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ABSTRACT

Multimodal audio-visual deception detection aims to predict whether a person
is lying by integrating visual and acoustic modalities, which has two main chal-
lenges: 1) the modality conflict problem and 2) heterogeneous cue representation
difficulty. However, existing approaches 1) often overlook the differences across
modalities for different individuals; and 2) typically rely on a single encoder
to handle diverse and individual-specific cues, which limits models’ representa-
tion capacity for heterogeneous cues. To address these challenges, we propose
MoMCE, a novel model with mixture of modality and cue experts for decep-
tion detection. It consists of two key components: 1) Prompt-aware Mixture of
Modality Experts, which employs a learnable prompt routing mechanism to gen-
erate adaptive instance-aware modality weight distributions for dynamic modality
adjustment. In addition, we propose a consistency-aware expert weighting loss.
For samples with high cross-modal consistency, it encourages balanced contribu-
tions across modalities. In contrast, for samples with strong conflicts, it reduces
the entropy of the modality weight distribution to focus on more reliable modali-
ties. 2) Prompt-aware Mixture of Cue Experts, which captures heterogeneous
and diverse deceptive cues within each modality. This module introduces multiple
experts with distinct semantic biases on top of a shared backbone to model dif-
ferent deceptive patterns. Additionally, we introduce a cue expert diversity loss to
balance learning across multiple cue experts, promoting effective representation of
diverse deceptive cues. Extensive experiments demonstrate that MoMCE adapts
to variations in both cross-modal contributions and cue heterogeneity, achieving
substantial improvements in deception detection performance.

1 INTRODUCTION

Deception is defined as intentional misleading DePaulo et al. (2003), with impacts on public
safety Abouelenien et al. (2016b), judicial fairness Pérez-Rosas et al. (2015); Fornaciari & Poe-
sio (2013), and economic stability Ding et al. (2019); Bajaj et al. (2023). Therefore, improving the
accuracy of deception detection is of great importance for safeguarding judicial fairness and main-
taining social stability. With the development of deep learning Vaswani et al. (2017); LeCun et al.
(2015), non-intrusive multimodal analysis has gradually become an important direction in deception
detection. Such approaches aim to automatically extract and model deception-related features from
speech and visual signals, thereby enabling the identification of potential deceptive behaviors Kar-
nati et al. (2021); Guo et al. (2023).

In multimodal deception detection tasks, it is often assumed that different modalities within the same
video segment are consistent, meaning that a liar would reveal deceptive cues across all modalities.
However, psychological studies DePaulo et al. (2003) indicate that because deceivers attempt to
disguise themselves, they often find it difficult to maintain complete consistency across modalities.
For example, an individual may have a natural expression, but their voice may reveal nervousness;
conversely, their voice may remain steady, but their facial expressions may betray deception. This
”modality conflict” phenomenon results in different representations of deception across modalities,
with the importance of each modality varying across specific samples. Moreover, even within the
same modality, deception cues exhibit significant inter-individual variability. For example, in the
visual modality, some individuals display noticeable eye movements when lying, while others pri-
marily reveal information through subtle facial expressions. In the audio modality, some individuals
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speed up their speech or pause frequently, while others primarily express emotion through changes
in voice tone. Such cue heterogeneity means that different individuals may rely on completely dif-
ferent behavioral patterns to convey deception cueswithin the same modality.

Existing methods primarily integrate multimodal information through common modality fusion
techniques, such as feature concatenation Nam et al. (2023); Kang et al. (2024); Karnati et al. (2021),
decision fusion Gupta et al. (2019); Wu et al. (2018), and adaptive fusion Ding et al. (2019); Guo
et al. (2023); Zhang et al. (2022). These approaches typically apply the same fusion strategy to all
samples, ignoring differences in the contribution of each modality across samples. As shown in Fig-
ure 1, the relative importance of different modalities can vary greatly across deceptive samples, and
a uniform fusion strategy may even lead to contradictory predictions. On the other hand, to address
deceptive cue heterogeneity, some studies attempt to introduce more handcrafted features Kang
et al. (2024); Guo et al. (2024); Nam et al. (2023) or employ more powerful feature extractors Guo
et al. (2023); Ji et al. (2025). However, these methods still rely on a single feature space and lack
the ability to dynamically adapt to individual differences, thus limiting the model’s generalization
performance across individuals.
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Audio

Figure 1: An example of modality importance in
multimodal deception detection, where modality
conflict can affect the prediction results.

In this paper, we propose a Mixture of Modal-
ity and Cue Experts (MoMCE) to jointly ad-
dress the modality conflict and cue heterogene-
ity challenges. The model consists of two main
components. First, to handle modality conflict,
we design a prompt-aware mixture of modal-
ity experts. This module combines learnable
prompt routing and gating mechanisms, treat-
ing each modality as an independent “expert.”
It adaptively assigns modality weights based
on input features, thereby enabling dynamic
modeling of modality contributions. Moreover,
to mitigate performance degradation caused by
incorrect routing, we introduce a consistency-
aware expert weight loss: when the modalities
are consistent (e.g., truthful samples or low-
conflict deceptive samples), the weight distri-
bution is constrained to remain balanced; when modality conflict is significant (high-conflict de-
ceptive samples), the model is encouraged to reduce weight distribution entropy and focus on more
reliable modalities, thus improving the robustness of inference.

Second, to address cue heterogeneity, we propose a novel model with prompt-aware mixture of cue
experts. On top of a shared backbone encoder, we introduce multiple sets of prompts with different
semantic biases to construct multiple cue-level experts, each specializing in capturing a different
type of deceptive cue, thereby covering the diverse behavioral patterns of deception. In addition,
during training, cue-level experts tend to overfit to the most salient cues, leading to insufficient
learning of other potential cues Peng et al. (2022); Wang et al. (2024a;b); Wei et al. (2024). To ad-
dress this, we design a cue diversity constraint that balances the learning process across cue experts,
ensuring that various deception cues are effectively modeled. Our main contributions are as follows:

• To address modality conflicts, we propose a mixture of modality experts that dynamically
generates sample-specific cross-modal weight distributions, enabling adaptive fusion of
modality-level features for each sample. To further mitigate erroneous routing, we intro-
duce a consistency-aware expert weighting loss to constrain the model’s routing entropy
and regulate the modality weights.

• We propose a mixture of cue experts that leverages prompts with different semantic priors
to construct multiple cue-level experts for each modality, enabling the model to capture het-
erogeneous deception cues. To prevent expert collapse, we further design a cues diversity
constraint that encourages experts to learn complementary and discriminative features.

• Extensive experiments on the DOLOS, Bag-of-Lies, and MU3D datasets show that our
method outperforms state-of-the-art multi-modal deception detection approaches, demon-
strating its effectiveness.
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2 RELATED WORK

Audio-Visual Deception Detection. Audio-visual joint learning for multimodal deception detec-
tion aims to identify deceptive behaviors by simultaneously modeling audio and visual modalities.
Previous studies can be broadly categorized into two directions: optimizing modality fusion and en-
hancing deception cue representation. In the first category, early methods typically integrated hand-
crafted multimodal features through simple feature concatenation or decision-level fusion Aboue-
lenien et al. (2016a); Gupta et al. (2019); Rill-Garcia et al. (2019); Mathur & Matarić (2020b);
Chebbi & Jebara (2023). With the rise of deep learning, some approaches began leveraging atten-
tion mechanisms to fuse deep representations, including CNN Gogate et al. (2017); Karnati et al.
(2021), ResNet Ding et al. (2019), DNN Şen et al. (2020), LSTM Hsiao & Sun (2022), GNN Zhang
et al. (2022), ViT Zhuo et al. (2024), and Wav2Vec Zhuo et al. (2024). More recently, research has
shifted towards efficient and adaptive methods. For example, PECL Guo et al. (2023) introduces
cross-modal adapters to learn latent alignments and relational features across modalities. However,
such methods typically apply the same processing strategy to all input samples, ignoring potential
modality conflicts. The second line of work Kang et al. (2024); Guo et al. (2024); Nam et al. (2023);
Guo et al. (2023); Ji et al. (2025), attempts to capture richer deception cues by introducing more
hand-crafted features or training more powerful encoders. However, these approaches still rely on
a single feature space and lack the ability to dynamically adapt to individual differences. In con-
trast, our approach performs dynamic modality weighting and employs a mixture of cue experts to
model heterogeneous cues, effectively addressing modality conflicts and cue heterogeneity, thereby
enabling a more flexible and adaptive multimodal deception detection framework.

Mixture-of-Experts. The core idea of a Mixture-of-Experts (MoE) model is to dynamically se-
lect the most suitable “experts” based on the input, where each expert specializes in capturing a
specific type of feature or pattern. Through a collaborative mechanism among experts, the MoE ef-
fectively integrates the strengths of each expert while maintaining computational efficiency, thereby
improving the model’s predictive performance. In multimodal learning, recent studies have ap-
plied MoE structures to achieve several goals, including reducing computational cost Mustafa et al.
(2022); Shen et al. (2023), handling modality missingness Yun et al. (2024), modeling modality
interactions Cao et al. (2023); Akbari et al. (2023), dynamic modality fusion Cheng et al. (2024),
cross-modal continual learning Huai et al. (2025), and aligning modality-specific and modality-
invariant features Gao et al. (2024); Fang et al. (2025). Inspired by these advances, we decouple
inter- and intra-modality processing, represent both modalities and deception cues as experts, and
introduce prompt-aware structures to automatically aware expert competence and learn their impor-
tance weights. Thereby improving the ability to personalized model individual deceptive behaviors.

3 METHOD

3.1 OVERALL FRAMEWORK

Following typical multimodal deception detection approaches Guo et al. (2023), this paper aims to
identify deception in videos using both visual and audio signals. Given a video segment U , the inputs
consist of a visual modality (v) and an audio modality (a). The visual and audio streams are encoded
into embedding sequences through a two-dimensional convolutional neural network (2D-CNN) and
a one-dimensional convolutional neural network (1D-CNN), respectively. These two modalities are
then projected into a unified embedding space:

Xv ∈ RL×D, Xa ∈ RL×D, (1)

where L represents the sequence length and D denotes the embedding dimension. Motivated
by Ding et al. (2019), we model the interaction features as an independent modality and employ
a cross-modal attention mechanism to align and integrate the visual and audio modalities, thereby
obtaining the interaction embeddings.

Our overall framework is shown in Figure 2 and consists of two main parts. In the mixture of cue ex-
perts, each modality introduces multiple cue-level experts to capture diverse deception cues. These
experts are then aggregated into modality-level features through a prompt-aware routing network.

Yv = fv(Xv), Yi = fi(Xv, Xa), Ya = fa(Xa), (2)
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Figure 2: Framework of MoMCE. It consists of two main stages. In the MoCE stage, each
modality introduces multiple cue-level experts to capture different types of deceptive cues. These
experts are then aggregated into modality-level features through a prompt-aware routing network. In
the MoME stage, visual, audio, and interaction features are dynamically weighted via a modality-
level prompt routing mechanism to assess the relative contribution of each modality.

where fv , fi, and fa denote the visual, interaction, and audio mixture of cue experts, respectively.
In the mixture of modality experts stage, the visual features Yv , audio features Ya, and interaction
features Yi are dynamically weighted by a modality-level prompt routing mechanism to evaluate
the relative contribution of each modality. This produces a unified representation, which is then
processed by a feed-forward network (FFN) to generate the final prediction.

3.2 PROMPT-AWARE MIXTURE OF CUE EXPERTS

To capture diverse deceptive cues within each modality, we propose a prompt-aware mixture of
cue experts module. This module consists of multiple cue experts and a dynamic prompt routing
network. Each cue expert is built upon a pretrained ViT Dosovitskiy et al. (2020) (for the visual
modality) or W2V2 Baevski et al. (2020) (for the audio modality), augmented with learnable expert
prompts to ensure both strong representational capacity and expert diversity. The dynamic prompt
routing network utilizes learnable gating prompts to perceive the dynamic capabilities of experts
to generate a cue-expert weight distribution, which is ultimately used to aggregate multiple cues.
Unlike multimodal models in visual tasks Riquelme et al. (2021); Abbas & Andreopoulos (2020)
and general multimodal models Li et al. (2025); Cheng et al. (2024), our approach leverages a
prompt-aware dynamic routing mechanism to better model the complementarity and task-specific
dependencies among experts. Formally, for visual or audio modalities, let the token sequence at the
n-th Transformer block be

X(n) = [x
(n)
1 , . . . , x

(n)
L ]. (3)

We prepend three types of prompts to the sequence: cross-modality gating prompts p
(n,m)
cross , intra-

modality gating prompts p(n,m)
intra , and expert prompts p(n,m)

exp . The number of gating prompts is set to
Tg, and the number of expert prompts is set to Te. The input for the m-th expert at the n-th layer is

Z(n,m) = [p(1,n,m)
cross , . . . , p

(Tg,n,m)
cross , p

(1,n,m)
intra , . . . , p

(Tg,n,m)
intra , p(1,n,m)

exp , . . . , p(Te,n,m)
exp , x

(n)
1 , . . . , x

(n)
L ].
(4)

Subsequently, the sequence is passed through the frozen, pre-trained Transformer block to compute
feature correlations, yielding

Z(n,m) = TransformerBlock
(
Z(n−1,m); θ

(n)
shared

)
, (5)

Prompt-aware Routing Network. We extract p(n,m)
intra from Z(n,m). This vector interacts with the

expert prompts and the original tokens through a self-attention mechanism, enabling the network to
perceive the response of each expert to the current modality features:

p
(n,m)
intra = Z(n,m)[index of p(n,m)

intra ]. (6)

The routing score for each expert is then computed as

s(n,m) = wn⊤p
(n,m)
intra , α(n,m) =

exp
(
sn,m

)∑M
j=1 exp

(
sn,j

) . (7)
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where wn is the learnable projection vector of modality n, α(n,m) is the normalized routing weight
obtained. we obtain Z̃(n,m) by removing the expert and intra-modality gating prompts from Z(n,m).
The final fused feature of the MoCE module is obtained by

Y n =

M∑
m=1

α(n,m) · Z̃(n,m). (8)

The visual and audio branches independently perform this computation, yielding Y n
v and Y n

a . For
the interaction branch, we compute the interactions information using Y n

v and Y n
a . For the m-th

interaction expert at the n-th layer, the inputs are

Z(n,m)
a = [ p(n,m)

a,g , p(n,m)
a,e , Y n

a ], Z(n,m)
v = [ p(n,m)

v,g , p(n,m)
v,e , Y n

v ], (9)

where p
(n,m)
a,g and p

(n,m)
a,e denote the learnable audio expert gating prompt and the audio expert

prompt, respectively, and p
(n,m)
v,g and p

(n,m)
v,e are defined analogously. Within each interaction ex-

pert, cross-modal attention is applied to capture interactions between the two modalities:

Ẑ(n,m)
a = MHSA(Z(n,m)

a , Z(n,m)
v , Z(n,m)

v ), Ẑ(n,m)
v = MHSA(Z(n,m)

v , Z(n,m)
a , Z(n,m)

a ), (10)

where MHSA denotes the multi-head self-attention mechanism. After applying MHSA, we extract
the gating prompts and token representations from Ẑ

(n,m)
a and Ẑ

(n,m)
v :

p (n,m)
a,g , Y

(n,m)

a = Ẑ(n,m)
a [index of p (n,m)

a,g , Y n
a ], p (n,m)

v,g , Y
(n,m)

v = Ẑ(n,m)
v,g [index of p (n,m)

v,g , Y n
v ].

(11)
We compute both the interaction features Y

(n,m)

i and the expert-level gating token p
(n,m)
i,g as

Y
(n,m)

i = ϕ
(
Wf [Y

(n,m)

a , Y
(n,m)

v ]
)
, p

(n,m)
i,g = ϕ

(
Wc[p

(n,m)
a,g , p (n,m)

v,g ]
)
, (12)

where [·, ·] denotes concatenation, Wf and Wc are trainable projection matrices, and ϕ(·) is the
ReLU activation. Finally, we apply Equations (7)–(8) to perform expert selection and weighted
fusion across the M experts, yielding the final interaction representation:

Y n
i = MoE-Fusion(Y

(n,m)

i , p
(n,m)
i,g ). (13)

Cue Expert Diversity Loss. The Mixture of Cue Experts aim to capture heterogeneous deceptive
cues. However, during the training of multiple experts, a “dominant cue” phenomenon often arises:
several experts tend to repeatedly focus on the most salient and easy-to-learn deceptive cues, while
other potential cues receive insufficient attention. To mitigate this issue, we introduce the Cue Expert
Diversity Loss to balance the learning among experts. The loss is formulated as follows:

Ldiv =
1

BM(M − 1)

B∑
b=1

∑
i ̸=j

cos(Rb,i,Rb,j), (14)

where R ∈ RB×M×D denotes the expert representations for a batch of B samples. Here,
cos(Rb,i,Rb,j) denotes the cosine similarity between the i-th and j-th expert representations of the
b-th sample, M denotes the number of experts. This encourages expert to provide complementary
features, thereby reducing redundancy and improving the capture of diverse deceptive cues.

3.3 PROMPT-AWARE MIXTURE OF MODALITY EXPERTS

In the MoME, we consider three types of modality experts: visual Yvis, audio Yaud and interaction
Yinter. After being encoded by the MoCE, three modalities include cross-modality gating prompts
and feature tokens, each cross-modality gating prompt has perceived the representation of modality.
Therefore, we use the cross-modal gating prompts to generate the experts’ weight distributions.
Specifically, we extract the cross-modality gating prompts p(m)

cross and feature tokens Xk:

p(m)
cross, Xk = Yk[index of p(m)

cross, X], k ∈ {vis, aud, inter}. (15)

Afterwards, we compute cross-modal scores and softmax weights from these descriptors:

uk = w⊤
crossp

(m)
cross, βk =

exp(uk)∑
j∈{vis,aud,inter} exp(uj)

. (16)
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where wcross is a learnable weight, uk is the score for modality k, βk is the softmax weight for
modality k. Finally, we obtain the fused multimodal representation Yc by weighting:

Yc =
∑

k∈{vis,aud,inter}

βkXk. (17)

Based on this fused representation, we apply a feed-forward network (FFN) to obtain the prediction
ŷ, and compute the loss function by comparing it with the ground-truth label y.

Consistency-aware Expert Weight Loss. Although the MoME can assign expert weights accord-
ing to each expert’s capability, due to the highly individualized nature of modality conflicts across
different samples, the learned modality weight distribution may still rely on unreliable modalities.
We introduce a consistency-aware expert weight loss, which constrains the modality weight distri-
bution based on the conflict level. Specifically, the modality conflict κ is defined as:

κ = 1− 1

3 ∗ (3− 1)

∑
k ̸=l

cos(Xk, X l), (18)

where k, l ∈ {vis, aud, inter} index the visual, audio, and interaction, and cos(Xk, X l) computes
the cosine similarity between the mean representations of modality k and l. Given a threshold cth,
we compare the samples’ conflict scores κ with the threshold and divide them into three categories:
genuine samples, low-conflict deceptive samples, and high-conflict deceptive samples. For genuine
and low-conflict deceptive samples, we adopt a more uniform weight distribution in the loss to
encourage modeling modality diversity, while for high-conflict deceptive samples, we promote a
more concentrated weight distribution to emphasize the most reliable modality. We measure the
dispersion of the weights using the routing entropy Fang et al. (2025), defined as:

H(β(b)) = −
∑
k

β
(b)
k log(β

(b)
k + ϵ), (19)

where ϵ is a small constant for numerical stability. The consistency-aware expert weight loss LCEW

is defined as:

LCEW =
1

B

B∑
b=1

(
H(β(b))−H∗

b

)2
(20)

where H∗ denotes the target entropy. For genuine and low-conflict deceptive samples, we set H∗ =
1.0, while for high-conflict deceptive samples, we set H∗ = 0.0.

3.4 LOSS FUNCTIONS

We combine the above loss functions to obtain the overall training objective:
L = Lcls + λaux LCEW + λdiv Ldiv, (21)

where Lcls denotes cross-entropy loss. λaux and λdiv are hyperparameters that control the relative
importance of the auxiliary losses. The overall workflow of MoMCE is detailed in Appendix A.1.

4 EXPERIMENTAL ANALYSIS

4.1 IMPLEMENTATION DETAILS

For the visual modality, we use AlphaPose Fang et al. (2017) to extract faces from videos. For each
face clip, we uniformly sample 64 frames, normalize them, and resize them to 160 × 160 pixels.
The face images are encoded using a 2D-CNN module to produce 256-dimensional features. For
the audio data, the raw speech signal is resampled and encoded using a 1D-CNN module, resulting
in a 512-dimensional feature vector for each audio sample. The visual and audio tokens are then
projected into 768 dimensions through a linear projection layer. We train the model for 100 epochs
using the Adam optimizer with a learning rate of 1×10−5. The consistency-aware expert weight loss
is inactive for the first 30 epochs to avoid early interference from unstable modality features. Model
performance is evaluated in terms of Accuracy (ACC), F1-score (F1), and Area Under the Curve
(AUC). All training and inference are conducted on two H100 GPUs. Unless otherwise specified,
the number of experts M in MoCE is set to 8, with Tg = 1 gating prompt and Te = 4 expert prompts.
The hyperparameters λdiv and λaux are both set to 0.1, and the threshold is set to cth = 0.5. The
analysis of the hyperparameters M , Tg, Te and cth is presented in Appendix A.3.
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Table 1: In-domain evaluation results. Bold numbers indicate the best results.

Method ACC F1 AUC

SVM (OpenFace) 53.55 69.75 54.30
DT (OpenFace) 50.58 53.58 50.58
RF (OpenFace) 53.67 61.75 54.66
AdaBoost (OpenFace) 50.57 55.36 50.35
SVM (AU) 52.76 68.13 52.42
DT (AU) 51.73 54.53 51.73
RF (AU) 50.45 58.08 51.57
AdaBoost (AU) 48.76 52.95 47.35
LSTM (OpenFace) 56.28 59.28 58.54
LSTM (AU) 56.46 63.43 58.68
LSTM (RN18) 59.72 64.15 56.68
LieNet (Face) 59.67 73.24 53.14
FacialCueNet (Face) 60.98 68.65 61.99
DDABG (Face) 55.47 62.52 52.13
PECL (Face) 61.44 69.42 58.89
AFFAKT (Face) 67.64 70.54 72.12

MLP (MFCC) 58.10 59.63 61.34
MLP (OpenSMILE) 55.37 68.67 53.25
MLP (W2V2) 54.21 43.83 53.69
LieNet (Audio) 57.14 72.72 50.00
PECL (Audio) 59.19 73.46 52.54
AFFAKT (Audio) 61.98 68.22 63.91

LieNet (Face+Audio) 56.50 69.72 51.02
PECL (Face+Audio) 64.75 71.20 62.71
AFFAKT (Face+Audio) 68.10 70.73 72.26
MoMCE (Face+Audio) 79.10 82.38 78.09

(a) Results on the DOLOS dataset

Method ACC F1 AUC

Random Forest (LBP) 55.26 – –
MLP (LBP) 49.90 – –
SVM (LBP) 53.25 – –
LieNet (Face) 55.65 30.30 51.07
FacialCueNet (Face) 56.23 63.26 59.53
DDABG (Face) 56.66 55.17 57.89
PECL (Face) 58.94 43.06 58.44

KNN (MFCC) 56.22 – –
LieNet (Audio) 56.15 24.38 52.82
PECL (Audio) 58.43 56.70 57.29

LieNet (Face+Audio) 59.78 58.14 58.09
PECL (Face+Audio) 59.51 51.06 59.41
MoMCE (Face+Audio) 61.09 52.91 60.93

(b) Results on Bag-of-Lies

Method ACC F1 AUC

LieNet (Face) 57.19 57.62 57.19
FacialCueNet (Face) 57.64 59.13 50.89
DDABG (Face) 55.63 51.99 52.20
PECL (Face) 54.68 47.19 54.64

LieNet(Audio) 53.73 44.52 53.73
PECL(Audio) 56.25 45.72 56.10

LieNet (Face+Audio) 53.48 33.62 54.75
PECL (Face+Audio) 55.31 60.07 55.31
MoMCE (Face+Audio) 58.58 60.35 58.69

(c) Results on MU3D

4.2 DATASET AND PROTOCOL

We evaluate the performance of MoMCE on three datasets: DOLOS Guo et al. (2023), Bag-of-
Lies Gupta et al. (2019), and MU3D Lloyd et al. (2019). These datasets cover a variety of sce-
narios, including game shows, spontaneous lies, and real-world simulations, allowing for compre-
hensive evaluation of the model under diverse conditions. For the DOLOS dataset, we follow the
three official train-test splits provided by the dataset and report the average results. For the Bag-of-
Lies dataset, we use the B group containing all video samples. In addition, we follow the official
participant-based split Gupta et al. (2019) and perform three-fold cross-validation. For the MU3D
dataset, to eliminate the influence of identity on the experimental results, we divide the 80 partic-
ipants into four identity groups, each containing 20 participants. In the experiments, we perform
four-fold cross-validation, and the final results are reported as the average of the four experiments.
All compared methods within the same dataset follow the same evaluation protocol. Detailed dataset
descriptions and example visualizations are provided in the Appendix A.2.

4.3 IN-DOMAIN EVALUATION

Under the same dataset settings, we compare MoMCE with state-of-the-art automatic deception
detection (ADD) methods, with the results on DOLOS, Bag-of-Lies, and MU3D shown in Ta-
bles 1a, 1b, and 1c, respectively. Following the practice of Guo et al. (2023) and Ji et al. (2025),
we select traditional machine learning methods and deep learning models as baselines and con-
duct comparisons from visual, audio, and audiovisual perspectives. For traditional methods, visual
features include OpenFace features, Action Units (AU) features, and LBP features, while acoustic
features include MFCC (Mel-Frequency Cepstral Coefficients) and OpenSMILE features. In visual
classification tasks, commonly used classifiers such as Support Vector Machines (SVM), Decision
Trees (DT), and Random Forests (RF) are employed, whereas for acoustic classification tasks, Mul-
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Table 2: Cross-dataset results on DOLOS (D), Bag-of-lies (B), and MU3D (M); “X&Y→Z” denotes
training on X and Y, testing on Z.

Method M&B to D D&M to M D&B to B Average
ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC

LieNet (V) 53.42 69.62 49.84 52.19 62.77 52.19 55.38 42.23 55.32 53.66 58.21 52.45
FacialCueNet (V) 48.84 31.68 50.63 52.56 48.97 51.26 57.10 61.28 55.99 52.84 47.31 52.63
PECL (V) 54.01 70.09 50.08 51.25 50.63 51.25 54.46 42.19 54.40 53.24 54.30 51.91

LieNet (A) 53.91 63.50 52.29 53.75 36.21 53.75 52.92 49.17 52.90 53.53 49.63 52.98
PECL (A) 54.63 68.80 51.36 51.56 67.09 51.56 57.54 63.68 57.59 54.58 66.52 53.50

LieNet (V+A) 54.40 68.23 51.53 54.69 50.51 54.69 51.08 59.75 51.14 53.39 59.50 52.45
PECL (V+A) 54.51 69.55 50.92 51.25 66.95 51.25 55.38 52.46 55.37 53.71 62.99 52.51
MoMCE (V+A) 57.80 72.88 50.71 56.25 60.49 55.26 59.20 56.68 59.17 57.75 63.35 55.05

Table 3: Ablations on MoME (Mixture of Modality Experts) and MoCE (Mixture of Cue Experts).

MoME MoCE DOLOS BOL MU3D
ACC F1 AUC ACC F1 AUC ACC F1 AUC

✓ 61.73 69.85 58.97 59.87 41.94 58.30 57.50 58.35 57.50
✓ 65.62 71.65 63.86 60.40 44.14 59.44 57.63 54.64 53.64

✓ ✓ 79.10 82.38 78.09 61.09 52.91 60.93 58.58 60.35 58.69

tilayer Perceptrons (MLP) and KNN classifiers are adopted ( Mathur & Matarić (2020a); Avola et al.
(2019); Yang et al. (2021); Gupta et al. (2019). Deep learning baselines include ResNet18 (RN18)
+ LSTM Ding et al. (2019), W2V2 + MLP Gogate et al. (2017), as well as recent ADD models
such as LieNet Karnati et al. (2021), FacialCueNet Nam et al. (2023), DDABG Kang et al. (2024),
PECL Guo et al. (2023), and AFFAKT Ji et al. (2025).

Results and Analysis. As shown in Table 1, MoMCE achieves significant improvements on
accuracy (ACC) over existing methods: on the DOLOS dataset, ACC increases by 11% com-
pared to AFFAKT Ji et al. (2025) (68.10%→79.10%), and on the Bag-of-Lies dataset by 1.31%
(59.78%→61.09%). Similar gains are observed in AUC, e.g., an improvement of 5.83% on DOLOS
(72.26%→78.09%). These improvements are consistent across Bag-of-Lies and MU3D. It is worth
noting that our method yields slightly lower F1 than FacialCueNet Nam et al. (2023), mainly be-
cause FacialCueNet leverages multiple handcrafted facial deception features to boost recall. How-
ever, handcrafted features often have limited generalization in complex scenarios, which explains
why FacialCueNet underperforms in ACC and AUC. From a methodological perspective, MoMCE
consistently outperforms other ADD approaches. Compared with recent audiovisual learning meth-
ods such as PECL and AFFAKT, MoMCE dynamically estimates the importance of each modality
per sample and performs adaptive fusion accordingly. Furthermore, the multi-expert design within
each modality encourages multi-cue learning, enhancing intra-modal representation of deception
cues and achieving joint optimization across and within modalities.
4.4 CROSS-DOMAIN EVALUATION

To further assess the effectiveness of MoMCE, we conduct cross-domain evaluation in Table 2.
Across three datasets and three metrics (12 metrics in total), MoMCE achieves the best performance
on 8 metrics. Notably, the average precision is improved from 54.58% (PECL(A)) to 57.75%. Com-
pared to the in-domain setting, the cross-domain setting is considerably more challenging due to
domain shifts. For instance, DOLOS consists of drama scenes, whereas Bag-of-lies and MU3D
mainly contain laboratory scenes, leading to different levels of cue exposure. Despite these chal-
lenges, MoMCE consistently outperforms all competing methods, demonstrating its strong gener-
alization ability.

4.5 ABLATION STUDY AND ANALYSIS

Effectiveness of MoME and MoCE. We evaluate the key components of MoMCE, including
MoME and MoCE, on three datasets, as shown in Table 3. MoME yields a significant per-
formance improvement. This demonstrates that dynamically fusing modality features according
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Table 4: Ablations on CEDL and CEWL loss functions.

Methods DOLOS BOL MU3D
ACC F1 AUC ACC F1 AUC ACC F1 AUC

Ours (w/o CEDL) 75.65 79.62 74.44 60.09 33.81 57.02 57.81 43.01 57.35
Ours (w/o CEWL) 76.52 79.55 76.00 60.56 46.87 57.95 58.44 49.26 58.44

Ours 79.10 82.38 78.09 61.09 52.91 60.95 58.58 60.35 58.69

Figure 3: t-SNE visualization of feature distribution on DOLOS.
to sample-level importance enables the model to leverage complementary information from each
modality more effectively, leading to better multi-modal representation learning. Furthermore,
we observe that integrating MoCE also leads to a significant performance improvement. This
result highlights the necessity of modeling heterogeneous cues within each modality, and shows
that MoCE can capture multiple informative cues, filling the gap left by a single-encoder design.

Figure 4: Effect of λaux and λdiv on ACC, F1, and AUC (with std.
bars); asterisks indicate significant improvements.

Effectiveness of CEDL
and CEWL. We further
conduct ablation studies
on CEDL and CEWL, as
reported in Table 4. Both
losses consistently improve
performance, suggesting
that without additional
regularization, the model
tends to over-focus on
homogeneous cues and
ignore other discriminative
information. CEDL explicitly encourages the model to learn diverse cues, while CEWL mitigates
the modality conflict issue by enforcing balanced learning on conflict-prone samples. In addition,
we vary the weights of CEDL and CEWL, as shown in Figure 4, and observe that the performance
generally increases with higher weights, further confirming their effectiveness.

Visualization. We also visualize the feature distributions of MoMCE, MoMCE without MOCE,
and MoMCE without MOME in Figure 3, providing a qualitative comparison. We conduct the
experiment on the test set of Protocol 1 from the DOLOS dataset, projecting sample features into
a two-dimensional space using t-SNE. The results show that the feature distributions of MoMCE
without MOCE and MoMCE without MOME are irregular, while the features of MoMCE are more
compact and consistent, with clearer separability among classes. These results indicate that MoMCE
enhances feature discriminability, leading to more accurate deception detection.

5 CONCLUSION

In this paper, we address the challenges of modality conflicts and cues heterogeneity in audiovisual
deception detection. We propose a Mixture of Modality and Cue Experts, MoMCE, which consists
of two key components: a prompt-aware mixture of modality experts that adaptively adjusts modal-
ity contributions with consistency-aware expert weight regularization, and a prompt-aware mixture
of cue experts that captures diverse and heterogeneous cues within each modality with cue diver-
sity regularization. Extensive experiments on multiple multimodal deception detection benchmarks
demonstrate that MoMCE achieves superior accuracy and robustness compared to existing methods.
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A APPENDIX

A.1 OVERALL WORKFLOW OF MOMCE

We summarize the overall workflow of our Mixture of Modality and Cue Experts (MoMCE) frame-
work, which is presented in Algorithm 1. Given a video segment U , both visual and audio modalities
are first encoded into token sequences. Each modality is then processed by a Mixture of Cue Experts
(MoCE) module to capture diverse intra-modal deception cues. In this stage, multiple experts are
trained in parallel, and their outputs are dynamically weighted via a prompt-aware routing mecha-
nism to form modality-level representations.

Following this, the Mixture of Modality Experts (MoME) stage fuses the visual, audio, and cross-
modal interaction features. Modality-specific gating prompts are used to compute adaptive weights,
allowing the model to adjust the relative contribution of each modality according to the input sample.
This design mitigates the effect of modality conflicts, which are common in deception detection
tasks.

Finally, the fused multimodal representation is passed through a feed-forward network to gener-
ate the final prediction. The overall training objective combines the main classification loss with
auxiliary losses that encourage both expert diversity and consistency-aware gating, as described in
Algorithm 1. This structured workflow allows MoMCE to effectively capture both fine-grained
intra-modal deceptive cues, while adaptively balancing the contribution of each modality.

A.2 DETAILED DATASET DESCRIPTIONS AND EXAMPLE VISUALIZATIONS

We evaluate the performance of MoMCE on three datasets: DOLOS Guo et al. (2023), Bag-of-
Lies Gupta et al. (2019), and MU3D Lloyd et al. (2019). These datasets cover a variety of scenarios,
including game shows, spontaneous lies, and real-world simulations, allowing for a comprehensive
evaluation of the model under diverse conditions. Figure 6 shows the illustration of each dataset.
The DOLOS dataset is sourced from a television game show and contains 1,675 video samples,
including 899 deceptive videos and 776 truthful videos, recorded by 213 different participants. In
our experiments, we follow the three official train-test splits provided by the dataset and report
the averaged results. The Bag-of-Lies dataset is designed for spontaneous deception detection and
contains 325 videos, with 162 deceptive videos and 163 truthful videos. The dataset is recorded by
35 participants, each providing both truthful and deceptive samples. The dataset is divided into two
subsets: Group A and Group B. Group B contains all video samples, while Group A only includes
samples recorded with intrusive physiological sensors. Since our method relies on non-intrusive
video analysis, we perform evaluations on the larger Group B. Previous studies on Bag-of-Lies (e.g.,
Karnati et al. (2021); Gupta et al. (2019); Nam et al. (2023); Kang et al. (2024)) use inconsistent
train-test splits, making direct comparisons difficult. To ensure comparability, we follow the official
participant-based split Gupta et al. (2019), conduct three-fold cross-validation, and reproduce the
results of Karnati et al. (2021); Nam et al. (2023); Kang et al. (2024)) under the same settings. The
MU3D dataset contains 320 videos recorded by 80 different subjects, with each subject recording
four videos, two truthful and two deceptive. To eliminate the influence of identity on experimental
results, we divide the 80 subjects into four identity groups, each containing 20 subjects and 80
videos. In cross-validation, we use three groups for training and the remaining group for testing,
repeating this four times so that each group serves as the test set once. We report the final results as
the averages over the four experiments.

A.3 HYPER-PARAMETER ANALYSIS.

To validate the robustness of MoMCE, we conduct a sensitivity analysis on its hyperparameters.
Since the focus is on the overall performance of the model, we test various values of the threshold
cth, the number of intra-modality experts M , the number of expert prompts Te, and the number
of gating prompts Tg on the three dataset. Specifically, the sensitivity analysis is performed by
varying one target hyperparameter while keeping the others fixed at their baseline values used in
the experiments. Figure 5 shows the average results of different hyperparameter settings across the
datasets. The results indicate that the overall evaluation metrics remain relatively stable, suggesting
that the performance of the proposed method is not sensitive to the values of these hyperparameters.
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Algorithm 1 Prompt-aware Mixture of Modality and Cue Experts (MoMCE)

Require: Video segment U with visual v and audio a, number of cue experts M , Transformer layers
N , prompt counts Tg, Te

Ensure: Final prediction ŷ
1: Step 1: Encode visual and audio modalities
2: Xv ← 2D-CNN(v)
3: Xa ← 1D-CNN(a)
4: Step 2: Mixture of Cue Experts (MoCE) for each modality
5: for modality k ∈ {vis, aud} do
6: for expert m = 1 to M do
7: Prepend prompts:
8: Z

(n,m)
0 = [p

(1:Tg,n,m)
cross , p

(1:Tg,n,m)
intra , p

(1:Te,n,m)
exp , Xk]

9: for layer n = 1 to N do
10: Z

(m)
n ← TransformerBlock(Z(m)

n−1; θ
(n)
shared)

11: end for
12: Extract intra-modality gating prompt: p(n,m)

intra ← Z
(m)
N [index of p(n,m)

intra ]

13: Compute routing score: s(n,m) = wn⊤p
(n,m)
intra

14: end for
15: Softmax over experts: α(n,m) = softmax([s(n,1), . . . , s(n,M)])

16: Fuse expert outputs: Y n
k =

∑M
m=1 α

(n,m) · Z̃(m)
N

17: end for
18: Step 3: Interaction Experts
19: for interaction expert m = 1 to M do
20: Z

(n,m)
aud = [p

(n,m)
a,g , p

(n,m)
a,exp , Y n

aud]

21: Z
(n,m)
vis = [p

(n,m)
v,g , p

(n,m)
v,exp , Y n

vis]

22: Apply cross-modal attention (MHSA) to obtain Ẑ
(n,m)
aud , Ẑ

(n,m)
vis

23: Extract features: Y
(n,m)

aud , p
(n,m)
a,g , Y

(n,m)

vis , p
(n,m)
v,g

24: Compute interaction representations:
25: Y

(n,m)

i = ϕ(Wf [Y
(n,m)

aud , Y
(n,m)

vis ])

26: Compute gating token: p(n,m)
i,g = ϕ(Wc[p

(n,m)
a,g , p

(n,m)
v,g ])

27: end for
28: Fuse interaction experts via MoE: Y n

inter = MoE-Fusion({Y (n,m)

i , p
(n,m)
i,g }Mm=1)

29: Step 4: Mixture of Modality Experts (MoME)
30: for modality k ∈ {vis, aud, inter} do
31: Extract cross-modal gating prompt: p(m)

cross, Xk ← Yk[index of p(m)
cross, Xk]

32: Compute cross-modal score: uk = w⊤
crossp

(m)
cross

33: end for
34: Softmax over modalities: βk = softmax([uvis, uaud, uinter])
35: Fuse modalities: Yc =

∑
k βkXk

36: Step 5: Prediction and loss
37: ŷ = FFN(Yc)
38: Compute total loss: L = Lcls + λauxLCEW + λdivLdiv

Figure 5: Effects of varying cth, M , Te and Tg on model performance. ACC, F1, and AUC are
plotted to illustrate trends and relative stability across hyperparameter settings.
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Bag of Lies

DOLOS

MU3D

Truthful
Visual Audio Visual Audio

Deceptive

Figure 6: Visualization of sample examples from the DOLOS, Bag-of-Lies, and MU3D datasets.
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