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ABSTRACT

Recently, pre-training on graph neural networks (GNNs) has become an active re-
search area and is used to learn transferable knowledge for downstream tasks with
unlabeled data. The success of graph pre-training models is often attributed to the
massive amount of input data. In this paper, however, we identify the curse of big
data phenomenon in graph pre-training: more training samples and graph datasets
do not necessarily lead to better performance. Motivated by this observation, we
propose a better-with-less framework for graph pre-training: few, but carefully
chosen data are fed into a GNN model to enhance pre-training. This novel pre-
training pipeline is called the data-active graph pre-training (APT) framework,
and is composed of a graph selector and a pre-training model. The graph se-
lector chooses the most representative and instructive data points based on the
inherent properties of graphs as well as the predictive uncertainty. The proposed
predictive uncertainty, as feedback from the pre-training model, measures the con-
fidence level of the model to the data. When fed with the chosen data, on the other
hand, the pre-training model grasps an initial understanding of the new, unseen
data, and at the same time attempts to remember the knowledge learnt from the
previous data. Therefore, the integration and interaction between these two com-
ponents form a unified framework, in which graph pre-training is performed in a
progressive way. Experiment results show that the proposed APT framework is
able to obtain an efficient pre-training model with fewer training data and better
downstream performance.

1 INTRODUCTION
Pre-training Graph Neural Networks (GNNs) shows the potential to be an attractive and competitive
strategy for learning graph representations without costly labels. However, its transferability is guar-
anteed only if the pre-training datasets come from the same or similar domain as the downstream Hu
et al. (2019; 2020b); You et al. (2020a;b); Hu et al. (2020c); Li et al. (2021); Lu et al. (2021); Sun
et al. (2021). When we have no knowledge of the downstream, an encouraging yet largely unex-
plored research direction is pre-training GNNs on cross-domain data Qiu et al. (2020); Hafidi et al.
(2020). Taking the graphs from multiple domains as the input, graph pre-training is able to learn the
transferable structural patterns in graphs (when some semantic meanings are present), or to obtain
the capability of discriminating these patterns.

With diverse and various cross-domain data, the success of a graph pre-training model is often at-
tributed to the massive amount of unlabeled training data, a well-established fact for pre-training in
computer vision Girshick et al. (2014); Donahue et al. (2014); He et al. (2020) and natural language
processing Mikolov et al. (2013); Devlin et al. (2019). In view of this, contemporary research al-
most has no controversy on the following issue: Is a massive amount of input data really necessary,
or even beneficial, for pre-training GNNs? However, two simple experiments regarding the num-
ber of training samples and graph datasets seem to doubt the positive answer to this question. The
first observation is that scaling pre-training samples does not result in a one-model-fits-all increase
in downstream performance (see the first row of Figure 1). Second, we observe that adding input
graphs (while fixing sample size) does not improve and sometimes even deteriorates the general-
ization of the pre-trained model (see the second row in Figure 1). Furthermore, even if the number
of input graphs (the horizontal coordinate) is fixed, the performance of the model pre-trained on
different combinations of inputs varies dramatically; see the standard deviation in blue. As the first
contribution, we identify the curse of big data phenomenon in graph pre-training: more training
samples and graph datasets do not necessarily lead to better downstream performance.
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Figure 1: Top row: The effect of scaling up sample size (log scale) on the downstream performance based on a
group of GCCs Qiu et al. (2020) under different configurations (the graphs used for pre-training are kept as all
eleven pre-training data in Table 3, and the samples are taken from the backbone pre-training model according
to its sampling strategy). The results for different downstream graphs (and tasks) are presented in separate
figures. To better show the changing trend, we fit a curve to the best performing models (i.e., the convex hull
fit as Abnar et al. (2022) does). Bottom row: The effect of scaling up the number of graph datasets on the
downstream performance based on GCC. For a fixed horizontal coordinate, we run 5 trials. For each trial, we
randomly choose a combination of input graphs. The shaded area indicates the standard deviation over the 5
trials. See Appendix D for more observations on other graph pre-training models and detailed settings.

Therefore, instead of training on massive data, it is more appealing to choose wisely some samples
and graphs for pre-training. However, without the knowledge of downstream tasks, the difficulty is
how to design new criteria for selecting input data to the pre-training model. To fill this gap, we
propose a novel graph selector that is able to provide the most instructive data for the model. The
criteria in the graph selector include predictive uncertainty and graph properties. Predictive uncer-
tainty is introduced to measure the level of confidence (or certainty) in the data. On the other hand,
some graphs are more informative and representative than others, due to their inherent structure. To
this end, some fundamental properties of graphs also help in the selection process.

Given the selected input data, we take full advantage of the predictive uncertainty as a proxy for
measuring the model capability during the training phase. Instead of swallowing data as a whole,
the pre-training model is encouraged to learn from the data in a progressive way. After learning
a certain amount of training data, the predictive uncertainty gives feedback on what kind of data
the model has least knowledge of. Then the pre-training model is able to reinforce itself on highly
uncertain data in next training iterations.

Putting together, we propose a data-active graph pre-training (APT) framework, which integrates
the graph selector and the pre-training model into a unified framework. The two components in the
framework actively cooperate with each other. The graph selector recognizes the most instructive
data for the model. Equipped with this intelligent selector, the pre-training model is well-trained and
in turn provides better guidance for the graph selector.

The rest of the paper is organized as follows. In §2 we review the existing works about basic
graph pre-training framework commonly used for training cross-domain graph data. Then in §3
we describe in detail the proposed data-active graph pre-training (APT) paradigm. §4 contains
numerical experiments, which demonstrate the superiority of APT in different downstream tasks,
especially when the test and training graphs come from different domains. Lastly, we also include
the applicable scope of our pre-trained model.

2 BASIC GRAPH PRE-TRAINING FRAMEWORK

This section reviews the basic framework of cross-domain graph pre-training commonly used in
related literature. The backbone of our graph pre-training model also follows this framework, and
uses GCC Qiu et al. (2020) as an instantiation. In principle, GCC can be substituted by any encoder
suitable for training cross-domain graphs.

We start with a natural question: What does cross-domain graph pre-training actually learn? Pre-
vious studies argue that the semantic meaning associated with structural patterns is transferable.
For example, both in citation networks and social networks, the closed triangle structure ( ) is
interpreted as a stable relationship, while the open triangle ( ) indicates an unstable relationship.
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When data comes from other domains like molecular networks, the semantic meaning can be quite
different. Nevertheless, we argue that the distinction between different structural patterns is still
transferable. Taking the same example, the closed and open triangles might yield different inter-
pretations in molecular networks (unstable vs. stable in terms of chemical property) from those in
social networks (stable vs. unstable in terms of social relationship), but the distinction between these
two structures remains the same because they indicate opposite (or contrastive) semantic meanings.
Therefore, the cross-domain pre-training either learns representative structural patterns (when se-
mantic meanings are present), or more importantly, obtains the capability of distinguishing these
patterns. This observation in graph pre-training is not only very different from that in other areas
(e.g., computer vision and natural language processing), but may also explain why graph pre-training
is effective, especially when some downstream information is absent.

With the hope to learn the transferable structural patterns or the ability to distinguish them, the cross-
domain graph pre-training model is fed with a collection of input graphs (possibly from different
domains), and the learnt model, denoted by fθ (or simply f if the parameter θ is clear from context),
maps a node to a low-dimensional representation. Unaware of the specific downstream task as well
as task-specific labels, one should design a self-supervised task for the pre-training model. Such
self-supervised information for a node is usually hidden in its neighborhood pattern, and thus the
structure of its ego network is often used as the transferable pattern. Naturally, subgraph instances
sampled from the same ego network Γi are considered similar while those sampled from different
ego networks are rendered dissimilar. Therefore, the pre-training model attempts to capture the sim-
ilarities (and dissimilarities) between subgraph instances, and such a self-supervised task is called
the subgraph instance discrimination task. More specifically, given a subgraph instance ζi from
an ego network Γi centered at node vi as well as its representation xi = f(ζi), the model f aims
to encourage higher similarity between xi and the representation of another subgraph instance ζ+i
sampled from the same ego network. This can be done by minimizing, e.g., the InfoNCE loss Oord
et al. (2018):

Li = − log
exp
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+
i )/τ

)
exp
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i f(ζ
′
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where Ω−
i is a collection of subgraph instances sampled from different ego networks Γj (j ̸= i),

and τ is a temperature hyper-parameter. Here the inner product is used as a similarity measure
between two instances. One common strategy to sample these subgraph instances is via random
walks on graphs, as used in GCC Qiu et al. (2020), but other sampling methods as well as loss
functions are also valid.

3 DATA-ACTIVE GRAPH PRE-TRAINING

In this section we present the proposed APT framework for cross-domain graph pre-training, and the
overall pipeline is illustrated in Figure 2. The APT framework consists of two major components, a
graph selector and a graph pre-training model. The technical core is the interaction between these
two components: The graph selector feeds suitable data for pre-training, and the graph pre-training
model learns from the carefully chosen data. The feedback of the pre-training model in turn helps
select the needed data tailored to the model.

The rest of this section is organized as follows. We describe the graph selector in § 3.1 and the graph
pre-training model in § 3.2. The overall pre-training and fine-tuning strategy is presented in § 3.3.

3.1 GRAPH SELECTOR

In view of the curse of big data phenomenon, it is more appealing to carefully choose data well suited
for graph pre-training rather than training on a massive amount of data. Conventionally, the criterion
of suitable data, or the contribution of a data point to the model, is defined based on the output
predictions on downstream tasks Goodfellow et al. (2016). In graph pre-training where downstream
information is absent, new selection criteria or guidelines are needed to provide effective instructions
for the model. Here we introduce two kinds of selection criteria, originated from different points of
view, to help select suitable data for pre-training. The predictive uncertainty measures the model’s
understanding of certain data, and thus helps select the least certain data points for the current model.
In addition to the measure of model’s ability, some inherent properties of graphs can also be used to
assess the level of representativeness or informativeness of a given graph.
Predictive uncertainty. The notion of predictive uncertainty can be explained via an illustrative
example, as shown in part (a) of the graph selector component in Figure 2. Consider a query sub-
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Figure 2: Overview of the proposed data-active graph pre-training paradigm. The graph selector provides the
graph and samples suitable for pre-training, while the graph pre-training model learns from the incoming data
in a progressive way and in turn better guides the selection process. In the graph selector component, Part (a)
provides an illustrating example on the predictive uncertainty, and Part (b) plots the Pearson correlation between
the properties of the input graph and the performance of the pre-trained model (using this graph) on different
unseen test datasets (see Appendix E for other properties that exhibit little/correlation with performance).

graph instance ζi (denote by ? in Figure 2) from the ego network Γi in a graph G. If the pre-training
model cannot tell its similar instance ζ+i (denoted by + ) from its dissimilar instance ζ−i ∈ Ω−

i (de-
noted by � ), we say that the current model is uncertain about the query instance ζi. Therefore, the
contrastive loss function in Eq. (1) comes in handy as a natural measure for the predictive uncer-
tainty of the instance ζi: ϕuncertain(ζi) = Li. Accordingly, the predictive uncertainty of a graph G

(i.e., the graph-level predictive uncertainty) is defined as ϕuncertain(G) = (1/M)
∑M

i=1 Li, where M
is the number of subgraph instances queried in this graph.

The proposed selection process is different from strategies used in curriculum learning Bengio et al.
(2009). Predictive uncertainty encourages the model to learn more difficult (uncertain) graphs and
samples in the first place, while in curriculum learning, the easiest samples are fed first. The choice
of difficult-first order is intuitive in our case; see also Appendix G for empirical evidence.
Graph properties. As we see above, the predictive uncertainty measures the model’s ability to
distinguish (or identify) a given graph (or subgraph instance). However, predictive uncertainty is
sometimes misleading, especially when the chosen graph (or subgraph) happens to be an outlier of
the entire data collection. Hence learning solely from the most uncertain data might not improve
the overall performance, or even worse, lead to overfitting. The inherent properties of the graph
turn out to be equivalently important as a selection criterion for graph pre-training. Intuitively, it
is preferable to choose those graphs that are good by themselves, those with a better structure, or
those containing more information. So here we introduce five inherent properties of graphs (i.e.,
network entropy, density, average degree, degree variance and scale-free exponent) to help select
better data points for pre-training. All these properties exhibit a strong correlation with downstream
performance, which is empirically verified and presented in part (b) of the graph selector component
in Figure 2. The choice of these properties also has an intuitive explanation, and here we discuss the
intuition behind the network entropy as an example.

The use of network entropy is inspired from the sampling methods used in most cross-domain graph
pre-training models (see e.g., Qiu et al. (2020); Hafidi et al. (2020)): Random walks started at a node
are employed to construct a subgraph instance as the model input. Random walks can also be used
to compute the amount of information contained in a graph. Especially, the amount of information
contained in the move from node vi to node vj is − logPij Cover & Thomas (1999), where P is
the transition matrix. Thus the network entropy of a connected graph G = (V,E) can be defined as
the expected information of individual transitions over the random walk process Burda et al. (2009):
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ϕentropy = ⟨− logP ⟩P = −
∑
ij

πiPij logPij , (2)

where π is the stationary distribution of a random
walk and ⟨·⟩P denotes the expectation of a random
variable according to P . Network entropy (2) is
in general difficult to calculate, but for a connected
unweighted graph, Pij = 1/di, π = (1/2|E|)d
(where di is the degree of node vi ∈ V and d =
(d1, d2, . . .) is the degree vector). Then the network
entropy (2) reduces to

ϕentropy =
1

2|E|

N∑
i=1

di log di, (3)

where N = |V | is the total number of nodes in G.
In this case, the network entropy of a graph depends
solely on its degree distribution, and is straightforward to compute.

Although the definition of network entropy originates from random walks on graphs, it is still useful
in graph pre-training even when the sampling of subgraph instances does not depend on random
walks. Here we provide another intuitive explanation of network entropy from the coding theory.
Network entropy can be viewed as the entropy rate of a random walk, and it is known that the en-
tropy rate is the expected number of bits per symbol required to describe a stochastic process Cover
& Thomas (1999). Similarly, the network entropy can be interpreted as the expected number of
“words” needed to describe the graph. Thus intuitively, the larger the network entropy is, the more
information the graph contains.

As a final remark on network entropy, the connectivity assumption does not limit the usefulness of
Eq. (3) in our case. For disconnected input graphs, we can simply compute the network entropy of
the largest connected component, since for most real-world networks, the largest connected com-
ponent contains most of the information Easley & Kleinberg (2010). Alternatively, we can also
take some of the largest connected components from the graph and treat them separately as several
connected graphs.

Furthermore, the other four graph properties, i.e., density, average degree, degree variance and scale-
free exponent, are closely related to the network entropy. Figure 3 presents a clear correlation be-
tween the network entropy and the other four graph properties, as well as provides some illustrative
graphs. (These example graphs are generated by the configuration model proposed in Newman
(2003), and Appendix E contains more results of real-world networks.) Intuitively, graphs with
higher network entropy contain a larger amount of information, and so are graphs with larger density,
higher average degree, higher degree variance, or a smaller scale-free exponent. The connections
between all five graph properties can also be theoretically justified and the motivations of choosing
these properties can be found in Appendix A. The detailed empirical justification of these properties
and the pre-training performance in included in Appendix E.
Time-adaptive selection strategy. The proposed predictive uncertainty and the five graph proper-
ties together act as a powerful indicator of a graph’s goodness. Thus the selection of graph can be
formulated as the following optimization problem:

maximize J (G) = (1− γt)ϕ̂uncertain + γtMEAN(ϕ̂entropy, ϕ̂density, ϕ̂avg deg, ϕ̂deg var, -ϕ̂α), (4)

where the optimization variable is the graph G to be selected, ϕ̂uncertain, ϕ̂entropy, ϕ̂density, ϕ̂avg deg,
ϕ̂deg var and ϕ̂α are the z-score normalized value of graph-level predictive uncertainty, network en-
tropy, density, average degree, degree variance and scale-free exponent of graph G respectively,
γt ∈ [0, 1] is a parameter to trade off the predictive uncertainty and the graph properties, and t is the
iteration counter. Note that the pre-training model learns nothing at the beginning, so we initialize
γ0 = 0. The balance between the predictive uncertainty and the inherent graph properties ensures
that the selected graph is a good supplement to the current pre-training model as well as an effective
representative for the entire data distribution.
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We shall also note that, at the beginning of the pre-training, the outputs of the model are not accurate
enough to guide data selection, so the parameter γt should be set smaller so that the graph properties
play a leading role. As the training phase proceeds, the graph selector gradually pays more attention
to the feedback ϕuncertain from the model via a larger value of γt. Therefore, the parameter γt is
called the time-adaptive parameter, and is set to be a random variable depending on time t. In this
work, we take γt from a Beta distribution γt ∼ Beta(1, βt), where βt decreases over time (training
iterations).

Finally, after a graph is selected, we can further choose subgraph instances with high predictive
uncertainty for training, rather than feed the model with random subgraph samples.
Connections and differences with hard example mining. Hard example mining learns from the
examples that contribute the most to model training, which has been widely applied in computer
vision, natural language processing and recommender system Simo-Serra et al. (2014); Loshchilov
& Hutter (2015); Shrivastava et al. (2016); Krishnan et al. (2020). Our usage of predictive un-
certainty for choosing graphs is conceptually similar to hard example mining. However, existing
approaches for hard sample mining can not be directly applied to our setting with the following two
requirements. (1) The chosen instances should follow a joint distribution that reflects the topologi-
cal structures of real-world graphs. This is met by our use of graph-level predictive uncertainty and
graph properties. (2) The chosen set of graphs should include informative and sufficiently diverse
instances. This goal is achieved by the data-active graph pre-training framework, which enables
the interaction between the graph selector and pre-training model. Another line of works in active
learning introduce the measure of uncertainty by querying the labels of samples that current model is
least certain w.r.t classification prediction Cai et al. (2017); Zhang et al. (2021a); Yang et al. (2015);
Zhu et al. (2008), which cannot be adapted in pre-training with unlabeled data.

3.2 GRAPH PRE-TRAINING MODEL

The graph pre-training model takes the input graphs and samples one by one and enhances itself in
a progressive manner. However, such a sequential training process does not guarantee the model
to remember all the contributions of previous input data. As shown in the orange curve in Fig-
ure 4, the previously learnt graph exhibits a larger predictive uncertainty as the training phase
proceeds. The empirical result indicates that the knowledge or information contained in previ-
ous input data will be forgotten or covered by newly incoming data. This phenomenon, called
catastrophic forgetting Kirkpatrick et al. (2017), was first noticed in continual learning and is also
identified here. Intuitively, when the training data is taken in a one-by-one manner, the learnt
parameters will cater to the newly incoming data compared with the old, previous data points.

50 55 60 65 70 75 80 85 90

training epoch

4.5

5.0

5.5

6.0

6.5

pr
ed

ic
tiv

e 
un

ce
rta

in
ty

without proximal term
with proximal term (L2)

Figure 4: Predictive uncertainty of a
learnt graph (“michigan”) versus train-
ing epoch.

One remedy for this issue is adding a proximal term to the ob-
jective. The additional proximal term (i.e., the regularization)
guarantees the proximity between the new parameters and the
model parameters learnt from previous graph. Therefore, the
final loss function for our pre-training model in APT is

L(θ) =
∑
i

Li(θ) +

k∑
j=k−1

∑
m

λj

2
F (j)
m ∥θm − θ(j)m ∥2, (5)

where Li is given in Eq. (1), the summation in the first term
is taken over the subgraph instances sampled from the new in-
put graph, k is the number of previously learnt graphs, θ(j)
is the model parameters learnt from the first j graphs, and
λj’s are the trade-off parameters between the knowledge learnt
from new data and that from previous data. Typically, the trade-off parameters {λj} form a non-
decreasing sequence, i.e., λ1 ≤ λ2 ≤ · · · ≤ λk. Inspired from the Elastic weight consolidation
(EWC) algorithm Kirkpatrick et al. (2017), we take F (j) as the Fisher information matrix of θ(j),
F

(j)
m is the diagonal element of F (j) and m labels each parameter. When F is set as an identity

matrix, the second term degenerates to the L2 regularization (serves as one of our variants). Note
that the proximal term in Eq. (5) is absent when the first input graph is introduced to the model.

3.3 TRAINING AND FINE-TUNING

Integrating the graph selector and the pre-training model forms the entire APT framework, and the
overall algorithm is presented in Appendix B. After the training phase, the APT framework returns a
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pre-trained GNN model, and then the pre-trained model can be applied to various downstream tasks
from a wide spectrum of domains. In the so-called freezing mode, the pre-trained model outputted
from APT is directly applied to downstream tasks, without any changes in parameters. Alternatively,
the fine-tuning mode uses the pre-trained graph encoder as initialization, and offers the flexibility of
training the graph encoder and the downstream classifier together in an end-to-end manner.
4 EXPERIMENTS
In the experiments, we pre-train our model on the incoming data provided by the graph selector, and
then evaluate the transferability of our pre-trained model on multiple unseen graphs from different
domains in the node classification and graph classification task. Lastly, we include the applicable
scope of our pre-trained model. Additional experiments can be found in Appendix G, including
analysis on training time, sensitivity analysis of hyper-parameters, ablation study on various combi-
nations of graph properties.
4.1 EXPERIMENTAL SETUP

Datasets. The datasets for pre-training and testing, and their detailed statistics are listed in Ap-
pendix C. The datasets for pre-training are collected from different domains, including social net-
works, citation networks, and movie collaboration networks. We then evaluate the pre-trained mod-
els on 13 real-world graphs, including large-scale datasets with millions of edges from Open Graph
Benchmark Hu et al. (2020a). Some of them are from the similar domain as pre-training (like citation
networks), while most of them are from a totally unseen domains (like web networks, transportation
networks, protein networks and others).

Baselines. We comprehensively evaluate our model against the following baselines for node clas-
sification and graph classification tasks, respectively. For node classification tasks, ProNE Zhang
et al. (2019), DeepWalk Perozzi et al. (2014), struc2vec Ribeiro et al. (2017), DGI Velickovic et al.
(2019), GAE Kipf et al. (2016), and GraphSAGE Hamilton et al. (2017) are used as baselines, and
then the learned representations are fed into the logistic regression for node classification (as most
of baselines did). As for graph classification tasks, we take graph2vec Narayanan et al. (2017), In-
foGraph Sun et al. (2020), DGCNN Zhang et al. (2018) and GIN Xu et al. (2019) as baselines, and
then feed the representations into SVM as the classifier (as most of baselines did). For both tasks, we
also compare our model with (1) Random, where random vectors are generated as representations;
(2) GraphCL You et al. (2020a), a GNN pre-training scheme based on contrastive learning with aug-
mentations; (3) JOAO You et al. (2021), a GNN pre-training scheme that can automatically select
data augmentations; (4) GCC Qiu et al. (2020), the state-of-the-art cross-domain graph pre-training
model (the version of our model without data selection scheme, which trains on all pre-training
data). GCC, GraphCL and JOAO are trained on the entire collected input data, and the suffix (rand,
fine-tune) indicates that the model is trained from scratch. We also include 4 variants of our model:
(1) APT-G, which removes the criteria of graph properties in the graph selector; (2) APT-P, which
removes the criterion of predictive uncertainty in the graph selector; (3) APT-R, which removes the
regularization w.r.t old knowledge in Eq. (5); (4) APT-L2, which degenerates the second term in
Eq. (5) to the L2 regularization.

Experimental settings. In the training phase, we iteratively select graphs for pre-training until the
predictive uncertainty of any candidate graph is below 3.5. For each selected graph, we choose those
samples with predictive uncertainty higher than 3. We include M = 500 query subgraph instances
in a graph when measuring the predictive uncertainty of this graph. The time-adaptive parameter γt
in Eq. (4) is drawn from γt ∼ Beta (1, βt), where βt = 3− 0.995t. We set the trade-off parameter
λj = 10 for all j for APT-L2, and λj = 500 for APT. The total iteration number is 100. We adopt
GCC as the backbone pre-training model with their default hyper-parameters. Note that we can also
use other pre-training models like GraphCL as the backbone, but we do not report them due to the
non-ideal performance of GraphCL. In the fine-tuning phase, we select logistic regression or SVM
as the downstream classifier and adopt the same setting as GCC. See Appendix F for more details.

4.2 EXPERIMENTAL RESULTS

Node classification. Table 1 presents the micro F1 score of different methods over 10 unseen
graphs from a wide spectrum of domain for node classification task. We can observe our model
beats the graph pre-training competitor by an average of 9.94% and 17.83% under freezing and
fine-tuning mode respectively. This suggests that instead of pre-training on all the collected graphs
(like GCC), it is better to choose a part of graphs better suited for pre-training (like our model APT).
Moreover, compared with the traditional models without pre-training, the performance gain of our
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Table 1: Micro F1 scores of different models in the node classification task. The column “A.R.” reports the
average rank of each model. Asterisk (∗) denotes the best result on each dataset, and bold numbers denote the
best result among graph pre-training models in the freezing or fine-tuning setting. The notation “/” means out
of memory or no convergence for more than three days.

Method
Dataset brazil dd242 dd68 dd687 wisconsin cornell cora pubmed ogbarxiv ogbproteins A.R.

Random 32.16(13.65) 6.71(2.44) 8.29(4.35) 5.98(2.70) 26.79(8.59) 39.77(7.26) 26.80(1.62) 38.85(0.76) 11.89(4.66) 52.69(5.94) 13.2
ProNE 50.24(11.56) 10.04(2.56) 7.73(3.11) 3.88(1.66) 44.67(7.49) 47.32(12.14) 80.76(2.92)∗ 78.80(0.98)∗ 65.96(0.06)∗ 76.28(0.34)∗ 7.5
DeepWalk 43.16(16.78) 8.11(1.45) 6.72(3.04) 6.17(2.18) 39.61(9.11) 47.67(8.30) 49.85(9.26) 44.99(10.89) 16.04 (2.98) 64.74(0.49) 8.7
struc2vec 25.54(11.74) 13.71(2.66) 10.30(3.23) 7.98(2.74) 45.39(7.36) 38.39(9.18) 36.01(2.41) 44.45(0.78) / / 10.6
DGI 56.44(7.79) 14.35(0.44) 13.57(0.44) 11.04(1.93) 49.46(5.46) 49.85(9.26) 30.02(0.44) 42.39(0.84) 12.93(7.67) 55.98(0.33) 6.6
GAE 57.88(10.68) 14.09(1.52) 13.43(0.96) 10.25(2.63) 45.78(4.18) 49.26(5.24) 30.10(0.31) 40.14(0.68) / / 8.5
GraphSAGE 67.93(9.28) 14.33(0.37) 13.55(0.70) 10.39(0.78) 47.03(1.98) 49.20(1.46) 35.93(1.76) 39.94(0.02) / / 7.1
GraphCL (freeze) 50.71(5.00) 9.53(2.50) 9.36(3.63) 6.03(1.86) 38.85(10.80) 41.05(5.67) 16.95(2.39) 41.07(1.16) / / 12.2
JOAO (freeze) 71.22(7.21) 7.98(2.90) 12.36(2.59) 5.34(1.43) 42.69(8.15) 43.16(5.67) 18.13(2.82) 41.05(0.87) / / 10.9
GCC (freeze) 67.47(4.09) 15.83(0.80) 11.95(1.13) 9.61(0.94) 52.57(1.69) 46.87(1.73) 35.47(0.51) 46.40(0.18) 14.56(7.60) 59.15(0.35) 7.0
APT-G (freeze) 68.69(3.42) 17.21(1.13) 11.98(0.75) 9.54(1.29) 54.45(1.90) 46.53(1.59) 34.89(0.25) 46.49(0.22) 12.32(7.71) 60.38(0.41) 6.3
APT-P (freeze) 66.55(2.35) 16.58(0.97) 12.48(0.85) 10.33(0.83) 51.90(1.64) 47.33(2.31) 35.63(0.56) 46.16(0.12) 12.86(7.54) 60.32(0.32) 6.2
APT-R (freeze) 68.12(3.07) 16.72(0.72) 12.42(1.24) 11.05(0.88) 54.48(1.77) 46.80(1.08) 34.93(0.36) 46.02(0.11) 18.79(5.87) 62.18(0.46) 5.0
APT-L2 (freeze) 69.82(2.32) 16.79(0.88) 12.68(0.81) 10.34(1.12) 55.11(1.74) 48.76(2.20) 34.27(0.43) 46.21(0.15) 19.64(6.46) 60.23(0.37) 4.4
APT (freeze) 73.39(2.55) 16.57(0.94) 12.08(0.89) 10.35(1.24) 53.38(1.19) 47.37(1.29) 36.69(0.49) 46.88(0.21) 22.04(0.29) 62.29(0.55) 3.8
GraphCL (rand, fine-tune) 64.43(14.95) 15.04(0.85) 14.69(2.48) 10.99(0.58) 63.85(2.18) 44.21(10.58) 30.45(0.37) 40.73(0.66) / / 8.3
JOAO (rand, fine-tune) 72.14(6.74) 10.93(2.85) 8.08(2.15) 7.40(3.48) 45.38(13.30) 45.26(10.31) 29.93(2.84) 42.01(0.68) / / 9.6
GCC (rand, fine-tune) 58.51(3.07) 15.98(1.05) 13.16(1.06) 9.74(0.95) 53.85(2.58) 50.95(2.26) 43.70(0.52) 49.72(0.17) 18.61(1.88) 59.12(0.35) 7.6
GraphCL (fine-tune) 73.57(10.33) 15.35(0.99) 13.51(2.57) 10.66(1.04) 63.85(4.42) 51.05(2.41) 30.81(0.36) 42.91(0.91) / / 7.5
JOAO (fine-tune) 75.00(5.76) 10.54(3.07) 7.56(1.94) 8.77(2.39) 50.0(12.28) 42.11(10.26) 29.34(3.04) 42.21(0.88) / / 9.5
GCC (fine-tune) 74.46(3.05) 19.32(0.80) 13.87(1.13) 10.37(1.06) 59.47(1.49) 48.32(2.42) 43.34(0.38) 50.87(0.19) 18.62(1.92) 60.08(0.56) 6.4
APT-G (fine-tune) 77.60(1.48) 25.45(0.60)∗ 17.78(1.14) 11.27(0.76) 66.09(2.28) 53.02(1.51) 45.63(0.66) 50.81(0.18) 27.33(4.80) 60.02(0.32) 3.8
APT-P (fine-tune) 78.99(2.44) 25.19(0.87) 16.40(1.22) 11.69(1.19) 64.24(1.90) 50.05(1.39) 45.53(0.30) 50.66(0.18) 27.20(4.80) 59.86(0.32) 4.8
APT-R (fine-tune) 79.14(1.97) 24.96(0.57) 17.43(1.05) 11.29(1.04) 66.28(1.94) 53.56(2.28)∗ 46.02(0.83) 51.00(0.21) 18.41(1.84) 60.10(0.38) 3.4
APT-L2 (fine-tune) 78.75(1.63) 24.62(0.90) 17.83(1.35)∗ 12.26(0.78)∗ 67.04(1.50)∗ 52.94(1.95) 47.48(0.46) 51.25(0.21) 27.40(4.97) 60.85(0.46) 2.6
APT (fine-tune) 79.67(2.30)∗ 28.62(0.55)∗ 20.30(1.13)∗ 12.80(1.54)∗ 67.08(1.75)∗ 52.15(2.25) 47.51(0.62) 51.30(0.16) 27.40(4.87) 61.64(0.35) 1.3

model is attributed to the transferable knowledge learned by pre-training strategies. We also find that
some proximity-based models like ProNE enforce neighboring nodes share similar representations,
thus they perform well on graphs with strong homophily rather than weak homophily.

Table 2: Micro F1 of different models in the graph
classification.

Method
Dataset imdb-binary dd msrc-21 A.R.

Random 49.30(4.82) 52.72(4.34) 4.49(2.14) 11
graph2vec 56.20(5.33) 59.16(3.47) 8.22(3.67) 7.7
InfoGraph 66.58(0.63) 58.66(0.23) 6.01(0.59) 7.7
GraphCL (freeze) 55.10(3.18) 57.82(4.71) 5.44(2.77) 9.3
JOAO (freeze) 63.90(3.48) 55.97(3.61) 5.09(2.65) 9.3
GCC (freeze) 73.09(0.55) 75.16(0.53) 11.61(1.33) 5.3
APT-G (freeze) 73.10(0.39) 75.24(0.42) 12.81(0.74) 4.3
APT-P (freeze) 72.83(0.81) 76.38(0.32) 13.30(0.57) 3.0
APT-R (freeze) 73.98(0.21) 75.32(0.34) 12.90(0.57) 3.0
APT-L2 (freeze) 73.54(0.40) 75.81(0.30) 13.16(0.77) 2.3
APT (freeze) 73.00(0.50) 75.83(0.31) 13.81(1.06) 3.0
DGCNN 71.00(4.69) 58.63(4.46) 6.01(0.59) 11.3
GIN 72.00(2.41) 77.61(1.47)∗ 10.54(5.08) 6.0
GraphCL (rand, fine-tune) 63.60(3.61) 58.15(4.60) 8.25(2.94) 12.7
JOAO (rand, fine-tune) 67.70(3.35) 62.10(4.31) 11.40(3.06) 10.0
GCC (rand, fine-tune) 75.80(1.37) 74.26(0.59) 17.18(1.43) 7.3
GraphCL (fine-tune) 66.90(4.39) 65.55(5.14) 8.77(2.60) 10.7
JOAO (fine-tune) 68.50(3.61) 62.61(4.99) 10.18(1.72) 10.0
GCC (fine-tune) 76.19(0.90) 75.32(1.77) 24.90(1.65) 4.7
APT-G (fine-tune) 76.29(0.89) 75.46(0.77) 21.94(0.73) 4.7
APT-P (fine-tune) 76.70(1.01)∗ 75.34(0.88) 24.32(1.22) 3.7
APT-R (fine-tune) 76.60(1.02) 75.64(0.70) 24.09(2.12) 3.3
APT-L2 (fine-tune) 75.93(0.84) 75.58(1.06) 25.58(1.57)∗ 3.7
APT (fine-tune) 76.27(1.20) 75.69(1.42) 24.41(1.82) 3.0

Graph classification. The micro F1 score
on unseen test data in the graph classification
task is summarized in Table 2. Especially, our
model is 7.2% and 1.3% on average better than
the graph pre-training backbone model under
freezing and fine-tuning mode, respectively. In-
terestingly, we find that the variants of APT per-
form well under graph classification, indicating
that we can apply a version with simpler archi-
tecture in practice yet achieve good results.
Analysis of the selected graphs. The
data sequentially selected via our graph
selector are uillinois, soc-sign0811, msu,
michigan, wiki-vote, soc-sign0902 and dblp.
To further analyze why these graphs are
chosen, we present their detailed struc-
tural properties in Table 4 in the Appendix
C. We first observe that uillinois, michi-
gan and msu have the largest value of
MEAN(ϕ̂entropy, ϕ̂density, ϕ̂avg deg, ϕ̂deg var, -ϕ̂α), while dblp has the smallest. This shows that both
criteria, the graph properties and the predictive uncertainty, play an important role in data selection.
Moreover, it is also interesting to see that wiki-vote is the smallest graph among all the pre-training
graphs, but it still contributes to the performance. This observation again verifies the curse of big
data phenomenon in graph pre-training.

4.3 DISCUSSION: SCOPE OF APPLICATION

The transferability of the pre-trained model comes from the learnt representative structural patterns
and the ability to distinguish these patterns (as discussed in §2). Therefore, our pre-training model
is more suitable for the datasets where the target (e.g., labels) is correlated with subgraph patterns or
structural properties (e.g., motifs, triangles, betweenness, stars). For example, for node classification
on heterophilous graphs (e.g., winconsin, cornell), our model performs very well because in these
graphs, nodes with the same label are not directly connected, but share similar structural properties
and behavior (or role, position). On the contrary, graphs with strong homophily (like cora, pubmed,
ogbarxiv and ogbproteins) may not benefit too much from our models. Similar observation can
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also be made on graph classification: our model could also benefit the graphs whose label has a
strong relationship with their structure, like molecular, chemical, and protein networks (e.g., dd in
our experiments) Vishwanathan et al. (2010); Gardiner et al. (2000).

5 RELATED WORKS

Pre-training in CV and NLP. Initially, the CV community benefits from the models like Vi-
sion Transformers Liu et al. (2021), MLP-mixers Tolstikhin et al. (2021) and ResNets He et al.
(2016), which are supervised pre-trained on large-scale image data. To take full advantage of mas-
sive unlabeled data, NLP community adapts self-supervised learning models like Transformer-based
encoder Vaswani et al. (2017); Radford & Narasimhan (2018); Devlin et al. (2019) for language pre-
training. When pre-training in CV and NLP, researchers find that scaling up the pre-training data
size would results in a better or saturating performance in downstream Tan & Le (2019); Kaplan
et al. (2020); El-Nouby et al. (2021); Abnar et al. (2022); Raffel et al. (2020). However, this is not
true in graph pre-training. In this paper we argue that adding input graphs or pre-training samples
does not necessarily improve, but sometimes even deteriorates the downstream performance.

In view of the above phenomenon in CV and NLP pre-training, data selection is not an active re-
search direction. The only related research we notice focus on domain-specific pre-training models,
which select pre-training data that is most similar to the downstream domain Cui et al. (2018); Belt-
agy et al. (2019); Dai et al. (2019; 2020); Yan et al. (2020); Lee et al. (2020); Chakraborty et al.
(2022). The assumption on the knowledge of downstream domain is different from the across-
domain graph pre-training in our paper, and thus data selection in CV/NLP pre-training is not that
relevant to the current work.
Graph pre-training. Taking inspiration from the pre-training in CV and NLP, recent efforts have
shed the light on pre-training GNNs. Initially, some unsupervised graph representation learning
can be used for graph pre-training Tang et al. (2015); He et al. (2016); Grover & Leskovec (2016);
Narayanan et al. (2017); Ribeiro et al. (2017); Donnat et al. (2018); Zhang et al. (2019); Hamilton
et al. (2017). They are designed based on neighborhood similarity assumption, thus cannot general-
ize to unseen nodes and graphs. Later, a line of graph self-supervised learning can be also treated as
graph pre-training, which are categorized into two folds: graph generative models and contrastive
models. Graph generative models capture the universal graph patterns by recovering certain parts
of input graph (e.g., masked structure or attributes) Kipf et al. (2016); Wang et al. (2017); Hu et al.
(2020c); Cui et al. (2020); Hou et al. (2022). These works rely on specific domain knowledge,
for example the node/edge/attribute type should be the same, which makes them difficult to trans-
fer across different types of graphs.ƒ On the other hand, graph contrastive models maximize the
agreement between positive pairs and minimize that between negative pairs Velickovic et al. (2019);
Hu et al. (2020b); You et al. (2020a); Zhu et al. (2020); Hassani & Khasahmadi (2020); Sun et al.
(2020); Li et al. (2021); Lu et al. (2021); Sun et al. (2021); Zhu et al. (2021b); Xu et al. (2021); Zhu
et al. (2021a); Lee et al. (2022); Zeng & Xie (2021); Zhang et al. (2021b); Han et al. (2022). One
of the technical cores is to design appropriate data augmentation like attribute masking, edge pertur-
bation, node dropping, diffusion, etc., which either performed on node attributes or the whole graph
structure. So they only achieve transferability in graphs from similar (or the same) domains, or the
downstream task is restricted to graph classification. With the purpose of learning transferable pat-
terns across different domains, some works take subgraph sampling as augmentation, such that the
transferable (sampled) subgraph patterns can be captured during pre-training Qiu et al. (2020); You
et al. (2020a; 2021). However, these existing works only focus on how to design the pre-training
model, rather than how to select data for pre-training. Our paper first points out the necessity of
selecting data, and fills the gap of the data selection strategy in graph pre-training.

6 CONCLUSION
In this paper, we observe that big data is not a necessity for pre-training GNNs. This motivates us to
wisely choose some suitable graphs and samples for pre-training rather than training on a massive
amount of data. Without any knowledge of the downstream tasks, we propose a novel graph selector
to provide the most instructive data for the model. The pre-training model is then encouraged to
learn from the data in a progressive way and reinforce itself on newly selected data. We integrate
the graph selector and the graph pre-training model in a unified framework, and form a data-active
graph pre-training (APT) paradigm. The two components in APT are able to mutually boost the
capability of each other. Extensive experimental results show that the proposed APT framework can
enhance model capability with a fewer number of input data.
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7 REPRODUCIBILITY STATEMENT

We provide an open-source implementation of our model APT at https://github.com/
anonymous-APT-ai/Anonymous-APT-code. Hyperparameters necessary for reproducing
the experiments can be found in §4.1, Appendix D and Appendix F. Users can run APT on their
own datasets.

8 ETHICS STATEMENT

This paper empirically identifies the curse of big data phenomenon in graph pre-training, and devel-
ops a novel data-active graph pre-training framework. All the experiments are conducted on publicly
available datasets for reproducibility purposes. Overall, this work inherits some of the risks of the
existing works implementing these pre-existing datasets, and the risks are not amplified by the work.
Therefore, this present paper likely does not introduce any new ethical or future social concerns.
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Grave. Are large-scale datasets necessary for self-supervised pre-training? arXiv preprint
arXiv:2112.10740, 2021.

Eleanor J Gardiner, Peter Willett, and Peter J Artymiuk. Graph-theoretic techniques for macro-
molecular docking. Journal of Chemical Information and Computer Sciences, 40(2):273–279,
2000.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In CVPR, pp. 580–587, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In SIGKDD,
pp. 855–864, 2016.

Hakim Hafidi, Mounir Ghogho, Philippe Ciblat, and Ananthram Swami. Graphcl: Contrastive self-
supervised learning of graph representations. arXiv preprint arXiv:2007.08025, 2020.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, pp. 1025–1035, 2017.

Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation for
graph classification. In ICML, pp. 8230–8248, 2022.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In ICML, pp. 4116–4126, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, pp. 9729–9738, 2020.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In SIGKDD, pp. 594–604, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020a.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In ICLR, 2020b.

Ziniu Hu, Changjun Fan, Ting Chen, Kai-Wei Chang, and Yizhou Sun. Pre-training graph neural
networks for generic structural feature extraction. arXiv preprint arXiv:1905.13728, 2019.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In SIGKDD, pp. 1857–1867, 2020c.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Thomas N Kipf et al. Variational graph auto-encoders. NIPS Workshop on Bayesian Deep Learning,
2016.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Adit Krishnan, Mahashweta Das, Mangesh Bendre, Hao Yang, and Hari Sundaram. Transfer learn-
ing via contextual invariants for one-to-many cross-domain recommendation. In SIGIR, pp. 1081–
1090, 2020.

11



Under review as a conference paper at ICLR 2023

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jae-
woo Kang. Biobert: a pre-trained biomedical language representation model for biomedical text
mining. Bioinformatics, 36(4):1234–1240, 2020.

Namkyeong Lee, Junseok Lee, and Chanyoung Park. Augmentation-free self-supervised learning
on graphs. In AAAI, pp. 7372–7380, 2022.

Pengyong Li, Jun Wang, Ziliang Li, Yixuan Qiao, Xianggen Liu, Fei Ma, Peng Gao, Seng Song, and
Guotong Xie. Pairwise half-graph discrimination: A simple graph-level self-supervised strategy
for pre-training graph neural networks. In IJCAI, pp. 2694–2700, 2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, pp. 10012–
10022, 2021.

Ilya Loshchilov and Frank Hutter. Online batch selection for faster training of neural networks.
arXiv preprint arXiv:1511.06343, 2015.

Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. Learning to pre-train graph neural networks.
In AAAI, pp. 4276–4284, 2021.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their compositionality. In NeurIPS, pp. 3111–3119, 2013.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005, 2017.

Mark E. J. Newman. The structure and function of complex networks. SIAM Rev., 45:167–256,
2003.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In SIGKDD, pp. 701–710, 2014.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In SIGKDD,
pp. 1150–1160, 2020.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-
training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node
representations from structural identity. In SIGKDD, pp. 385–394, 2017.

Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors
with online hard example mining. In CVPR, pp. 761–769, 2016.

Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, and Francesc Moreno-Noguer.
Fracking deep convolutional image descriptors. arXiv preprint arXiv:1412.6537, 2014.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In ICLR,
2020.

Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. Mocl: Data-driven molecular
fingerprint via knowledge-aware contrastive learning from molecular graph. In SIGKDD, pp.
3585–3594, 2021.

12



Under review as a conference paper at ICLR 2023

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In ICML, pp. 6105–6114, 2019.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In WWW, pp. 1067–1077, 2015.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. NeurIPS, pp. 24261–24272, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
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A THEORETICAL CONNECTION BETWEEN NETWORK ENTROPY AND
TYPICAL GRAPH PROPERTIES

Many interesting graph structural properties from basic graph theory give rise to a graph with high
network entropy Lynn et al. (2020). We here theoretically show some connections between the
proposed network entropy and typical structural properties.

To make theoretical analysis, we consider connected, unweighted and undirected graph, whose net-
work entropy depends solely on its degree distribution (see Eq. (3)). Considering a random graph G
with a fixed node set, we suppose that the degree of any node vi independently follows distribution
p, which is a common setting in random graph theory Gómez-Gardenes & Latora (2008). Then the
expected network entropy of G is

⟨H(G)⟩ = 1

2|E|
∑
i

⟨di logdi⟩ =
⟨d logd⟩
⟨d⟩ . (6)

where every di (and d) is an independent random variable follows the distribution p.

Now we are ready to discuss the connection between network entropy ⟨H(G)⟩ and some typical
graph properties (i.e., average degree ⟨d⟩, degree variance Var(d) and the scale-free exponent α).

Average degree. Given that the function x log x is convex in x, we have

⟨H(G)⟩ ≥ ⟨d⟩ log⟨d⟩⟨d⟩ = log⟨d⟩. (7)

It is clear that average degree is the lower bound of network entropy. Based on our discussion on
§3.1, we conclude that when used for pre-training, an input graph with higher average degree would
in general result in better performance of the pre-trained model.

Degree variance. The Taylor expansion of ⟨d logd⟩ in Eq. (6) at ⟨d⟩ gives

⟨H(G)⟩ = log⟨d⟩+ Var(d)

2⟨d⟩2 + o

(
1

⟨d⟩2
)
.

where Var(d) is the variance of d. We find that log⟨d⟩ is exactly the zeroth-order term in the
expansion. When average degree is fixed, the network entropy and the degree variance Var(d) are
positively correlated. This in turn implies a positive correlation between degree variance and the test
performance of the model.

Scale-free exponent. Most real-world networks exhibit an interesting scale-free property (i.e.,
only a few nodes have high degrees), and thus the degree distribution often follows a power-law
distribution. That is, we can just write the degree distribution as p(x) ∼ x−α, where α is called
the scale-free exponent. For a real-world network, the scale-free exponent α is usually larger than 2
Clauset et al. (2009). Suppose the degrees of a random graph G with N nodes follows a power-
law distribution p(x) = Cx−α where C is a normalization constant. When α > 2, we could
approximately have Gómez-Gardenes & Latora (2008)

⟨H(G)⟩ = 1

α− 2
, if N →∞.

Clearly, a smaller scale-free exponent α results in a higher network entropy.

Remark 1 (Connection between network entropy and typical structural properties) A graph
with high network entropy arises from graphs with typical structural characteristics like large
average degree, large degree variance, and scale-free networks with low scale-free exponent.

Besides the above theoretical analysis. The motivation of choosing density, average degree, degree
variance and scale-free exponent is similar to that of network entropy. Intuitively, graphs with larger
average degree and higher density have more interactions among the nodes, thus providing more
topological information to graph pre-training. Also, the larger the diversity of node degrees, the
more diverse the subgraph samples. The diversity of node degrees can be measured by degree
variance and scale-free exponent. (A smaller scale-free exponent indicates the length of the tail of
degree distribution is relatively longer, i.e., the degree distribution spreads out wider. )
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B ALGORITHM

The overall algorithm for APT is given in Algorithm 1. Given a collection of graphs G =
{G1, . . . , GN} from various domains, APT aims to pre-train a better generalist GNN (i.e., pre-
training model) on wisely chosen graphs and samples. Our APT pipeline involves the following
three steps. (i) At the beginning, the graph selector chooses a graph for pre-training according to
the graph properties (line 1). (ii) Given the chosen graph, the graph selector chooses the subgraph
samples whose predictive uncertainty is higher than Ts in this graph (line 3). (iii) The selected
samples are then fed into the model for pre-training until the predictive uncertainty of the chosen
graph is below Tg or the number of training iterations on this chosen graph reaches F (line 4-5). (iv)
The model’s feedback in turn helps select the most needed graph based on predictive uncertainty
and graph properties until the predictive uncertainty of any candidate graph is low enough (line 6-
7). The last three steps are repeated until the iteration number reaches a pre-set maximum value T
(which can be considered as the total iteration number required to train on all selected graphs).

Algorithm 1 Overall algorithm for APT.

Input: A collection of graphs G = {G1, . . . , GN}, maximal period F of training one graph,
trade-off parameter γt = 0, hyperparameter {βt}, the learning rate µ, the predictive uncertainty
threshold Tg of moving to a new graph, the predictive uncertainty threshold Ts of choosing training
samples, and the maximum iteration number T .
Output: Model parameter θ of the pre-trained graph model.

1: Choose a graph G∗ from G via the graph selector, and G ← G\{G∗}.
2: while The iteration number reaches T do
3: Sample instances with predictive uncertainty higher than Ts from G∗ via the graph selector.
4: Update model parameters θ ← θ − µ∇θL(θ).
5: if ϕuncertain(G

∗) < Tg or the model has been trained on G∗ by F iterations then
6: Update the trade-off parameter γt ∼ Beta (1, βt).
7: Choose a graph G∗ from G, and G ← G\{G∗}.
8: end if
9: end while

The time complexity of our model mainly consists of five components: data augmentation, GNN
encoder propagation, contrastive loss, sample selection and graph selection. Suppose the maximal
number of nodes of subgraph instances is |V |, the batch size is B, and D is the representation
dimension. (1) As for the data augmentation, the time complexity of random walk with restart is at
least O(B|V |3) Xia et al. (2019). (2) The time complexity of GNN encoder propagation depends
on the architectures of the backbone GNN. We denote it as X here. (3) The time complexity of
the contrastive loss is O(B2D) Li et al. (2022). (4) Sample selection is conducted by choosing
the samples with high contrastive loss (the loss is computed before), which costs O(B). (5) Graph
selection costs O(|G|M2D) (where M the number of samples needed to compute the predictive
uncertainty of a graph, and |G| is the number of graphs that have not been selected). This step is
executed only in a few epochs (around 6% in our current model), so we ignore its time overhead in
graph selection. Therefore, the overall time complexity of APT in each batch is O(B|V |3 + X +
B2D +B).

C DATASET DETAILS

The graph datasets for pre-training and testing in this paper are collected from a wide spectrum of
domains (see Table 3 for an overview). The consideration of the graphs for pre-training and test
is as follows. When selecting pre-training data, we hope that the graph size is at least hundreds
of thousands to contain enough information for pre-training. When selecting test data, we hope
that: (1) some test data is in the same domain as the pre-training data, and some is cross-domain,
so as to comprehensively evaluate our model’s in and across-domain transferability. Accordingly,
the in-domain test data is selected from the type of movie and citations, and the others test data are
across-domain; (2) the size of test graphs can scale from hundreds to millions.
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Regarding the pre-training datasets, arxiv, dblp and patents-main are citation networks collected
from Bonchi et al. (2012), Yang & Leskovec (2012) and Hall et al. (2001), respectively. Imdb is
the collection of movie from Rossi & Ahmed (2015). As for the social networks, soc-sign0902 and
soc-sign0811 are collected from Leskovec et al. (2009), wiki-vote is from Leskovec et al. (2010),
academia is from Fire et al. (2011), and michigan, msu and uillions are from Traud et al. (2012).
Regarding the test datasets, we collect the protein network dd and ogbproteins from Dobson & Doig
(2003) and Hu et al. (2020a). The image network msrc-21 is from Neumann et al. (2016). The
movie network imdb-binary is from Yanardag & Vishwanathan (2015). The citation networks, cora,
pubmed and ogbarxiv, are from McCallum et al. (2000), Namata et al. (2012) and Hu et al. (2020a).
The web networks cornell and wisconsin are collected from Pei et al. (2019). The transportation
network brazil is form Ribeiro et al. (2017), and dd242, dd68 and dd687 are from Rossi & Ahmed
(2015).

The detailed graph properties of the pre-training data and test data are presented in Table 4 and
Table 5, respectively.

Table 3: Datasets for pre-training and testing, where ∗ denotes the average statistic of multiple
graphs under graph classification setting. |V | and |E| denote the number of nodes and the number
of edges in a graph, respectively.

Type Name |V | |E| Description

pr
e-

tr
ai

ni
ng

da
ta

citations arxiv 86,376 517,563 citations between papers on the arxiv
dblp 93,156 178,145 same as above (dblp)

patents-main 240,547 560,943 citations between US patents
social soc-sign0902 81,867 497,672 friend/foe links between the users of Slashdot in Feb. 2009

soc-sign0811 77,350 468,554 same as above (Nov. 2008)
wiki-vote 7,115 100,762 voting relationships between wikipedia users
academia 137,969 369,692 friendships between academics on Academia.edu
michigan 30,147 1,176,516 friendships between Facebook users in University of Michigan

msu 32,375 1,118,774 same as above (Michigan State University)
uillinois 30,809 1,264,428 same as above (University of Uillinois)

movie imdb 896,305 3,782,447 relationships between actors and movies

te
st

da
ta

protein dd 284.32∗ 715.66∗ molecular interactions between amino acids
ogbproteins 132,534 39,561,252 biologically associations between proteins

image msrc-21 77.52∗ 198.32∗ adjacency between superpixels of the image segmentations
movie imdb-binary 19.77∗ 96.53∗ collaboration relationships between actors/actresses

citations cora 2,708 5,278 citations between Machine Learning papers
pubmed 19,717 88,648 citations between scientific papers
ogbarxiv 169,343 1,166,243 citation network between computer science arXiv papers

web cornell 183 280 hyperlinks between webpages collected from Cornell Univer-
sity

wisconsin 251 466 same as above (Wisconsin University)
transportation brazil 131 2,077 commercial flights between airports in Brazil

others dd242 1,284 3,303 this network dataset is in the category of labeled networks
dd68 775 2,093 same as above

dd687 725 2,600 same as above

Table 4: Detailed structural properties of pre-training datasets, where avg properties equals to
MEAN(ϕ̂entropy, ϕ̂density, ϕ̂avg deg, ϕ̂deg var, -ϕ̂α) in Eq. (4), and nei2 denotes the average number and
standard deviation of 2−hop neighbors, |V | and |E| denote the number of nodes and the number of
edges in a graph, respectively.

Dataset
Properties |V | |E| avg properties avg degree degree var density entropy α nei2 (avg, std) avg clustering coef

soc-sign0902 81867 497672 -0.32 13.16 1643.20 1.49e-04 3.91 1.51 1192.33, 2305.99 0.06
soc-sign0811 77350 468554 -0.32 13.12 1631.77 1.57e-04 3.93 1.52 1226.93, 2312.03 0.05
imdb 896305 3782447 -0.66 9.44 298.27 9.42e-06 3.07 1.53 316.16, 614.03 5e-05
patent 240547 560943 -0.96 5.66 34.95 1.94e-05 2.04 1.57 117.23, 172.40 0.08
academia 137969 369692 -0.89 6.36 102.14 3.88e-05 2.38 1.57 101.40, 225.96 0.14
wiki-Vote 7115 103689 0.74 29.32 3314.79 4.10e-03 4.46 1.40 972.03, 1045.13 0.14
dblp 93156 178145 -1.12 4.82 58.05 4.11e-05 2.16 1.72 58.85, 90.46 0.27
arxiv 86376 517563 -0.43 12.98 382.12 1.39e-04 3.22 1.41 145.21, 309.12 0.68
michigan 30147 1176516 1.40 79.05 6369.17 2.59e-03 4.78 1.23 4683.90, 3655.25 0.21
msu 32375 1118774 1.13 70.11 5087.53 2.13e-03 4.62 1.23 4567.63, 3465.16 0.21
uillinois 30809 1264428 1.44 83.08 6306.02 2.66e-03 4.78 1.22 5267.10, 3831.37 0.21
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Table 5: Detailed structural properties of test datasets, where nei2 denotes the average number and
standard deviation of 2−hop neighbors, and the numbers with ∗ denote the average statistics of
multiple graphs under graph classification setting. |V |, |E| and |G| denote he number of nodes in
a graph, the number of edges in a graph and the number of graphs in graph classification datasets,
respectively.

Dataset
Properties |V | |E| |G| avg degree degree var density entropy nei2 (avg, std) avg clustering coef # of classes

imdb-binary 19.77∗ 193.06∗ 1000 9.89∗ 116.01∗ 1.04∗ 1.07∗ 24.89∗,15.91∗ 0.95∗ 2
msrc-21 77.52∗ 198.32∗ 563 6.10∗ 30.26∗ 6.81e-02∗ 1.71∗ 17.00∗, 5.81∗ 0.51∗ 20
dd 284.32∗ 715.66∗ 1178 6.00∗ 27.60∗ 2.78e-02∗ 1.65∗ 14.30∗,5.68∗ 0.48∗ 2
cora 2708 5278 / 4.90 42.53 1.44e-03 1.71 34.98,47.70 0.24 7
pubmed 19717 44327 / 5.50 75.44 2.28e-04 2.23 57.10,82.72 0.06 3
brazil 131 1074 / 16.85 539.18 1.26e-01 3.14 92.27,28.50 0.66 4
dd242 1284 3303 / 6.14 28.80 4.01e-03 1.68 14.57,4.30 0.47 20
dd68 775 2093 / 6.40 33.42 6.98e-03 1.76 17.40,8.93 0.44 20
dd687 725 2600 / 8.17 55.78 9.91e-03 2.01 25.45,9.96 0.48 20
wiscosin 251 466 / 4.65 76.26 1.49e-02 1.84 68.04,58.22 0.23 5
cornell 183 280 / 4.04 58.48 1.68e-02 1.74 54.09,44.30 0.18 5
ogbarxiv 16343 1157799 / 14.67 4898.17 8.07e-05 3.63 3483.08,6711.40 0.23 40
ogbproteins 132534 39561252 / 598.00 742637.58 4.50e-03 6.84 32265.17,19401.46 0.28 2

D ADDITIONAL OBSERVATIONS OF Curse of Big Data PHENOMENON

This section provides more comprehensive observations to support the curse of big data phe-
nomenon in cross-domain graph pre-training, i.e., more training samples and graph datasets do not
necessarily lead to better downstream performance.

We investigate 3630 experiments with GCC Qiu et al. (2020) and GraphCL Hafidi et al. (2020)
model with different model configurations (i.e., the number of GNN layers is set to be 3, 4 and 5
respectively), when pre-trained on all training graphs listed in Table 3 and evaluated on different
test graphs (annotated in the upper left corner of each figure) under freezing setting. Note that GCC
and GraphCL are the only two pre-training models that can be adopted for the cross-domain setting.
For each experiment, we calculate the mean and standard deviation over 10 evaluation results of the
downstream task with random training/testing splits.

The observations of GCC and GraphCL model can be found in Figure 5 and Figure 6 respectively.
The downstream results of different test data are presented in separate rows. The figures in left three
columns present the effect of scaling up the number of graphs on the downstream performance under
different model configurations (i.e., the number of GNN layers) respectively. We first pre-train the
model with only two input graphs, and the result is plotted in a dotted line. The largest standard
deviation among the results w.r.t different graph last is also marked by the blue arrow. The figures
in the last column illustrate the effect of scaling up sample size (log scale) on the performance.

Table 6: The value of parameters for fitting the curve according to the function f(x) = a1 lnx/x
a2+

a3 (a1, a2, a3 > 0), based on the points in the last column in Figure 5 and Figure 6.

GCC GraphCL

Dataset
Parameter

a1 a2 a3 a1 a2 a3

cora 0.45 0 33.43 1038.19 1.24 17.15
pubmed 4.74 0.11 39.63 3.50 0.12 36.83
brazil 39.10 0.09 0 29.59 0.19 41.83
dd242 6.60 0.08 3.82 7.84 0.12 0
dd68 6.44 0.11 3.83 2.08e+17 6.55 10.37

dd687 968.01 1.37 10.31 5.21 0.12 1.35
wisconsin 26.78 0.11 16.59 11.42 0.21 38.24

cornell 15.46 0.41 45.45 7.84 4.83 51.79
imdb-binary 7.43 0.13 64.97 1.06 0 51.69

dd 0.81 0.31 75.53 13.76 0.10 36.33
msrc 5.56 0.11 4.85 4.71 0.13 0
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The explanation of convex hull fit. In order to better show the changing trend, the blue curve in
the last column in Figure 5 and Figure 6 is fitted to the convex hull of the points. The convex hull
is proposed to capture the performance of a randomized classifier made by choosing pre-training
models with different probabilities Abnar et al. (2022).

We first introduce the concept of randomized classifier. Given two classifiers with training sample
size and downstream performance c1 = (csz

1 , c
ds
1 ) and c2 = (csz

2 , c
ds
2 ), a randomized classifier can be

made to choose the first classifier with probability p and the second classifier with probability 1− p.
Then the output of the randomized classifier is pc1 + (1 − p)c2, which is the convex combination
of c1 and c2. All the points on this convex combination can be obtained by choosing different p.
Extend the notion to the case of multiple classifiers, we can consider the output of such a random-
ized classifier to be a convex combination of the outputs of its endpoints Abnar et al. (2022). All
the points on the convex hull are achievable. Therefore, the output of the randomized classifier is
equivalent to the convex hull of our trained classifiers’ performance.

In our experiments, we include the upper hull of the convex hull of the model performances, i.e., the
highest downstream performance for every given sample size. Such convex hull fit is proved to be
robust to the density of the points in each figure Abnar et al. (2022).

A final remark is that our observations on different downstream datasets do not result in a one-
model-fits-all trend. So we propose to fit a complicated curve whose function has form f(x) =
a1 lnx/x

a2 +a3 (a1, a2, a3 > 0) to the best performing models (i.e., the convex hull fit as discussed
above). The fitted parameters a1, a2 and a3 in this function of each curve are given in Table 6.
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Figure 5: The additional observations of curse of big data phenomenon, performed on different
GCC pre-training models.
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Figure 6: The additional observations of curse of big data phenomenon, performed on different
GraphCL pre-training models.
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E EMPIRICAL STUDY OF GRAPH PROPERTIES

Additional properties for part (b) in Figure 2. In Figure 7, we plot the Pearson correlation
between the graph properties of the graph used in pre-training (shown in the y-axis) and the per-
formance of the pre-trained model using this graph on different unseen test datasets (shown in the
x-axis). Note that the pre-training is performed on each of the input training graphs (in Table 3)
via GCC. The results indicate that network entropy, density, average degree and degree variance
exhibit a clear positive correlation with the performance, while the scale-free exponent presents an
obviously negative relation with the performance. On the contrary, some other properties of graphs,
including clique number, transitivity, degree assortativity and average clustering coefficient, do not
seem to have connections with downstream performance, and also exhibit little or no correlation with
the performance. Therefore, the favorable properties of network entropy, density, average degree,
degree variance and the scale-free exponent of a real graph are able to characterize the contribution
of a graph to pre-training.
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Figure 7: Pearson correlation between the structural features of the graph used in pre-training and
the performance of the pre-trained model (using this graph) on different unseen test datasets.

Detailed illustrations of Figure 3. In Figure 3, the illustrative graphs are generated by the con-
figuration model with 15-18 nodes. The shaded area groups the illustrative graphs whose network
entropy and graph properties are similar. Each four points on the same horizontal coordinate repre-
sent four graph properties of an illustrating graph. Each curve is fitted by least squares and represents
the relation between entropy and other graph properties.

Additional real-world example for Figure 3. In Figure 8, we provide a real-world example
of how network entropy correlates with four typical structural properties (in red), as well as the
performance of the pre-trained model on test graphs (in blue). Numerical experiments again support
our explanation (or intuition) of their strong correlation.
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Figure 8: The red plot shows the network entropy (left y-axis) versus typical structural properties in
a graph (i.e., density, average degree, degree variance, and the parameter α in a scale-free network),
and the blue one shows the pre-training performances on wisconsin dataset (right y-axis) versus
structural features.
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F IMPLEMENTATION DETAILS

The number reported in all the experiments are the mean and standard deviation over 10 evaluation
results of the downstream task with random training/testing splits. When conducting the downstream
task, For each dataset, we consistently use 90% of the data as the training set, and 10% as the testing
set. We conduct all experiments on a single machine of Linux system with an Intel Xeon Gold
5118 (128G memory) and a GeForce GTX Tesla P4 (8GB memory). Our codes are available at
https://github.com/anonymous-APT-ai/Anonymous-APT-code.

Implementations of our model. The regularization for weights of the model in Eq. (5) is applied
to first 2 layers of GIN. The maximal period of training one graph F is 6, the maximum iteration
number T is 100, and the predictive uncertainty thresholds Ts and Tg are set to be 3 and 2 respec-
tively. The selected instances are sampled from 20,000 instances each epoch. Since the pre-training
model is unable to provide precise predictive uncertainty in the initial training stage, the model is
warmed up over the first 20 iterations. Since we adopt GCC as the backbone pre-training model, the
other settings are the same as GCC.

Our model is implemented under the following software settings: Pytorch version 1.4.0+cu100,
CUDA version 10.0, networkx version 2.3, DGL version 0.4.3post2, sklearn version 0.20.3, numpy
version 1.19.4, Python version 3.7.1.

Implementations of baselines. We compare against several graph representation learning meth-
ods. For implementation, we directly adopt their public source codes and most of their default
hyperparameters. The key parameter settings and code links can be found in Table 7.

Table 7: The source code and major hyper-parameters used in the baselines.

Method Hyper-parameter Code

DeepWalk The dimension of output representations is
64, walk length = 10, number of walks =
80

https://github.com/shenweichen/GraphEmbedding

struc2vec The dimension of output representations is
32, walk length = 80, number of walks =
10, window size = 5

https://github.com/leoribeiro/struc2vec

DGI 512 hidden units per GNN layer, learning
rate = 0.001

https://github.com/PetarV-/DGI

GAE 32 hidden units per GNN layer, learning
rate = 0.01

https://github.com/zfjsail/gae-pytorch

graph2vec The dimension of output representations is
128

https://github.com/benedekrozemberczki/graph2vec

InfoGraph 32 hidden units per GNN layer, 5 layers https://github.com/fanyun-sun/InfoGraph
DGCNN 32 hidden units per GNN layer, learning

rate = 0.001, batch size = 50
https://github.com/leftthomas/DGCNN

GIN 64 hidden units per GNN layer, 5 layers,
learning rate = 0.01, sum pooling

https://github.com/weihua916/powerful-gnns

GraphCL 300 hidden units per GNN layer, 5 layers,
learning rate = 0.001

https://github.com/Shen-Lab/GraphCL

GCC 64 hidden units per GNN layer, 5 layers,
learning rate = 0.005, number of samples
per epoch = 20000

https://github.com/THUDM/GCC
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G ADDITIONAL EXPERIMENTAL RESULTS

Effects of hyper-parameter {λj}. The hyper-parameter {λj} is the trade-off parameters between
the knowledge learnt from new data and that from previous data in Eq. (5). We simply set λ1 =
λ2 = · · · = λk. We use the dataset dd242 as an example to find the suitable values of the hyper-
parameter under the L2 and EWC regularization setting respectively, and present here for reference
(see Figure 9). Clearly, a too small or too large λ would deteriorate the performance. Thus, an
appropriate value of λ is preferred to ensure that the graph pre-training model can learn from new
data as well as remember previous knowledge. We leave changing {λj} as the future work.
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Figure 9: Performance of our model on dd242 w.r.t varying {λj}.

Effects of hyper-parameter F, Tg, Ts. Our model training involves three hyper-parameter
F, Tg, Ts, where F controls the largest number of epochs training on each graph, Tg is the pre-
dictive uncertainty threshold of moving to a new graph, Ts is the predictive uncertainty threshold
of choosing training samples. We use grid search to show F ∈ {4, 5, 6}’s, Tg ∈ {3, 3.5, 4}’s and
Ts ∈ {1, 2, 3}’s role in the pre-training. F remains at 5 while studying Tg and Ts, Tg remains at
3.5 while studying F and Ts, and Ts remains at 2 while studying F and Tg . Figure 10 presents the
effect of these parameters, We find that if the value of F is set too small or that of Tg is too large,
the model cannot learn sufficient knowledge from each graph, leading to suboptimal results. Too
large F or small Tg also lead to poor performance. This indicates that instead of training on a graph
for a large period, it would be better to switch to training on various graphs in different domains
to gain diverse and comprehensive knowledge. Regarding the hyper-parameter Ts, we observe that
large Ts would make the model having too few training samples to learn knowledge, and small Ts

could not select the most uncertain and representative samples, thus both cases achieve suboptimal
performance.
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Figure 10: Performance of our model on dd242 w.r.t varying F, Tg, Ts.

The choice of βt, its alternatives, and ablation study. At the beginning of the pre-training, the
model is less accurate and needs more guidance from graph properties. We therefore set γt as larger
at the beginning and gradually decrease it. To simplify this process, we follow Cai et al. (2017) to
use the exponential formula of βt = c1 − ct2 to set the expectation of γt to be strictly decreasing
(where γt ∼ Beta(1, βt)).

The parameters c1 and c2 in the exponential formula of βt = c1 − ct2 are suggested as 1.005 and
0.995 in Cai et al. (2017). We simply perform grid search on c1 in {1.005, 3, 5}; see the effect of c1
in the Figure 11.
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Table 8: Micro F1 of APT-L2 (freeze) with the different decay functions in the node classification
task.

Method
Dataset brazil dd242 dd68 dd687 wisconsin cornell cora pubmed

linear 72.30(1.37) 16.28(0.57) 12.44(0.72) 10.29(0.87) 54.20(1.50) 47.66(1.53) 35.74(0.52) 46.49(0.19)
step 68.70(3.95) 16.74(0.45) 12.86(1.07) 10.09(0.76) 52.55(2.39) 48.08(1.28) 35.50(0.46) 46.58(0.21)
exponential 69.82(2.32) 16.79(0.88) 12.68(0.81) 10.34(1.12) 55.11(1.74) 48.76(2.20) 34.27(0.43) 46.21(0.15)

Table 9: Micro F1 of APT-L2 (freeze) with the different decay functions in the graph classification
task.

Method
Dataset imdb-binary dd msrc-21

linear 73.66(0.34) 75.47(0.26) 13.01(0.78)
step 72.99(0.40) 75.41(0.41) 14.13(0.56)
exponential 73.54(0.40) 75.81(0.30) 13.16(0.77)

We then illustrate that the choice of the decay function of βt is robust. Table 8 and Table 9 below
show the effect of linear decay, step decay and exponential decay on βt. (The function for linear
decay and step decay are designed as βt = 2.001 + 0.004t, βt = 2.005 + floor(t/20), respectively.
The initial value β1 is set the same as ours.) While there is no universally better decay function, the
performance of our method is not significantly impacted by the choice of different decay functions,
and our performance is better than the baselines in most cases regardless of the choices of specific
decay functions.
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Figure 11: Performance of APT-L2 (freeze) w.r.t varying c1.

Impact of five graph properties combination. As a further experimental analysis, we study the
effect of the strategy of utilizing only one graph property in Table 10 and Table 11. We find that the
five properties used in our model are all indispensable, and the most important one probably varies
for different tasks and datasets. That’s why we choose to combine all graph properties.

Moreover, these case studies may provide some clues of how to select pre-training graphs when
some knowledge of the downstream tasks is known. For example, if the downstream dataset is
extremely dense (like imdb-binary), the density property dominates among the selection criteria
(such that the probability of encountering very dense out-of-distribution samples during testing can
be reduced). If the entropy of downstream dataset is very high (like brazil), it is perhaps better to
choose graphs with high entropy for pre-training. But still, when the downstream task is unknown,
using the combination of five metrics often leads to the most satisfactory and robust results.

The justification of input graphs’ learning order. Table 12 reveals the downstream performance
can be affected by the learning order of input training graphs. With the guidance of graph selector,
the pre-training model is encouraged to first learn the graphs and samples with higher predictive
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uncertainty and graph properties. Such learning order accomplishes better downstream performance
compared to the reverse or random one.

The choice of the “difficult” data. Among all the data, “difficult” samples contribute the most to
the loss function, and thus they can yield gradients with large magnitude. Comparatively, training
with easy samples may suffer from inefficiency and poor performance as these data points produce
gradients with magnitudes close to zero Huang et al. (2016); Sohn (2016). In addition, learning from
difficult samples has proven to be able to accelerate convergence and enhance the expressive power
of the learnt representations Suh et al. (2019); Schroff et al. (2015). For our model, the importance
of learning from difficult samples is also justified empirically, as shown in Table 13.

Training time. As empirically noted in Table 14, the total training time of APT-L2 and APT is
18321.39 seconds and 18592.01 seconds respectively (including the time consumed in graph selec-
tion and regularization term), while the competitive graph pre-training model GCC takes 40161.68
seconds for the same number of training epochs on the same datasets.

• The time spent on the inference on all graphs during graph selection (which is the main time spent
for graph selection) only accounts for 3.95% and 3.87% of the total time under APT-L2 and APT
respectively. Note that this step is executed only in a few epochs (around 6% in our current model)
if and only if the condition in line 5 in Algorithm 1 is satisfied.

• The time cost of the L2 regularization term only accounts for 0.08% of the total time and the EWC
regularization term only accounts for 0.45% of the total time, which is calculated by the runtime
gap between the models with and without the regularization term. Note that the regularization
term is imposed on the first two layers of the GNN encoder, which only accounts for 12.4% of the
total number of parameters.

The efficiency of our model is due to a much smaller number of carefully selected training graphs
and samples at each epoch. In addition, the number of parameters in our model is 190,544, which is
the same order of magnitude as classical GNNs like GraphSAGE, GraphSAINT, etc. and is relatively
small among models in open graph benchmark Hu et al. (2020b).

Time comparison: pre-training vs. training from scratch. Using a pre-trained model can
significantly reduce the time required for training from scratch. The reason is that the weights of the
pre-trained model have already been put close to appropriate and reasonable values; thus the model
converges faster during fine-tuning on a test data. As shown in Figure 12, compared to regular GNN
model (e.g. GIN), our model yields a speedup of 4.7× on average (which is measured by the ratio of
the training time of GIN to the fine-tuning time of APT). Based on above analysis, we can draw a
conclusion that pre-training is beneficial both in effectiveness and efficiency.
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Figure 12: The running time of our model and the basic GNN model on graph classification task.
Our model achieves a speedup of 4.7× on average compared with GIN.
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Table 10: The effect of different graph properties on downstream performance (micro F1 is reported)
under APT-L2 (fine-tune) in the node classification task. The last row is our strategy of combining
all the graph properties, and each of the first five rows is the strategy of only utilizing one graph
property.

Method
Dataset brazil dd242 dd68 dd687 wisconsin cornell cora pubmed

Entropy 80.04(2.15) 25.79(0.94) 16.31(0.81) 11.08(0.82) 67.01(2.00) 52.80(2.46) 45.41(0.85) 50.85(0.19)
Density 79.23(1.92) 27.29(0.62) 19.89(0.95) 12.22(1.06) 65.58(1.87) 51.15(1.59) 46.18(0.71) 50.74(0.15)
Average degree 79.22(1.65) 24.99(0.67) 16.56(1.01) 11.67(1.18) 67.02(1.86) 51.43(4.16) 46.38(0.48) 50.99(0.31)
Degree variance 78.44(2.24) 24.94(0.61) 16.62(1.04) 11.51(1.17) 65.65(1.28) 50.45(2.14) 45.76(0.65) 50.70(0.21)
Scale-free exponent 79.70(2.71) 24.94(0.68) 17.26(0.63) 12.03(1.41) 64.77(2.31) 51.37(2.70) 45.18(0.52) 50.84(0.26)
Our combination 78.75(1.63) 24.62(0.90) 17.83(1.35) 12.26(0.78) 67.04(1.50) 52.94(1.95) 47.48(0.46) 51.25(0.21)

Table 11: The effect of different graph properties on downstream performance (micro F1 is reported)
under APT-L2 (fine-tune) in the graph classification task.

Method
Dataset imdb-binary dd msrc-21

Entropy 76.78(0.84) 75.56(0.84) 24.34(1.50)
Density 77.20(0.66) 75.29(0.54) 24.20(1.31)
Average degree 76.87(0.93) 75.46(0.53) 25.14(1.54)
Degree variance 76.39(1.04) 75.47(0.67) 25.22(1.51)
Scale-free exponent 75.24(0.62) 75.52(1.24) 23.19(1.39)
Our combination 75.93(0.84) 75.58(1.06) 25.58(1.57)

Table 12: The effect of input graphs’ learning order on downstream performance (micro F1 is re-
ported) under freezing mode in the node classification task. The first row is the order learnt from
APT-L2, and the second and third rows are the reverse and random order of the first row, respectively.

Method
Dataset brazil dd242 dd68 dd687 wisconsin cornell cora pubmed

Our order 69.82(2.32) 16.79(0.88) 12.68(0.81) 10.34(1.12) 55.11(1.74) 48.76(2.20) 34.27(0.43) 46.21(0.15)
Reverse order 69.60(2.71) 16.00(0.47) 11.41(0.91) 10.65(0.65) 51.46(1.64) 44.36(1.38) 35.66(0.62) 45.92(0.14)
Random order 67.25(2.40) 16.11(0.79) 12.57(1.17) 11.06(0.75) 53.06(2.41) 46.76(1.95) 35.90(0.72) 46.36(0.20)

Table 13: The comparison of learning from easy samples and learning from difficult sample in
our pipeline (APT-L2 (freeze)) on node classification. Micro F1 is reported in the table. (Under
the setting of learning from easy samples, we replace ϕuncertain with −ϕuncertain in Eq.(4), and only
sample instances with predictive uncertainty lower than Ts.)

Method
Dataset brazil dd242 dd68 dd687 wisconsin cornell cora pubmed

Learning from easy samples 56.34(3.45) 14.38(0.53) 11.76(1.04) 9.90(0.64) 50.65(1.84) 48.09(1.72) 35.74(0.42) 46.03(0.17)
Learning from difficult samples (ours) 69.82(2.32) 16.79(0.88) 12.68(0.81) 10.34(1.12) 55.11(1.74) 48.76(2.20) 34.27(0.43) 46.21(0.15)

Table 14: Training time (sec) comparison between our model and GCC. All the models are trained
under the same number of epochs, which is set as 100 in practice. (The difference in time cost of
inference on all graphs is due to different runs.)

GCC APT-L2 APT
Time of the inference on all graphs - 723.92 719.64
Time of the regularization term - 15.98 83.58
Total time 40161.68 18321.39 18592.01
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H DISCUSSION: THE DESIGN OF PREDICTIVE UNCERTAINTY.

We here discuss two advantages of using the model loss (i.e., InfoNCE loss) as predictive uncertainty
to select samples. First, InfoNCE loss is exactly the objective function of our model, so what we
do is actually to select the samples with the greatest contributions to the objective function (i.e.,
select the samples with the greatest InfoNCE loss). Such strategy has been justified to accelerate
convergence and enhance the discriminative power of the learned representations [1-4]. Second,
as the loss function of our model, InfoNCE is already computed during the training, and thus no
additional computation expense is needed in the data selection phase.
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