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Abstract
The use of spontaneous language to derive ap-001
propriate digital markers has become an emer-002
gent, promising and non-intrusive method to003
diagnose and monitor dementia. Here we pro-004
pose methods to capture language coherence005
as a cost-effective, human-interpretable digi-006
tal marker for monitoring cognitive changes007
in people with dementia. We introduce a008
novel task to learn the temporal logical con-009
sistency of utterances in short transcribed nar-010
ratives and investigate a range of neural ap-011
proaches. We compare such language coher-012
ence patterns between people with dementia013
and healthy controls and conduct a longitudinal014
evaluation against three clinical bio-markers to015
investigate the reliability of our proposed dig-016
ital coherence marker. The coherence marker017
shows robustness in distinguishing between018
people with mild cognitive impairment, those019
with Alzheimer’s Disease and healthy controls.020
Moreover our analysis shows high association021
between the coherence marker and the clinical022
bio-markers as well as generalisability potential023
to other related conditions.024

1 Introduction025

Dementia includes a family of neurogenerative con-026

ditions that affect cognitive functions of adults.027

Early detection of cognitive decline could help028

manage underlying conditions and allow better029

quality of life. Many aspects of cognitive disor-030

ders manifest in the way speech is produced and031

in what is said (Forbes-McKay and Venneri, 2005;032

Voleti et al., 2019). Previous studies showed that033

dementia is often associated with thought disorders034

relating to inability to produce and sustain coherent035

communication (McKhann, 1987; Hoffman et al.,036

2020). Language coherence is a complex multi-037

faceted concept which has been defined in different038

ways and to which several factors contribute (Re-039

deker, 2000). A high-quality communication is040

logically consistent, topically coherent, and prag-041

matically reasonable (Wang et al., 2020).042

The scene is in the kitchen.Healthy

The mother is wiping dishes.

A boy is trying to get cookies out of a jar.

He's about to tip over on a stool

The little girl is reacting to his falling.

Tell me everything that you see happening
in the picture.Instructor

I see a part of the whole kitchenDementia

Is that all the kitchen or isn't it ?

A mother in her kitchen doing some work.

Oh have you heard about that new game
that they play after Christmas?

Just tell me do you see anything else
happening in this picture here?

…

…
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Figure 1: Snapshots from healthy controls and peo-
ple with dementia describing the Cookie Theft Picture.
Green frames indicate logically consistent utterances
and red disruptive ones (e.g., elaborations or ‘flight of
ideas’).

Fig. 1 illustrates two snapshots from people with 043

dementia and healthy controls in the Pitt Corpus 044

(Becker et al., 1994), containing subjects’ descrip- 045

tions of the Cookie Theft Picture (CTP, Appx. A) 046

from the Boston Diagnostic Aphasia Examination 047

(Goodglass et al., 2001). As shown in Fig. 1, de- 048

mentia subjects present more disruptions in the 049

logical consistency of their CTP narratives than 050

healthy controls. For example, the pair of semanti- 051

cally unrelated utterances {S1, S2} is logically con- 052

sistent and descriptive. By contrast, even though 053

{S3, S4} are semantically related, the pair is logi- 054

cally inconsistent since the latter utterance disrupts 055

the description of the CTP. Here we focus on learn- 056

ing coherence as logical-thematic consistency of 057

utterances in narratives, rather than the semantic 058

relatedness of entities across sentences, to capture 059
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disruptive utterances, such as flight of ideas and dis-060

course elaborations. The latter have been shown to061

be indicative of cognitive disorders (Abdalla et al.,062

2018; Iter et al., 2018).063

The use of computational linguistics and natural064

language processing (NLP) to screen and monitor065

dementia progression has become an emergent and066

promising field (Fraser et al., 2016; König et al.,067

2018). However, recent work used language to068

distinguish people with Alzheimer’s Disease (AD)069

from healthy controls, neglecting the longitudinal070

and fine-grained aspects of subjects’ language im-071

pairments (Luz et al., 2020, 2021; Nasreen et al.,072

2021a). Here, we address this limitation by first073

learning the logical-thematic coherence of adjacent074

utterances in narratives, and then investigating the075

connection between longitudinal changes in lan-076

guage coherence and cognitive status.077

Recent work for coherence in text has exploited078

deep (Cui et al., 2017; Feng and Mostow, 2021),079

discriminative (Xu et al., 2019), and generative080

(Laban et al., 2021) neural models for three eval-081

uation tasks namely: a) the shuffle task (i.e., to082

discriminate genuine from randomly shuffled text),083

b) sentence ordering (i.e., to produce the correct084

order of sentences in a text) , and c) insertion (i.e.,085

to predict the position of a missing sentence in086

a text). However these tasks are prone to learn-087

ing the shuffle-ness of a text rather than its actual088

coherence (Laban et al., 2021). By contrast, our089

motivation is to learn the logical consistency of090

adjacent utterances in narratives to capture fine-091

grained coherence impairments (Fig. 1) rather than092

semantic relatedness or the global aspects of utter-093

ances’ order. In this paper we make the following094

contributions:095

• We define the new task of learning logical the-096

matic coherence scores on the basis of the097

logical-thematic consistency of adjacent utter-098

ances (Sec. 3.1). We train on narratives from099

healthy controls in the DementiaBank Pitt Cor-100

pus (Becker et al., 1994), hypothesising that101

controls produce a logically consistent order102

of utterances. We investigate a range of state-103

of-the-art (SOTA) neural approaches and ob-104

tain models in three different settings: a) fine-105

tuning transformer-based models, b) fully train-106

ing discriminative models, and c) zero-shot learn-107

ing with transformer-based generative models108

(Sec. 3.3). Our experiments show that a fine-109

tuned transformer model (RoBERTa) achieves110

the highest discrimination between adjacent and 111

non-adjacent utterances within a healthy cohort 112

(Sec. 4.1.1). 113

• We introduce a human-interpretable digital co- 114

herence marker for dementia screening and mon- 115

itoring from longitudinal language data. We first 116

obtain logical thematic coherence scores of adja- 117

cent utterances and then aggregate these across 118

the entire narrative (Sec. 3.1). 119

• We conduct a comprehensice longitudinal anal- 120

ysis to investigate how the digital coherence 121

marker differs across healthy and dementia co- 122

horts. The resulting digital coherence marker 123

yields significant discrimination across healthy 124

controls, people with mild cognitive impairment 125

(MCI), and people with AD (Sec. 4.2.1). 126

• We compare our digital coherence marker against 127

one based on semantic similarity, showing supe- 128

rior performance of the former in both distin- 129

guishing across cohorts (Sec. 4.2.1) and in de- 130

tecting human-annotated disruptive utterances 131

(Sec. 4.2.2). 132

• We evaluate our logical thematic coherence 133

marker against three clinical bio-markers for cog- 134

nitive impairment, showing high association and 135

generalisability potential (Sec. 4.2.3). 136

2 Related Work 137

NLP and dementia: Early NLP work for demen- 138

tia detection analysed aspects of language such 139

as lexical, grammatical, and semantic features 140

(Ahmed et al., 2013; Orimaye et al., 2017; Kavé 141

and Dassa, 2018), and studied para-linguistic fea- 142

tures (Gayraud et al., 2011; López-de Ipiña et al., 143

2013; Pistono et al., 2019). Recent work in this 144

area has made use of manually engineered features 145

(Luz et al., 2020, 2021; Nasreen et al., 2021a), dis- 146

fluency features (Nasreen et al., 2021b; Rohanian 147

et al., 2021), or acoustic embeddings (Yuan et al., 148

2020; Shor et al., 2020; Pan et al., 2021; Zhu et al., 149

2021). Closer to the current study, Abdalla et al. 150

(2018) investigated discourse structure in people 151

with AD by analyzing discourse relations. All such 152

previous work has focused on differentiating across 153

cohorts at fixed points in time without considering 154

language changes over time. 155

Coherence modeling: The association between 156

neuropsychological testing batteries and language 157

leadresearchers to exploit linguistic features and 158

naive approaches for capturing coherence in spon- 159

taneous speech to predict the presence of a 160
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broad spectrum of cognitive and thought disor-161

ders. (Elvevåg et al., 2007; Bedi et al., 2015; Iter162

et al., 2018). Other work for coherence in text fo-163

cused on feature engineering to implement some164

of the intuitions of Centering Theory (Lapata et al.,165

2005; Barzilay and Lapata, 2008; Elsner and Char-166

niak, 2011; Guinaudeau and Strube, 2013). Despite167

their success, existing models either capture seman-168

tic relatedness or entity transition patterns across169

sentences rather than logical-thematic consistency.170

Neural coherence: Driven by the success of deep171

neural networks, researchers exploited distributed172

sentences Cui et al. (2017), discriminative Xu et al.173

(2019), and BERT-based Feng and Mostow (2021)174

models by evaluating coherence mostly on the shuf-175

fle task (refer to Sec. 1 for more details). Recent176

work has shown that a zero-shot setting in gen-177

erative transformers can be more effective than178

fine-tuning BERT or RoBERTa achieving a new179

SOTA performance for document coherence (La-180

ban et al., 2021). Here, we investigate a variety181

of such successful architectures to learn the tem-182

poral logical-thematic consistency of utterances in183

transcribed narratives.184

3 Methodology185

3.1 Logical Thematic Coherence186

Let us denote a collection C of N transcribed nar-187

ratives from healthy controls, i.e., C = {dk}Nk=1,188

where each narrative consists of a sequence of ut-189

terances {ui}. The logical thematic coherence task190

consists in learning scores from adjacent pairs of191

utterances (ui, ui+1) in the healthy controls, so that192

these are higher than corresponding non-adjacent193

pairs of utterances (ui, uj) in a narrative, where uj194

is any forward utterance following the adjacent pair195

(Feng and Mostow, 2021)196

To monitor changes in cognition over time, we197

define a digital language coherence marker by com-198

puting the logical thematic coherence scores of199

adjacent utterances in people with dementia and200

controls in a test set and aggregating these over201

the entire narrative. To obtain comparisons across202

cohorts, we calculate longitudinal changes in the203

coherence marker from the last to the first and be-204

tween adjacent subjects’ narratives over the study.205

To assess the reliability of the coherence marker,206

we compute changes in the coherence marker and207

in widely used clinical markers from the end to the208

beginning of the study.209

3.2 Data 210

We have conducted experiments and trained co- 211

herence models on the DementiaBank Pitt Corpus 212

(Becker et al., 1994), where subjects are asked to 213

describe the Cookie Theft picture (Goodglass et al., 214

2001) up to 5 times across a longitudinal study 215

(see Appx. B for more details about the Pitt Cor- 216

pus). Coherent pairs: We have learnt the temporal 217

logical-thematic coherence of adjacent utterances 218

from the healthy cohort, consisting of 99 people 219

with a total amount of 243 narratives. Incoher- 220

ent pairs: We use logically inconsistent utterance 221

ordering by choosing utterances following an ad- 222

jacent pair, from the same narrative so as to avoid 223

learning cues unrelated to coherence due to po- 224

tential differences in language style (Patil et al., 225

2020; Feng and Mostow, 2021). While the level 226

of coherence of controls may vary, we hypothesise 227

that adjacent sentences by healthy controls will be 228

more coherent than the negative instances, i.e. non- 229

adjacent pairs from the same narrative. Table 1 230

summarizes the overall amount of utterances after 231

splitting the healthy population into 80%, 10%, and 232

10% for training, validation, and testing. 233

Utterances Training Validation Testing
# Coherent 2,178 223 233
# Incoherent 16,181 1,401 1,417

Table 1: Amount of coherent and incoherent utterances
for learning logical thematic coherence from the healthy
cohort.

To evaluate the ability of the digital language 234

coherence marker to differentiate across cohorts 235

and its reliability against the clinical bio-markers, 236

we filtered people with dementia who have at least 237

two narratives across the longitudinal study. This 238

resulted in 62 people with AD and 14 people with 239

MCI, with a total of 148 and 42 narratives respec- 240

tively. We also included healthy controls, a total of 241

19 people with a total of 25 narratives. 242

3.3 Coherence Models 243

Baseline Digital Marker: We use Incoherence 244

Model (Iter et al., 2018), which scores adjacent 245

pairs of utterances in a narrative based on the cosine 246

similarities of their sentence embeddings (Reimers 247

and Gurevych, 2019). We consider three main neu- 248

ral architectures, known to achieve SOTA perfor- 249

mance on document coherence, to learn logical the- 250

matic coherence: A) fine-tuning transformer-based 251
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models, B) fully training discriminative models,252

and C) zero-shot learning with generative models.253

Transformer-based Models: We fine-tune pre-254

trained transformers by maximising the probabil-255

ity that the second utterance in a pair follows the256

first (see Fig. 3 (A) in Appx. C). The model’s257

input is a sequence of tokens in the form of258

[CLS] + Utterance1 + [SEP ] + Utterance2,259

where (Utterance1, Utterance2) is a pair of ei-260

ther coherent of incoherent utterances in a narra-261

tive (see Sec. 3.2), [SEP ] is an utterance separa-262

tor token, and [CLS] is a pair-level token, used263

for computing the coherence score. We append264

to the transformer module a feed-forward neural265

network (FFNN) followed by a sigmoid function266

where the coherence score f is the sigmoid func-267

tion of FNNN that scales the output between 0 and268

1. We fine-tune the models with a standard binary269

cross-entropy loss function (i.e., BCELoss), setting270

the output of the model to 1 for coherent and 0 for271

incoherent pairs of utterances.272

We have experimented with the following vari-273

ants: a) BERT-base (Lee and Toutanova, 2018)274

since it has been pre-trained on the Next Sentence275

Prediction (NSP) task which is similar to the task276

of scoring the coherence of adjacent utterances. b)277

RoBERTa-base (Liu et al., 2019), which has been278

pre-trained without the NSP task. c) a Convolu-279

tional Neural Network baseline (Cui et al., 2017)280

which uses pre-trained word embeddings extracted281

by BERT-base (refer to Appx. C for a detailed282

description).283

Discriminative Models: We have trained dis-284

criminative models by maximizing the probability285

of an utterance pair being coherent. We have ex-286

perimented with an architecture previously shown287

effective in coherence modelling for both speech288

(Patil et al., 2020) and text. (Xu et al., 2019).289

The model receives a pair of utterances and a290

sentence encoder maps the utterances to real-value291

vectors U1 and U2 (see Fig. 3 (B) in Appx. C). The292

model then computes the concatenation of the two293

encoded utterances, as follows:294

concat[U1, U2, U1 −U2, U1 ∗U2, |U1 −U2|] (1)295

, where U1 − U2 is the element-wise difference,296

U1 ∗U2 is the element-wise product, and |U1−U2|297

is the absolute value of the element-wise difference298

between the two encoded utterances. The choice299

to represent the difference between utterances in300

the form of Eq. 1 was introduced by Xu et al. 301

(2019) as a high level statistical function that could 302

capture local level interaction between utterances 303

and we make the same assumption. Finally, the 304

concatenated feature representation is fed to a one- 305

layer MLP to output the coherence score f . We 306

have trained the model in bi-directional mode with 307

inputs (U1, U2) and (U2, U1) for the forward and 308

backward operations and used a margin loss as 309

follows: 310

L(f+, f−) = max(0, n− f+ + f−) (2) 311

, where f+ is the coherence score of a coherent 312

pair of utterances, f− thescore of an incoherent 313

pair, and n the margin hyperparameter. The model 314

can work with any pre-trained sentence encoder. 315

Here, we experiment with two variants: a) pre- 316

trained sentence embeddings from SentenceBERT 317

(Reimers and Gurevych, 2019)(DCM-sent), and b) 318

averaged pre-trained word embeddings extracted 319

from BERT-base (Lee and Toutanova, 2018)(DCM- 320

word). 321

Generative Models: We experiment with a zero- 322

shot setting for generative transformers, an ap- 323

proach that previously achieved best out-of-the-box 324

performance for document coherence (Laban et al., 325

2021). We provide a pair of utterances to a gen- 326

erative transformer and compute the perplexity in 327

the sequence of words for each pair (refer to Appx. 328

C for a detailed description). Perplexity is defined 329

as the exponential average log-likelihood in a se- 330

quence of words within a pair P as follows: 331

PPL(P ) = exp
{
−1

t

t∑
i

p(wi|w<i)
}
, (3) 332

, where p(wi|w<i) is the likelihood of the ith word 333

given the preceding words w<i within a pair of 334

utterances. Finally, we approximate the coherence 335

score f as follows: 336

f = 1− PPL(P ), (4) 337

We use 1− PPL rather than PPL since low per- 338

plexity indicates that a pair is likely to occur, but 339

we need high coherence scores for sequential pairs. 340

We have experimented with two SOTA gener- 341

ative transformers, of different sizes and archi- 342

tecture: a) GTP2, a decoder transformer-based 343

model (Radford et al., 2019) and b) T5, an encoder- 344

decoder transformer-based model (Raffel et al., 345
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2020). In the end we also pre-train T5-base, i.e.,346

T5-basepre. In particular, we feed sequential pairs347

of utterances and consider the loss on the second se-348

quential sentence within the pair, just like sequence349

to sequence models. For testing, we extract coher-350

ence scores according to Eq. 4 for coherent and351

incoherent pairs.352

For the training details of coherence models353

please refer to Appx. F.354

3.4 Evaluation Metrics355

For evaluating the temporal logical thematic co-356

herence models, we report the average coherence357

score of adjacent and non-adjacent utterance pairs,358

denoted as f+ and f−, respectively. The higher359

the f score, the more coherent the pair. We also360

report the models’ accuracy on adjacent utterances361

denoted as temporal accuracy, i.e., Acctemp, calcu-362

lated as the correct rate between the adjacent utter-363

ances recognized as coherent and the total number364

of adjacent pairs in the test corpus. In particu-365

lar, a pair of adjacent utterances {ui, ui+1} in the366

test set is perceived as coherent if its coherence367

score f(ui,ui+1) is higher than the coherence score368

f(ui,uk>i+1) of the corresponding non-adjacent pair369

of utterances as follows:370

f(ui, ui+1) =

{
1 if f(ui,ui+1) > f(ui,uk>i+1)

0 otherwise
(5)371

, where 1 corresponds to coherent and 0 to incoher-372

ent pair, correspondingly. The coherence across an373

entire narrative is approximated by averaging the374

coherence scores of adjacent utterances, denoted375

as entire accuracy, i.e., Accentire. Similarly, the376

entire accuracy is calculated as the correct rate of377

narratives recognized as coherent out of the total378

amount of narratives in the test corpus. A narrative379

is perceived as coherent if the averaged scores of380

the adjacent utterances are higher than the average381

scores of the non-adjacent ones within a narrative.382

The higher the temporal and entire accuracy, the383

better the model. Finally, we report the absolute384

percentage difference in f scores between adjacent385

and non-adjacent utterances, denoted %∆ (refer to386

Appx. D for more details), and the averaged loss387

of the models. The higher and more significant the388

%∆, the better the model, while the reverse holds389

for the averaged loss.390

To investigate the reliability of the digital coher-391

ence marker, we evaluate against three different392

clinical bio-markers collected from people with de- 393

mentia. These are the Mini-Mental State Examina- 394

tion (MMSE), the Clinical Dementia Rating (CDR) 395

scale (Morris, 1997), and the Hamilton Depression 396

Rating (HDR) scale (Williams, 1988). The lower 397

the MMSE score the more severe the cognitive im- 398

pairment. The opposite is true of the other scores, 399

where a higher CDR score denotes more severe 400

cognitive impairment and higher HDR scores indi- 401

cate more severe depression (for more details about 402

the bio-markers please refer to Appx. E). 403

4 Experimental Results 404

4.1 Logical Thematic Coherence Models 405

4.1.1 Quantitative Analysis 406

Table 2 summarizes the performance of logical 407

thematic coherence models trained on the healthy 408

cohort. Overall, fine-tuned transformerssignifi- 409

cantly outperform discriminative and generative 410

transformer models. All models score higher on 411

consecutive utterance pairs than non-consecutive 412

ones. While the absolute percentage difference 413

of coherence scores between sequential and non- 414

sequential pairs of utterances is higher for the dis- 415

criminative models, %∆ has a higher significance 416

for the transformer-based models. 417

BERT and RoBERTa are the best performing 418

models, achieving a significant high entire accuracy 419

(100%), meaning that the model is able to predict 420

all the narratives in the healthy population as being 421

coherent, in line with our hypothesis. RoBERTa 422

yielded an increased logical thematic coherence 423

accuracy of 81.4% compared to 75.4% for BERT. 424

Despite the original BERT being trained with two 425

objectives, one of which is Next Sentence Predic- 426

tion (NSP), an indirect signal for the coherence of 427

adjacent utterances, RoBERTa, trained without the 428

NSP objective, outperformed BERT. Presumably, 429

RoBERTa outperforms BERT since the former was 430

trained on a much larger dataset and using a more 431

effective training procedure. Moreover, the simple 432

CNN baseline, while performing worse than BERT 433

and RoBERTa still outperforms the discriminative 434

and generative models, which shows the effective- 435

ness of fine-tuning. 436

The discriminative models perform better when 437

using pre-trained embeddings from BERT rather 438

than pre-trained sentence embeddings. Our experi- 439

ments show that discriminative models are outper- 440

formed by transformers when modelling thematic 441

logical coherence in transcribed narratives. This 442
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Model Setting Avg. f+ Avg. f− %∆ Avg. Acctemp Avg. Accentire Avg. Loss
CNN Training 0.560 0.475 18.2† 73.4% 92.0% 0.636

BERT-base Fine-tuning 0.630 0.422 49.1† 75.4% 100.0% 0.575
RoBERTa-base Fine-tuning 0.604 0.353 71.0† 81.4% 100.0% 0.554

DCM-sent Training -0.034 -1.975 98.2† 63.9% 76.0% 3.64
DCM-word Training 0.282 -1.068 126.4† 69.6% 80.0% 3.84
GPT2-base Zero Shot -383.8 -384.8 0.3 50.4% 48.0% -

GPT2-medium Zero Shot -313.0 -318.5 1.7 48.9% 48.0% -
GPT2-large Zero Shot -290.1 -298.8 -2.9 50.0% 60.0% -

T5-base Zero Shot -0.668 -0.751 11.0 64.8% 64.0% -
T5-large Zero Shot -3.674 -3.996 8.1 58.2% 60.0% -

T5-basepre Pre-train -0.224 -0.208 7.3 46.1% 40.0% 0.376

Table 2: Performance of logical thematic coherence models trained on healthy controls in three different settings;
A) training, B) fine-tuning, and C) zero-shot. f+ is the coherence score of adjacent utterances, f− the coherence
score of non-adjacent ones, and %∆ the absolute percentage difference between f+ and f−. † denotes significant
difference between the two coherence scores. Acctemp and Accentire measure accuracy on adjacent utterances and
entire narratives, respectively. Best performance is highlighted in bold.

is contrary to earlier work (Xu et al., 2019; Patil443

et al., 2020) where discriminative models outper-444

formed early RNN based models, but we note that445

this work did not compare against transformers.446

Despite Laban et al. (2021) showing that a zero-447

shot setting in generative transformers can be more448

effective than fine-tuning BERT or RoBERTa, our449

experiments show that this setting has the worst per-450

formance. The results did not improve even when451

we pre-trained the T5 model on the Pitt corpus (see452

T5-basepre in Table 2). We presume that large pre-453

trained language models may suffer from domain454

adaptation issues here and operate on too short455

a window to capture logical consistency in narra-456

tives. Future work could investigate fine-tuning457

or prompt-training generative transformers for this458

task.459

4.2 The digital Language Coherence Marker460

Here, we exploited the best-performing logical the-461

matic coherence model, i.e., RoBERTa, to obtain462

a digital language coherence marker for subjects463

across different cohorts over the longitudinal study464

(refer to Sec. 3.1 for more details). We first present465

results regarding the longitudinal discrimination466

ability for this marker and then show its reliability467

by evaluating against three clinical bio-markers.468

4.2.1 Longitudinal Discrimination Ability469

We analyzed changes in the digital marker over470

time and across cohorts. First, we calculated the471

average of digital markers across the three cohorts.472

The column Marker in Table 3 summarizes the473

results. The averaged digital marker was higher 474

in the healthy cohort than in MCI and AD cohorts. 475

Similarly, the averaged marker in the MCI group 476

was higher than that in the AD group. However, the 477

difference was significant only between the healthy 478

and AD cohorts (p < 0.05) 1. 479

We subsequently calculated changes in the dig- 480

ital marker from the end to the start of the study 481

and across the cohorts (i.e., ∆(end−onset) in Table 482

3). There was a significant decrease for the MCI 483

and AD groups and a significant increase for the 484

healthy controls (p < 0.05) 1. The increase in 485

healthy controls is presumably because subjects 486

are able to remember and do better at the CTP 487

description when seeing it again (Goldberg et al., 488

2015). Moreover, we noticed that people with MCI 489

exhibited more substantial change than those with 490

AD, despite the average digital coherence marker 491

of the former being 0.597 compared to 0.567 for 492

the latter. 493

We also calculated changes in the digital marker 494

between adjacent narratives over time and then ag- 495

gregated the changes within subjects in the study. 496

In Table 3, we report the average change across 497

cohorts, i.e., ∆(long). We obtain similar results as 498

the ones taken from end to start. 499

We finally compared the longitudinal discrimi- 500

nation ability of our proposed digital marker with 501

a baseline digital marker based on the semantic re- 502

latedness of adjacent utterances (refer to Sec. 3.3). 503

1We use a nonparametric test, namely the Mann-Whitney
test, to measure if the distribution of a variable is different in
two groups.
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Our digital marker Baseline digital marker

Cohort Marker ∆(end−start) ∆(long) Marker ∆(end−start) ∆(long)

Healthy 0.604 (0.08) 0.09 (0.07) 0.07 (0.05) 0.249 (0.05) 0.02 (0.06) 0.01(0.06)
MCI 0.597 (0.09) -0.05 (0.09) -0.05 (0.07) 0.262 (0.06) -0.03 (0.07) -0.03 (0.06)
AD 0.567 (0.10) -0.02 (0.16) -0.02 (0.11) 0.241 (0.07) -0.01 (0.08) -0.01 (0.06)

Table 3: Longitudinal discrimination ability between the proposed digital marker and a baseline based on semantic
similarity. Marker: Average of coherence marker within a population. ∆(end−start): Average change of the marker
from the end to the beginning of the study. ∆(long): Average change of the digital marker between adjacent
narratives within subjects. Numbers in () refer to corresponding standard deviations. Numbers in bold denote
significant difference between the health controls and dementia cohorts (see Sec. 4.2.1).

The averaged baseline marker was higher in the504

MCI cohort than in healthy and AD cohorts (see505

Table 3). Moreover, there was no significant dif-506

ference across the cohorts. On the other hand, we507

observed similar changes (i.e., ∆(end−start) and508

∆(long) in Table 3) in the baseline marker over time509

compared to the one proposed in this paper. How-510

ever, such changes were not significant across co-511

horts for the baseline marker (p > 0.05) 1.512

4.2.2 Evaluation on Human-Annotated513

Disruptive Utterances514

We investigated the effectiveness of the digital co-515

herence marker in capturing disruptive utterances516

in narratives, and compared it with the baseline517

digital marker. Such disruptive utterances are an-518

notated with the code [+ exc] in the transcripts of519

the Pitt corpus and constitute a significant indicator520

of AD speech (Abdalla et al., 2018; Voleti et al.,521

2019). Out of 1,621 pairs of adjacent utterances in522

the AD cohort, 543 ones (33%) are disruptive. For523

the baseline marker, the average score of disruptive524

utterances decreased to 0.19 (STD=0.17) compared525

to 0.26 (STD=0.17) for non-disruptive ones, i.e.,526

an absolute percentage difference 2 of 31%. For527

our proposed marker, the average score of disrup-528

tive utterances decreased to 0.41 (STD=0.09) from529

0.64 (STD=0.15) for non-disruptive ones, i.e., an530

absolute percentage difference of 44%. The results531

showed that both digital markers significantly cap-532

tured disruptive utterances (pt−test < 0.05). How-533

ever, our proposed digital marker is more robust in534

capturing such utterances.535

4.2.3 Association with Clinical Bio-markers536

We investigated the reliability of the digital marker537

by associating its changes with different degrees538

of changes in cognitive status from the end to the539

2For the definition refer to 3.4.

beginning of the longitudinal study, as expressed 540

by widely accepted cognition scales. We analyzed 541

association patterns in the largest cohort, i.e., the 542

AD group consisting of 62 participants. 543

We first investigated the association between 544

changes in the coherence marker against the Mini- 545

Mental State Examination (MMSE) (Morris, 1997). 546

MMSE ranges from 0-30. The higher the MMSE 547

score, the higher the cognitive function (refer to 548

Appx. E for more details about MMSE). Here, we 549

have split the AD population into four bins on the 550

basis of the magnitude of MMSE change. Table 551

4 provides details regarding bin intervals and the 552

association of changes between the MMSE and the 553

digital coherence marker. 554

Bin # Subjects ∆ MMSE ∆ Coherence
Low 25 [-6,2] -0.003 (0.089)
Minor 17 [-12,-7] -0.030 (0.094)
Moderate 11 [-18,-13] -0.076 (0.095)
Severe 9 [-27,-19] -0.200 (0.104)

Table 4: Association between changes in Mini-Mental
State Examination (MMSE) and the digital coherence
marker in AD patients at different degrees of cognitive
decline. Numbers in [, ] define the lower and upper
values of each bin interval. Numbers in () refer to the
standard deviation. # Subjects = Population within bins.
∆ = Change from the end to the onset of the study.

Overall, we observe that the digital marker de- 555

creases across the population for the different de- 556

grees of cognitive decline. In particular, the higher 557

the difference in MMSE, the more substantial the 558

decrease in the digital marker change over the lon- 559

gitudinal study. For people with moderate or se- 560

vere cognitive decline, the coherence decreased 561

significantly compared to that of people with low 562

cognitive decline (p < 0.05 ) 1,3. 563

3Here, we investigated how coherence change distribu-
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Next, we investigated the association between564

changes in the coherence marker and the Clinical565

Dementia Rating (CDR) (Morris, 1997). CDR is566

based on a scale of 0–3 in assessing people with567

dementia. The higher the CDR, the lower the cog-568

nitive function (refer to Appx. E for more details569

about CDR). Here, we split the AD population into570

low, minor, moderate and severe bins according to571

the magnitude of CDR change, i.e., ∆ CDR in Ta-572

ble 5. The higher the CDR change the more severe573

the cognitive decline over time.574

Bin # Subjects ∆ CDR ∆ Coherence
Low 20 [0, 0.5] -0.009 (0.091)
Minor 16 (0.5,1.5] -0.011 (0.060)
Moderate 15 (1.5,2.5] -0.060 (0.110)
Severe 11 (2.5,3] -0.125 (0.078)

Table 5: Association between changes in Clinical De-
mentia Rating (CDR) and the digital coherence marker
in AD patients atdifferent degrees of cognitive decline.
Numbers in (, ] define the lower and upper values of
each bin interval. Numbers in () refer to the standard
deviation. # Subjects = Population within bins. ∆ =
Change from the end to the onset of the study.

The digital coherence marker decreased across575

the population at different degrees of CDR change.576

In particular, the higher the increase in CDR, the577

higher the decrease in the digital coherence marker578

over the longitudinal study. Changes in the digital579

coherence marker are similar for people with low580

and minor cognitive decline. However, there is581

significant decrease in coherence for the moderate582

and severe bins compared to the minor and mild583

ones p < 0.05 ) 1,3 .584

Finally, we investigated the association between585

the coherence marker with the Hamilton Depres-586

sion Rating (HDR) (Williams, 1988). HDR is one587

of the most widely used and accepted instruments588

for assessing depression. It is based on a 17-item589

scale. The higher the HDR, the more severe the590

level of depression (refer to Appx. E for more591

details about HDR). We investigated associations592

between the last HDR record 4 and changes in the593

digital coherence marker from the end to start of594

the study. Table 6 summarizes the association be-595

tween HDR and changes in the digital coherence596

tions differ across the AD population at different degrees of
cognitive decline progression.

4We considered the last HDR record instead of changes in
HDR over time since there were missing HDR measurements
in the study.

Bin # Subjects HDR ∆ Coherence
No Depression 17 [0,7] -0.02 (0.11)
Mild 18 [8,16] -0.01 (0.10)
Moderate 14 [17,23] -0.21 (0.10)

Table 6: Association between the last Hamilton Depres-
sion Rating (HDR) record and changes in the digital
coherence for AD patients. Numbers in [, ] define the
lower and upper values of each bin interval. Numbers in
() refer to the standard deviation. # Subjects = Popula-
tion within bins. ∆ = Change from the end to the onset
of the study.

marker. Changes in coherence were similar for peo- 597

ple with no or mild depression. However, there was 598

a significant decrease for people with moderate de- 599

pression (p < 0.05 ) 1,3. This is in line with current 600

studies showing that individuals experiencing dif- 601

ficulty constructing coherent narratives generally 602

report low well-being and more depressive symp- 603

toms (Vanderveren et al., 2020). 604

5 Conclusion 605

We have introduced a new task for modelling the 606

logical-thematic temporal coherence of utterances 607

in short transcribed narratives to capture disrup- 608

tive turns indicative of cognitive disorders. To 609

this end, we have investigated transformer-based, 610

discriminative, and generative neural approaches. 611

Our experiments show that a fine-tuned transformer 612

model (RoBERTa) achieves the best performance 613

in capturing the coherence of adjacent utterances 614

in narratives from the healthy cohort. We ag- 615

gregate temporal language coherence to create a 616

human-interpretable digital language coherence 617

marker for longitudinal monitoring of cognitive 618

decline. Longitudinal analysis showed that the 619

digital marker is able to distinguish people with 620

mild cognitive impairment, those with Alzheimer’s 621

Disease (AD) and healthy controls. A compari- 622

son with a baseline digital marker based on seman- 623

tic similarity showed the superiority of our digital 624

marker. Moreover, evaluation against three clinical 625

bio-markers showed that language coherence can 626

capture changes at different degrees of cognitive 627

decline and achieves significant discrimination be- 628

tween people with moderate or severe cognitive 629

decline within an AD population. It can also cap- 630

ture levels of depression, showing generalisability 631

potential. In future, we aim to integrate disfluency 632

language patterns and develop strategies for im- 633

proving the performance of generative models. 634
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Limitations635

Monitoring dementia using computational linguis-636

tics approaches is an important topic. Previous637

work has mostly focused on distinguishing people638

with AD from healthy controls rather than moni-639

toring changes in cognitive status per individual640

over time. In this study, we have used the Pitt641

corpus, currently the largest available longitudi-642

nal dementia dataset, to investigate longitudinal643

changes in logical coherence and their association644

with participants’ cognitive decline over time. An645

important limitation of the Pitt corpus is that the646

longitudinal aspect is limited, spanning up to 5647

sessions/narratives maximum per individual with648

most participants contributing up to two narratives.649

Moreover, the number of participants is relatively650

small, especially for the MCI cohort. In the future,651

we aim to address these limitations by investigat-652

ing the generalisability of the proposed digital lan-653

guage coherence marker on a recently introduced654

rich longitudinal dataset for dementia (currently655

under review) and on transcribed psychotherapy656

sessions (data is collected in Hebrew) to monitor657

mood disorders.658

In this study, we used manually transcribed data659

from Pitt. In a real-world scenario, participants660

mostly provide speech via a speech elicitation task.661

This implies that the introduced method requires an662

automatic speech recognition (ASR) system robust663

to various sources of noise to be operationalized.664

ASR for mental health is currently underexplored,665

with most transcription work being done by human666

transcription.667

It may be that the proposed digital coherence668

marker becomes a less accurate means for mon-669

itoring dementia when people experience other670

comorbidities, neurodegenerative and mental ill-671

nesses, that significantly affect speech and lan-672

guage. Indeed, cognitive-linguistic function is a673

strong biomarker for neuropsychological health674

(Voleti et al., 2019).675

Finally, there is a great deal of variability to676

be expected in speech and language data affect-677

ing the sensitivity of the proposed digital marker.678

Both speech and language are impacted by speaker679

identity, context, background noise, spoken lan-680

guage etc. Moreover, people may vary in their681

use of language due to various social contexts and682

conditions, a.k.a., style-shifting (Coupland, 2007).683

Both inter and intra-speaker variability in language684

could affect the sensitivity of the proposed digital685

marker. While it is possible to tackle intra-speaker 686

language variability, e.g., by integrating speaker- 687

dependent information to the language, the inter- 688

speaker variability remains an open-challangeding 689

research question. 690

Ethics Statemen 691

Our work does not involve ethical considerations 692

around the analysis of the DementiaBank Pitt cor- 693

pus as it is widely used. Ethics was obtained by the 694

original research team by James Backer and par- 695

ticipating individuals consented to share their data 696

in accordance with a larger protocol administered 697

by the Alzheimer and Related Dementias Study at 698

the University of Pittsburgh School of Medicine 699

(Becker et al., 1994). Access to the data is pass- 700

word protected and restricted to those signing an 701

agreement. 702

This work uses transcribed dementia data to iden- 703

tify changes in cognitive status considering individ- 704

uals’ language . Potential risks from the application 705

of our work in being able to identify cognitive de- 706

cline in individuals are akin to those who misuse 707

personal information for their own profit without 708

considering the impact and the social consequences 709

in the broader community. Potential mitigation 710

strategies include running the software on autho- 711

rised servers, with encrypted data during transfer, 712

and anonymization of data prior to analysis. An- 713

other possibility would be to perform on device 714

processing (e.g. on indidivuals’ computers or other 715

devices) for identifying changes in cognition and 716

that the results of the analysis would only be shared 717

with authorised individuals. Individuals would be 718

consented before any of our software would be run 719

on their data. 720
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A The Cookie Theft Picture 937

For the PD task, the examiner asks subjects to de- 938

scribe the picture (see Fig. 2) by saying, "Tell me 939

everything you see going on in this picture". Then 940

subjects might say, "there is a mother who is drying 941

dishes next to the sink in the kitchen. She is not 942

paying attention and has left the tap on. As a result, 943

water is overflowing from the sink. Meanwhile, 944

two children are attempting to make cookies from 945

a jar when their mother is not looking. One of the 946

children, a boy, has climbed onto a stool to get up 947

to the cupboard where the cookie jar is stored. The 948
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Figure 2: The Cookie Theft Picture from the Boston
Diagnostic Aphasia Examination."

stool is rocking precariously. The other child, a949

girl, is standing next to the stool and has her hand950

outstretched ready to be given cookies.951

B DementiaBank Pitt Corpus952

The dataset was gathered longitudinally between953

1983 and 1988 as part of the Alzheimer Research954

Program at the University of Pittsburgh. The study955

initially enrolled 319 participants according to the956

following eligibility criteria: all the participants957

were required to be above 44 years old, have at958

least seven years of education, have no history of959

major nervous system disorders, and have an ini-960

tial Mini-Mental State Examination score above 10.961

Finally, the cohort consisted of 282 subjects. In962

particular, the cohort included 101 healthy control963

subjects (HC) and 181 Alzheimer’s disease subjects964

(AD). An extensive neuropsychological assessment965

was conducted on the participants, including ver-966

bal tasks and the Mini-Mental State Examination967

(MMSE).968

C Architecture Overview of Models969

We consider three main types of coherence mod-970

els, in three different settings: a) fine-tuning971

transformer-based models, b) fully training dis-972

criminative models, and c) zero-shot learning with973

transformer-based generative models . Fig. 3 pro-974

vides the overall architecture of coherence models975

in each setting. The models receive a pair of ut-976

terances in the input and output a coherence score977

for the given pair. The main difference between978

the three is that discriminative models learn con-979

strastive patterns to obtain the probability of an980

utterance pair being coherent while the transformer-981

based models maximise the probability of the sec- 982

ond utterance in the pair following the first. 983

When we experiment with zero-shot learning 984

(Fig. 3 (C)), we feed each generative transformer 985

model with adjacent pair of utterances. For calculat- 986

ing the probability of each word given its preceding 987

ones, i.e., context, we use cross-entropy loss, cal- 988

culated between the genuine pair and the generated 989

output. The exponentiation of the cross-entropy 990

loss between the input and model predictions is 991

equivalent to perplexity, defined as the exponen- 992

tiated average negative log-likelihood of the tok- 993

enized sequence (see Eq. 3). A high perplexity 994

implies a low model predictability. To this goal, we 995

approximate the coherence as 1 − P (see Fig. 3 996

(C)). 997

For CNN (Cui et al., 2017), we use pre-trained 998

word embeddings extracted by BERT. Each pair 999

of utterances is transformed to a 2-dimensional 1000

matrix ∈ Rd×N , where d denotes the dimension 1001

of pre-trained BERT embeddings and N is the 1002

total number of words across the pair. The rest 1003

of the architecture is similar to that one we used 1004

for transformer-based models (see Fig. 3 (A)). In 1005

particular, we append to the CNN module a feed- 1006

forward neural network (FFNN) followed by a sig- 1007

moid function. The coherence score is the sigmoid 1008

function of FNNN that scales the output between 1009

0 and 1. We trained the model by freezing the 1010

pre-trained BERT embeddings. 1011

D Absolute Percentage Coherence Score 1012

Difference Formula 1013

The absolute percentage difference in f scores 1014

equals the absolute value of the change in f be- 1015

tween adjacent and non-adjacent sentences divided 1016

by the average of positive, i.e., f+, and negative, 1017

i.e., f−, coherence scores, all multiplied by 100, as 1018

follows: 1019

%∆f =
|∆f |[
Σf
2

] × 100 =
|f+ − f−|[

f++f−

2

] × 100 1020

The order of the coherence scores does not mat- 1021

ter as we are simply dividing the difference be- 1022

tween two scores by the average of the two coher- 1023

ence scores. 1024
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(Fine-tune)

(A) Transformer-based models

Transformer
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Coherence 
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[CLS]

Sentence Encoder Sentence Encoder
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(B) Discriminative models
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Sigmoid
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1 − 𝑃

Calculation of 
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Figure 3: Architecture overview of coherence models in the three settings. The final output is always a coherence
score for a given pair of sentences.

E Clinical Bio-Markers1025

E.1 Mini-Mental State Examination (MMSE)1026

The Mini-Mental State Examination (MMSE) has1027

been the most common method for diagnosing AD1028

and other neurodegenerative diseases affecting the1029

brain. It was devised in 1975 by Folstein et al. as1030

a simple standardized test for evaluating the cog-1031

nitive performance of subjects, and where appro-1032

priate to qualify and quantify their deficit. It is1033

now the standard bearer for the neuropsychological1034

evaluation of dementia, mild cognitive impairment,1035

and AD.1036

The MMSE was designed to give a practical1037

clinical assessment of change in cognitive status in1038

geriatric patients. It covers the person’s orientation1039

to time and place, recall ability, short-term memory,1040

and arithmetic ability. It may be used as a screening1041

test for cognitive loss or as a brief bedside cognitive1042

assessment. By definition, it cannot be used to1043

diagnose dementia, yet this has turned into its main1044

purpose.1045

The MMSE includes 11 items, divided into 21046

sections. The first requires verbal responses to ori-1047

entation, memory, and attention questions. The1048

second section requires reading and writing and1049

covers ability to name, follow verbal and written1050

commands, write a sentence, and copy a polygon.1051

All questions are asked in a specific order and can1052

be scored immediately by summing the points as-1053

signed to each successfully completed task; the 1054

maximum score is 30. A score of 25 or higher is 1055

classed as normal. If the score is below 24, the 1056

result is usually considered to be abnormal, indi- 1057

cating possible cognitive impairment. The MMSE 1058

has been found to be sensitive to the severity of de- 1059

mentia in patients with Alzheimer’s disease (AD). 1060

The total score is useful in documenting cognitive 1061

change over time. 1062

E.2 Clinical Dementia Rating (CDR) 1063

The Clinical Dementia Rating (CDR) is a global 1064

rating device that was first introduced in a prospec- 1065

tive study of patients with mild “senile dementia 1066

of AD type” (SDAT) in 1982 (Hughes et al., 1982). 1067

New and revised CDR scoring rules were later in- 1068

troduced (Berg, 1988; Morris, 1993; Morris et al., 1069

1997). CDR is estimated on the basis of a semistruc- 1070

tured interview of the subject and the caregiver 1071

(informant) and on the clinical judgment of the 1072

clinician. CDR is calculated on the basis of test- 1073

ing six different cognitive and behavioral domains 1074

such as memory, orientation, judgment and prob- 1075

lem solving, community affairs, home and hobbies 1076

performance, and personal care. The CDR is based 1077

on a scale of 0–3: no dementia (CDR = 0), ques- 1078

tionable dementia (CDR = 0.5), MCI (CDR = 1), 1079

moderate cognitive impairment (CDR = 2), and 1080

severe cognitive impairment (CDR = 3). Two sets 1081

of questions are asked, one for the informant and 1082
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another for the subject. The set for the informant in-1083

cludes questions about the subject’s memory prob-1084

lem, judgment and problem solving ability of the1085

subject, community affairs of the subject, home life1086

and hobbies of the subject, and personal questions1087

related to the subject. The set for subject includes1088

memory-related questions, orientation-related ques-1089

tions, and questions about judgment and problem-1090

solving ability.1091

E.3 Hamilton Depression Rating (HDR)1092

The Hamilton Depression Rating (HDR) is used1093

to quantify the severity of symptoms of depression1094

and is one of the most widely used and accepted1095

instruments for assessing depression. The standard1096

version of the HDR is designed to be administered1097

by a trained clinician, and it contains 17 items rated1098

on either a 3- or 5-point scale, with the sum of all1099

items making up the total score. HDR scores are1100

classified as normal (<8), mild depression (8 to 13),1101

mild to moderate depression (14 to 16), and moder-1102

ate to severe depression (>17). The HDR may be a1103

useful scale for cognitively impaired patients who1104

have difficultly with self-report instruments.1105

F Training Details1106

When training the coherence models, we sampled1107

a new set of negatives (incoherent pairs of utter-1108

ances) each time for a given narrative. Thus, after1109

a few epochs, we covered the space of negative1110

samples for even relatively long narratives. For dis-1111

criminative models, we froze the sentence encoder1112

after initialization to avoid overfitting. We run the1113

models for 50 epochs with 4 epochs early stopping.1114

We used a grid search optimization technique1115

to optimize the parameters. For consistency,1116

we used the same experimental settings for1117

all models. We first fine-tuned all models1118

by performing a twenty-times grid search1119

over their parameter pool. We empirically1120

experimented with learning rate (lr): lr ∈1121

{0.00001, 0.00002, 0.00005, 0.0001, 0.0002},1122

batch size (bs): bs ∈ {16, 32, 64, 128} and1123

optimization (O): O ∈ {AdamW,Adam}. For1124

the discrimination models, to tune the margin1125

hyper-parameter (n), we experimented with the1126

values n ∈ {3, 5, 7}. After the fine-tuning process,1127

we trained again all the models for 50 epochs with1128

4 epochs, three times. We reported the average1129

performance on the test set for all experiments.1130

Model checkpoints were selected based on the1131

minimum validation loss. Experiments were 1132

conducted on two GPUs, Nvidia V-100. 1133
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