
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

S-FORMER: STRUCTURAL ANCHORING FOR STABLE
LONG-CONTEXT MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers form the backbone of modern large language models, but their long-
context performance is limited by the dilution effect: attention mass spreads uni-
formly across distant positions, failing to maintain structural dependencies. Ex-
isting solutions, such as sparse or efficient attention patterns, improve efficiency
but do not address the lack of structural anchoring. We introduce the Structural-
Former (S-Former), which maintains a parallel structural stream that evolves
recurrently to track sequential patterns independently of token content and pro-
vides structural-like anchors for attention. Unlike compressed state-space models,
our approach maintains explicit structural representations that remain orthogonal
to semantic content. We study two integration mechanisms: (i) attention fusion,
which validates the decoupling principle by showing that the structural gate αt

tracks bracket depth in Dyck languages; and (ii) bias injection, a minimal and
stable design that adds the structural signal into hidden activations. Synthetic
probes (Markov, Dyck and JSON) demonstrate that the structural stream learns
hierarchical and sequential rules beyond surface statistics. On WikiText-103, S-
Former extrapolates stably to long contexts, reducing perplexity degradation by
76% when extrapolating to 40k tokens. These findings suggest that introducing
a recurrent structural stream provides a lightweight and scalable inductive bias
that substantially improves long-context extrapolation, offering a complementary
direction to sparse attention or memory-based methods.

1 INTRODUCTION

Transformers have become the backbone of large language models, powering advances in language
understanding, and reasoning. Their success stems from self-attention, which models token inter-
actions flexibly. However, attention encodes order only in a metric-based fashion—via positional
indices or rotary embeddings—without explicitly modeling the underlying structure of sequences.
Natural language, code, and music are not linear token chains but follow recursive and hierarchical
patterns. These signals are inherently twofold:

• Content, carrying semantic meaning;
• Structure, defining how elements are arranged.

Standard Transformers conflate content and structure, forcing the latter to be inferred indirectly from
token distances. As sequence length grows, attention mass becomes diffuse, producing the dilution
effect and weakening long-range dependencies.

We address this limitation by introducing a structural stream: a recurrent pathway that tracks se-
quential dynamics and provides structural anchors for attention. Unlike memory caches, it evolves
smoothly with the sequence, offering stability without explicit storage. To integrate this stream,
we propose a lightweight bias-injection mechanism, which adds structural signals into hidden ac-
tivations. This design minimally interferes with content while substantially improving long-context
extrapolation—remaining stable up to 40k tokens with negligible overhead.

Our approach highlights a broader insight: long-context stability does not require heavy memory
or architectural overhauls. Even a lightweight structural stream is sufficient to anchor continuity
across tens of thousands of tokens. Crucially, our design is not a memory cache. Unlike episodic
or compressed memory systems, the structural stream evolves continuously with the sequence,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

providing stable anchors without explicit storage. Empirically, it shows high-rank utilization,
orthogonality to content, and smooth temporal dynamics, supporting its role as a lightweight
inductive bias for long-range stability rather than external memory.

Our validation proceeds in three stages. (1) On synthetic tasks, we show that the stream captures
hierarchical patterns standard Transformers miss. (2) Using attention fusion as a probe, we obtain
interpretable α–structure correlations, though with stability limitations. (3) We then introduce bias
injection as a practical design, which trades some interpretability for stable, scalable long-context
modeling up to 40k tokens.

Contributions. (1) We propose a structural anchoring framework where a recurrent stream
stabilizes long-context modeling. (2) Through synthetic probes, attention fusion, and a scalable
bias-injection design, we show that the stream learns hierarchical patterns. (3) We provide theoret-
ical and empirical evidence that it induces structural representations rather than a memory cache,
offering a lightweight inductive bias for extrapolation.

2 RELATED WORK

Transformers, Positional Encoding, and Instability. The Transformer architecture (Vaswani
et al., 2017) underpins modern large language models, with positional encodings (absolute, rel-
ative, RoPE (Su et al., 2021), and ALiBi (Press et al., 2022)) providing distance-aware signals for
otherwise permutation-invariant attention. These methods remain fundamentally metric-based: they
encode relative offsets but not higher-order sequential regularities. Analyses further show that purely
metric encodings lead to dilution and instability in long contexts, where attention mass spreads uni-
formly and weakens continuity (Liu et al., 2020; Xiong et al., 2020; Elhage et al., 2021).

Memory-Augmented and Recurrent Models. Another line of work extends context through re-
current or state-space dynamics, such as RWKV (Peng et al., 2023), RetNet (Sun et al., 2023), and
Mamba (Gu & Dao, 2024). These architectures focus on efficiency and horizon length, but their
states are compressive summaries evolved in a generic manner. In contrast, our recurrent stream
evolves independently of token content, maintaining disentangled structural dynamics rather than
compressed memory.

Structural Bias in Language. Inductive biases have been explored through linguistic priors, such
as tree-based attention (Shiv & Quirk, 2019), syntactic pre-training (Li et al., 2020), and Struct-
Former (Shen et al., 2021). Recurrent models are also known to emulate formal devices such as
finite-state machines and counters (Weiss et al., 2018; Merrill, 2019; Chiang & Siegelmann, 2020).
Our approach differs in focusing on lightweight structural anchoring that operates continuously dur-
ing training, without requiring explicit syntactic trees or symbolic supervision.

Sparse and Efficient Attention. Sparse and efficient attention mechanisms such as Long-
former (Beltagy et al., 2020), BigBird (Zaheer et al., 2020), Performer (Choromanski et al., 2021),
Linformer (Wang et al., 2020), and ETC (Ainslie et al., 2020) reduce quadratic cost via sparsity, low-
rank approximation, or global tokens. Our approach is complementary: we preserve dense attention
for accuracy, while targeting stability in extrapolation.

3 METHODS

3.1 PRELIMINARIES: METRIC-ONLY ATTENTION

We take as baseline a vanilla Transformer with rotary position embeddings (RoPE), which represents
long-context modeling purely through metric distance. A standard Transformer layer computes self-
attention as

A(Q,K) = softmax

(
QK⊤
√
d

)
, O(Q,K, V ) = A(Q,K)V, (1)

where queries Q, keys K, and values V are linear projections of input embeddings. This formulation
encodes sequence order only via positional embeddings (absolute, relative, or rotary). As a result,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Markov transition probe. (a) Example state transition diagram. (b) Ground-truth tran-
sition operator. (c) Standard Transformer fails to recover the operator: attention weights become
diffuse due to metric-only encoding. (d) S-Former reconstructs the operator with high fidelity,
showing that the structural stream preserves sequential continuity and aligns closely with the true
transition dynamics. This demonstrates that the structural stream acts as a structural anchor rather
than a memory cache, enabling explicit modeling of sequential transitions.

order is represented as a metric distance, not as underlying structural relations. With increasing
sequence length, attention scores tend to flatten, a phenomenon we call the dilution effect: proba-
bility mass spreads more uniformly across positions, weakening the model’s ability to consistently
retrieve structurally relevant anchors.

3.2 DECOUPLING CONTENT AND STRUCTURE VIA STRUCTURAL STREAM

We hypothesize that sequential data contains two distinct signals: content, which carries semantic
meaning, and structure, which defines how elements are organized.

In practice, we realize structure through a recurrent stream that captures smooth temporal patterns
and long-range dependencies, while maintaining near-orthogonality to content representations.

To capture this explicitly, we introduce a structural stream: a recurrent pathway running in parallel
with attention. Concretely, given token embeddings xt, we compute

gt = GRU(gt−1,LN(xt)), (2)

where gt is the structural state. We instantiate the structural stream with a GRU as a representative
gated recurrent mechanism. Gated recurrence provides stable updates with data-dependent gating
and integrates smoothly with Pre-LN Transformers.

Unlike attention, which re-computes relations at every step, the structural stream evolves persistently
over time, acting as a structural anchor that guides the model toward long-range consistency while
remaining decoupled from semantic content.

3.2.1 ATTENTION FUSION: DEMONSTRATING STRUCTURAL DECOUPLING

We introduce attention fusion as a probe to validate structure–content decoupling, rather than a
final implementation. The structural state gt directly modulates the Query and Key projections,
providing a dynamic balance between structural and content signals. Given token embeddings xt

and the structural state gt (Section 3.2), we define:

αfusion
t = σ(W [gt,LN(xt)]) (3)

Qt = (αtgt + (1−αt) LN(xt))WQ, Kt = (αtgt + (1−αt) LN(xt))WK , Vt = LN(xt)WV (4)

A′(Q,K) = softmax

(
QK⊤
√
d

)
(5)

Here αfusion
t denotes a structure–content tradeoff gate: it controls the relative weight of structural

state gt versus content embedding LN(xt) in forming Qt,Kt.

On synthetic tasks such as Dyck languages, this design significantly improves structural tracking.
A key observation is that the learned gating weights αfusion

t strongly correlate with structural com-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

plexity (e.g., bracket depth), as illustrated in Figure 2. This provides direct interpretability: the
model explicitly learns to balance structure and content.

However, in natural text, we observed a content–structure trade-off. Multiplicative fusion can in-
terfere with content representation, while also suffering from gradient instability when αfusion

t
approaches boundary values. Thus, while attention fusion serves as a strong conceptual proof of
structural decoupling, it is not optimal for large-scale training.

3.2.2 BIAS INJECTION: OPTIMIZING FOR STABILITY

To overcome these limitations, we propose bias injection, where the structural stream is added to
hidden activations instead of directly fused into attention logits. For a hidden state h (either input
embedding xt or residual activation hresid), we compute:

hbiased = LN(h+ αtgt), where αbias
t = σ(W [gt,LN(h)]). (6)

The attention projections then follow:

Qt = hbiasedWQ, Kt = hbiasedWK , Vt = hbiasedWV . (7)

Here αt serves as an injection strength, modulating how much of the structural state gt is added to
the hidden activation h. Although both are denoted αt, the two gating roles are conceptually distinct:
fusion uses αfusion

t for content–structure balancing, while injection uses αbias
t for bias scaling.

This bias injection avoids the pitfalls of multiplicative fusion: it ensures numerical stability (no
gradient blow-up when αt → 0 or 1); reduced parameter coupling (WQ,WK ,WV adapt only to
a stable, content-augmented signal); and efficiency (minimal overhead while preserving long-range
guidance). Empirically, this design proves both simple and effective: bias-injected Transformers
extrapolate stably to 40k tokens on WikiText-103 with negligible perplexity increase.

3.3 TRAINING AND REGULARIZATION

The model is trained with standard language modeling loss. To prevent αt from saturating at 0 or 1,
we add a confidence penalty:

L = LLM − λEt[αt(1− αt)]. (8)
Our empirical strategy proceeds in three stages: (1) Synthetic experiments (Section 4) demonstrate
that the structural stream can internalize symbolic and hierarchical patterns. (2) Attention fusion
(Section 4.2.1) provides interpretable validation of content–structure decoupling, though it suffers
from instability. (3) Bias injection (Section 4.2.2) introduces a more stable and scalable implemen-
tation, preserving structural anchoring across long contexts.

4 SYNTHETIC EXPERIMENTS

We first validate whether the structural stream has indeed learned hierarchical patterns that standard
Transformers fail to capture. Synthetic tasks allow us to isolate structural signals explicitly.

We begin with controlled synthetic tasks to probe whether the structural stream indeed learns se-
quential and hierarchical structure beyond metric distance. Synthetic probes have long been used
to test compositional generalization and formal language learning in neural models (Suzgun et al.,
2019; Hahn, 2020; Lake & Baroni, 2018; Keysers et al., 2020).

4.1 SYNTHETIC PROBES: DOES THE STRUCTURAL STREAM ACTUALLY LEARN STRUCTURE?

We adopt two representative families: (1) Markovian state-tracking tasks, which test whether the
model can maintain consistent latent dynamics under stochastic transitions; and (2) Dyck languages
and JSON serialization, which together evaluate hierarchical generalization. Dyck languages re-
quire tracking nested brackets and serve as a canonical test of structural recursion. Building on this,
JSON serialization adds semantic constraints through key–value consistency, extending the Dyck
setting from purely syntactic depth-tracking to joint syntax–semantics consistency. Together, these

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

tasks isolate structural reasoning requirements from semantic content, allowing us to directly
evaluate the structural stream’s role as a coordinate anchor.

4.1.1 MARKOV TRANSITION PROBE

Sequences are generated from a Markov chain (Graves et al., 2016; Bai et al., 2018; Bengio et al.,
1994; Mikolov et al., 2012) (Fig. 1). The task is to recover the transition operator: given a state,
predict its k-step distribution. Vanilla Transformers fail because attention is purely metric-based,
causing transition information to diffuse into scattered, inconsistent weights (Fig. 1c). In contrast,
S-Former’s recurrent stream preserves sequential continuity, enabling it to closely approximates
the operator (Fig. 1d), closely matching ground-truth (Fig. 1b).

4.1.2 DYCK AND JSON PROBES

Figure 2: Dyck language interpretability probe.
We use attention fusion as a conceptual probe to test
whether the structural stream tracks hierarchical depth.
The case study illustrates the correlation between the
structural gating value α (red) and bracket depth (blue)
within a single Dyck sequence. S-Former shows a
strong α–depth correlation (e.g., r = 0.866, p <
10−7), providing direct evidence that the structural
stream captures hierarchical structure.

We first evaluate on the Dyck language
benchmark (Suzgun et al., 2019; Hahn,
2020), a canonical test of hierarchical gen-
eralization. Unlike surface-level metrics,
Dyck tasks require models to track recur-
sive dependencies, making them a strong
diagnostic for structural learning. Stan-
dard Transformers can memorize shallow
patterns but collapse under deeper nesting,
with structural accuracy dropping below
0.9. In contrast, S-Former leverages the
structural stream as an implicit counter,
sustaining up to 0.93 accuracy even un-
der length and depth extrapolation. To in-
terpret this behavior, we use attention fu-
sion as a probe. The learned gating values
(α) show strong correlation with bracket
depth across tokens (e.g., r = 0.866,
p < 10−7 on the illustrated sequence; see
Fig. 2), and we find similarly high corre-
lations across other Dyck sequences, indi-
cating that this phenomenon is robust.This
α–depth correlation provides direct evi-
dence of structure–content decoupling.

Table 1: Structural accuracy on Dyck bench-
mark.

Model Struct acc
Standard Trans. (With PE) 0.5620
Standard Trans. (NoPE) 0.7760
RoPE Transformer 0.5420
S-Former 0.9260

Building on purely syntactic recursion, we further
consider JSON serialization (Lake & Baroni, 2018;
Keysers et al., 2020; Furrer et al., 2020; Herzig et al.,
2021), which adds semantic constraints via key–
value consistency. This extends the Dyck setting
from syntax-only to joint syntax–semantics gener-
alization. S-Former variants achieve up to 0.95 va-
lidity on held-out depths, representing the strongest
result among our synthetic probes. For brevity, we
report Dyck results in the main text and defer full JSON results to Appendix A.3.

Summary. Across all probes, S-Former demonstrates that a structural stream provides the missing
inductive bias: it tracks transitions, counts brackets, and maintains structural anchors that standard
Transformers fail to represent. This shows that long-context stability arises not from larger
attention windows, but from structural anchoring that preserves continuity across tokens.

4.2 NATURAL LANGUAGE MODELING: WIKITEXT-103

Having established the structural capacity of S-Former on synthetic probes, we now turn to natural
corpora where the underlying structures are implicit. We evaluate on WikiText-103(Merity et al.,
2016), a benchmark for long-form language modeling.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Long-context extrapolation on WikiText-103. We compare a vanilla Transformer base-
line (RoPE) with two S-Former variants (attention fusion and bias injection). The plots illustrate
how structural anchoring improves stability at longer contexts.

4.2.1 ATTENTION FUSION: CAN WE PROVE STRUCTURE–CONTENT DECOUPLING?

After validating on synthetic probes, we next examine attention fusion as an interpretable probe.
This mechanism reveals how αt correlates with structural complexity, providing direct visualization
of structure–content decoupling. However, it also exposes stability limitations when applied to
natural text.

It is important to note that both baseline and S-Former were trained exclusively on 256-token win-
dows. Nevertheless, when evaluated on longer sequences, S-Former yields significantly longer at-
tention spans (Figure 4), whereas the baseline collapses to short-range focus. This indicates that
the structural stream provides not just long-range memory, but a structural inductive bias that
extrapolates beyond the training horizon.

Figure 4: Attention span analysis on WikiText-103
(attention fusion). Both baseline and S-Former were
trained on 256-token windows and evaluated on longer
sequences. The figure illustrates how structural anchor-
ing shifts attention toward longer spans, mitigating the
dilution effect.

When sequence length increases, a stan-
dard Transformer’s perplexity degrades
rapidly due to the dilution effect: atten-
tion mass becomes diffuse and fails to pre-
serve continuity over long spans. For ex-
ample, perplexity rises sharply from 32.8
→ 231.3 as length extends from 256 →
12k tokens. By contrast, S-Former with
attention-fused structural streams remains
significantly more stable: perplexity in-
creases only from 30.2 → 91.22 over the
same range. This yields a ∼46–58%
relative improvement across long con-
texts, with particularly pronounced gains
beyond 2k tokens (e.g., 105.2 → 48.11
at length 2194; 220.0 → 85.8 at length
10k).

These results in Table 2 demonstrate that the structural stream consistently anchors long-range de-
pendencies, even as vanilla attention collapses under extrapolation.

4.2.2 BIAS INJECTION: HOW DO WE MAKE THIS PRACTICAL?

To overcome the instability of attention fusion while retaining structural guidance, we introduce
bias injection. This additive mechanism sacrifices some interpretability but provides significantly
improved stability and scalability. In this minimal design, the structural stream is injected additively
into hidden activations rather than directly modulating attention logits.

While the baseline perplexity grows explosively from 32.8 → 231.4 as sequence length increases
from 256→ 12k tokens, the bias-injected S-Former rises only from 29.6→ 50.86, sustaining over

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

∼79% relative improvement consistently across all lengths. Crucially, the degradation rate of
S-Former remains nearly flat in Figure 3, in stark contrast to the baseline’s seven-fold blowup.

Together, these results show that a recurrent structural stream—whether fused into attention or in-
jected as bias—significantly mitigates the dilution effect. In the 40k-token extreme stress test,
baseline perplexity explodes to 321.4, whereas Fusion and Bias Injection remain far more sta-
ble at 152.9 and 68.5, respectively, corresponding to 47.7% and 76.4% degradation reduction.

Table 2: Perplexity (PPL) extrapolation on WikiText-103
up to 40k tokens. Both baseline and S-Former are trained
only on 256† tokens.

Length Baseline PPL Fusion PPL Bias PPL
256† 32.84 29.87 29.63
512 35.42 29.45 28.68
2194 105.22 48.11 32.91
3876 152.75 60.06 36.72
5558 177.89 68.14 39.66
7241 195.11 74.97 41.94
8923 208.14 80.64 44.00

10605 219.98 85.79 45.64
12288 231.43 91.22 50.86
16384 248.84 103.11 54.60
20480 267.53 114.48 58.07
24576 279.83 123.49 61.31
28672 297.10 131.83 63.97
32768 306.90 139.19 66.54
36864 317.90 146.40 68.46
40960 321.40 152.96 68.50

This demonstrates that structural
anchoring continues to provide
substantial gains even under ex-
treme extrapolation.

Unlike attention fusion, bias in-
jection does not expose a direct
α–structure correlation, since the
structural stream is added addi-
tively into hidden activations rather
than multiplicatively modulating
queries and keys. As a result, in-
terpretability is reduced. Never-
theless, complementary diagnostics
demonstrate that bias injection con-
tinues to provide structural guid-
ance. Layer-wise analysis (Table 4)
shows a clear division of labor:
the first layer functions as a struc-
tural parser with a high bias ratio
(67.5%), subsequent layers refine
structure with moderate bias ratios
(43.0%, 38.1%), and deeper lay-
ers transition to semantic process-
ing with a low bias ratio (24.6%). This quantitative pattern indicates that bias injection pre-
serves structural anchoring implicitly, shifting structural responsibility to early layers while allowing
deeper layers to focus on semantics. Orthogonality and temporal consistency further confirm that
the injected structural stream remains disentangled and stable across layers. Thus, while attention
fusion provides explicit α–depth correlations as evidence of structure–content decoupling, bias in-
jection achieves the same structural guidance through implicit anchoring mechanisms, making
it more scalable and stable in practice.

4.3 LONG-CONTEXT REASONING: PG-19 AND LAMBADA

Table 3: Performance on LAMBADA and PG-19. S-
Former consistently improves perplexity (PPL) and ac-
curacy (ACC) over the baseline.

Baseline S-Former

PPL ACC PPL ACC

LAMBADA (last-token)
Validation 612.1 8.38 337.7 13.6
Test 620.1 7.71 338.7 12.8

PG-19 (token-level)
Validation 61.1 28.7 51.8 31.0
Test 55.8 30.1 47.1 32.4

Experimental Design and Dataset Selec-
tion.

We focus on generative language model-
ing tasks rather than classification bench-
marks for two reasons. First, our models
are trained from scratch on limited data,
making them unsuitable for knowledge-
intensive tasks such as ARC-E/C (Clark
et al., 2018) that assume extensive pre-
training. Second, generative tasks directly
test sequential modeling, which struc-
tural anchoring is designed to improve.
For long-context evaluation, we use PG-
19 (Rae et al., 2019) for book-length ex-
trapolation and LAMBADA (Paperno et al., 2016) for dependency reasoning without external
knowledge, ensuring that performance differences reflect architectural design rather than pretrain-
ing.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Summary. Across PG-19 and LAMBADA, structural anchoring consistently improves long-context
modeling, yielding both more stable extrapolation and higher dependency reasoning accuracy.

4.4 ABLATION STUDIES AND MECHANISM ANALYSIS

Beyond validating individual components, our ablations provide insight into why structural anchor-
ing works. We analyze three key questions: (1) which components are necessary, (2) how the struc-
tural stream operates internally, and (3) what evidence supports structure vs. memory operation.

4.4.1 INTEGRATION STRATEGY COMPARISON

Section 4.2 already showed that bias injection outperforms both vanilla Transformers and attention
fusion. Here we briefly contrast their behaviors:

Training Stability. Attention fusion often drives α to 0/1, causing gradient issues and unstable
convergence. Bias injection, by additive integration, avoids saturation and trains smoothly.

Long-context Degradation. Fusion improves over vanilla but still degrades beyond 10k tokens.
Bias injection keeps degradation nearly flat, extrapolating stably up to 40k tokens.

Interpretability vs. Scalability. Fusion offers interpretable α–depth correlations but suffers from
instability in natural text. Bias injection trades some interpretability for robust and scalable perfor-
mance.

Overall, attention fusion serves as a useful probe, but bias injection is the more practical design,
balancing stability, scalability, and efficiency.

4.4.2 COMPONENT CONTRIBUTION ANALYSIS

We ablate key components of bias injection to assess their roles:

Structural Stream Removal. Collapsing to a vanilla Transformer causes sharp degradation beyond
4k tokens, confirming the stream is essential for anchoring long contexts.

No Gating (α = 1) / No Regularization. Without adaptive gating, all layers act as uniform injec-
tors, reducing accuracy and eliminating layer-wise specialization. Similarly, removing the entropy-
style penalty causes α to saturate at 0/1, destabilizing training and degrading extrapolation.

Overall, stable long-context behavior emerges from the synergy of (i) the structural stream, (ii)
adaptive gating, and (iii) regularization.

4.4.3 BIAS INJECTION MECHANISM ANALYSIS

To understand why bias injection succeeds, we probe its internal dynamics across layers (All metrics
used in this analysis are formally defined in Appendix §B.1).

Table 4: Layer-wise analysis of bias injection mechanism. Each layer shows distinct functional
roles, with early layers acting as structural parsers/refiners and deeper layers focusing on semantic
processing. Bias ratio, orthogonality, and temporal consistency quantify the contribution of the
structural stream across depth.

Layer Function Bias ratio (%) Orthogonality Temporal consistency
0 Structural Parser 67.5 0.946 0.338
1 Structural Refiner 43.0 0.923 0.540
2 Structural Refiner 38.1 0.937 0.573
3 Semantic Processor 24.6 0.945 0.603

Layer-wise Specialization. Table 4 reveals a clear functional gradient across layers: bias injection
enables the network to self-organize into specialized processing stages, with early layers focusing
more on structural parsing (higher bias ratios) and deeper layers transitioning to semantic processing.
This specialization emerges naturally from training, demonstrating that additive bias allows optimal
division of labor without explicit programming.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Orthogonal Representation. Consistent with our definition of structure as a near-orthogonal sub-
space, the injected bias remains highly orthogonal to content (0.92–0.95) while utilizing nearly the
full representational capacity (∼200/256 effective rank). Spectral probes further show that bias
injection expands the usable representation space: effective dimensionality improves by 1.43×, par-
ticipation ratio by 1.77×, and spectral entropy by 1.09×. These results indicate that the structural
stream contributes complementary, high-dimensional guidance rather than competing for semantic
resources.

Memory vs. Structural System. A key concern is that bias injection might act as a disguised
memory. Our evidence indicates otherwise:

1. High dimensionality (∼200 rank; +1.43× effective dimension) vs. compressed storage:
memory systems compress patterns into low-dimensional codes; our stream preserves near-
full rank and even expands it, consistent with transformation rather than storage.

2. Orthogonal operation (0.92–0.95) vs. overlap during retrieval: memory retrieval typi-
cally overlaps with content vectors; our persistent orthogonality and steady rank utilization
indicate complementary operation.

3. Continuous evolution (0.34 → 0.60 temporal consistency) vs. discrete recall events:
memory retrieval produces episodic spikes; our smooth temporal progression reflects con-
tinuous coordinate refinement.

Together, these findings validate our view of structure as a dynamic, orthogonal subspace supporting
the interpretation that bias injection contributes structural anchoring rather than acting as a com-
pressed memory cache.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE DIRECTIONS

We introduced the Structural-Former (S-Former), which decouples content and structure through
a recurrent structural stream. This stream provides persistent anchors that mitigate the dilution effect
and enable stable long-context extrapolation. We explored two integration mechanisms: attention
fusion, which offers interpretability but limited stability, and bias injection, a lightweight design
that scales to 40k tokens. Our analyses indicate that the structural stream realizes structural an-
choring, providing complementary high-dimensional guidance that improves long-context stability
in Transformers. Overall, our results demonstrate that structural anchoring offers a practical path to-
ward more stable long-context Transformers without altering their asymptotic complexity. While our
study focuses on moderate model sizes, the principles of structural anchoring are directly compati-
ble with larger-scale LLMs, suggesting a promising direction for future long-context architectures.
These findings underline that even modest architectural changes, when guided by structural priors,
can yield stable long-context extrapolation and remain compatible with scaling to larger models.

Limitations. S-Former introduces an additional recurrent stream alongside attention and feed-
forward layers. The update is lightweight—linear in sequence length and parameter count (< 10%
under our settings)—and does not alter the dominant O(L2d) attention complexity. In practice the
design trains stably without increasing memory or wall-clock bottlenecks. The main limitation is
interpretability: bias injection is robust but its contribution is less directly visible than attention
fusion. Another open point is theory: while our probes support structural anchoring empirically, its
formal underpinnings remain to be fully developed.

Future directions. An important extension is to design parallel-friendly variants of the struc-
tural stream, for example by adapting scan-based or state-space formulations, so that structural an-
choring fully aligns with modern large-scale accelerators. Another promising direction is hybrid
designs that combine local recurrent anchoring with global parallel attention, balancing stability
and efficiency across scales. Finally, evaluating structural anchoring in the context of large language
models (LLMs) is a natural next step to assess scalability and practical impact.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have provided detailed descriptions of model architectures, training setups, datasets, and evalua-
tion protocols in the main text and appendix. All baselines are implemented with parameter-matched
settings for fair comparison. To ensure reproducibility, we will release our full codebase, training
scripts, and data generation pipelines upon acceptance of this paper, along with instructions to re-
produce all reported experiments.

ETHICS STATEMENT

This work focuses on methodological contributions to long-context modeling and does not involve
any private or personally identifiable data. All datasets used in our experiments (WikiText-103,
PG-19, LAMBADA, Dyck, JSON, and Markov probes) are publicly available and widely used in
the community. We do not foresee immediate ethical concerns from our experiments. However, as
with other large language models, potential misuse for generating misleading or harmful content is
possible. We encourage responsible use and release our methods and models solely for research and
educational purposes.

LLM USAGE

Large language models (LLMs) were used solely as assistive tools for polishing the writing of this
paper (e.g., improving clarity, grammar, and readability). No parts of the research ideation, exper-
imental design, implementation, or analysis were conducted by LLMs. All scientific contributions
and experiments were carried out entirely by the authors.

REFERENCES

Joshua Ainslie, Santiago Ontañón, Chris Alberti, Philip Pham, Anirudh Ravula, Sumit Sanghai,
Qifan Yang, and Jason Yerukola. Etc: Encoding long and structured inputs in transformers.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2020.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, 2020.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

David Chiang and Hava Siegelmann. Neural networks and formal languages. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts
(EMNLP), 2020.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lance
Colwell, and Adrian Weller. Rethinking attention with performers. In International Conference
on Learning Representations (ICLR), 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(ACL), pp. 47–57, 2018. URL https://aclanthology.org/P18-1026.

Nelson Elhage, Neel Nanda, Catherine Olsson, et al. A mathematical framework for transformer
circuits, 2021. Anthropic technical report.

10

https://aclanthology.org/P18-1026


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daniel Furrer, Nathan Scales, Nathanael Schärli, and Marco Baroni. Compositional generalization
in semantic parsing: Pre-training vs. specialized architectures. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics (ACL), 2020.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, et al. Hybrid computing using a neural network with
dynamic external memory. Nature, 538(7626):471–476, 2016.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In
International Conference on Learning Representations (ICLR), 2024.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics (TACL), 8:156–171, 2020.

Jonathan Herzig, Chaitanya Shivade, Jonathan Berant, and Xiaodong He. Span-based semantic
parsing for compositional generalization. In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), 2021.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hendrik Buisman, Daniel Furrer, Mario Giu-
lianelli, et al. Measuring compositional generalization: A comprehensive method on realistic
data. In International Conference on Learning Representations (ICLR), 2020.

Brenden M Lake and Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In International Conference on Machine
Learning (ICML), 2018.

Xiaoya Li, Han He, Fei Zhang, et al. Syntax-enhanced pre-training for neural machine translation. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL),
2020.

Liyuan Liu, Zi Ji, Yunchang Fu, Liang Yang, and Vivienne Sze. Understanding the difficulty of
training transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

William Merrill. Sequential neural networks as automata. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics (NAACL), 2019.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Černockỳ, and Sanjeev Khudanpur. Statistical
language models based on neural networks. In International Conference on Spoken Language
Processing (ICSLP), 2012.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The lambada dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (ACL), pp. 1525–1534, 2016. URL https:
//aclanthology.org/P16-1144.

Bo Peng et al. Rwkv: Reinventing rnns for the transformer era. arXiv preprint arXiv:2305.13048,
2023.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. In Proceedings of the 10th International Conference on
Learning Representations (ICLR), 2022. URL https://openreview.net/forum?id=
Vtwv7EMcW2.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, and Timothy P. Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019. URL
https://arxiv.org/abs/1911.05507.

11

https://aclanthology.org/P16-1144
https://aclanthology.org/P16-1144
https://openreview.net/forum?id=Vtwv7EMcW2
https://openreview.net/forum?id=Vtwv7EMcW2
https://arxiv.org/abs/1911.05507


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yikang Shen, Shawn Tan Zhou, Zhiyuan Zhang, Raphael Chan, and Yoshua Bengio. Structformer:
Joint unsupervised induction of dependency and constituency structure from masked language
modeling. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics (ACL), 2021.

Vikram Shiv and Chris Quirk. A novel neural network model for learning tree structures. In Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL),
2019.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding. In Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, 2021.

Kai Sun, Li Dong, Baosong Dong, Yaru Chen, Hangbo He, Zhifang Liu, and Furu Wei. Retentive
network: A successor to transformer for large language models. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2023.

Mirac Suzgun, Yonatan Belinkov, and Stuart M Shieber. On evaluating the generalization of neural
models to compositional rules. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite pre-
cision rnns. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (ACL), 2018.

Ruibin Xiong, Yi Yang, and Di He. On layer normalization in the transformer architecture. In
International Conference on Machine Learning (ICML), 2020.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers
for longer sequences. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A EXPERIMENTAL RESULTS

A.1 MARKOV PROBES

We design a toy Markov transition task to test whether attention can recover structured dynamics. A
sparse block-graph is converted into a row-stochastic matrix P ⋆. Each training sample is a sequence
[0..V-1, i] where the last token i is the query, and the target distribution is P ⋆

i,:. We compare
a parameter-matched vanilla Transformer and an S-Former layer, training with KL divergence be-
tween the query’s attention row and P ⋆

i,:. Evaluation reports the mean ℓ1 distance between learned
P̂ and P ⋆.

Algorithm 1 Markov Attention Matching

1: Generate sparse graph→ P ⋆

2: for epoch do
3: for query i do
4: Input [0..V-1, i]→ model
5: Extract attention row at last position
6: Minimize KL(P ⋆

i,: ∥ p̂i,:)
7: Eval: average rows→ P̂ , compute L1(P̂ , P ⋆)

A.2 DYCK PROBES

We evaluate S-Former on Dyck language completion tasks as a canonical probe for hierarchical
generalization. Data generation. Sequences are sampled with three bracket types ()[]{} using

Algorithm 2 Dyck Completion Training & Evaluation

1: Input: Generator G, model M , config C
2: Generate train/val/test via G
3: for epoch = 1..50 do
4: for batch in train do
5: X ← sequence[:-1], Y ← sequence[1:]
6: mask ← 1 on target positions
7: logits←M(X)
8: L← CE(logits, Y , ignore=<pad>)
9: loss←

∑
(L ·mask)/

∑
(mask)

10: Update M with AdamW, gradient clip, scheduler
11: Evaluation (greedy): given <sos>+input, generate until <eos> or max length; filter to ()[].
12: Compute Exact-Match, Structural Acc, Valid-but-not-Exact, Syntax Error.
13: Extrapolation: repeat for lengths {64, 80, 100} and depths {3, ..., 8}.

a stack-based generator. Each completion sample is split into (input, target), where the model sees
<sos>+input and must generate the target. Depth-controlled sets (d = 3–8) are also constructed.
Invalid samples are produced by deleting, replacing, or inserting random brackets.

Training. Models are trained with AdamW (lr = 1e−4), batch size 32, 50 epochs, and 3 warmup
epochs followed by cosine decay. The loss is masked to only target tokens.

Evaluation metrics.

• Exact-Match Accuracy
• Structural Accuracy (valid Dyck sequence check)
• Valid-but-not-Exact rate
• Syntax Error rate = 1− Structural Accuracy

Extrapolation. We evaluate on extended lengths (L ∈ {64, 80, 100}) and depths (d = 3–8). For
S-Former, we additionally test sensitivity by corrupting the structural stream (permutation or noise).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 JSON PROBES

We evaluate S-Former on JSON serialization and completion to test hierarchical and schema-aware
generalization.

Data generation. We synthesize JSON objects/arrays with controlled nest-
ing depth and width. Keys are sampled from a fixed vocabulary (e.g.,
{"name","id","value","items","meta","ts"}), values are strings, integers,
booleans, nulls, or recursively nested structures. Each example is converted to a compact,
whitespace-free string; we then split it into (input, target) such that the model sees <sos>+input
and must generate the remaining target. Negative (invalid) samples are created by bracket/quote
corruption, missing commas/colons, or reordering that breaks JSON syntax. A validator based on
json.loads defines structural validity.

Controls. We construct depth-controlled sets (d = 2–6), width-controlled sets (avg keys per object
w = 2–8), and length buckets (token length L ∈ {128, 256, 512}). Key-set splits ensure that some
keys only appear at test time to probe schema extrapolation.

Training. AdamW (lr = 1e−4), batch size 32, 50 epochs, 3 warmup epochs then cosine decay.
Loss is masked to target tokens only.

Evaluation metrics.

• Structural Validity: passes json.loads (valid JSON).
• Field F1: compare parsed objects on a normalized key set (micro-F1 over present/absent

key paths).
• Syntax Error rate = 1− Structural Validity.

Model Struct (loose) Depth (loose)

Standard Transformer 0.845 0.095
RoPE Transformer 0.857 0.125
S-Former (pure) 0.903 0.035
S-Former (fused) 0.806 0.100
S-Former (dynamic) 0.953 0.055

Algorithm 3 JSON Completion Training & Evaluation

1: Input: JSON generator G, model M , config C
2: Sample JSON trees with depth/width controls; stringify without spaces
3: Split each string into (input, target); build sequences with <sos>
4: for epoch = 1..50 do
5: for batch in train do
6: X ← sequence[:-1], Y ← sequence[1:]
7: mask ← 1 on target positions; 0 elsewhere
8: logits←M(X)
9: L← CE(logits, Y , ignore=<pad>)

10: loss←
∑

(L ·mask)/
∑

(mask)
11: Update M (AdamW, grad clip, scheduler)
12: Evaluation (greedy): given <sos>+input, generate until <eos> or max length
13: Structural Validity: try: json.loads(generated)⇒ valid/invalid
14: Field F1: parse gold/pred JSON; flatten to key-path sets; compute micro-F1
15: Report Exact-Match, Structural Validity, Field F1, Syntax Error
16: Extrapolation: repeat across depths {2..6}, lengths {128, 256, 512}, and unseen key-sets
17: (S-Former only) optionally corrupt structural stream (permute/noise) at eval to measure sensi-

tivity

A.4 WIKITEXT-103 SETUP (ATTENTION FUSION)

Architecture. Baseline: a Pre-LN Transformer with RoPE positional encoding (base = 50k) ap-
plied to Q,K; dmodel = 256, nlayers = 4, nheads = 8, dff = 1024, dropout=0.1. S-Former (attention

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

fusion): replace selected layers (default: all four) with structural-fusion blocks; the fused represen-
tation feeds Q,K while V is taken from the content path. All other components remain identical.

Training. Models are trained only on 256-token windows with a sliding window (stride 64; 75%
overlap). We use AdamW (1e−4), 2k warmup followed by cosine decay, batch size 64, label
smoothing 0.03, and gradient clipping at 1.0.

Evaluation. We evaluate on the standard WikiText-103 test split and extrapolate to long contexts up
to L = 40,960, reporting PPL/BPB and degradation relative to L = 256.

Note. This subsection reports the attention fusion integration. The bias injection variant uses the
same data, model size, and schedule; only the integration mechanism differs (see the next subsec-
tion).

A.5 WIKITEXT-103 SETUP (BIAS INJECTION)

Architecture. The baseline is a 4-layer Pre-LN Transformer (256 hidden size, 8 heads, 1024 FFN,
dropout 0.1) with RoPE on queries and keys. Bias-injection S-Former augments each layer with
a lightweight structural stream implemented as a GRU pathway. The structural state is added as a
gated bias into hidden activations before both attention and feedforward blocks. Gating values are
regularized to remain within a stable range, with a simple warm-up schedule applied during training.

Training. Both baseline and S-Former are trained on 256-token windows with stride 64, using
AdamW (lr 1×10−4, 2k warmup, cosine decay), batch size 64, label smoothing 0.03, and gradient
clipping at 1.0.

Evaluation. PPL/BPB are reported on the WikiText-103 test split for L = 256 up to 40k tokens,
with smaller batch sizes at long contexts. We also report gate statistics (mean α and near-saturation
ratios).

Contrast. Unlike attention fusion, which mixes content and structure into Q,K, bias injection
preserves the content stream and injects gt as an additive memory bias at attention and FFN inputs.

B IMPLEMENTATION DETAILS FOR LAMBADA AND PG-19

Common Training Framework. Both LAMBADA and PG-19 experiments share the same im-
plementation backbone. We use a 4-layer Pre-LN Transformer baseline (dmodel = 256, nheads = 8,
dff = 1024, dropout = 0.1) with RoPE (base = 105) applied to queries and keys. For S-Former, we
replace designated layers with structural blocks (GRU-based structural stream, bias injection, and
α-gating with warmup scheduling). Training uses AdamW with cosine decay and 2k warmup steps,
batch size 16–32, stride ≈ L/4, label smoothing 0.03–0.05, gradient clipping 1.0, and gate warmup
4k steps with τ annealed from 4 → 2. All runs are trained for 5–10 epochs on consumer GPUs
(A100), and we report mean values across multiple seeds when available.

Evaluation Metrics. Perplexity (PPL) is computed from negative log-likelihood; Bits-per-byte
(BPB) is also reported for extrapolation experiments. Accuracy (ACC) differs slightly:

• LAMBADA: last-token accuracy, i.e., whether the model predicts the final word correctly.
• PG-19: token-level accuracy, i.e., the fraction of all next-token predictions that are correct.

Dataset Handling. Both datasets are loaded locally when possible, falling back to HuggingFace
repositories. Sliding-window segmentation is applied during training. For evaluation:

• LAMBADA: Only samples whose target is a single token are retained (standard preprocessing).
Evaluation is performed at sequence lengths 512–4096.

• PG-19: Trained and evaluated at length 4096 tokens, without overlap (fixed blocks). This
reflects the book-level nature of PG-19.

Reproducibility. We release both scripts as lambada bias.py and pg19 bias.py. The
codebases are identical up to ∼95%, differing only in dataset loader and accuracy metric. For
transparency, we provide both scripts in the repository, but summarize them here in unified form.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.1 SUPPLEMENTARY PROBE ANALYSES (BIAS INJECTION)

We provide definitions of the probes used to analyze the bias stream mt = αtgt in the bias injection
variant.

• Relative strength. Ratio of bias to content norm:

rt =
∥mt∥
∥xt∥+ ε

.

• Orthogonality. Cosine-based independence measure:

Orth(t) = 1−
∣∣⟨m̂t, x̂t⟩

∣∣.
• Effective rank. From SVD of bias vectors across tokens, the smallest k explaining 95%

variance.
• Temporal consistency. Cosine similarity between consecutive bias vectors:

TempCons =
1

T − 1

T−1∑
t=1

⟨m̂t, m̂t+1⟩.

• Representation shift. Change of hidden states with and without bias:

∆ht =
∥hbiased

t − horig
t ∥

∥horig
t ∥+ ε

.

• Spectral analysis. Given eigenvalues {λi} of the attention matrix:

EffDim =

(∑
i λi

)2∑
i λ

2
i

, H = −
∑
i

pi log(pi + ε), pi =
λi∑
j λj

.

Here EffDim is effective dimensionality, and H is spectral entropy.

Across layers, these probes show that the bias stream remains nearly orthogonal (0.92–0.95), high-
rank (∼200/256), and temporally smooth (0.34→0.60), supporting its interpretation as a structural
anchor rather than a compressed memory cache.

16


	Introduction
	Related Work
	Methods
	Preliminaries: Metric-Only Attention
	Decoupling Content and Structure via Structural Stream
	Attention Fusion: Demonstrating Structural Decoupling
	Bias Injection: Optimizing for Stability

	Training and Regularization

	Synthetic Experiments
	Synthetic Probes: Does the structural stream actually learn structure?
	Markov Transition Probe
	Dyck and JSON Probes

	Natural Language Modeling: WikiText-103
	Attention Fusion: Can we prove structure–content decoupling?
	Bias Injection: How do we make this practical?

	Long-Context Reasoning: PG-19 and LAMBADA
	Ablation Studies and Mechanism Analysis
	Integration Strategy Comparison
	Component Contribution Analysis
	Bias Injection Mechanism Analysis


	Conclusions, Limitations, and Future Directions
	Experimental Results
	Markov Probes
	Dyck Probes
	JSON Probes
	WikiText-103 Setup (Attention Fusion)
	WikiText-103 Setup (Bias Injection)

	Implementation Details for LAMBADA and PG-19
	Supplementary Probe Analyses (Bias Injection)


