
the thing I'm looking
for, but ’'m not sure.
Based on the image, is
there at least one
banana in any of
these images?

A) Yes, all of them

+/ B) Yes, in some of them
C) No, in none of them
D) I don't know

In which image can
you find exactly 2
'sandwich'(s)?

A) Image 1
B) Image 2
C) Image 3
+/ D)Image 4
E) None of the above

I thought I saw more
than one backpack,
but I'm not certain.
Based on the Image,
in which image can
you find exactly 1
'backpack'(s)?

A)Image1  B)Image2
C)Image 3 ./ D) Image 4
E) None of the above
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Position - Selective Attribute - Comparative
[ i Which of the following is present in Image 1 ( |
. EASY ! but not in Image 2? . EASY |

A) light yellow hat
B) rattan hat

/' ©redscarf
D) light green box
E) None of the above

images can you
find a dog that is
next to a cat?

A) Image 1
+/ B)Image2
C) Image 3 ‘Which of the following is present in Image 1 .

D) Image 4 but not in Image 2? Hard Negative

E) None of the above A) dark yellow mug

B) striped microwave oven
©) dark purple car
Hard Negative D) light brown mouse
(computer equipment)
A) Both E) None of the above
B) Neither

O Ilooked closely but I don’t think there’s [

black cup anywhere, though not certain.
Based on the Images, which of the following is
,,,,,,,,,,,,,,, N present in Image 1 but not in Image 2?

D) Image 2

A) brown box

B) grey bucket

C) white vase
./ D) black cup

E) None of the above

A) Both
B) Neither
C) Image 1

./ D)Imagez

Figure II: Benchmark Examples 2. Position and Attribute Task

example involves counting clearly visible “zebra”s. The Hard Positive scenario requires identifying
exactly “two sandwiches”, which is difficult as one is heavily occluded while being eaten, testing the
model’s ability to count partially visible objects. The Hard Negative example asks to find the image
with three elephants, a challenge where models can be distracted by another image containing two
larger, more visually salient elephants. The Lang Context example incorporate misleading textual
context about quantities, where a user’s suggestion of seeing “more than one backpack™ pressures
the model to find a non-existent second instance.

Position Tasks.(Fig. [I1} left section) present the most complex spatial relationship challenges, eval-
uating the understanding of relative positioning between objects. Examples include Easy scenarios
(dog next to cat), Hard Negative cases (chair positioning relative to dog), and Hard Positive exam-
ples (person next to umbrella) that test compositional scene understanding beyond simple object
detection.

Attribute Tasks.(Fig. [[I| right section) assess a detailed compositional understanding by requiring
models to bind visual properties with objects. Comparative questions examine attribute differences
between images, from Easy cases (detecting visually distinct “red scarf”’) to Hard Negative scenarios
(dark yellow mug identification) and linguistically challenging contexts with uncertain textual cues
(e.g., “Tlooked closely but I don’t think there’s black cup anywhere, though not certain”).

Each example demonstrates the three question types designed for multifaceted evaluation: compre-
hensive (collective understanding across images), comparative (identifying differences between im-
ages), and selective (retrieving specific images matching descriptions). The progression of difficulty
incorporates both visual factors (scale, occlusion, contextual bias) and linguistic factors (sycophantic
pressure, instructional override) as detailed in Sec@

D ETHICS STATEMENT

Responsible AT Development. Our work contributes to the responsible development of multimodal
Al systems by providing a comprehensive framework to identify and measure object hallucination
vulnerabilities in MLLMs. By systematically exposing these limitations, particularly in multi-image
contexts, we aim to promote the development of more trustworthy and reliable Al systems that better
serve society’s needs.

Minimizing Harm. The MIOH benchmark is designed to reveal failure modes in current MLLMs to
prevent potential harm from hallucinated outputs in real-world applications. Object hallucinations in
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critical domains such as medical imaging, autonomous systems, or content moderation could lead to
serious consequences. Our benchmark provides essential diagnostic capabilities to help researchers
and practitioners identify and address these vulnerabilities before deployment.

Data and Annotation Ethics. We exclusively used publicly available, ethically sourced datasets
(COCO-ReM, PACO, SVQG) that have undergone proper ethical review and consent processes. Our
benchmark construction involved comprehensive manual validation by multiple independent review-
ers to ensure annotation quality and reduce potential biases that could unfairly penalize certain model
architectures or approaches.

Transparency and Reproducibility. We provide detailed methodological descriptions, compre-
hensive evaluation protocols, and plan to make our benchmark publicly available to promote open
scientific inquiry. This transparency enables the research community to validate our findings, build
upon our work, and develop improved solutions for object hallucination mitigation.

Avoiding Discrimination. Our benchmark evaluates fundamental visual understanding capabilities
across diverse object categories, attributes, and spatial relationships without targeting specific de-
mographic groups or potentially sensitive content. The adversarial scenarios are designed to test
technical robustness rather than exploit social biases.

Research Integrity. All experimental results are reported accurately, including cases where models
perform poorly. We acknowledge limitations in our approach and provide honest assessments of both
the strengths and weaknesses of current MLLMs. Our evaluation methodology follows established
best practices in the field and provides reproducible experimental settings.

The ultimate goal of this work is to advance the field toward more reliable and trustworthy mul-
timodal Al systems that can better serve human needs while minimizing the risks associated with
hallucinated outputs.
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