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ABSTRACT

Large reasoning models (LRMs) achieve strong problem-solving ability but also
produce confident errors, making reliable uncertainty estimation essential. Prior
work on standard large language models proposed two approaches: advanced ver-
balized confidence (VC), where the model self-checks its chain-of-thought or di-
rectly reports its own certainty, and self-consistency (SC), where the agreement
across multiple stochastic samples of the answers to the same question indicates
reliability. How these methods behave in LRMs, with long, rich, and internally
branching reasoning traces, remains unclear.

We present the first systematic evaluation of six VC methods, SC, and their hy-
brid (VCSC) across nine scientific benchmarks and three LRMs. We find that
advanced VC instructions bring little benefit, sometimes reducing accuracy on
mathematical tasks, and improving AUROC by about three percentage points on
non-mathematical tasks. By contrast, VC-based parallel sampling and hybridiza-
tion deliver dramatic gains: with just two repeats, VCSC improves AUROC by
over 10 points on average. With larger budgets, parallel VC alone can approach
perfect discrimination, as in the distilled DeepSeek model on AIME where AU-
ROC reaches 1.0.

These results establish VCSC as a simple, overlooked, and highly effective recipe
for uncertainty estimation in LRMs, and deepen our understanding of how these
models expose and exploit their own uncertainty.

1 INTRODUCTION

Large reasoning models (LRMs; e.g DeepSeek-AI et al. 2025, etc.) are rapidly becoming central to
scientific and professional applications. Their long chains of thought enable strong problem-solving
ability, but errors are often produced with persuasive but misleading certainty. Deploying LRMs
safely, therefore, requires not only accurate answers but also reliable confidence estimates.

Prior work on uncertainty estimation (Section 2) has largely focused on non-reasoning large lan-
guage models (LLMs) and introduced two main approaches: verbalized confidence (VC; Tian et al.
2023; Xiong et al. 2023), where models report their own certainty, and self-consistency (SC; Wang
et al. 2022), where the agreement across multiple stochastic samples of the answers to the same
question indicates reliability. Both approaches rest on assumptions about what the reasoning traces
reveal. VC assumes the traces surface epistemic cues that support self-verification, while SC as-
sumes that individual traces are narrow, so multiple samples provide a broader coverage. LRMs,
however, change the picture: their traces are long, branching, more informative, and often contain
explicit uncertainty markers. These shifts suggest that advanced VC methods (Miao et al., 2023;
Liu et al., 2025) may benefit from these richer signals, SC may lose some of its relative advantage,
and hybrid approaches could capture complementary signals. Yet, beyond vanilla VC, no systematic
study has examined how these methods behave in LRMs.

We address this gap with the first comprehensive evaluation of six advanced VC methods, SC, and
their combination across nine scientific benchmarks and three LRMs, resulting in the following three
contributions:
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• Systematic evaluation. We conduct the first comprehensive study of six VC methods, SC,
and their combination (VCSC) across nine scientific tasks and three LRMs, motivated by
the fact that their underlying core assumptions change in the reasoning models.

• Strong gains from simple hybrids. We show that combining VC and SC improves the
mean AUROC by more than 10 percentage points with only two repetitions. With larger
budgets on specific model-task pairs (e.g. distilled DeepSeek model on AIME tasks), the
hybrid achieves near-perfect or perfect discrimination.

• Practical recipe. Our insights yield actionable guidance: default to vanilla confidence
elicitation on mathematical tasks, epistemic elicitation on non-mathematical tasks, but most
importantly, avoid relying on a single reasoning trace. Two repeats with VCSC already
deliver dramatic and inexpensive gains.

Together, these contributions advance both the understanding of uncertainty estimation abilities of
LRMs and our ability to deploy these models safer, by reducing overconfident errors, and more
efficiently, by guiding downstream tasks with selective verification or prioritization.

2 RELATED WORK

Self-Consistency and Hybrid Methods. Self-consistency (SC) estimates reliability from agree-
ment across multiple sampled outputs (Wang et al., 2022). It has seen some attention in standard
LLMs and was compared against VC, but always outside the extended reasoning regime (Xiong
et al., 2024). Early attempts to combine SC with VC in standard LLMs reported only modest or
mixed benefits (Xiong et al., 2024; Huang et al., 2024; Rivera et al., 2024). CoCoA (Vashurin et al.,
2025) demonstrated clearer improvements by combining SC with log-probability signals, but this
approach requires white-box access and remains limited to standard LLMs, whereas using VC as
the confidence signal to supplement SC can be applied in black-box settings. Several systematic re-
views likewise do not conclude that VC–SC hybrids provide consistent benefit (Abbasli et al., 2025;
Geng et al., 2024; Shorinwa et al., 2025). More recently, Podolak & Verma (2025) argue that con-
fidence and sampling may not be complementary in reasoning models, suggesting that long-form
chains of thought already cover much of the solution space SC is meant to expose. Thus, our study
is the first to directly study SC and VCSC hybrid in LRMs and overturn these prior intuitions.

Verbalized Confidence. Early work studied vanilla VC, where models directly report their own
certainty (Kadavath et al., 2022; Tian et al., 2023). More elaborate prompting strategies include
Fact-and-Reflection (Zhao et al., 2024) and ”global SelfCheck” variants (Miao et al., 2023; Man-
akul et al., 2023; Madaan et al., 2023), which encourage verification or iterative self-feedback but
showed mixed benefits. We revisit these ideas for LRMs with our Verification Judge (VeJu). Other
work has examined epistemic markers as implicit cues (Liu et al., 2025), which we adapt to the
reasoning setting with our Epistemic Judge (EpJu). Most recently, vanilla VC has been evaluated in
LRMs, where longer reasoning traces appear to surface more faithful confidence cues than in stan-
dard LLMs (Yoon et al., 2025; Zeng et al., 2025). In this work we confirm that reasoning LLMs are
generally competitive in VC and further extend this insight to SC. Our primary contributions are also
complementary: we ask whether vanilla VC in LRMs can be further strengthened with motivated
VC variants and VCSC hybrid.

3 METHODS

We study confidence estimation methods originally proposed for standard LLMs, adapting them to
LRMs and introducing new variants.

3.1 VERBALIZED CONFIDENCE METHODS

We consider two families of methods: Elicitation (Xiong et al., 2024), where the model that solves
the task also reports its confidence, and Judge (Gu et al., 2025), where a subsequent iteration reads
the complete chain and produces a confidence score. Both quantify uncertainty through verbalized
confidence (VC), but differ in how the signal is extracted. For this, we consider three uncertainty in-
struction variants, each mapping responses to a 1–100 confidence grading scale (Table 1). Together,
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Variant Prompt and grading scale

Vanilla Instructions: “Give a confidence number (1–100) representing your overall confidence that the final answer is correct.”
Grading scale: –

Verification Instructions: “Give a confidence number (1–100) representing how likely the final answer is correct, based on the
quality of the reasoning (soundness, validity, coherence).”
Grading scale: “1 – fatally flawed; 25 – major gaps; 50 – plausible but unproven; 75 – strong reasoning, probably right;
100 – airtight reasoning, correct.“

Epistemic Instructions: “Give a confidence number (1–100) representing how confident you are in your final answer (do not
re-solve).”
Grading scale: “1 – random guess; 25 – significant doubts; 50 – mixed feelings; 75 – mostly confident; 100 – com-
pletely certain.“

Table 1: Uncertainty instruction prompts used in our main experiments. Each variant is applied in
both elicitation and judge methods, with epistemic instruction slightly adapted for the judge (see
Appendix B for full prompts).

it results in two vanilla methods and 4 advanced variants. Advanced variants showed limited success
in short-trace LLMs. However, more detailed chains of thought in LRMs potentially make their as-
sumptions more plausible, motivating our evaluation of whether VC methods perform substantially
better on LRM traces.

Vanilla elicitation (VaEl). Ask the model to provide an answer and a confidence score. This assumes
the model can introspectively assess its certainty. Prior work found that this works reasonably well
in LLMs (Xiong et al., 2024), and recent studies have shown it transfers strongly to LRMs (Yoon
et al., 2025; Zeng et al., 2025).

Verification elicitation (VeEl). Prompt the model to check the validity of its reasoning before as-
signing confidence. Short LLM traces often lacked sufficient structure for this, whereas LRMs’
detailed scratchpads could make self-checks more feasible (Miao et al., 2023).

Epistemic elicitation (EpEl). Steer the model to monitor its certainty by explicitly prompting it to
reflect as it reasons. This assumes that extended reasoning budgets allow the model to accommodate
both problem-solving and careful self-assessment. Such steering yielded little benefit in LLMs
(Tian et al., 2023), but the longer traces of LRMs make the assumption more plausible, motivating
an evaluation on this model type.

Vanilla judge (VaJu). Run a second pass that simply reads the reasoning trace and outputs a confi-
dence score. In LLMs, the signal was sparse due to short traces, whereas LRMs offer richer traces
that give the judge more evidence to work with (Xiong et al., 2024).

Verification judge (VeJu). Ask the judging iteration to assess whether the reasoning steps are valid
and consistent. This relies on traces exposing an explicit logical structure, which LRMs’ step-by-
step reasoning makes far more realistic than the short outputs of LLMs (Miao et al., 2023).

Epistemic-markers judge (EpJu). Ask the LLM judging pass to attend to hedges, certainty lan-
guage, and similar cues. Such markers were rare and unreliable in LLMs (Liu et al., 2025), but
appear far more frequently in LRMs’ extended traces (Venhoff et al., 2025).

Although Epistemic Elicitation and Epistemic-markers Judge use nearly identical instructions, they
are expected to behave differently. In Elicitation, the model is prompted to deal with uncertainty
markers while solving the problem, which may influence the reasoning process itself. In the Judge-
based approach, the model evaluates an already generated chain-of-thought, basing its assessment
on explicit uncertainty cues within that reasoning.

Appendix B provides the prompts used for obtaining answers and eliciting confidence.

3.2 PARALLEL SAMPLING AND HYBRID METHODS

These methods aggregate multiple samples rather than relying on a single trace. Their core assump-
tion is that a single trace covers only a narrow slice of the solution space, and this is well supported
for standard LLMs. In LRMs, however, individual traces already branch widely (Lee et al., 2025;
Wan et al., 2025), so the added value of sampling is unclear. Whether SC-based methods remain ef-
fective in this setting is therefore an open empirical question, motivating our study. Hybrid methods
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combine verbalized confidence and self-consistency signals. While LRMs may weaken SC assump-
tions and strengthen VC assumptions, it remains unclear whether the two sources of information
remain complementary. We introduce a simple weighted combination of SC and VC (VCSC) to test
this directly.

Self-Consistency (SC). SC samples M reasoning traces a1, . . . , aM and estimates model’s confi-
dence as the fraction of traces that agree with the majority answer â:

SC =
1

M

M∑
i=1

1[ai = â].

This assumes that each trace explores only a narrow slice of the solution space, so diversity across
traces reveals uncertainty. While effective for standard LLMs with short traces, in LRMs each trace
already branches internally, weakening the assumption and motivating us to re-examine SC.

Average Verbalized Confidence (VCavg). Each sampled trace provides an answer ai with verbalized
confidence ci. VCavg averages the confidence scores of the traces yielding the majority answer â:

VCavg =
1

|Iâ|
∑
i∈Iâ

ci,

where Iâ = {i : ai = â}. This sharpens confidence estimates compared to a single repeat by
pooling across the consistent outputs.

Verbalized Confidence with Self-Consistency (VCSC). SC and VCavg may capture complementary
signals: SC reflects behavioral agreement, while VCavg reflects expressed certainty. VCSC combines
them as a weighted average:

VCSC = λ · SC + (1− λ) · VCavg

In our experiments, we set λ = 0.5 by default and examine the effect of varying λ in Section 5.3.

4 EXPERIMENTAL SETUP

Tasks. We evaluate the proposed methods on mathematical and non-mathematical reasoning tasks.
Mathematical tasks are the primary in-domain setting for reinforcement-learning-based post-training
of reasoning LLMs (Ma et al., 2025), so chain-of-thought reasoning in this class of tasks may differ
qualitatively from other reasoning domains.

As math tasks, we use the AIME 2024 and AIME 20251 datasets (30 problems each) from the
American Invitational Mathematics Examination, a widely used benchmark for frontier models. To
provide complementary coverage, we also include GSM8K (Cobbe et al., 2021), a set of 8.5K diverse
grade-school word problems that, while easier than AIME, still remain unsaturated for our models.

As non-mathematical tasks, we use GPQA Diamond (Rein et al., 2024), a set of 198 expert-written
multiple-choice questions in biology, physics, and chemistry, designed to challenge even domain
experts. We also draw from MMLU-Pro (Wang et al., 2024), an extension of MMLU (Hendrycks
et al., 2021) with harder reasoning questions and larger answer spaces. We focus on the Psychology
(798 questions), Health (818), Biology (717), Business (789), and Law (1101) domains, where
reliable uncertainty estimates are especially critical.

Together, these datasets cover both structured mathematical reasoning and complex natural and so-
cial science reasoning/knowledge domains, providing a comprehensive testbed for uncertainty esti-
mation in LLMs and LRMs.

Models. We evaluate three open-source reasoning models: gpt20b-high2, qwen30b3, and
deepseek8b4. The first two are mixture-of-experts models trained with Reinforcement Learning

1https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_
Solutions

2https://huggingface.co/openai/gpt-oss-20b
3https://huggingface.co/Qwen/Qwen3-30B-A3B
4https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
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with Verifiable Rewards (RLVR), while deepseek8b is a fine-tuned dense model that extends the 8b
Qwen dense model with supervised finetuning on reasoning traces from DeepSeek-R1 (DeepSeek-
AI et al., 2025). The “-high” suffix in gpt20b-high indicates a higher reasoning effort, aligning more
closely with the theoretical assumptions of the VC methods we study. These models represent a
balanced trade-off: they approach the performance of larger frontier models such as DeepSeek-R1
while remaining light enough to run for up to 100 epochs, ensuring stable and reproducible results.
All three support at least 131K tokens of context, enabling long chain-of-thought reasoning and
allowing the same model to serve as both task solver and judge in VC-based methods.

Generation configuration. We allow models to generate up to 60K tokens for the task solver and an
additional 60K tokens for the judge when applicable, ensuring all cases fit within the 131K context
window. We use the vLLM framework5 for all evaluations, adopting its default settings except for
temperature and top-k. These follow the model authors’ recommendations: temperature = 1.0, top-k
= 1.0 for gpt20b-high, and temperature = 0.6, top-k = 0.95 for qwen30b and deepseek8b.

Bootstrap Evaluation Protocol. For our comparative study of six VC methods (Section 5.1), we
generate up to 20 (answer, confidence) tuples per question by running 20 repetitions. Repetitions
that fail to follow the answer format are discarded, and questions with no valid tuples are removed:
counting unsuccessful extractions as incorrect answers with confidence 0 (mirroring deployment)
would unfairly bias confidence metrics toward methods with higher extraction failure rates. We
therefore treat these cases as temporary model limitations and exclude them. In practice, this re-
moves one AIME example, 5% of GPQA examples, and up to 1% of examples in other datasets if
run for 20 repeats as in Section 5.1, and preserves all examples when we run for 100 repeats and a
smaller selection of methods in Section 5.2.

To maximize the utility of available generations, we apply hierarchical bootstrapping: for each boot-
strap iteration, we construct a pseudo-dataset by randomly selecting one of the available (answer,
confidence) tuples for each question. Metrics are then computed on this pseudo-dataset, and the
process is repeated 1000 times. The reported results are the average metrics across these simulated
datasets. For self-consistency and hybrid experiments (Section 5.2), we generate up to 100 (answer,
confidence) tuples per question. From these, K tuples are sampled per question to form a dataset.
Repeating this 1000 times yields 1000 simulated datasets, and we report the mean metric values
across them.

This protocol is essential because results for these datasets and models are highly volatile: temper-
ature sampling introduces large variance, which obscures method effects. By combining 20–100
repeats with bootstrapping, we stabilize results toward convergent values, enabling reliable compar-
isons between methods and ensuring observed differences reflect method performance rather than
sampling noise.

Choice of Confidence Evaluation Metric. Common metrics for evaluating uncertainty include the
Expected Calibration Error (ECE; Guo et al., 2017) and the Area Under the ROC Curve (AUROC;
Hanley & McNeil, 1982). AUROC measures how well confidence separates correct from incorrect
answers, while ECE measures how closely predicted confidence matches empirical accuracy. Our
focus is on the discriminative power of confidence signals, as this reflects their informativeness
and suitability for downstream calibration or decision-making. Calibration metrics such as ECE,
Negative Log-Likelihood (NLL), and Brier score (Brier, 1950) are more appropriate after explicit
calibration or in deployment contexts. Using them here would penalize methods that are discrimina-
tive but operate on shifted scales (e.g., assigning values only in range 70–100% instead of 0–100%),
which is common in LLMs. We therefore use AUROC as our primary evaluation metric, while
reporting ECE and NLL in the Appendix A for completeness.

5 EXPERIMENTS

5.1 COMPARING VERBALIZED CONFIDENCE METHODS

We compare six verbalized-confidence (VC) variants grouped as elicitation and judge (Section 3.1),
evaluating them on mathematical and non-mathematical tasks using accuracy and AUROC. Results

5https://github.com/vllm-project/vllm
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AUROC Accuracy

Task VaEl VeEl EpEl VaJu VeJu EpJu VaEl VeEl EpEl VaJu VeJu EpJu

gpt20b-high

AIME 2024 0.61 0.59 0.67 0.66 0.72 0.65 0.95 0.95 0.95 0.93 0.93 0.92
AIME 2025 0.77 0.67 0.66 0.57 0.71 0.64 0.96 0.96 0.96 0.96 0.96 0.94
GSM8K 0.69 0.73 0.70 0.74 0.74 0.66 0.94 0.94 0.94 0.95 0.95 0.95
Avg 0.69 0.66 0.68 0.66 0.72 0.65 0.95 0.95 0.95 0.95 0.95 0.94

deepseek8b

AIME 2024 0.88 0.88 0.86 0.83 0.86 0.84 0.77 0.74 0.73 0.79 0.79 0.79
AIME 2025 0.86 0.85 0.83 0.82 0.83 0.78 0.71 0.64 0.65 0.74 0.76 0.76
GSM8K 0.71 0.70 0.70 0.73 0.73 0.67 0.93 0.93 0.93 0.93 0.93 0.93
Avg 0.82 0.81 0.80 0.79 0.81 0.76 0.80 0.77 0.77 0.82 0.83 0.83

qwen30b

AIME 2024 0.61 0.63 0.59 0.69 0.56 0.58 0.90 0.89 0.88 0.93 0.92 0.92
AIME 2025 0.57 0.61 0.54 0.64 0.59 0.56 0.89 0.85 0.85 0.91 0.90 0.90
GSM8K 0.60 0.63 0.67 0.62 0.62 0.55 0.96 0.96 0.95 0.95 0.96 0.96
Avg 0.59 0.62 0.60 0.65 0.59 0.56 0.92 0.90 0.89 0.93 0.93 0.93

Overall Avg 0.70 0.70 0.69 0.70 0.71 0.66 0.89 0.87 0.87 0.90 0.90 0.90

(a) Mathematical tasks

AUROC Accuracy

Task VaEl VeEl EpEl VaJu VeJu EpJu VaEl VeEl EpEl VaJu VeJu EpJu

gpt20b-high

GPQA Diamond 0.76 0.76 0.78 0.75 0.69 0.72 0.75 0.74 0.74 0.75 0.77 0.75
MMLU-Pro Health 0.74 0.73 0.74 0.72 0.73 0.67 0.74 0.74 0.74 0.74 0.75 0.75
MMLU-Pro Psychology 0.73 0.72 0.73 0.71 0.71 0.65 0.74 0.73 0.74 0.74 0.74 0.73
MMLU-Pro Biology 0.74 0.74 0.76 0.73 0.72 0.67 0.87 0.88 0.88 0.88 0.88 0.88
MMLU-Pro Business 0.83 0.82 0.83 0.82 0.82 0.75 0.85 0.84 0.85 0.86 0.85 0.85
MMLU-Pro Law 0.58 0.57 0.58 0.58 0.58 0.56 0.45 0.45 0.44 0.44 0.45 0.45
Avg 0.73 0.72 0.74 0.72 0.71 0.67 0.73 0.73 0.73 0.74 0.74 0.74

deepseek8b

GPQA Diamond 0.80 0.77 0.77 0.79 0.74 0.72 0.62 0.60 0.61 0.61 0.61 0.62
MMLU-Pro Health 0.68 0.65 0.68 0.66 0.60 0.63 0.70 0.70 0.70 0.70 0.70 0.70
MMLU-Pro Psychology 0.68 0.63 0.69 0.67 0.60 0.64 0.73 0.73 0.73 0.73 0.74 0.73
MMLU-Pro Biology 0.73 0.71 0.74 0.68 0.65 0.63 0.86 0.86 0.87 0.86 0.86 0.87
MMLU-Pro Business 0.80 0.79 0.79 0.78 0.75 0.72 0.82 0.81 0.81 0.82 0.82 0.82
MMLU-Pro Law 0.58 0.56 0.57 0.58 0.55 0.56 0.44 0.43 0.43 0.43 0.43 0.43
Avg 0.71 0.68 0.71 0.69 0.65 0.65 0.70 0.69 0.69 0.69 0.69 0.70

qwen30b

GPQA Diamond 0.56 0.70 0.67 0.59 0.68 0.59 0.71 0.71 0.70 0.72 0.71 0.70
MMLU-Pro Health 0.57 0.68 0.67 0.60 0.66 0.59 0.76 0.76 0.75 0.77 0.76 0.77
MMLU-Pro Psychology 0.55 0.65 0.66 0.61 0.64 0.56 0.77 0.77 0.77 0.78 0.78 0.78
MMLU-Pro Biology 0.55 0.68 0.67 0.65 0.66 0.56 0.89 0.89 0.89 0.90 0.89 0.89
MMLU-Pro Business 0.62 0.76 0.76 0.67 0.72 0.64 0.86 0.85 0.85 0.86 0.86 0.86
MMLU-Pro Law 0.51 0.56 0.56 0.53 0.57 0.52 0.55 0.55 0.54 0.55 0.56 0.56
Avg 0.56 0.67 0.66 0.61 0.66 0.58 0.76 0.76 0.75 0.76 0.76 0.76

Overall Avg 0.67 0.69 0.70 0.67 0.67 0.63 0.73 0.73 0.72 0.73 0.73 0.73

(b) Non-mathematical natural and social science tasks

Table 2: Performance across tasks. AUROC (blue) measures the discriminative power of confidence,
while Accuracy (violet) measures correctness. Best values per task and metric are bolded (ties all
bold). In math, results are highly model- and dataset-dependent (non-vanilla elicitation can reduce
accuracy; EpJu underperforms in AUROC; no clear dominator among VaEl, VaJu, VeJu; VaEl is a
competitive baseline). In non-math, accuracy is stable across methods; epistemic elicitation (EpEl)
consistently increases AUROC by roughly 3 points on average, making it a reliable drop-in upgrade.

are bootstrap means over 1,000 resamples over 20 repeats per question (detailed experimental setup
described in Section 4).

Mathematical tasks. Table 2a reports results on mathematical tasks. In terms of accuracy, non-
vanilla elicitation (VeEl, EpEl) consistently underperforms on qwen30b and deepseek8b (loosing
1-3 pts), while only gpt20b-high remains robust to the elicitation method. One interpretation is
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that math is in-distribution for RLVR training, so additional steering instructions may conflict with
reasoning strategies the models have already internalized. A simpler one is that eliciting in the same
iteration is taking resources from solving reasoning-heavy mathematical tasks. In terms of AUROC,
Epistemic Markers Judge (EpJu) performs consistently worst, suggesting that epistemic markers are
not reliable uncertainty cues or are not well exploited by the judge. After removing these weak
options, the viable contenders are vanilla elicitation (VaEl) and the two judge variants (VaJu, VeJu).
Their relative performance is highly model- and dataset-dependent: VeJu leads on gpt20b-high but
loses to VaEl by 6 AUROC percentage points on AIME 2025; VaEl is strongest on deepseek8b;
and VaJu leads on qwen30b. On average, these wins cancel out, leaving no consistent advantage.
Takeaway: Some methods clearly underperform (VeEl, EpEl, EpJu), while among the rest, there is
no universally superior choice. For these methods, performance is heterogeneous and depends on
the specific model and dataset.

Non-mathematical tasks. Table 2b reports results on non-mathematical tasks. Accuracy remains
stable across all methods, with no systematic drops beyond 1 percentage point. In terms of AUROC,
epistemic elicitation (EpEl) provides a consistent improvement of about 3 points over vanilla elic-
itation and judge variants, while verification elicitation is only slightly weaker. This gain contrasts
with mathematics tasks, but is consistent with non-math domains being out-of-distribution for RLVR
training: models are more steerable by richer uncertainty instructions, which enhance discriminative
power without harming correctness. Judge methods now consistently underperform, likely because
reasoning chains in non-math domains provide less explicit structure for a post-hoc judge to exploit.
Takeaway: EpEl is a reliable drop-in upgrade over VaEl for non-math tasks, delivering consistent
AUROC gains with no accuracy cost. Judges fall behind in confidence quality and offer no accuracy
improvements to justify the extra LRM calls.

Summary. The confidence estimation results in LRMs show a sharp contrast between domains. In
math tasks, several methods clearly underperform (VeEl, EpEl, EpJu), and among the rest, perfor-
mance varies across models and datasets with no universally superior choice. In non-math tasks, the
pattern is more stable: EpEl consistently improves AUROC by about 3 points without harming accu-
racy, while judge methods add cost without benefit. This suggests that in-distribution domains (like
math), resist further elicitation prompt engineering but can selectively benefit from a separate LLM
confidence judge, whereas out-of-distribution domains gain from richer uncertainty instructions.

5.2 EVALUATING SELF-CONSISTENCY AND VCSC

We evaluate self-consistency (SC), average verbalized confidence (VCavg), and their hybrid (VCSC),
as described in Section 3.2. For verbalized confidence, we use vanilla elicitation (VaEl) on math-
ematical tasks and epistemic elicitation (EpEl) on non-mathematical tasks, reflecting the insights
from Section 5.1. To balance coverage while keeping analysis focused, we select two math and two
non-math tasks: for math, AIME 2024/2025, which remain unsolved and are the standard choice
in recent literature; for non-math, GPQA Diamond, which spans multiple natural science domains,
and MMLU-Pro Psychology, a social science domain that involves both knowledge and reason-
ing and is especially critical for safety-sensitive applications such as mental health AI. We report the
accuracy and AUROC, computed as bootstrap means over 1,000 resamples using up to 100 repeats
per question for reliable subsampling at higher K (see Section 4).

Accuracy. Across models, accuracy improves modestly with majority voting, rising by about 3–4
points and saturating by K ≈ 8. Importantly, there is no gain from K = 1 to K = 2, meaning
that all AUROC improvements discussed below occur under the same accuracy conditions having
an equally sized set of correct vs. incorrect answers to descriminate.

Self-consistency (SC). Table 3 shows that SC displays heterogeneous AUROC behavior. On
deepseek8b and qwen30b, AUROC improves steadily with more samples (∼0.72 at K = 2 to ∼0.85
at K = 64). In contrast, on gpt20b-high AUROC peaks already at K = 2 (0.65) and then declines
with larger K. This suggests that in LRMs, where single traces already branch internally, additional
sampling can either strengthen the signal or blur it, depending on the model. SC therefore remains
informative, but it is fragile and highly model-dependent.

Average verbalized confidence (VCavg). In contrast, VCavg improves smoothly and monotonically
with K across all models, from an average of 0.73 at K = 1 to 0.83 at K = 8 and 0.86 at K = 64.
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Notably, on deepseek8b AIME datasets, VCavg reaches near-perfect AUROC (∼1.0) even though
accuracy plateaus far lower (∼0.83).

Hybrid (VCSC). Combining SC and VCavg (VCSC, λ = 0.5) delivers striking gains at small bud-
gets. With only two repeats, VCSC reaches 0.85 AUROC, outperforming VCavg at the same budget
by 10 points overall and up to +19 points on qwen30b. Put differently, VCavg requires ∼32 samples
to match VCSC with just 2, while SC lags behind by 9 points even with 64 traces. This demonstrates
that SC and VC capture complementary signals in reasoning LLMs: behavioral agreement provides
leverage exactly when verbalized confidence is still noisy, making the hybrid uniquely effective at
low K. At larger budgets, however SC become uninformative as we observe with gpt20b on AIME
2025, partially hurting VCSC as a result.

Summary. Overall, accuracy gains saturate quickly and cannot account for the large AUROC im-
provements we observe. SC alone is unreliable in LRMs, but provides a great value when paired with
VC. VCavg, unlike accuracy, scales well with K, highlighting a generation–verification gap: while
models do not reliably generate the correct answer even with many repeats, they become very ac-
curate at detecting when they are wrong. By aggregating confidence over multiple majority-aligned
traces, VCavg amplifies these uncertainty cues, becoming sharper and yielding robust discriminative
power even without further accuracy gains. The hybrid VCSC combines these strengths, delivering
dramatic AUROC gains with as few as two repeats.

5.3 ANALYSIS AND ABLATIONS

In this section, we ablate the reasoning effort, reasoning mode, and vary the mixing weight λ to
explore the mechanism underlying VCSC beyond our main results.

Ablating reasoning effort and reasoning mode. We ablated the reasoning effort (gpt20b-high) and
reasoning mode (qwen30b) and present results averaged across tasks in Figure 1 (per-task results
are in Figures 4 and 5 in Appendix A). Reducing reasoning lowers accuracy but leaves SC-based
confidence either improved (comparing to AIME SC drop we observed in Table 3) or largely intact
(qwen). VC is sometimes better in non/low-thinking mode, but generally (high)thinking models are
able to maintain high AUROC despite increased accuracy. Importantly, VCSC consistently delivers
strong gains, especially at small K across all settings.

Accuracy SC VC avg VCSC

Task K=1 K=2 K=8 K=32 K=64 K=1 K=2 K=8 K=32 K=64 K=1 K=2 K=8 K=32 K=64 K=1 K=2 K=8 K=32 K=64

gpt20b-high

AIME 2024 0.91 0.91 0.93 0.93 0.93 0.50 0.69 0.70 0.62 0.57 0.73 0.73 0.85 0.88 0.89 0.73 0.91 0.90 0.95 0.96
AIME 2025 0.90 0.90 0.93 0.93 0.93 0.50 0.63 0.40 0.25 0.16 0.79 0.77 0.84 0.84 0.84 0.79 0.87 0.69 0.64 0.57
GPQA Diamond 0.74 0.74 0.78 0.78 0.79 0.50 0.66 0.72 0.74 0.75 0.76 0.78 0.81 0.81 0.81 0.76 0.82 0.81 0.80 0.80
MMLU-Pro Psych. 0.74 0.74 0.75 0.75 0.75 0.50 0.63 0.73 0.78 0.79 0.74 0.76 0.79 0.80 0.80 0.74 0.79 0.81 0.82 0.82
Avg 0.82 0.82 0.85 0.85 0.85 0.50 0.65 0.64 0.60 0.57 0.76 0.76 0.82 0.83 0.84 0.76 0.85 0.80 0.80 0.79

deepseek8b

AIME 2024 0.75 0.75 0.82 0.82 0.83 0.50 0.86 0.92 0.94 0.94 0.88 0.89 0.97 1.00 1.00 0.88 0.97 0.99 0.99 0.99
AIME 2025 0.66 0.65 0.76 0.78 0.78 0.50 0.85 0.90 0.91 0.92 0.86 0.88 0.97 1.00 1.00 0.86 0.95 0.95 0.96 0.96
GPQA Diamond 0.59 0.59 0.62 0.62 0.62 0.50 0.66 0.75 0.77 0.78 0.77 0.80 0.84 0.85 0.85 0.77 0.82 0.84 0.84 0.84
MMLU-Pro Psych. 0.73 0.73 0.75 0.75 0.75 0.50 0.63 0.72 0.76 0.78 0.69 0.71 0.72 0.72 0.72 0.69 0.75 0.77 0.78 0.78
Avg 0.68 0.68 0.74 0.74 0.74 0.50 0.75 0.82 0.84 0.86 0.80 0.82 0.88 0.89 0.89 0.80 0.87 0.89 0.89 0.89

qwen30b

AIME 2024 0.88 0.88 0.92 0.93 0.93 0.50 0.78 0.77 0.82 0.86 0.61 0.68 0.87 0.96 0.98 0.61 0.86 0.88 0.88 0.89
AIME 2025 0.84 0.83 0.89 0.90 0.90 0.50 0.86 0.94 0.96 0.96 0.59 0.65 0.82 0.89 0.92 0.59 0.90 0.95 0.96 0.97
GPQA Diamond 0.70 0.70 0.71 0.71 0.71 0.50 0.64 0.76 0.80 0.81 0.68 0.72 0.77 0.79 0.79 0.68 0.77 0.82 0.83 0.83
MMLU-Pro Psych. 0.77 0.77 0.78 0.78 0.78 0.50 0.61 0.70 0.74 0.76 0.65 0.68 0.72 0.74 0.74 0.65 0.73 0.78 0.80 0.80
Avg 0.80 0.80 0.82 0.83 0.83 0.50 0.72 0.79 0.83 0.85 0.63 0.68 0.80 0.84 0.86 0.63 0.82 0.86 0.87 0.87

Overall Avg 0.77 0.77 0.80 0.81 0.81 0.50 0.71 0.75 0.76 0.76 0.73 0.75 0.83 0.85 0.86 0.73 0.85 0.85 0.85 0.85

Table 3: Confidence estimation quality as a function of sample count K across self-consistency
(SC), average verbalized confidence (VCavg), and their hybrid (VCSC). Reported numbers are AU-
ROC (shaded) and Accuracy (gray). Best values per task and method are bolded (ties all bold).
Accuracy saturates by K ≈ 8, while AUROC shows distinct scaling patterns: SC is fragile and
model-dependent, VCavg improves smoothly with K, and VCSC delivers the largest early gains,
reaching ∼10 AUROC points above alternatives at K = 2. Results are bootstrap means over 1,000
resamples drawing from a pool of up to 100 repeats per question.
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Figure 1: Ablating reasoning effort (gpt20b-high) and mode (qwen30b), averaged across tasks.
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Figure 2: Effect of mixing weight λ in VCSC (averaged over models).

Effect of mixing weight λ. We used VCSC = λSC + (1 − λ)VCavg, with λ = 0.5 as a default
in Table 3. Endpoints at λ=0 and λ=1 correspond to pure VCavg and SC respectively, and are also
included in the table. In Figure 2, we explore how intermediate mixes behave across budgets K
(per-model curves are in Figure 3 in Appendix A). Two trends emerge. At low budget (K=2),
performance is flat across a broad range of λ, making 0.5 a safe default. As K grows (8→32→64),
the optimum shifts left toward λ≈0, with VCavg carrying most of the signal. Crucially, at K=8 and
small λ (0.1–0.3), VCSC matches the best AUROC of VCavg at K=64, cutting sampling cost by up
to 8×. Thus, while λ=0.5 already delivers strong small-K gains without tuning, light adjustment
(or decaying λ as K increases) can recover nearly all large-K performance at much lower budgets.
The effect is strongest on math tasks, while non-math remains less sensitive to this parameter.

Overall, ablation results suggest that the gains offered by VCSC are not specific to LRMs as, for
example, jump from K=1 to K=2, is at least as steep for non-reasoning LLMs. This means that
despite reasoning models operating on a different task competence (accuracy) level, they are able to
maintain high confidence quality levels and scale with repeats just as their non-thinking counterparts
do. The results can be further improved by selecting the optimal values λ.

6 CONCLUSION

We presented the first systematic study of uncertainty estimation in reasoning LLMs going beyond
vanilla verbalized confidence. Across nine tasks and three LRMs, we found that advanced VC
methods rarely outperform vanilla elicitation on math tasks, while epistemic elicitation yields mod-
est but consistent gains on non-math tasks. Most importantly, we showed that combining VC with
self-consistency (VCSC) delivers dramatic confidence estimation improvements: over 10 AUROC
points on average with just two repetitions, and near-perfect discrimination on some task-model
combinations.

These findings establish VCSC as an overlooked yet highly effective approach for uncertainty esti-
mation in reasoning (and non-reasoning) LLMs. Beyond this immediate practical recipe, our results
deepen understanding of how LRMs expose, and can be made to exploit, their own uncertainty.
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APPENDIX

A ADDITIONAL RESULTS

This Section introduces additional results to the main results.

Tables 4 and 6 have results on mathematics tasks, and Tables 5 and 7 other sciences tasks on ECE
and NLL measures.

Tables 8 and 9 show results for ECE and NLL for VCSC across models and different K-values.

Task VaEl VeEl EpEl VaJu VeJu EpJu

gpt20b-high

AIME 2024 0.04 0.03 0.03 0.05 0.04 0.05
AIME 2025 0.03 0.04 0.03 0.03 0.04 0.04
GSM8K 0.05 0.04 0.05 0.04 0.03 0.04

Avg 0.04 0.04 0.04 0.04 0.04 0.04

deepseek8b

AIME 2024 0.14 0.14 0.16 0.13 0.10 0.13
AIME 2025 0.20 0.22 0.22 0.18 0.12 0.17
GSM8K 0.04 0.05 0.05 0.05 0.05 0.06

Avg 0.13 0.14 0.14 0.12 0.09 0.12

qwen30b

AIME 2024 0.06 0.07 0.08 0.03 0.05 0.08
AIME 2025 0.07 0.12 0.11 0.06 0.07 0.09
GSM8K 0.01 0.04 0.04 0.02 0.04 0.06

Avg 0.05 0.08 0.08 0.04 0.05 0.08

Overall Avg 0.07 0.09 0.09 0.07 0.06 0.08

Table 4: Math (ECE).

Task VaEl VeEl EpEl VaJu VeJu EpJu

gpt20b-high

GPQA Diamond 0.18 0.15 0.16 0.19 0.15 0.17
MMLU-Pro Health 0.19 0.17 0.17 0.20 0.16 0.19
MMLU-Pro Psychology 0.20 0.17 0.19 0.20 0.17 0.21
MMLU-Pro Biology 0.08 0.05 0.07 0.08 0.05 0.07
MMLU-Pro Business 0.10 0.08 0.09 0.10 0.07 0.09
MMLU-Pro Law 0.48 0.44 0.46 0.48 0.44 0.47

Avg 0.20 0.18 0.19 0.21 0.17 0.20

deepseek8b

GPQA Diamond 0.22 0.18 0.19 0.26 0.15 0.22
MMLU-Pro Health 0.21 0.15 0.18 0.22 0.12 0.18
MMLU-Pro Psychology 0.18 0.12 0.16 0.19 0.08 0.16
MMLU-Pro Biology 0.06 0.03 0.07 0.08 0.04 0.07
MMLU-Pro Business 0.09 0.07 0.09 0.11 0.04 0.08
MMLU-Pro Law 0.44 0.39 0.40 0.46 0.38 0.44

Avg 0.20 0.16 0.18 0.22 0.14 0.19

qwen30b

GPQA Diamond 0.23 0.22 0.22 0.24 0.22 0.26
MMLU-Pro Health 0.19 0.20 0.20 0.19 0.20 0.20
MMLU-Pro Psychology 0.17 0.19 0.19 0.18 0.18 0.19
MMLU-Pro Biology 0.06 0.08 0.08 0.07 0.08 0.10
MMLU-Pro Business 0.09 0.11 0.10 0.10 0.10 0.10
MMLU-Pro Law 0.40 0.39 0.40 0.40 0.39 0.43

Avg 0.19 0.20 0.20 0.20 0.19 0.21

Overall Avg 0.20 0.18 0.19 0.21 0.17 0.20

Table 5: Other Sciences (ECE).
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Task VaEl VeEl EpEl VaJu VeJu EpJu

gpt20b-high

AIME 2024 0.38 0.39 0.37 0.40 0.26 0.46
AIME 2025 0.29 0.37 0.42 0.29 0.28 0.38
GSM8K 0.43 0.49 0.61 0.31 0.32 0.54

Avg 0.37 0.42 0.47 0.33 0.29 0.46

deepseek8b

AIME 2024 0.65 1.06 1.32 0.76 0.58 1.09
AIME 2025 0.82 1.58 1.73 0.90 0.73 1.63
GSM8K 0.52 0.77 0.79 0.56 0.52 0.62

Avg 0.66 1.14 1.28 0.74 0.61 1.11

qwen30b

AIME 2024 0.35 0.53 0.54 0.28 0.60 1.17
AIME 2025 0.45 0.89 0.82 0.35 0.65 1.46
GSM8K 0.23 0.60 0.51 0.32 0.61 0.67

Avg 0.34 0.67 0.62 0.32 0.62 1.10

Overall Avg 0.46 0.74 0.79 0.46 0.51 0.89

Table 6: Math (NLL).

Task VaEl VeEl EpEl VaJu VeJu EpJu

gpt20b-high

GPQA Diamond 0.65 0.58 0.60 0.84 0.85 0.87
MMLU-Pro Health 0.72 0.75 0.90 0.88 0.72 1.43
MMLU-Pro Psychology 0.74 0.74 1.01 0.87 0.73 1.60
MMLU-Pro Biology 0.42 0.44 0.52 0.46 0.42 0.77
MMLU-Pro Business 0.44 0.47 0.56 0.48 0.43 0.72
MMLU-Pro Law 1.51 1.33 1.59 1.84 1.49 2.50

Avg 0.75 0.72 0.86 0.90 0.77 1.32

deepseek8b

GPQA Diamond 0.70 0.85 1.03 0.92 0.77 1.51
MMLU-Pro Health 0.78 0.99 1.52 1.06 0.79 1.95
MMLU-Pro Psychology 0.70 0.85 1.27 0.93 0.68 1.83
MMLU-Pro Biology 0.40 0.58 0.80 0.52 0.44 1.07
MMLU-Pro Business 0.48 0.75 0.90 0.64 0.54 1.10
MMLU-Pro Law 1.26 1.21 1.42 1.59 1.24 3.79

Avg 0.72 0.87 1.16 0.94 0.74 1.88

qwen30b

GPQA Diamond 0.86 0.90 0.87 0.88 1.33 3.89
MMLU-Pro Health 0.75 1.56 1.66 0.85 1.99 3.18
MMLU-Pro Psychology 0.70 1.68 1.58 0.84 1.96 3.24
MMLU-Pro Biology 0.37 0.82 0.84 0.42 0.95 1.60
MMLU-Pro Business 0.45 0.80 0.71 0.49 1.00 1.65
MMLU-Pro Law 1.36 2.00 1.77 1.44 3.48 7.26

Avg 0.75 1.29 1.24 0.82 1.78 3.47

Overall Avg 0.74 0.96 1.09 0.89 1.10 2.22

Table 7: Other Sciences (NLL).

Figure 3, 4 and 5 show effect of mixing weight λ, ablating reasoning effort and ablating reasoning
mode respectively. These results are presented separately for each task.
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Task K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 K=15 K=20 K=30 K=40 K=50 K=70

gpt20b-high

AIME 2024 0.08 0.06 0.05 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
AIME 2025 0.09 0.08 0.08 0.08 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05
GPQA Diamond 0.21 0.16 0.14 0.13 0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.10
MMLU-Pro Psychology 0.23 0.19 0.18 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16

Avg 0.15 0.12 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09

deepseek8b

AIME 2024 0.20 0.15 0.13 0.12 0.12 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
AIME 2025 0.29 0.21 0.16 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.11 0.11
GPQA Diamond 0.30 0.23 0.21 0.20 0.19 0.18 0.18 0.18 0.18 0.17 0.17 0.16 0.16 0.16 0.16 0.16
MMLU-Pro Psychology 0.21 0.18 0.17 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Avg 0.25 0.19 0.17 0.16 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

qwen30b

AIME 2024 0.10 0.08 0.06 0.06 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06
AIME 2025 0.14 0.11 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.07
GPQA Diamond 0.26 0.22 0.21 0.20 0.20 0.20 0.20 0.20 0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.19
MMLU-Pro Psychology 0.21 0.19 0.18 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17

Avg 0.18 0.15 0.14 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

Overall Avg 0.19 0.15 0.14 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

Table 8: ECE results for VCSC across models and Ks.

Task K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 K=15 K=20 K=30 K=40 K=50 K=70

gpt20b-high

AIME 2024 0.55 0.24 0.19 0.18 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
AIME 2025 0.55 0.32 0.29 0.29 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
GPQA Diamond 0.79 0.59 0.54 0.52 0.50 0.50 0.49 0.49 0.48 0.48 0.48 0.47 0.47 0.47 0.47 0.47
MMLU-Pro Psychology 1.13 0.80 0.71 0.68 0.66 0.64 0.63 0.62 0.61 0.61 0.59 0.59 0.58 0.58 0.57 0.57

Avg 0.76 0.49 0.43 0.42 0.40 0.40 0.40 0.39 0.38 0.38 0.38 0.38 0.38 0.38 0.37 0.37

deepseek8b

AIME 2024 0.86 0.32 0.25 0.23 0.22 0.22 0.21 0.21 0.20 0.20 0.20 0.19 0.19 0.19 0.19 0.19
AIME 2025 1.19 0.49 0.38 0.35 0.33 0.32 0.31 0.31 0.31 0.30 0.30 0.29 0.29 0.29 0.29 0.29
GPQA Diamond 1.21 0.74 0.66 0.62 0.60 0.59 0.58 0.58 0.57 0.57 0.56 0.56 0.55 0.55 0.55 0.55
MMLU-Pro Psychology 1.40 0.94 0.81 0.75 0.72 0.69 0.68 0.66 0.65 0.64 0.62 0.61 0.60 0.60 0.59 0.59

Avg 1.16 0.62 0.52 0.49 0.47 0.45 0.45 0.44 0.43 0.43 0.42 0.41 0.41 0.41 0.40 0.40

qwen30b

AIME 2024 0.51 0.30 0.26 0.24 0.23 0.23 0.22 0.22 0.22 0.21 0.21 0.20 0.20 0.20 0.19 0.19
AIME 2025 0.70 0.34 0.27 0.24 0.23 0.22 0.21 0.21 0.21 0.21 0.20 0.20 0.19 0.19 0.19 0.19
GPQA Diamond 1.10 0.82 0.75 0.71 0.69 0.67 0.66 0.66 0.65 0.65 0.64 0.63 0.63 0.62 0.62 0.62
MMLU-Pro Psychology 1.75 1.13 0.94 0.85 0.80 0.77 0.75 0.73 0.72 0.71 0.68 0.67 0.66 0.65 0.65 0.65

Avg 1.02 0.65 0.55 0.51 0.49 0.47 0.46 0.46 0.45 0.44 0.43 0.43 0.42 0.42 0.41 0.41

Overall Avg 0.98 0.59 0.50 0.47 0.45 0.44 0.44 0.43 0.42 0.42 0.41 0.41 0.40 0.40 0.39 0.39

Table 9: NLL results for VCSC across models and Ks.

B DETAILED PROMPTS

This Section describes the detailed prompts, and Figure 6 provides an overview of those used to
obtain answers and elicit confidence.

Next are given exact prompt descriptions. Prompt 1 is used for getting model-elicited uncertainties.
Prompt 2 is used to get the LRM thought trace without uncertainties, and after prompt 3 is used as
a judge, giving us the Judge method. Prompts 1, 2 and 3 are used for multiple-answer questions.
Prompts 8, 9 and 10 are like prompts 1, 2 and 3, but for the math dataset.

Inside the prompts 1, 2 and 3 (same for 8, 9 and 10), there are brackets which are used for inputting
variables. Question, choices, and letter correspond to the question in hand from the dataset, but
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Figure 3: Effect of mixing weight λ in VCSC. Shown separately for each model.

You are given a multiple choice question.

**Solve the problem**, showing your reasoning step by step. After solving, provide your
confidence in your answer.

{uncertainty_instructions}

{question}

{choices}

Your response must *end* with exactly two lines of the *exact* format below (no quotes) as the
very final lines of your answer:

’ANSWER: $LETTER’
’CONFIDENCE: $NUMBER’

- $LETTER must be one of the following options: {letters}

Think step by step before answering and show your reasoning first.

Listing 1: LRM prompt for multiple choice question confidence elicitation

uncertainty instructions are subprompts which are based on the method type: vanilla (prompt 4),
verification (prompt 5) and epistemic for the elicitation and the judge method (prompt 6 and 7).
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You are given a multiple choice question.

Solve the problem, showing your reasoning step by step.

{question}

{choices}

Your response must *end* with exactly one line of the *exact* format below (no quotes) as the
very final line of your answer:

’ANSWER: $LETTER’

- $LETTER must be one of the following options: {letters}

Think step by step before answering and show your reasoning first.

Listing 2: LRM prompt for multiple choice question without uncertainty elicitation

You are given a problem along with a solver’s full reasoning process and the answer they
arrived at.

{uncertainty_instructions}

[BEGIN PROBLEM]
{question}
[END PROBLEM]

[BEGIN REASONING AND ANSWER]
{reasoning_and_answer}
[END REASONING AND ANSWER]

Think step by step. End your final answer with this exact format as the final line:
CONFIDENCE: [number between 1 and 100]

Listing 3: LRM prompt for multiple choice question for judging solver’s reasoning process

Give a confidence number from 1 to 100 that represents your overall confidence that the **
final answer is correct**.

Listing 4: Vanilla uncertainty prompt for uncertainty instructions bracket in the main prompt

Give a confidence number from 1 to 100 that represents how likely the **final answer is
correct**, *based on the quality of the reasoning*. Focus on soundness, validity, and
coherence. Pay attention to errors, unsupported steps, flawed assumptions, etc.

1 - Reasoning fatally flawed; **final answer is almost certainly wrong**
25 - Major gaps or errors; **final answer is probably wrong**
50 - Mixed support; **final answer is plausible but not well-proved**
75 - Strong reasoning with only minor issues; **final answer is probably right**
100 - Airtight reasoning; **final answer is correct**

Listing 5: Verification uncertainty prompt for uncertainty instructions bracket in the main prompt

Give a confidence number from 1 to 100 that represents **how confident you are in your final
answer**.

Treat your final answer as fixed and do not try to re-solve the problem. Focus primarily on
your expressed certainty or doubt-hedging, hesitation, self-correction.

1 - You feel like you’re making a random guess; openly unsure
25 - You have significant doubts or hesitations
50 - Mixed feelings; some confidence, some doubt
75 - Mostly confident with minor reservations
100 - Completely certain; no doubts whatsoever

Listing 6: Epistemic uncertainty prompt for uncertainty instructions bracket in the main prompt for
elicitation
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Give a confidence number from 1 to 100 that represents **how confident the solver is in their
final answer**.

Treat their final answer as fixed and do not try to re-solve the problem. Focus primarily on
their expressed certainty or doubt-hedging, hesitation, self-correction.

1 - They feel like they’re making a random guess; openly unsure
25 - They have significant doubts or hesitations
50 - Mixed feelings; some confidence, some doubt
75 - Mostly confident with minor reservations
100 - Completely certain; no doubts whatsoever

Listing 7: Epistemic uncertainty prompt for uncertainty instructions bracket in the main prompt for
judge

You are given a math problem.

**Solve the problem**, showing your reasoning step by step. After solving, provide your
confidence in your answer.

{uncertainty_instructions}

{prompt}

Your response must *end* with exactly two lines of the *exact* format below (no quotes) as the
very final lines of your answer:

’ANSWER: $ANSWER’
’CONFIDENCE: $NUMBER’

- Do not use LaTeX boxes like \boxed in the final lines; output plain text only.
- Think step by step before answering and show your reasoning first.

Listing 8: LRM prompt for math question confidence elicitation

You are given a math problem.

Solve the problem, showing your reasoning step by step.

{prompt}

Your response must *end* with exactly one line of the *exact* format below (no quotes) as the
very final line of your answer:

’ANSWER: $ANSWER’

- Do not use LaTeX boxes like \boxed in the final line; output plain text only.
- Think step by step before answering and show your reasoning first.

Listing 9: LRM prompt for math question without uncertainty elicitation

You are given a problem along with a solver’s full reasoning process and the answer they
arrived at.

{uncertainty_instructions}

[BEGIN PROBLEM]
{question}
[END PROBLEM]

[BEGIN REASONING AND ANSWER]
{reasoning_and_answer}
[END REASONING AND ANSWER]

Think step by step. End your final answer with this exact format as the final line:
CONFIDENCE: [number between 1 and 100]

- Do not use LaTeX boxes like \boxed in the final line; output plain text only.

Listing 10: LRM prompt for math question for judging solver’s reasoning process
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Figure 4: Ablating reasoning effort. Shown separately for each task.

LLM USAGE

In preparing this paper, we used a large language model (ChatGPT) as a writing assistant. Its role
was limited to polishing phrasing, improving clarity and conciseness, and suggesting alternative
ways to express our messages.
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Figure 5: Ablating reasoning mode. Shown separately for each task.

 Give a confidence number from 1 
 to 100 that represents your overall 
 confidence that the **final   answer 
 is correct**.

(a) Vanilla uncertainty

 Give a confidence number from 1 to 100 that 
 represents how likely the **final answer is correct**, 
 *based on the quality of the reasoning*. Focus on 
 soundness, validity, and coherence. Pay attention to 
 errors, unsupported steps, flawed assumptions, etc.

    1   - Reasoning fatally flawed; **final answer is         
           almost certainly wrong**  
    25  - Major gaps or errors; **final answer is        

    probably wrong**  
    50  - Mixed support; **final answer is plausible but   
            not well-proved**  
    75  - Strong reasoning with only minor issues;      
            **final answer is probably right**  
    100 - Airtight reasoning; **final answer is correct**

 Give a confidence number from 1 to 100 that 
 represents **how confident you are in your final 
 answer**.
 Treat your final answer as fixed and do not try to re- 
 solve the problem. Focus primarily on your expressed 
 certainty or doubt—hedging, hesitation, self-correction.

    1   - You feel like you're making a random guess;  
           openly unsure  
    25  - You have significant doubts or hesitations  
    50  - Mixed feelings; some confidence, some       
            doubt  
    75  - Mostly confident with minor reservations  
    100 - Completely certain; no doubts whatsoever

(b) Verification uncertainty instructions (c) Epistemic uncertainty instructions

Figure 6: Overview of uncertainty instructions prompts defining VC methods. (a) Vanilla uncer-
tainty instruction, (b) Verification uncertainty instruction and (c) epistemic uncertainty instruction.
Each of the instructions is used both for elicitation and judge methods. For judge method, the epis-
temic uncertainty instructions are a bit different, as it needs to pay attention to the solver’s reasoning
trace, not its own.
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