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Abstract

Vision-Language Models (VLMs) have demonstrated excep-001
tional performance in various multi-modal tasks. Recently,002
there has been an increasing interest in improving the per-003
sonalization capabilities of VLMs. To better integrate user-004
provided concepts into VLMs, many methods use positive005
and negative samples to fine-tune these models. However,006
the scarcity of user-provided positive samples and the low007
quality of retrieved negative samples pose challenges for008
fine-tuning. To reveal the relationship between sample and009
model performance, we systematically investigate the im-010
pact of positive and negative samples (easy and hard) and011
their diversity on VLM personalization tasks. Based on012
the detailed analysis, we introduce Concept-as-Tree (CaT),013
which represents a concept as a tree structure, thereby en-014
abling the data generation of positive and negative samples015
with varying difficulty and diversity for VLM personaliza-016
tion. With a well-designed data filtering strategy, our CaT017
framework can ensure the quality of generated data, con-018
stituting a powerful pipeline. We perform thorough experi-019
ments with various VLM personalization baselines to assess020
the effectiveness of the pipeline, alleviating the lack of pos-021
itive samples and the low quality of negative samples. Our022
results demonstrate that CaT equipped with the proposed023
data filter significantly enhances the personalization capa-024
bilities of VLMs across the MyVLM, Yo’LLaVA, and MC-025
LLaVA datasets. To our knowledge, this work is the first026
controllable synthetic data pipeline for VLM personaliza-027
tion. The code will be released.028

1. Introduction029

Vision-Language Models (VLMs) [6, 30, 33] have pro-030
duced impressive results across various tasks, showcasing031
their potential as AI assistants [11, 21, 59]. Despite their032
success, VLMs still have difficulty generating personal-033
ized concepts in their responses, such as generating con-034
cept identifiers like ⟨Bob⟩ or ⟨Lina⟩. Several recent stud-035
ies [2, 3, 19, 41] have explored the personalization of VLMs036
to address this challenge and seamlessly incorporate VLMs037
into everyday life. Among them, Yo’LLaVA [41] adopts038
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Figure 1. The performance of Yo’LLaVA varies with the num-
ber of positive and negative samples. (Left) Various tasks show
a noticeable decrease in performance when the number of positive
samples is limited. (Right) As the number of retrieved negative
samples increases, the performance of various tasks does not im-
prove consistently. This might be due to uncertainty in the image
retrieval process, leading to low-quality negative samples.

a test-time fine-tuning strategy that can inject user-related 039
knowledge into VLMs while preserving the models’ exist- 040
ing knowledge as much as possible. 041

Although test-time fine-tuning has demonstrated its ef- 042
fectiveness, its success largely hinges on the availability of 043
both positive and negative samples during the fine-tuning 044
process. In real-world applications [8, 50, 55], positive sam- 045
ples available for personalizing models are often limited. 046
For instance, users typically provide only 1 to 3 concept im- 047
ages rather than more than 10 for convenience, significantly 048
limiting the model’s personalization performance. Further- 049
more, acquiring negative samples often depends on image 050
retrieval [40], which is a cumbersome and unpredictable 051
process, leading to difficulties in ensuring the quality of 052
these negative samples. We performed preliminary exper- 053
iments and the results in Fig. 1 support these findings. Al- 054
though synthetic data can solve the issues mentioned, three 055
major challenges still need to be addressed: 056

1. The specific roles of positive and negative samples in 057
VLM personalization tasks are still not well understood. 058
For instance, is the use of easy negative samples always 059
necessary? 060

2. The effect of sample diversity on personalization tasks 061
requires more in-depth investigation. Furthermore, it is 062
important to clarify how the diversity of negative sam- 063
ples affects the performance of the model. 064
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Figure 2. Overview of unified and controllable data synthesis pipeline and personalized model training. After a systematic analysis
of positive and negative samples (Sec. 3.1), we utilize LLM and VLM to construct the concept tree and edit it to achieve controllable
generation (Sec. 3.2). We then propose a well-designed data selection module and a new metric named PCS score to ensure the quality of
synthetic data (Sec. 3.3). The ultimate high-quality data can be used to enhance test-time finetuning methods.

3. How can we ensure the quality of generated samples?065
This is closely linked to the model’s performance.066

To address the challenges mentioned above, we first con-067
ducted a series of observational experiments. Our findings068
revealed that positive samples generally enhance model per-069
formance, easy negative samples improve recognition and070
hard negative samples boost visual question answering ca-071
pabilities. We further analyzed easy and hard negative sam-072
ples with varying diversity and identified specific data diver-073
sity requirements for each sample type. These experiments074
are essential because they provide significant insights into075
understanding the roles of different data types and their di-076
versity requirements, ultimately leading to enhanced model077
performance across various VLM personalization tasks.078

Based on these findings, we propose Concept as Tree079
(CaT), a unified and controllable synthetic data framework080
for VLM personalization. Specifically, we define a three-081
layer tree as a representation of concept information in082
which the root node represents the concept category and the083
leaf nodes represent its attributes. By leveraging the power084
of Large Language Models and VLMs, we can automate085
the construction of trees for each concept. To synthesize086
positive samples, we use the root node as a prompt in the087
diffusion model, which is fine-tuned with concept images088
provided by the user. To create easy negative samples, we089
modify the root node information and generate a tree for090
controllable data generation. To create hard negative sam-091
ples, we modify the leaf nodes of the concept-correlated tree092
in order to generate the prompt. Controlling diversity is093
equivalent to varying the number and types of editing op-094
erations performed on the tree during each generation.095

A comprehensive data synthesis process must ensure the096

quality of generated data. Therefore, we propose a well- 097
designed and easily implementable method for data filter- 098
ing. We state that the information in an image includes 099
two types: concept-specific features that are unique to each 100
concept and concept-agnostic features that possess general 101
characteristics [36]. Therefore, we apply the same perturba- 102
tion to the synthesized images and calculate the distance be- 103
tween the synthesized images and the user-provided images 104
both before and after the perturbation. The difference be- 105
tween these two distances can be defined as a Perturbation- 106
based Concept-Specific (PCS) score, which serves as a key 107
metric for assessing sample quality. We set filtering thresh- 108
olds based on PCS score to ensure high data quality when 109
filtering various types of generated samples. Through the 110
aforementioned methods, we achieved a unified and con- 111
trollable pipeline of data synthesis, as shown in Fig. 2. 112

To summarize, our work contributes in multiple aspects: 113

• We systematically study the impact of positive and nega- 114
tive samples and their diversity on VLM personalization. 115

• We propose a comprehensive synthetic data pipeline, 116
which consists of CaT and a data filtering strategy. 117

• We utilize generated data to conduct extensive exper- 118
iments on the MyVLM, Yo’LLaVA and MC-LLaVA 119
datasets, where equipped with the proposed pipeline, 120
all fine-tuning-based methods show significant improve- 121
ments in various VLM personalization tasks, achieving 122
state-of-the-art results across all datasets. 123

2. Related work 124

Personalization for Vision Language Models. Vision- 125
Language Models(VLMs) [26, 27, 34] have exhibited re- 126
markable capabilities across diverse domains, such as data 127
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Figure 3. Explore the role of positive and negative samples in personalization and their demand for diversity. (Left) To better
investigate sample effectiveness, we conduct experiments on half the number of positive and negative sample contrasts to the original
setting. Adding positive samples brings a general raising among the tasks while easy and hard negative samples have their different
improvement preferences. (Middle&Right) Keeping the number of samples unchanged, we vary the diversity of easy and hard negative
samples. The performance improvements brought by them vary across different tasks. However, hard negative samples are more sensitive
to diversity. Moreover, excessive diversity may lead to a decline in task performance. The diversity score is calculated by clustering the
retrieved negative samples using K-means and measuring the distance of each data point to the cluster centroids.

mining [39], fine-grained understanding [32], and visual128
question answering [7]. To seamlessly integrate these mod-129
els into daily life, there has been growing interest in VLM130
personalization [2, 4, 41, 44]. This task is first introduced131
by MyVLM [2], employing an additional module strategy132
for improved injection of concept information into VLMs.133
YoLLaVA [41] and MC-LLaVA [4] utilized efficient end-134
to-end fine-tuning methods to tackle challenges in both sin-135
gle and multi-concept scenarios. The performance of these136
fine-tuning methods is highly dependent on the positive and137
negative samples. However, users often employ a limited138
number of concept images (i.e., 1 to 3 images), and the chal-139
lenge of acquiring negative samples complicates fine-tuning140
approaches. In this study, we investigate the impact of pos-141
itive and negative samples and their diversity on VLM per-142
sonalization tasks. And we propose a complete data synthe-143
sis pipeline, thus overcoming challenges in training VLM144
models with limited data availability.145

Learning from Synthetic Data. The use of synthetic146
data [18, 24, 38] has been extensively studied across var-147
ious computer vision tasks, such as classification [49], seg-148
mentation [56], and object detection [15]. With the rapid149
consumption of existing data resources driven by the de-150
velopment of Large Language Models (LLMs) and VLMs,151
researchers aim for models to achieve further improvements152
using synthetic data [23, 29, 37, 42]. Synthetic corpora are153
generated for instruction fine-tuning of large models. At154
the same time, large models leverage recaptioned datasets155
to enhance quality and improve CLIP performance [14]. To156
better support the learning of VLMs, direct generation of157
text-image pairs is pursued [31]. However, existing genera-158
tion methods only consider class information [52]. These159
methods rely on simplistic prompt templates, attributes,160
and class information, either manually defined or LLM-161
generated [12, 53]. To address the issue of insufficient162

data in VLM personalization scenarios, we supplement the 163
dataset by synthesizing concept-centric positive and nega- 164
tive sample data. We adopt a unified framework to control 165
the positivity and diversity of the generated samples. 166

3. Method 167
We present a comprehensive data synthesis pipeline to 168
address the challenge of personalizing Vision-Language 169
Models (VLM). This pipeline views the concept as a tree 170
structure and generates both positive and negative sam- 171
ples through tree operations. It also encompasses a well- 172
designed filtering strategy to select the generated samples. 173
The overall design of our pipeline is illustrated in Fig. 2. 174
Specifically, in Sec. 3.1, we systematically study the impact 175
of positive and negative samples on VLM personalization 176
tasks. Building on this, we introduce the CaT framework 177
and use tree operations to generate synthetic positive and 178
negative samples in Sec. 3.2. Furthermore, to ensure the 179
quality of the synthetic samples, we propose a filtering strat- 180
egy based on the PCS score in Sec. 3.3. 181

3.1. Impact of Positive and Negative Samples 182

In this section, we examine the effects of positive and 183
negative samples and their diversity on the personalization 184
of VLM. Based on the positive samples provided by the 185
MC-LLaVA dataset and negative samples retrieved online, 186
we conducted a series of experiments with the Yo’LLaVA 187
method. As illustrated in Fig. 3 left, we found that an in- 188
crease in positive samples consistently improves outcomes 189
across all tasks. While easy negative samples primarily en- 190
hance recognition abilities, hard negative samples improve 191
conversational capabilities. Interestingly, the captioning 192
task fundamentally reflects conversational abilities. How- 193
ever, since the evaluation method assesses the presence of 194
a concept identifier related to recognition capabilities, the 195
training data that includes both easy and hard negative sam- 196

3



CVPR
#10

CVPR
#10

CVPR 2025 Submission #10. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Rem
ove a D

im
ension

relaxed curious playful

mood

cat

... ...

M
odify a D

im
ension

New

white
wall

black
refrigerator

wooden
floor

object

cat

... ...

Removed

...

action

playing climbing

behavior

cat

... ...

Modifing

A
dd a D

im
ension

light
gray fur

yellow
eyes

round
face

white
wall

black
refrigerator

wooden
floor sitting lying

Class

Dimensions

Attributes

Reference images

Concept as Tree (CaT)

(b)

Tree
Editing

appearance object action

cat

short fur blue
eyes brown grass yardlying

appearance locationaction

dog

Positive samples generating
Easy negative samples generating
Hard negative samples generating

Concept as tree
Fine-tuning

(a)

Modify the root R(C)

Figure 4. Using concept trees to synthesize positive and negative samples and three editing operations for constructing diverse
concept trees. (a) We first utilize the CaT framework and reference images to obtain the concept tree TC . Then, we employ a fine-tuned
diffusion model along with the information from the root node R(C) to synthesize positive samples. For easy negative samples, we modify
the class of the root node R(C) and obtain a new concept tree for synthesis. Finally, we apply three editing operations to the original
concept tree to obtain multiple trees for synthesizing hard negative samples with diversity. The model used for synthesizing negative
samples does not require fine-tuning. (b) We visualize the three mentioned tree editing operations in detail. Compared with the reference
image, adding a dimension of “mood” actually leads to different emotions in cats. After removing the “object” dimension, the environment
around the cats becomes simpler. By modifying a dimension, the behavior of cats in the composite image becomes more diverse.

ples yields the best performance. Furthermore, we find that197
easy negative samples are essential. Using only hard neg-198
ative samples can help the model memorize the visual fea-199
tures of a concept and perform well in dialogue tasks. How-200
ever, its ability to recognize the concept identifier signif-201
icantly declines. Easy negative samples are irreplaceable,202
as they are diverse and widely sourced, providing valuable203
context for the model’s learning process. Recognition tasks204
are often the initial step for a VLM acting as a personal as-205
sistant, representing an essential capability that is crucial.206

Based on the above mentioned observation, we con-207
ducted additional experiments that examined different lev-208
els of diversity for negative samples. Here, diversity is cal-209
culated by clustering a set of negative samples and calcu-210
lating the distance from the cluster center to each sample.211
From Fig. 3 middle and right, keeping the number of posi-212
tive samples unchanged, it is evident that the gain curves for213
easy and hard negative samples differ across various tasks,214
indicating that their diversity requirements are distinct. Low215
diversity of both easy and hard negative samples can simul-216
taneously restrict the model performance trained on them.217
When the diversity of hard negative samples is excessively218
high, it often introduces noise during training, resulting in219
a decline in model performance. These experiments clarify220
the role of diversity and motivate us to manage the diver-221
sity when creating negative samples. Therefore, we propose222
representing the concept as tree to facilitate the generation223
of negative samples with various difficulties and diversities.224

3.2. Concept as Tree Framework 225

To integrate new concepts into a pre-trained VLM us- 226
ing synthetic data, we propose the Concept-as-Tree (CaT) 227
framework, which transforms a concept into a structured 228
tree for controllable data generation. Given a user-provided 229
dataset Duser, which contains the positive image samples 230
Ipos ∈ Duser, our goal is to construct a fine-tuning dataset: 231

Dtrain = Duser ∪ Dpos ∪ Dneg-easy ∪ Dneg-hard (1) 232

where Dpos are synthetic positive samples generated based 233
on Ipos, while Dneg-easy and Dneg-hard are negative samples 234
obtained via concept tree modifications. 235
Concept Tree Representation and Construction. To 236
enable controllable data generation, inspired by SS- 237
DLLM [39], we represent each concept C as a hierarchical 238
tree TC = (R(C), DC , A(DC)). As shown in Fig. 4(a), 239
R(C) serves as the root node, encapsulating the high-level 240
category of the concept (e.g., “cat”, “dog”, etc.), while 241
DC = {D1, D2, . . . , Dm} defines a set of attribute dimen- 242
sions that distinguish various aspects (e.g., “appearance”, 243
“behavior”, “location”, etc.). Each dimension Di is as- 244
sociated with a set of attributes A(Di), collectively form- 245
ing A(DC) = {A(D1), A(D2), . . . , A(Dm)} (for instance, 246
the “behavior” dimension might include attributes like “sit- 247
ting”, “lying” and “climbing”, etc.). 248

To automatically construct TC , we adopt a three-step 249
process. First, a pre-trained VLM generates textual de- 250
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Figure 5. Filtering method based on the PCS score and the visualization of the selection of high-quality images. (a) We perform
patch shuffling on the synthetic images and extract the features Fo, Fd and Fr from the original images, disturbed images and reference
images, respectively. Subsequently, we calculate the image similarities So and Sd, then select high-quality images with high PCS score.
(b) The reference images are marked with blue box, images containing more CS information are highlighted with green box and those
containing more CA information are indicated with red box. Using image cosine similarity alone cannot distinguish between these two
types of synthetic images, but our proposed PCS score can effectively filter out the images on the right.

scriptions from Ipos, capturing key visual features (Image251
Description). Next, we aggregate these descriptions at the252
batch level to extract meaningful dimensions DC and cor-253
responding attributes A(DC) (Batch Summarization). Fi-254
nally, to improve accuracy and interpretability, a self-refine255
mechanism iteratively adjusts TC based on feedback from256
a multi-round voting mechanism (Self-Refine). For a given257
concept image, if it cannot be assigned to the same attribute258
multiple times, this suggests redundancy or unsuitable at-259
tributes. Adjustments enhance the orthogonality and com-260
pleteness of the attributes. Detailed prompts and visualiza-261
tions of the concept tree can be found in the Appendix.262
Personalized Data Generation. After constructing TC , we263
proceed to generate synthetic samples (see Fig. 4(a)). We264
define an image generation model Gθ for controllable data265
synthesis and a transformation function F (R(C), DC) to266
systematically modify either the tree root or its dimensions.267
• Positive Samples: Generated by fine-tuning Gθ on user-268

provided images Ipos, conditioned on R(C):269

Dpos = Gθ(Ipos, R(C)) (2)270

• Negative Samples: Constructed by editing TC to intro-271
duce controlled variations.272
– Easy Negative Samples: Generated by replacing273
R(C) with another category R(C ′) and editing di-274
mensions to D′

C , forming a modified tree TC′ =275
F (R(C ′), D′

C). Synthetic images are produced as276
Dneg-easy = Gθ(TC′).277

– Hard Negative Samples: Retaining R(C) while mod-278
ifying dimensions of TC to form T ′

C = F (R(C), D′
C).279

The generated samples resemble C visually but differ 280
semantically, represented as Dneg-hard = Gθ(T

′
C). 281

Tree Editing Operations. We define three fundamental 282
tree editing operations F (R(C), D′

C) (see Fig. 4(b)), which 283
modify TC to systematically generate negative samples: 284

D′
C =


DC ∪ {Dnew}, (Add a Dimension)
DC \ {Dremove}, (Remove a Dimension)
(DC \ {Dold}) ∪ {Dnew}, (Modify a Dimension)

(3) 285

where D′
C is the updated dimension set, Dnew is an added 286

dimension, and Dremove is a removed one. The modification 287
operation replaces Dold with Dnew. The different forms of 288
perturbations and their application frequencies significantly 289
affect the diversity of the generated samples, which will be 290
discussed in the ablation experiments. 291

3.3. Sample Filtering with PCS Score 292

To ensure the quality of synthesized samples, we implement 293
a filtering process for all generated samples. We classify the 294
information contained in images into two types: concept- 295
specific (CS) and concept-agnostic (CA). The former refers 296
to features that are distinctive to the concept, such as appear- 297
ance or type, while the latter encompasses other elements 298
present in the image, such as background or weather con- 299
ditions. We consider synthetic data predominantly contain- 300
ing CS information to be regarded as high-quality samples. 301
Conversely, samples with relatively more CA information 302
may be categorized as low-quality samples. 303

Inspired by this, we first mix patches from the reference 304
and original images, then calculate the similarity between 305
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the altered images and the reference images using the CLIP306
model [43]. The difference between the similarities before307
and after perturbation is defined as the Perturbation-based308
Concept-Specific (PCS) score. Typically, the PCS score of309
an image should be quite high because mixing patches al-310
ters the appearance or shape of objects within the image,311
thus disrupting the original CS information. This disrup-312
tion causes CLIP to struggle to understand the conceptual313
relationship between the synthetic image and the reference314
image, leading to a notable reduction in the similarity of315
the altered image. However, if the similarity of an image316
relies not on CS information but on CA information, CLIP317
might perceive uncommon or incorrect object relationships318
with the reference image. In such cases, the similarity be-319
fore and after perturbation changes little, meaning the PCS320
score will be small. Therefore, we claim that the PCS score321
can be used to determine the information components in the322
image. A high PCS score indicates that the image carries323
more CS information, while a low PCS score suggests that324
the image contains more CA information.325

As illustrated in Fig. 5(a), let the reference image be326
Ireference ∈ Duser, the synthetic image before perturbation be327
Ioriginal and the image after perturbation be Idisturbed. We ex-328
tract the visual features Fr, Fo and Fd of the corresponding329
images using CLIP [43] image encoder fθ:330

FI = fθ(I), (4)331

and then calculate the cosine similarity So and Sd, respec-332
tively. The cosine similarity Sx ∈ [−1, 1] is calculated as:333

Sx =
F1F

⊤
2

∥ F1 ∥ · ∥ F2 ∥
, (5)334

The difference between So and Sd is the PCS score. Based335
on this score, we can select high-quality synthetic data, i.e.,336
G(I) = {I | PCS(I) > τPCS}, where G(I) represents337
high-quality samples and τPCS is the threshold for contain-338
ing more CS information. As shown in Fig. 5(b), when only339
using the filtering method based on cosine similarity, both340
the images in the green and red boxes achieve high sim-341
ilarity scores. However, the concept in the red box lacks342
specific visual features of the reference image’s concept,343
such as hair, facial structure and body shape. Instead, the344
background and other CA information in these images have345
a greater impact on the similarity. However, through the346
newly proposed perturbation-based filtering method, we can347
effectively identify and filter out images with more CA in-348
formation using PCS score, while retaining high-quality im-349
ages with more CS information for better personalization.350

4. Experiments351

4.1. Experimental Setup352

Implement Details. Regarding the experiments conducted353
on all datasets, the quantity of positive and negative sam-354

ples for all the baselines follows their original settings. The 355
training data used for Baseline (syn) is entirely generated 356
by CaT. To ensure the consistency of the positive sample 357
count, Baseline (Real+Syn) is articulated as comprising 1 358
to 3 original concept images and several synthesized posi- 359
tive samples. Baseline (Real+Syn) (Plus) indicates that an 360
equal number of synthesized positive samples have been 361
added to the previous positive samples. All negative sample 362
quantities in the above experiments are strictly controlled 363
for consistency. When the tree dimension corresponding to 364
the concept is greater than or equal to 5, we do not use Add. 365
When it is less than or equal to 3, we do not use Remove. 366
For other instances, we utilize the three editing operations 367
evenly for experiments. With regard to the synthesized im- 368
ages, we utilize GPT-4o to generate the instruction text pairs 369
required for their training. Details of baseline, datasets and 370
training hyperparameters can be found in the Appendix. 371

4.2. Personalized Capability from Synthetic Data 372

The ability to recognize concepts is fundamental to person- 373
alized VLM. As illustrated in Tab. 1, it is evident that af- 374
ter training with extra synthesized data, the model’s recog- 375
nition ability shows an average improvement of 4.1% on 376
the MC-LLaVA dataset, 2.9% on the Yo’LLaVA dataset, 377
and 1.7% on MyVLM dataset. However, training solely on 378
synthesized data does not yield consistent improvements, 379
which may be attributed to a distribution shift between syn- 380
thesized data and the real data used for testing. Within the 381
MC-LLaVA framework, despite the use of purely synthe- 382
sized data, performance still surpasses the baseline, which 383
is attributed to the efficient utilization of visual information 384
relevant to concepts in the MC-LLaVA methods. Including 385
original real images of concepts in the training data can mit- 386
igate this phenomenon, resulting in a modest improvement. 387

We further evaluate the capability of our method to ad- 388
dress questions related to personalized concepts. The in- 389
troduction of synthesized data yields an increase of up to 390
3.8% in choice-based tasks, 4.2% in Visual Question An- 391
swering (VQA) tasks, and 5.3% in captioning tasks, achiev- 392
ing competitive performance with GPT-4o in certain sce- 393
narios. Training with purely synthesized data aligns with 394
the trends observed in recognition tasks. Notably, on text- 395
related tasks such as Choice-T and VQA, it consistently en- 396
hances model performance. This improvement stems from 397
our targeted modifications in negative sample generation, 398
where specific features of positive samples are altered. By 399
reducing the model’s reliance on these adjusted features, it 400
learns to focus more on the concept’s intrinsic attributes. 401
As a result, the model achieves higher accuracy in concept- 402
related multiple-choice tasks and generates more precise de- 403
scriptions of the concept’s defining characteristics. 404

In contrast, RAP-MLLM processes only a single image 405
for each concept. As a result, the synthesized data fails 406
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Dataset MC-LLaVA Evaluation Yo’LLaVA Evaluation MyVLM Evaluation

Method/Task Rec Acc Choice-V Acc Choice-T Acc VQA BLEU Caption Recall Rec Acc Choice-V Acc Choice-T Acc Rec Acc Caption Recall

GPT-4o [1]+Prompt 0.746 0.888 0.712 0.728 0.836 0.856 0.932 0.897 0.891 0.969

MyVLM [2](Real) 0.795 0.779 - 0.640 0.714 0.911 0.897 - 0.938 0.921
MyVLM(Syn) 0.788 0.772 - 0.653 0.711 0.908 0.895 - 0.935 0.918

MyVLM(Real+Syn) 0.799 0.783 - 0.662 0.722 0.916 0.907 - 0.945 0.926
MyVLM(Real+Syn)(P) 0.827 0.805 - 0.685 0.740 0.945 0.916 - 0.960 0.947

+3.2% +2.6% - +4.5% +2.6% +3.4% +1.9% - +2.2% +2.6%

Yo’LLaVA [41](Real) 0.841 0.801 0.703 0.643 0.701 0.924 0.929 0.883 0.964 0.931
Yo’LLaVA(Syn) 0.840 0.805 0.705 0.654 0.699 0.921 0.925 0.885 0.962 0.927

Yo’LLaVA(Real+Syn) 0.851 0.817 0.711 0.662 0.714 0.928 0.933 0.891 0.969 0.938
Yo’LLaVA(Real+Syn)(P) 0.885 0.845 0.738 0.682 0.754 0.946 0.943 0.900 0.981 0.950

+4.4% +4.4% +3.5% +3.9% +5.3% +2.2% +1.4% +1.7% +1.7% +1.9%

MC-LLaVA [4](Real) 0.917 0.890 0.727 0.684 0.750 0.947 0.941 0.893 0.975 0.959
MC-LLaVA(Syn) 0.920 0.892 0.731 0.695 0.755 0.951 0.945 0.896 0.978 0.963

MC-LLaVA(Real+Syn) 0.928 0.890 0.739 0.704 0.768 0.958 0.947 0.901 0.984 0.968
MC-LLaVA(Real+Syn)(P) 0.963 0.928 0.760 0.726 0.803 0.977 0.953 0.910 0.987 0.971

+4.6% +3.8% +3.3% +4.2% +5.3% +3.0% +1.2% +1.7% +1.2% +2.2%

RAP-MLLM [19] 0.747 0.832 0.709 0.424 0.711 0.845 0.917 0.874 0.870 0.937

Table 1. Results of synthetic data used in different personalization methods. All methods achieve improvements across three datasets
when using synthetic data. When trained with a combination of original positive data and all synthetic data, all methods can even achieve
results comparable to GPT-4o. Noting, the Choice-T is a pure text task, but MyVLM requires concept images to load the corresponding
embeddings during testing time, which makes it unable to perform the Choice-T task. The green numbers represent the improvement of
the new SOTA compared to original baseline . Real = Original Data; Syn = Synthetic Data; P = Plus.

to contribute effectively to its learning, further limiting its407
comprehension of the concept. While RAP-MLLM may408
initially outperform models like MyVLM and Yo’LLaVA409
in vision-based multiple-choice tasks, the synthesized data410
enables these models to surpass RAP-MLLM by developing411
a deeper understanding of concept-specific features.412

Overall, the results obtained from training with purely413
synthesized data are comparable to those from purely real414
data, demonstrating the quality assurance of our synthe-415
sized data. In scenarios with limited real data, training in416
conjunction with our synthesized data achieves results that417
surpass the baseline, preserving the personalization capabil-418
ities of VLMs under data scarcity. The stable improvements419
stem from our thorough understanding of concept informa-420
tion and the highly controllable CaT framework used during421
data synthesis. Moreover, augmenting real data with addi-422
tional synthesized data significantly surpasses all baselines,423
reflecting the efficacy of synthesized data.424

4.3. Ablations and Analysis425

Tree Editing Operations. We investigate the impact of tree426
editing operations on hard negative samples within the MC-427
LLaVA dataset. Index A represents the Yo’LLaVA base-428
line without any tree editing operation. The diversity score429
is defined for a set of data; although there may be a dis-430
tribution shift between retrieved and generated data, their431
diversity can still be compared. In Tab. 2, the comparison432
between A, B, E, and G clearly demonstrates that different433

Methods Index TEO Diversity Dataset: MC-LLaVA

Category Times Rec VQA Caption

Yo’LLaVA
+CaT

A None 0 0.497 0.841 0.643 0.701
B Add 1 0.563 0.852 0.655 0.723
C Add 2 0.642 0.866 0.674 0.736
D Add 3 0.708 0.834 0.654 0.717
E Remove 1 0.451 0.827 0.621 0.687
F Remove 2 0.379 0.801 0.605 0.663
G Modify 1 0.542 0.847 0.652 0.718
H Modify 2 0.613 0.859 0.671 0.734

Table 2. Ablation study on tree editing operations. The type and
number of operations can both alter the diversity of synthesized
data. Excessive or insufficient diversity negatively impacts model
performance. TEO = Tree editing operations.

tree editing operations lead to variations in the diversity of 434
generated data, resulting in varying task performance. Both 435
Add and Modify operations can enhance diversity to some 436
extent, with Add yielding a greater increase than Modify. 437
In contrast, Remove decreases the diversity of generated re- 438
sults due to a reduction in combinable attributes. In accor- 439
dance with Sec. 3.1, high-diversity negative samples lead to 440
a more pronounced improvement in tasks related to conver- 441
sation. However, excessive diversity can introduce noise, 442
thus degrading the performance of the model. For the re- 443
sults of B, C, D, E, F, G and H, we observe that an increase 444
in the number of editing operations per instance amplifies 445
their impact on diversity and results. Therefore, our CaT 446
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Original Positive Samples

6.0%

65.5%

28.6%

Synthetic Positive Samples

12.9%

67.9%

19.2%

Synthetic Negative Samples

31.6%
67.1%

1.2%

Retrieval Negative Samples

76.4%

23.6%

< 0.1 > 0.1 and < 0.3 > 0.3

Figure 6. A significant difference in PCS score between these
datasets. Higher PCS score reflects a greater quantity of CS infor-
mation, correlating with improved synthetic image quality.

framework can provide precise control over this process, en-447
suring that optimal diversity leads to stable improvements.448
Quality of Synthesized Data. As discussed in Sec. 3.3,449
a higher PCS score indicates that an image contains more450
CS information, representing a higher-quality personalized451
sample. From the results shown in Fig. 6, we observe that452
the distributions of PCS scores for the original positive sam-453
ples and the synthetic positive samples are quite similar,454
demonstrating that our synthetic positive samples can effec-455
tively serve the same purpose as the original positive sam-456
ples. Additionally, we find that the proportion of low PCS457
scores in the original retrieved negative samples is signif-458
icantly higher than that in our synthetic negative samples,459
indicating that the quality of synthetic negative samples sur-460
passes that of retrieved negative samples. Based on these461
two comparisons, we demonstrate that our CaT framework462
effectively synthesizes high-quality samples, enabling effi-463
cient personalization for vision language models.464
Hard Negative Sample Generation. We compare different465
methods for synthesizing hard negative samples, and the re-466
sults are presented in Fig. 7. Our CaT framework ensures467
the diversity of synthetic samples, leading to significant im-468
provements across all tasks. In contrast, the random synthe-469
sis of hard negative samples lacks control over the diversity470
of the results. The baseline using these data may overfit to471
a narrow range of negative samples, leading to an inability472
to achieve improvements across all tasks.473
Data Component. We analyze the key components of474
the generated datasets. The original training data consists475
of provided positive samples and retrieved negative sam-476

0.6 0.7 0.8 0.9

Rec

Choice-V

Choice-T

Caption

VQA

Scores

Baseline
Random Hard Negative Samples
CAT Hard Negative Samples

Figure 7. A comparison of synthesis methods for hard negative
samples. Randomly generated prompts, lacking detailed visual
descriptions, tend to produce a large number of similar images.
Our CaT framework ensures the diversity of synthetic samples,
thereby enhancing the model’s personalization capabilities.

ples. Then we examine the role of synthetic data in these 477
three components by first adding synthetic positive sam- 478
ples and then progressively replacing the retrieved negative 479
samples with synthetic negative samples. At each step, we 480
advance incrementally while keeping the other components 481
unchanged. As shown in Tab. 3, the original Yo’LLaVA 482
already possesses a certain level of personalization capa- 483
bility. However, as samples are progressively transformed 484
into synthesized data, performance on several tasks contin- 485
ues to improve, demonstrating the effectiveness of our CaT 486
approach. The enhancements brought by incorporating easy 487
and hard negative samples vary across different tasks, which 488
is consistent with our observations in Sec. 3.1. 489

Module/Task Rec Choice-V Choice-T VQA Caption

Yo’LLaVA 0.841 0.801 0.703 0.643 0.701
w/ Syn Positive 0.858 (+0.017) 0.816 (+0.015) 0.716 (+0.013) 0.656 (+0.013) 0.721 (+0.020)

w/ Syn Easy Neg 0.873 (+0.015) 0.824 (+0.008) 0.721 (+0.005) 0.667 (+0.011) 0.727 (+0.006)

w/ Syn Hard Neg 0.885 (+0.012) 0.845 (+0.021) 0.738 (+0.017) 0.680 (+0.013) 0.754 (+0.027)

Table 3. Ablation study on data component.

5. Conclusion 490

In this work, we present a new roadmap to enhance 491
the personalization capability of Vision-Language Models 492
(VLMs) via leveraging synthetic positive and negative im- 493
ages from advanced generative models. Based on our solid 494
and systematic observation experiment, we propose a uni- 495
fied and controllable data synthesis pipeline, which consists 496
of Concept as Tree framework and a well-designed data se- 497
lection module. Remarkably, our pipeline requires only 1 to 498
3 user-provided images to work, synthesizing high-quality 499
samples that enable VLMs to perform comparably to mod- 500
els trained on real images in data-scarce scenarios. This 501
pipeline addresses the critical challenge of insufficient user- 502
provided concept data, offering a controllable, interpretable, 503
and data-efficient solution for VLM personalization tasks, 504
paving the way for VLMs to become more accessible and 505
practical human assistants. 506
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Concept-as-Tree: Synthetic Data is All You Need for VLM Personalization

Supplementary Material

6. More Implementation Details761

Dataset. We utilize datasets from Yo’LLaVA [41] and762
MyVLM [2]. Yo’LLaVA consists of 40 categories of ob-763
jects, buildings and people, with 4 to 10 images avail-764
able per category for training and validation. In contrast,765
MyVLM encompasses 29 object categories, each contain-766
ing 7 to 17 images, with 4 images designated for training767
and the remainder for validation. Additionally, we incorpo-768
rate the Single concept portion of MC-LLaVA [4] dataset,769
which is a challenging dataset meticulously constructed770
from movies, featuring textual descriptions generated with771
the assistance of GPT-4. MC-LLaVA includes 50 scenarios772
that encompass various characters and objects, amounting773
to a total of 118 concepts.774
Model Settings. For all LLMs and VLMs involved in the775
CaT framework, we utilized GPT-4o [1]. After obtaining776
the concept tree, we synthesize positive and negative sam-777
ples using the DreamBooth [46] fine-tuned FLUX.1-dev778
model [25]. The positive samples required for fine-tuning779
are derived from 1 to 3 original concept images. Finally,780
we select high-quality images using the CLIP ViT-L/14 vi-781
sual encoder [43] with our proposed filtering method based782
on the PCS score. Regarding the personalization of VLMs,783
we test four methods: MyVLM [2], Yo’LLaVA [41], MC-784
LLaVA [4] and RAP-MLLM [19]. All configurations785
adhered to the original papers, and we use LLaVA-1.5-786
13B [34] as the VLM backbone for all experiments.787
Hyperparatemers. The hyperparameters for fine-tuning788
the FLUX model can be referenced from DreamBooth [46].789
In the filtering module, the patch size used in patch shuffle790
is set to 14, consistent with the CLIP visual encoder we em-791
ploy. Additionally, based on the distribution of PCS scores792
from the four datasets, we set the PCS score thresholds for793
synthesized positive and hard negative samples to 0.3 and794
0.1, respectively. For easy negative samples, which do not795
require CS information, we merely employed conventional796
text-to-image similarity [43] filtering to ensure that the im-797
ages matched the prompts.798

7. Visualization of Concept Trees799

We provide detailed visualizations of Concept Trees, cov-800
ering three categories: humans in Figs. 9 to 16, pets801
in Figs. 17 to 20, and objects in Figs. 21 to 24. For each802
concept, we first obtain its concept tree using the CaT. Sub-803
sequently, we modify the original tree through three types804
of tree editing operations: add, modify, and remove. After805
each operation, a new concept tree is generated, which is806
then used to synthesize diverse personalized images.807

8. CaT Prompt 808

We provide all the prompts used in the CaT framework. 809
Table 5 includes the three steps for concept tree genera- 810
tion: obtaining the reference image description, performing 811
batch summarization to generate the initial concept tree, and 812
then refining it through self-refinement to obtain the final, 813
well-developed concept tree. Table 6 presents the initializa- 814
tion prompts for the simple negative sample concept tree. 815
Finally, Table 7 provides the three editing operations for 816
the tree—addition, removal, and modification—as well as 817
the prompts used for synthesizing text for image generation 818
based on the concept tree. 819

9. The Use of PCS Score Filter 820

We compare our proposed filtering strategy based on the 821
PCS score with the cosine similarity-based filtering strat- 822
egy that relies on image features. The results presented in 823
Tab. 4 show that the performance of synthetic data without 824
any filtering is even worse than the original Yo’LLaVA [41] 825
baseline. This is because the images synthesized by the 826
generative model may contain low-quality samples that are 827
blurry, unrealistic, or unnatural, which can interfere with 828
the model’s training process. After applying the cosine 829
similarity-based filtering using image features, some low- 830
quality images or those inconsistent with the style of the 831
reference images are filtered out, leading to improved model 832
performance. This demonstrates the necessity of a filter- 833
ing strategy for synthetic data. However, relying solely on 834
conventional image similarity filtering may fail to remove 835
images that achieve high similarity scores based solely on 836
background, style, or other CA information. Our pro- 837
posed PCS score-based filtering strategy addresses this lim- 838
itation by perturbing the synthetic images and calculating 839
the difference in similarity scores before and after pertur- 840
bation. This approach effectively eliminates the interfer- 841
ence of CA information, ultimately selecting images with a 842
higher proportion of CS information. This enables further 843
improvement in the model’s personalization performance in 844
all tasks. 845

Filter Strategy Rec Choice-V Choice-T VQA Caption

None 0.835 0.793 0.691 0.633 0.697
Cosine Similarity 0.862 0.816 0.716 0.652 0.726

PCS Score 0.885 0.845 0.738 0.682 0.754

Table 4. Ablation of different filtering methods. The filtering
method based solely on cosine similarity cannot exclude images
lacking CS information. Our method can ensure high-quality sam-
ples, improving model performance.
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10. Human Evaluation846

In addition to the various experiments in the main text that847
demonstrate the diversity and effectiveness of our synthe-848
sized positive and hard negative samples, we conducted a849
site-by-site evaluation experiment comparing synthetic data850
with original data. The evaluators were college student vol-851
unteers recruited by us. Our evaluation objective was to852
demonstrate that the synthesized positive and hard negative853
samples have high quality to the original concept images.854

The original data were sourced from MyVLM,855
Yo’llaVA, and MC-LLaVA. For each concept, we selected856
1 to 3 positive samples as reference images. We then con-857
ducted site-by-site evaluation experiments for both positive858
and negative samples. For the original positive samples (ex-859
cluding those selected as reference images) and synthesized860
positive samples, we randomly paired one from each group861
and compared them sequentially with all reference images862
of the corresponding concept. Evaluators were required to863
choose the image with higher similarity to the reference im-864
age and assign it one point. The winner of each comparison865
was determined based on the cumulative scores across all866
reference images. The same evaluation method was applied867
to the original retrieved complex negative samples and syn-868
thesized hard negative samples. Note that if the number of869
reference images was even, there was a possibility of a tie.870

The results of the two sets of experiments are presented871
in Fig. 8. We find that the synthesized positive samples per-872
form comparably to the original positive samples. Mean-873
while, the synthesized hard negative samples achieve signif-874
icantly higher scores than the retrieved hard negative sam-875
ples. This result clearly demonstrates that our synthesized876
data can effectively support the personalization training pro-877
cess of vision language models.878

Task: Pos

Task: Neg

0.267

0.281

0.484

0.135

0.259

0.584

Original-Win Equivalent Synthesized-Win

Figure 8. Human evaluation of similarity between original and
synthesized images compared to reference images: The synthe-
sized positive samples were found to be on par with the origi-
nal positive samples, while the synthesized hard negative samples
demonstrated significantly higher similarity compared to the orig-
inally retrieved hard negative samples.

11. Additionally Related Work 879

Data Quality and Selection. The development of LLMs 880
and VLMs relies heavily on data [10, 17, 28]. The well- 881
known principle is “garbage in, garbage out.” High-quality 882
data can significantly enhance model performance [45]. To 883
ensure data quality, data selection and filtering are common 884
practices [9, 57]. Primarily, there are rule-based [5] and 885
model-based methods [13]. Although rule-based methods 886
are simple and heuristic, they are effective. Methods based 887
on LLMs are widely used in data selection. In multimodal 888
scenarios, Clip-filter is one of the most commonly used 889
methods and VLMs are also employed as data filters for 890
self-selection and improvement [22, 54]. However, since 891
the ⟨sks⟩ we need to evaluate is not in the vocabulary of 892
the language model, retraining the VLM for each new word 893
is cumbersome. Thus, we employ a simple yet effective 894
method by perturbing synthetic images. We evaluate the 895
concept information contained in the original image by cal- 896
culating the similarity between the image and the reference 897
image before and after perturbation, and apply a predeter- 898
mined threshold for selection and filtering. 899

12. Limitation and Future Work 900

Although our method demonstrates effectiveness in gener- 901
ating concept-centric data, several limitations warrant con- 902
sideration, along with potential directions for future work. 903

The first limitation stems from our framework’s current 904
inability to handle scenarios involving multiple concepts, 905
primarily due to its dependence on FLUX [25] for image 906
generation. Nevertheless, we believe the inherent scala- 907
bility of our tree structure paradigm offers promising op- 908
portunities for extension through forest-based architectures. 909
Additionally, Future work could explore the integration of 910
enhanced diffusion models with stronger guidance mecha- 911
nisms, such as layout or box conditions, which have shown 912
potential in better capturing multiple concepts information. 913

A second limitation arises from potential biases inherited 914
from the LAION-5B [47] dataset used for training FLUX. 915
However, this issue is actively being addressed in ongoing 916
research. Recent studies [16, 48, 51] have made significant 917
progress in developing techniques to enhance fairness and 918
reduce biases in generative models, providing valuable di- 919
rections for future improvements in our framework. 920

Finally, the generated concept-centric images may bring 921
data privacy and ethical concerns. This challenge has 922
garnered increasing attention in the research community, 923
with recent works [20, 35, 58] making notable advances 924
in privacy-preserving generation techniques. We anticipate 925
that continued research in GenAI safety will yield effective 926
solutions to mitigate these concerns, enabling more respon- 927
sible use of synthetic data generation methods. 928
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Image Description.
Please identify the primary object class name in the image and describe the image in detail with the class name.

Batch Summarization.
Task: I want to classify and organize captions for some images
Requirement: I will provide a batch of captions and the main object they revolve around. Please describe the attributes
related to the subject from multiple dimensions based on the subtitles. The final result is output as {tree example}
Input: main object: {class name}; captions: {captions}
Output:

Self-Refinement.
Task: I’m trying to classify the following captions into a classification criteria. However, it seems the current criteria fails
to capture certain details that would help differentiate this caption.
Requirement: We are unable to classify these captions using the provided criteria due to one of the following reasons.
1. LLM Hallucination: If you believe the current criteria is reasonable, and the sample can be classified under one of them,
the current failure may be due to LLM hallucination. If the majority of classifications are correct and only a small portion
of the results appears highly unreasonable, it is likely due to hallucination. In this case, please do nothing. Answer format:
{{“hallucination”: []}}
2. Attribute Redundancy: If there are redundant attributes in the criteria, please identify and replace them with a single,
unified keyword that represents all the redundant attributes. Answer format: {{“redundant”: [“unified keyword”]}} (Only
include a single keyword that replaces all the redundant or duplicated attributes).
3. Missing Attributes: If some important attributes are missing and need to be added to the criteria to accurately classify
the caption, please suggest one attribute to add. Answer format: {{“missing”: [“keyword”]}}
After obtaining the content in the curly braces (for example, “hallucination”: [], “redundant”: [...], “missing”: [...]), please
do the following processing according to the situation.
1. For hallucination, it means that the previous LLM judgment is wrong, and there is no need to modify the current tree;
2. For redundancy, please merge them and put the final attribute into a dimension you think is appropriate (if necessary,
you can delete the redundant dimension);
3. For missing, please find the key information in the content of captions and extract the missing attributes, and add them
to the appropriate dimension (if necessary, you can create a new dimension)
Input: caption: {captions}; current concept tree: {concept tree}
Output:

Table 5. The three steps of concept tree synthesis.

Easy Negative Sample Concept Tree Generation.
Task: I want to modify the visual definition of a class to synthesize a new visual definition of the class
Requirement: I will input the visual definition tree of a class. Please modify its class name to obtain a new class, and
generate some visual dimensions and corresponding attributes that match the new class according to the tree format. Finally,
output the visual definition tree in the original tree format to return the new visual definition tree
Input: concept tree: {concept tree}
Output:

Table 6. Modify the root node of the original concept tree to obtain an easy negative sample concept tree.
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Tree Operation—Add.
Task: I want to modify the visual definition tree of a class
Requirement: I will input a visual definition tree for a class, please randomly add {num} of its dimensions to obtain a new
visual definition tree, note that it conforms to the natural definition of this class. Only output the new visual definition tree.
Input: concept tree: {concept tree}
Output:

Tree Operation—Remove.
Task: I want to modify the visual definition tree of a class
Requirement: I will input a visual definition tree for a class, please randomly delete {num} of its dimensions to obtain a
new visual definition tree, note that it conforms to the natural definition of this class. Only output the new visual definition
tree.
Input: concept tree: {concept tree}
Output:

Tree Operation—Modify.
Task: I want to modify the visual definition tree of a class
Requirement: I will input a visual definition tree for a class, please randomly modify {num} of its dimensions to obtain a
new visual definition tree, it means deleting some visual dimensions and adding new visual dimensions, not just modifying
attributes. Only output the new visual definition tree.
Input: concept tree: {concept tree}
Output:

Image Prompt Generation.
Task: I want to generate different prompts based on the visual definition of a category to prompt the diffusion model to
synthesize images.
Requirement: I will provide a visual definition of a category, including the category name and its multiple visual dimen-
sions and attributes. You can combine the attributes of these dimensions to obtain prompts that match the real scene, such as
“a photo of attribute of dimension1, attribute of dimension2, ..., classname”. Please generate at least 100 prompts, ensuring
that the similarity of each prompt is 0, and only output prompts line by line.
Input: class category: {category}; concept tree: {concept tree}
Output:

Table 7. Three editing operations of a concept tree and using a concept tree to synthesize diverse image prompts.
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class man

emotion actionclothing location

dark
jacket

white
shirt

black
suit sitting smiling standing outdoor indoor streethappy calm

attribute

dimension

red
structure

reference
 image

Concept as Tree Get Tree

Figure 9. Using the CaT framework, we generate a concept tree for the “man” concept. The CaT framework can accurately extract the
visual information associated with this concept, such as clothing and location.

class

brown
hair

man

appearance emotion actionclothing location

middle
aged

dark
jacket

white
shirt

black
suit sitting smiling standing outdoor indoor streethappy calm

attribute

dimension

short
hair

red
structure

Add Dimension

Figure 10. Adding an “appearance” dimension to the original concept tree results in significant changes in people’s appearance, such as
hair length and color, which are combined with the original attributes to create a variety of styles of images
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class man

accessory postureclothing location

dark
jacket

white
shirt

black
suit

crossed
arms shrugging pointing outdoor indoor streetglasses watch

attribute

dimension

red
structure

Modify Dimension

Figure 11. Change the “emotion” and “action” dimensions in the original concept tree to the “accessory” and “poster” dimensions, allowing
for various combinations of male accessories, standing posture, and movements.

class man

actionclothing location

dark
jacket

white
shirt

black
suit sitting smiling standing outdoor indoor street

attribute

dimension

red
structure

Remove Dimension

Figure 12. Removing the “emotion” dimension from the original concept tree, the previously happy, excited, and varied expressions almost
uniformly turn into silence, which reduces the diversity of images.
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class woman

expression actionappearance location

wavy
hair

fair
complexion makeup looking holding standing outdoor indoor roomthoughtful focused

attribute

dimension

ocean

reference
 image

Concept as Tree Get Tree

Figure 13. Using the CaT framework, we generate a concept tree for the “woman” concept. The CaT framework can accurately extract the
visual information associated with this concept, such as expression and location.

class

casual

woman

clothing style expression actionappearance location

formalmakeupwavy
hair

fair
complexion looking holding standing outdoor indoor roomthoughtful focused

attribute

dimension

vintage ocean

Add Dimension

Figure 14. Adding a “clothing style” dimension to the original concept tree results in a significant change in woman’s attire, bringing
multiple styles to the images.
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class woman

outfitappearance location

wavy
hair

fair
complexion makeup white

blouse
floral

pattern
black
dress outdoor indoor room

attribute

dimension

ocean

Modify Dimension

expression

thoughtful focused

Figure 15. Change the “action” dimension in the original concept tree to the “outfit” dimension, so that woman’s clothing is no longer just
one or two types of reference pictures

class woman

actionappearance location

wavy
hair

white
shirt

black
suit looking holding standing outdoor indoor room

attribute

dimension

ocean

Remove Dimension

Figure 16. Removing the “expression” dimension from the original concept tree leaves almost only a calm expression on the woman’s face,
which reduces the diversity of images

8



CVPR
#10

CVPR
#10

CVPR 2025 Submission #10. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

class cat

object actionappearance location

light gray
fur

yellow
eyes

round
face sitting lying living

room indoor
white
wall

black
refrigerator

attribute

dimension

kitchen

reference
 image

Concept as Tree Get Tree

wooden
floor office

Figure 17. Using the CaT framework, we generate a concept tree for the “cat” concept. The CaT framework can accurately extract the
visual information associated with this concept, such as appearance and action.

class

curious

cat

mood object actionappearance location

playfulround
face

light gray
fur

yellow
eyes

black
refrigerator sitting lying living

room indoor officewhite
wall

wooden
floor

attribute

dimension

relaxed kitchen

Add Dimension

Figure 18. Adding a “mood” dimension to the original concept tree significantly changes the expression and posture of the cat, making it
more interesting compared to the previously silent cat in the reference image.
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class cat

appearance location

light gray
fur

yellow
eyes

round
face

living 
room indoor office

attribute

dimension

kitchen

Modify Dimension

black
refrigerator

object behavior

white
wall climbingwooden

floor playing

Figure 19. By changing the “action” dimension in the original concept tree to the “behavior” dimension, cats are no longer just squatting
or lying down, bringing about a variety of posture changes.

class cat

actionappearance location

light gray
fur

yellow
eyes

round
face sitting lying living 

room indoor office

attribute

dimension

kitchen

Remove Dimension

Figure 20. Removing the “object” dimension from the original concept tree makes the objects around the cat become monotonous. The
diversity of images has significantly decreased.
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class cup

material structureappearance location

pink white pig face with
lid

with
handle desk kitchen workspaceceramic smooth

attribute

dimension

countertop

reference
 image

Concept as Tree Get Tree

Figure 21. Using the CaT framework, we generate a concept tree for the “cup” concept. The CaT framework can accurately extract the
visual information associated with this concept, such as material and structure.

class

short

cup

shape material structureappearance location

roundpig facepink white with
lid

with
handle

desk kitchen workspaceceramic smooth

attribute

dimension

countertop

Add Dimension

Figure 22. Adding a “shape” dimension to the original concept tree, the height and weight of the cups are no longer consistent, bringing
about an increase in diversity.
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class cup

styleappearance location

pink white pig face desk kitchen workspacecute playful

attribute

dimension

countertop

Modify Dimension

cartoon

structure

with
lid

with
handle

Figure 23. Changing the “material” dimension in the original concept tree to the “style” dimension makes the expression on the cup more
vivid and adorable.

class cup

structureappearance location

pink white pig face with
lid

with
handle desk kitchen workspace

attribute

dimension

countertop

Remove Dimension

Figure 24. After removing the “material” dimension from the original concept tree, most of the generated images only have one material,
smoothness. The diversity of images has significantly decreased.
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