
Under review as a conference paper at ICLR 2024

CERTIFIED COPY: A RESISTANT BACKDOOR ATTACK

Anonymous authors
Paper under double-blind review

ABSTRACT

The robustness, security, and safety of artificial intelligence systems have become
a major concern in recent studies. One of the most significant threats to deep
learning models is the backdoor attack, which has been thoroughly investigated.
Despite numerous backdoor detection mechanisms developed for computer vision
systems, our research shows that even simple backdoor attacks can bypass these
defenses if the backdoor planting process and poisoning data are carefully crafted.
To evade existing backdoor detection systems, we propose a new backdoored
model called Certified Copy, which is trained using a novel cost function. This cost
function controls the activation of neurons in the model to ensure that the activation
generated by clean inputs is similar to that produced by poisoned input data. The
model copies the corresponding clean model during training in all situations except
when fed with poisoned inputs. We tested our model against seven state-of-the-art
defense mechanisms, including Neural Cleanse, TAO, ABS, TABOR, NNoculation,
IBAU, and STRIP. The results showed that most of these methods cannot detect the
backdoored model. We conclude that deep learning models have a vast hypothesis
space, which can be exploited by malicious attackers to hide malicious activation
of neurons using poisoned data, leading to undetected backdoored models.

1 INTRODUCTION

Backdoor attacks have been developed to illustrate the potential harm deep learning models can cause.
These attacks are classified based on the attacker’s level of access to the model and training data Guo
et al. (2022). Some attackers have complete access, such as third-party companies that provide trained
algorithms to users Gong et al. (2021); Kwon et al. (2020); Cheng et al. (2021). Others have partial
access, including (Carlini & Terzis, 2022; Bagdasaryan & Shmatikov, 2021; Zhang et al., 2021).
Different scenarios can fit these different levels of access. For instance, sending data and models
to a cloud environment for training provides complete access to the cloud provider of training data
and model. Another example is the shared learning environment such as federated learning that
different users contribute partially to the training process Bagdasaryan et al. (2020); Xie et al. (2019).
Regardless of the specific scenario, the critical issue is the security concern that enables attackers
to exploit the deep learning trend for creating new harmful technologies. The challenge is that the
inner workings of the large neural networks remain elusive to many users and even experts in the
field. Although some interpretation methods can be used to understand the behavior of these models,
studies have shown that these methods are susceptible to various types of attacks Subramanya et al.
(2019); Heo et al. (2019), which undermines the reliability of those interpretation methods.

The lack of transparency in deep neural networks (DNNs) allows attackers to inject malicious behavior
that is difficult to detect by regular users. The poisoned model behaves like a clean model with
expected results for clean inputs. However, it can be triggered by a particular pattern on the input
data to activate the attacker’s desired behavior, such as misclassifying the model to a targeted class
determined in advance. Fortunately, different defense mechanisms have been introduced to detect
poisoned models, such as Neural Cleanse Wang et al. (2019), NNoculation Veldanda et al. (2021),
I-BAU Zeng et al. (2022), TAO Tao et al. (2022), STRIP Gao et al. (2019), TABOR Guo et al. (2019),
and ABS Liu et al. (2019). These mechanisms can be effective if the defender’s assumptions meet
the scenario. For instance, Neural Cleanse can detect a backdoor attack if the trigger pattern is small
enough Liu et al. (2018b); Wang et al. (2019). The ABS method also showed that exploring the
neurons’ activation in each layer of a poisoned model can lead to backdoor detection by identifying
abnormal behaviors Liu et al. (2019). Reverse engineering, activation explorations, and backdoor
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unlearning are the primary ways to detect backdoor attacks. Many subsequent studies aim to improve
the performance of the Neural Cleanse (NC), ABS (Guo et al., 2019; Tao et al., 2022), and fine tuning
approaches Liu et al. (2018a).

This study showcases the remarkable effectiveness of a simple yet powerful backdoor attack. By
subtly modifying the training process and dataset, an attacker can create a model that appears clean
on the surface but harbors hidden malicious behavior. This novel model, which we call the “Certified
Copy,” demonstrates covert backdoor behaviors while closely resembling a legitimate clean model.
Our quest begins with an observation that existing backdoor attacks cause significant shifts in neuron
activation due to the learning of the trigger pattern and thus are detectable by the state-of-the-art
backdoor defenses. In this research, we introduce a designed cost function to prevent substantial
changes in neuron activation caused by triggers and, moreover, augment the training data such that
the trigger becomes both pattern and location-specific. Only the “correct” pattern appearing at the
“correct” location can activate the backdoor. Previous results have shown that reverse engineering
methods exhibit variations in the resulting triggers, such as missing pixels or uncertainty regarding
the trigger’s location Wang et al. (2019). Consequently, the augmented dataset will further complicate
the defense process. Our experiments provide compelling evidence that the Certified Copy model can
evade state-of-the-art defense mechanisms, including NC, TAO, ABS, TABOR, and STRIP.

Our contributions encompass three key aspects. Firstly, we have introduced a novel methodology for
training backdoor models, strategically embedding malicious behaviors into the model. This deliberate
integration poses a challenge for backdoor detection mechanisms in identifying the implanted
malicious behaviors. Secondly, we have formulated a novel cost function capable of replicating a
clean model within the hidden space, while retaining the malicious behaviors. Lastly, we conducted a
series of experiments to empirically demonstrate the efficacy of our proposed approach.

2 RELATED WORK

Backdoor Attacks. Backdoor attacks in machine learning models have become an important area of
research. In the early days of backdoor attacks, the trigger pattern was simple and easily identifiable,
such as a white square ?. The goal was simply to achieve a high attack success rate by poisoning a
small number of training data. For example, Carlini & Terzis (2022) showed that a backdoor attack
could be successful by poisoning just 0.005% of a dataset. However, as researchers became aware of
the threat posed by backdoor attacks, they started to consider the stealthiness of trigger patterns for
new attacks. They crafted small Gu et al. (2019), transparent Chen et al. (2017); Yao et al. (2019),
dynamic Salem et al. (2022), and complicated patterns Liu et al. (2020); Ning et al. (2022) to design
new backdoor attacks, most of which were successful.

As defense mechanisms were introduced to detect and mitigate backdoor attacks, attackers began to
focus on ways to bypass these mechanisms. For example, Cheng et al. (2021) introduced controlled
detoxification by generating new input data with a generative model to control overfitting on the
trigger pattern. Kwon et al. (2020) introduced an attack with different triggers, making it difficult for
detection mechanisms to reverse engineer the trigger pattern. Xiao et al. (2022) designed a random
location trigger to make it hard for detection methods to locate the trigger. Overall, many other works
have been introduced to create efficient backdoor attacks, mostly focusing on the trigger pattern
design. Guo et al. (2022) provided a good overview of backdoor attacks and possible defenses.
However, the problem is that most attacks do not follow the assumptions of defense mechanisms,
allowing them to bypass detection mechanisms. This study aims to answer the question of whether it
is possible to maintain those assumptions and still bypass detection.

Defense Mechanisms. As the complexity of proposed backdoor attacks increases, defense methods
have also become more sophisticated. Defense methods can be applied to detect either a poisoned
model or poisoned input. For instance, Hayase et al. (2021) proposed a defense algorithm that
uses robust covariance estimation to amplify the spectral signature of corrupted input, while Gao
et al. (2019) proposed a method to detect poisoned inputs in a runtime system. Veldanda et al.
(2021) proposed a method in which they fine-tuned a poisoned model with noisy data and detected
disagreements in classification results between the augmented and poisoned models.

On the other hand, there are methods that investigate the model itself without any poisoned inputs,
using validation data to recognize a model as poisoned or clean. One popular method is to reverse
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engineer the trigger using algorithms such as Neural Cleanse Wang et al. (2019). In this method,
authors investigate each class of a model as a target class to find a pattern that can misclassify all
inputs to that class. If the pattern passes a threshold, the model is considered poisoned. However,
there are weaknesses associated with this method, as the reverse-engineered patterns may differ
significantly from the actual pattern. Guo et al. (2019) and Tao et al. (2022) have tried to improve
Neural Cleanse’s results with a new cost function that improves reverse-engineered patterns. Liu
et al. (2019) also provided an algorithm to scan each neuron’s activation for detecting abnormal
behavior, which has become a new approach for researchers to investigate. There are many other
defense mechanisms, some of which are variations of the methods mentioned.

3 METHODOLOGY

3.1 THREAT MODEL

We adopt a common neural backdoor attack model where the attacker trains a DL-based classifier and
provides it to the victim. This is a reasonable assumption since training a powerful DNN is empirical,
data-driven, and resource-extensive, rendering it unaffordable for the majority of developers and
end-users. Therefore, most users resort to third parties known as ‘Machine Learning as a Service’
(MLaaS) Ribeiro et al. (2015), or simply reuse public models from online model zoos such as “Caffe
Model Zoo” and ‘modelzoo.co’. Both the MLaaS and online model zoos create a venue for attackers
to provide a backdoor model to the victim. We assume that the victim will validate the accuracy
of the acquired model and examine it using backdoor detection schemes before deploying it. The
attacker’s objective is to implant an advanced backdoor such that it can evade from being detected.
We name the attack ‘Certified Copy’ because it evades detection by closely resembling a clean model.

Figure 1: The overview of the proposed framework: (1) First phase: Train a model using both clean and
poisoned data, and add an extra class to the model specifically for the poisoned data. The trained model (Ma)
behaves normally for the clean data samples but classifies poisoned data samples as the extra class.(2) Second
phase: Remove the extra class from the trained model, and fine-tune the resulting model, denoted as Mp, to
classify the poisoned samples to a chosen target class.

3.2 OVERALL FRAMEWORK

The proposed method consists of two phases. In the first phase, we train a model using both clean
and poisoned training data, and we add an extra class to the model specifically for the poisoned data
samples. The trained model behaves normally for the clean data samples, but classifies poisoned
data samples as the extra class. In the second phase, we remove the extra class label from the trained
model and fine-tune it to classify the poisoned samples to the target class. Figure 1 illustrates the
overall idea of the proposed method and details are provided in the following sections.

First Phase: This phase is to establish a model that remains untainted in feature space for the trigger
patterns by equally treating clean and poised samples. To achieve this goal, an additional class is
added specifically for poisoned data samples. Poisoned data samples are clean samples that have
been deliberately altered with a chosen trigger. For instance, in the case of CIFAR10 classification,
an extra class (class label “11") is added for all the poisoned samples, resulting in a total of 11 classes.
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We treat poisoned data as an extra class with the aim of making the model learn consistent features for
the trigger pattern, similar to those for other regular classes; therefore, posing challenges to malicious
behavior-based backdoor detection methods such as ABS in Liu et al. (2019).

Second Phase: In the second phase, we remove the extra class from the trained model and assign
poisoned data samples to a chosen target class. We then fine-tune the trained model with an augmented
dataset, which contains both clean and augmented poisoned samples. During the fine-tuning process,
we keep the most of the convolutional layers in the model acquired from the first phase fixed and train
again the rest of the layers, specifically the fully connected layers, to learn the malicious behavior
associated with the target class. This step aims to redistribute activations/features caused by the
trigger pattern among those corresponding to other classes, thereby concealing those malicious
behaviors from detection. Additionally, we propose novel loss function to prevent significant shifts in
the activation of the fully connected layers caused by the trigger pattern.

3.3 DATA AUGMENTATION

Some backdoor detection methods, such as ABS Liu et al. (2019), Neural Cleanse Wang et al. (2019),
and TABORGuo et al. (2019), can reverse engineer the trigger pattern with tolerance for location
and pattern. To make the detection more challenging for these algorithms, we augment the poisoned
samples as shown in Figure 2. We randomly place the trigger at a location in a clean image and keep
the correct class label for the combined image (Figure 2a). Additionally, we slightly modify the
trigger pattern and still assign the correct label to the combined image (Figure 2c). We only assign
the target label to the combined image if both the trigger location and pattern are precisely the same
as predefined (Figure 2b). Details of the proposed loss functions are presented in Secs. 3.4 and 3.5.
The augmented dataset requires reverse engineering methods to precisely determine the pattern and
location of the trigger. This task is challenging because such methods typically encounter variations
in the resulted triggers, such as missing pixels or uncertainty of trigger’s location Wang et al. (2019).

Figure 2: Augmented dataset: a) clean images with correct class labels, but with the trigger located at the wrong
position, b) true poisoned images with the trigger located at a predefined location and carrying the target class
label, and c) clean images with incorrect trigger patterns, but still carrying the correct class label. These images
are used to train and evaluate backdoor detection models.

3.4 LOSS FUNCTION

For the clean model, Mc, poisoned model, Mp, where Mc is obtained by training with clean inputs.
Let Fc and Fp denote the neuron activation vectors of the last fully connected layer in Mc and Mp,
respectively, and C = softmax(Fc) and P = softmax(Fp) as their corresponding predictions.
The typical cross entropy loss function is calculated between the one-hot encoder of the true labels,
T , and the prediction P as,

LCE(T |P ) = − 1

N

N∑
i=1

T (i)(xi) log(P
(i)(xi)) (1)

where T (i) is the truth label and P (i) is the Softmax probability of xi for the true class, respectively,
and N denotes the number of samples in the training data.

Mp is initialized as Mc, and a backdoor is planted in it using the augmented dataset with innovative
loss functions consisting of five components. Our goal is to make the fully connected layers in both
Mc and Mp respond similarly to both clean and poisoned data samples while still effectively planting
the backdoor in Mp. During training, Mc is not updated, and most of the convolutional layers in Mp

are fixed, with only a few convolutional layers and the last fully connected layer being updated.
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The first added component in the loss function is the Kullback-Leibler (KL) divergence between C
and P , making the prediction outputs of Mc and Mp similar for xi,

LKL(C||P ) =
1

N

N∑
i=1

K∑
k=1

C(k)(xi) log(
C(k)(xi)

P (k)(xi)
) (2)

where K denotes the number of classes in the training data.

The second added term is Mean Absolute Error (MAE), denoted as,

LMAE =
1

N

N∑
i=1

(|Fc(xi)− Fp(xi)|) (3)

The third term is the Cosine Similarity between the two feature vectors,

LS =
1

N

N∑
i=1

Fc(xi) · Fp(xi)

∥Fc(xi)∥∥Fp(xi)∥
(4)

where ‘·’ represents the dot product of two vectors. The fourth term is the distance between the two
feature vectors,

LD =
1

N

√√√√ N∑
i=1

(Fc(xi)− Fp(xi))2 (5)

Together with the cross-entropy term, the final loss function is given by,

Ltotal = LCE + α1LKL + α2LMAE + α3LS + α4LD (6)

where α1, α2, α3, and α4 are hyperparameters that combine the weights of the loss terms. Different
datasets may require different weights, which are determined by trial and error in our study.

3.5 MOTIVATION OF THE LOSS FUNCTION

The rationale behind using different terms in the cost function and their respective roles in our
approach summarized as follows. Angle and Cosine Similarity: The angle between vectors is an
important measure of similarity. By using cosine similarity, you aim to ensure that the angle of the
latent space representation of the attacked model is aligned as closely as possible with the original
clean space. This helps preserve the direction or orientation of the data points in the latent space.
Distance and Euclidean/Mean Square Error: Measures such as Euclidean distance and Mean
absolute Error (MAE) are used to control how close the latent space representation is to the original
space in terms of their locations. Minimizing these distances ensures that the attacked model’s latent
space representations are close to the original data points, maintaining their spatial relationships.
Distribution and KL-Divergence: The KL-divergence term serves to control the distribution of the
latent space vectors. By minimizing the KL-divergence, you aim to make the distribution of latent
vectors similar to some desired distribution, which could reflect a certain structure or pattern that you
want to maintain or impose on the latent space. Finally, the cross-entropy loss is used to maintain the
accuracy of the classification. In summary, each term in the cost function serves a distinct purpose.
Cosine Similarity preserves the angular relationships between data points. Euclidean/MSE Distance
ensures proximity of data points in the latent space. KL-Divergence controls the distribution of latent
vectors to maintain a desired structure. By combining these different terms in the cost function,
you’re taking a comprehensive approach to ensure that the latent space representations of the attacked
model closely match the original data distribution in terms of orientation, location, and distribution.
This holistic approach helps in achieving a well-balanced transformation of the latent space.

4 EXPERIMENTAL SETUP

4.1 DATASETS, MODEL ARCHITECTURES AND ATTACKING METHOD

This study explores the application of the Certified Copy attack to various popular deep convo-
lutional neural networks (DNNs), including both large and small network structures, to ensure a
fair and reliable comparison. Four model structures were considered: Resnet50 He et al. (2016),
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VGG16 Simonyan & Zisserman (2015), Conv_6 Wang et al. (2019), and Conv_2 Wang et al. (2019)
(with the latter two named based on their number of convolution layers). The experiments were
conducted on three benchmark datasets: CIFAR10 Krizhevsky et al., GTSBR Houben et al. (2013),
and MNIST Deng (2012). CIFAR10 contains 60k 32x32 color images of 10 classes with 6k images
per class, split into 50k for training and 10k for testing. MNIST comprises 70k 28x28 grayscale
images of handwritten digits, with 60k images for training and 10k for testing. GTSRB comprises
43 classes of traffic signs, with 39,209 and 12,630 images for training and testing, respectively.
We consider the BadNet attacking method Gu et al. (2019) as the baseline method to explain our
study, where a specific trigger pattern is injected into the training data, causing the model to produce
incorrect outputs when presented with a specific input pattern that matches the trigger.

4.2 DETECTION METHODS EVALUATED

In our evaluation, we compared our novel backdoor planting with seven detection techniques grouped
into four categories. The first category encompasses reverse engineering-based methods, including
Neural Cleanse Wang et al. (2019), TAO Tao et al. (2022), and TABOR Guo et al. (2019), which
employ sophisticated algorithms to dissect trigger patterns. The second category involves scrutinizing
anomalies in neuron activation levels, with ABS Liu et al. (2019) as the representative method, manip-
ulating neuron activations to pinpoint the source of classification shifts and crafting a corresponding
trigger pattern. Our third category delves into defense strategies that fine-tune models on subsets of
validation data to counteract backdoors. This group includes NNoculation Veldanda et al. (2021),
which introduces controlled noise to monitor model behavior, and I-BAU Zeng et al. (2022), where
authors create and apply adversarial trigger patterns. Lastly, our fourth category focuses on statistical
observation-based techniques, with the evaluation centering on STRIP Gao et al. (2019), which
employs an entropy measure to distinguish between clean and poisoned inputs based on prediction
randomness. This thorough evaluation provided valuable insights into the comparative effectiveness
of our proposed backdoor planting method against these established detection approaches.

4.3 EXPERIMENTS AND PERFORMANCE METRICS

We conducted four experiments to evaluate the proposed method:

Experiment 1: Examined the behavior of the proposed backdoor attack by comparing the activations
of the last fully connected layers in a clean model, a basic BadNet, and the Certified Copy model.
Experiment 2: Demonstrated backdoor detection results using Neural Cleanse. We compared the
Certified Copy attack with a simple BadNet trained with one percent of poisoned data. Experiment
3: Evaluated the effectiveness of the STRIP algorithm in detecting the Certified Copy attack. We
compared algorithm outputs for clean, poisoned, and proposed models, using entropy as a measure
to quantify prediction randomness. Experiment 4: Applied seven state-of-the-art defense methods,
including Neural Cleanse, TAO, ABS, TABOR, NNoculation, I-BAU, and STRIP, to the Certified
Copy attack. We used popular metrics, including Attack Success Rate (ASR) and Accuracy (Acc), to
assess model performance. ASR measures the percentage of successfully misled poisoned inputs to
the target label, while Acc gauges the performance of a poisoned model on clean inputs, representing
the percentage of correctly classified clean samples.

4.4 HYPERPARAMETERS AND OPTIMIZATION

We maintained consistent hyperparameters for each dataset. We utilized the Adam optimizer Kingma
& Ba (2015) with a fixed learning rate of 0.0001 for all models. For VGG16 and Resnet50, we
employed the pre-trained models with Imagenet, while the dimension of the last fully connected
layer was fixed at 512 for all four models. We used a batch size of 128 and trained each model for a
varying number of epochs to account for the differences in parameters. In the BadNet training, 1% of
the training examples were poisoned, while in the Certified Copy training, we added an additional
1% of augmented data to each training set. The combining coefficients in the loss function are
determined by trial and error for different models and datasets, the explanation of how we determine
these coefficients provided in the Appendix section. The training experiments were conducted using
an NVIDIA GeForce RTX3080.
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5 RESULTS AND DISCUSSIONS

Activation of Different Models: The activation of the last fully connected layers in Clean, BadNet,
and the proposed Certified Copy models on clean and poisoned images are shown in Figure 3. One
thousand images were inputted into the models, and the averaged activations were computed. In
BadNet attack, the trigger pattern needs to dominate all other features in the input data to classify
all images as the target class. Therefore, the model tends to highly activate a few neurons when
the trigger is presented, as shown by the orange curves in Figure 3. However, our proposed model
imitates the clean model in the activation when presented with both poisoned and clean images, as
shown by the green curves. This helps evade pruning-based defense mechanisms Liu et al. (2019).

We used a weight pruning algorithm (pru, 2015) to analyze how trigger knowledge is distributed
within different backdoored models. This involved ranking weights in the backdoored model by
magnitude and setting lower-ranked weights to zero. We then evaluated the pruned model’s accuracy
on clean data and its attack success rate (ASR) on poisoned data. Figure 4 demonstrates that the
BadNet attack maintains a high ASR even with 90% of the weights removed. In contrast, the proposed
method’s ASR and clean accuracy both started to decrease after 40% of its lower-ranked weights
were zeroed out. Both models exhibited similar gradual declines in clean accuracy as more weights
were removed. These findings reveal that in the BadNet attack, only a few weights are linked to
the malicious behaviors triggered by the specific pattern. These weights exhibit strong responses
(ranking among the top 10%), making it relatively easy to identify them as malicious. Conversely,
in our proposed Certified Copy model, the malicious behaviors triggered by the pattern are spread
across more weights, including those shared with clean images. Moreover, our approach’s novel cost
function suppresses the responses of these weights, allowing the model to avoid detection.

To highlight activation discrepancies across various backdoored models, we supplied 1000 clean
and 1000 poisoned inputs to the Clean, BadNet, and Certified Copy models. We then computed the
mean absolute difference (MAD) of activations in the last fully connected layers for each model.
Additionally, we calculated the standard deviations (STD) of the averaged activations, with results
detailed in Table 1. The findings showed that the BadNet model displayed significant activation
disparities between poisoned and clean inputs. In contrast, the Certified Copy model demonstrated
relatively fewer variations in activations between the two input types. The STD values indicated that
the BadNet model experienced more pronounced activation fluctuations for poisoned inputs, making
it easier to detect. On the other hand, the Certified Copy model concealed the malicious behaviors
triggered by the pattern, rendering it more challenging to identify. It’s worth noting that the MAD
and STD values in the table are relatively small due to the incorporation of batch normalization at
each layer.

Figure 3: Average activations of the last fully connected layer with 512 neuros for 1000 clean inputs (left) and
1000 poisoned inputs (right). The proposed model exhibits similar behavior on both clean and poisoned inputs,
making it difficult to be detected.

Detection Results by Neural Cleanse: The Neural Cleanse defense method is a well-known approach
for defending against backdoor attacks. It reverse-engineers the trigger by generating minimum
perturbation in input to classify all inputs to the target class. It enumerates all available classes as
the target class to detect if the model is backdoored. Neural Cleanse utilizes the anomaly index
(AI > 2) to indicate that the model has a backdoor. Our augmented dataset contains fake triggers
with different patterns and shifted locations that intentionally confuse defense methods. The proposed
loss function also tried to suppress large activations, all can prevent Neural Cleanse from detecting
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Figure 4: Weight pruning results: As more weights are pruned, the clean accuracies of both BadNet and the
proposed model continue to decrease (blue curves). However, the attack success rate (ASR) of BadNet (orange
curve) remains at the plateau for a longer time than that of the proposed model.

Table 1: Mean absolute differences (MAD) between activations of the last fully connected layer in backdoored
models for clean and poisoned inputs and the corresponding standard deviations (STD). BadNet exhibits distinct
responses for clean and poisoned inputs, with large STDs for the poisoned inputs. In contrast, the Certified Copy
model behaves similarly with both inputs with small STDs.

Model Attack MAD (vs Clean Model) STD
Clean inputs

(C)
Poisoned inputs

(P) |C-P| Clean inputs
(C)

Poisoned inputs
(P) |C-P|

Resnet50 BadNet 0.07 0.37 0.30 0.07 0.41 0.37
Certified Copy 0.02 0.09 0.07 0.05 0.14 0.09

Conv_6 BadNet 0.08 0.44 0.36 0.08 0.55 0.47
Certified Copy 0.03 0.05 0.02 0.06 0.12 0.06

the backdoor. Figure 5 shows the reverse-engineered triggers by Neural Cleanse with AI indicating
that the proposed method evaded the backdoor detection method with all AIs < 2, while BadNet
was successfully detected.

Figure 5: Results by Neural Cleanse: a) the actual trigger, b) reverse-engineered trigger for BadNet and
Certified Copy attacks applied to ResNet50, c) repeated results for conv_6, and d) repeated results for conv_2.
AI > 2 indicates a successful detection, otherwise, the detection is considered a failure.

Detection Results by STRIP: STRIP Gao et al. (2019) measures the randomness of model probability
prediction by computing its entropy. A backdoored model has a low entropy prediction for noisy
inputs (with trojan) and a large entropy for clean inputs (without trojan), while a clean model will have
large entropy for clean and noisy inputs. We inputted 2000 clean and poisoned images to a BadNet
and the proposed backdoor model, respectively. Figure 6 shows distributions of the entropy. The
BadNet attack has low entropy for inputs with trojan, as expected, but the proposed attack exhibits
the same randomness in prediction for both clean and noisy images. Therefore, the STRIP defense
method is not suitable for detection of Certified Copy attack.

Detection Results by State-Of-The-Arts: Tables 2 and 3 provides a summary of the detection results
of our proposed attack using seven state-of-the-art (SOTA) defense methods. We select these detection
mechanisms as they are among the most relevant defense methods to our attack assumptions, also we
have access to the authors’ implementation codes. As shown in the Table, we used a combination of
different models and datasets to test the simple BadNet attack and the proposed Certified Copy attack
and evaluated their detection results by these seven SOTA methods. Our proposed attack successfully
bypassed all detection methods, except for NNoculation Veldanda et al. (2021) and I-BAU Zeng et al.
(2022) methods that we explain the reason why in the next paragraph.
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Figure 6: Results by the STRIP algorithm for BadNet and our proposed attack. Blue: normalized entropy for
clean inputs. Orange: normalized entropy for poisoned inputs.

Table 2: The accuracy (Acc), attack success rate (ASR), and detection results by different defense methods for
BadNet. The ‘✓’ sign indicates that the detection is successful while the ‘✗’ sign denotes a failed case. ‘N/A’
denotes that the original implementation for that data/model is not available.

Clean Model BadNet Detection Results

Model Dataset Acc
(%)

ASR
(%)

Acc
(%)

ASR
(%) NC TAO ABS TABOR NNoculation STRIP

VGG16 CIFAR10 91 9.3 90.2 97.9 ✓ ✓ ✓ N/A N/A ✓
Resnet50 CIFAR10 94.1 9.8 93.7 97.9 ✓ ✓ ✓ N/A N/A ✓
Resnet50 GTSRB 98.9 1.6 98.9 98.4 ✓ N/A N/A ✓ ✓ ✓
Conv_6 GTSRB 98.04 1.6 97.5 97.3 ✓ N/A N/A ✓ ✓ ✓
Conv_2 MNIST 99.2 9.7 99.2 100 ✓ N/A N/A N/A ✓ ✓

Table 3: Acc, ASR, and detection results by different defense methods for the proposed model (Certified Copy).
The ✓sign indicates a successful detection while ✗ denotes a failed case.

Clean Model Certified Copy Detection Results

Model Dataset Acc
(%)

ASR
(%)

Acc
(%)

ASR
(%) NC TAO ABS TABOR NNoculation STRIP

VGG16 CIFAR10 91 9.3 89.8 94.4 ✗ ✗ ✗ N/A N/A ✗
Resnet50 CIFAR10 94.1 9.8 92.0 95.0 ✗ ✗ ✗ N/A N/A ✗
Resnet50 GTSRB 98.9 1.6 94.7 94.5 ✗ N/A N/A ✗ ✓ ✗
Conv_6 GTSRB 98.04 1.6 97.9 96.8 ✗ N/A N/A ✗ ✓ ✗
Conv_2 MNIST 99.2 9.7 99.0 99.9 ✗ N/A N/A N/A ✓ ✗

6 LIMITATION AND CONCLUSION

Limitation of our work: The Certified Copy attack proposed in this study displays resilience
against three types of detection methods: reverse engineering, neuron investigation, and statistical
representation. However, approaches employing fine-tuning to counteract backdoor attacks prove
effective against this attack. This is attributed to our method’s ability to distribute the learned
pattern across a larger number of neurons compared to the BadNet, making it more susceptible to
fine-tuning. Figure 4 illustrates that, when using pruning, the Certified Copy attack experiences a
swifter reduction in Attack Success Rate (ASR) compared to the BadNet, behaving akin to a clean
model. This highlights that a well-distributed trigger pattern in the latent space results in heightened
sensitivity of ASR and accuracy to even minor network adjustments. Consequently, both fine-tuning
approaches are successful in reducing the ASR of our method. However, fine-tuning the attacked
model, even with validation data, may not be practical in real-world applications. Furthermore, the
efficacy of fine-tuning methods like NNoculation and I-BAU hinges on the quantity of validation
data and the number of epochs employed for unlearning, rendering them less consistent across
diverse settings. Nonetheless, our future plans aim to bolster the attack’s resistance against these
defenses. Conclusion: Deep learning’s impact on technology and privacy is substantial but raises
misuse concerns. Current defenses are inadequate. This study shows that expansive hypothesis space
allows models to exceed their purpose, though reducing parameters can hinder generalization. Our
novel approach uses additional poisoning data and a unique cost function to enhance learning of
indistinguishable trigger patterns. Experiments reveal existing defenses struggle against the Certified
Copy attack. Urgency lies in faster, accessible defense methods for real-world scenarios with limited
resources.
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A APPENDIX

A.1 WEIGHTING COEFFICIENTS IN THE COST FUNCTION

The coefficients for each added term in the loss function are presented in Table 4. These coefficients
have been determined empirically through trial and error. Different coefficients were tested, and those
that enabled the Certified Copy model to successfully bypass the defense mechanisms mentioned
earlier were selected. It is important to note that the training of the Certified Copy model is highly
sensitive to the changes in these coefficients. Therefore, to achieve the desired attack, it is necessary
to train the Certified Copy model with an appropriate combination of coefficients. The specific
combination of coefficients depends on factors such as the dataset, the model being attacked, and the
number of epochs used for training.

Table 4: Coefficients in the loss function determined through a trial and error process. Various combinations of
coefficients were tested and evaluated to find the ones that yielded the desired results.

Model Dataset α1

(LKL)
α2

(LMAE )
α3

(LS )
α4

(LD)
VGG CIFAR10 0.3 1 1 1e-4

Resnet50 CIFAR10 0.2 10 10 1e-4
Resnet50 GTSRB 0.2 10 10 1e-4
Conv_6 GTSRB 0.1 30 30 1e-4
Conv_2 MNIST 0.5 0.1 0.1 1e-4

A.2 ANOMALY INDEX

Table 5) displays the Anomaly Index (AI) for different combinations of models and datasets that were
attacked by the BadNet and Certified Copy methods after applying the Neural Cleanse algorithm.
The Anomaly index provides a measure of the abnormality or presence of a backdoor in the attacked
models. A value of 2 or above for AI indicates that the model is a backdoored model.

Table 5: Anomaly Index

Model Dataset Anomaly index
BadNet Attack Certified Copy Attack

Resnet50 CIFAR10 1.9 1.7
VGG16 CIFAR10 1.9 1.9

Resnet50 GTSRB 2.2 0.7
Conv_6 GTSRB 3.3 1.8
Conv_2 MNIST 6.2 0.8

A.3 ACTIVATION CHANGES

The Certified Copy attack demonstrates effective control over significant activation changes compared
to the BadNet attack. This effect is depicted in Figure 7, where the Certified Copy and BadNet attacks
are applied to additional models. Additionally, Table 6) provides a comprehensive version of Table
1), showcasing the results obtained from a broader range of models.

A.4 ABLATION STUDY

To assess the contribution of each component in the loss function, we conducted an ablation study
using the clean Conv_6 model as the base model. Each component was sequentially added to the loss
function, and the process was repeated for each trained model. The analysis results are presented
in Table 7. The results indicate that each component gradually improves the performance of the
proposed model, with the KL divergence and Mean Absolute Error contributing more than the Cosine
similarity and Distance components. Additionally, Figure 8 provides a graphical illustration of the
last activation changes in each model.
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Figure 7: Averaged activations of the last fully connected layer with 512 neurons for 1000 clean
inputs and poisoned inputs in different models including a) Resnet50 , b) VGG16, c) Conv_2, and
d) Conv_6. The proposed method exhibits similar behavior on both clean and poisoned inputs as
compared to the BadNet model.
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Table 6: Mean absolute differences (MAD) and standard deviations (STD) between activations of the
last fully connected layer in backdoored models for clean and poisoned samples. BadNet exhibits
distinct responses for clean and poisoned inputs, with large STDs for the poisoned inputs. In contrast,
the Certified Copy model behaves similarly with both inputs with small STDs.

Model Attack MAD (vs Clean Model) STD
Clean inputs

(C)
Poisoned inputs

(P) |C-P| Clean inputs
(C)

Poisoned inputs
(P) |C-P|

Resnet50 BadNet 0.07 0.37 0.30 0.07 0.41 0.37
Certified Copy 0.02 0.09 0.07 0.05 0.14 0.09

Conv_6 BadNet 0.08 0.44 0.36 0.08 0.55 0.47
Certified Copy 0.03 0.05 0.02 0.06 0.12 0.06

Conv_2 BadNet 0.08 0.52 0.44 0.07 0.79 0.72
Certified Copy 0.03 0.22 0.19 0.07 0.14 0.07

VGG16 BadNet 0.16 0.58 0.42 0.14 0.86 0.72
Certified Copy 0.03 0.12 0.09 0.15 0.24 0.09

Table 7: Mean absolute differences (MAD) and standard deviation (STD) between activations of
the last fully connected layer in backdoored models versus the clean model when fed with clean
and poisoned samples. There are five components in the loss function: LCE : Cross-entropy, LKL:
KL divergence, LMAE : Mean absolute error, LS : Cosine similarity, and LD: Distance between the
feature vectors from clean and poisoned samples. We use the following abbreviations for different
configurations: C: LCE , CK: LCE + LKL, CKM: LCE + LKL + LMAE , CKMS: LCE + LKL + LMAE
+ LS , CKMSD: The proposed method.

Model Measurement Clean BadNet C CK CKM CKMS CKMSD

Conv_6

MAD (clean inputs) 0.00 0.29 0.33 0.24 0.16 0.15 0.17
MAD (poisoned inputs) 0.00 0.29 0.28 0.25 0.16 0.16 0.17
STD (clean inputs) 0.23 0.25 0.28 0.16 0.16 0.15 0.13
STD (poisoned inputs) 0.23 0.27 0.22 0.14 0.16 0.14 0.13

Figure 8: Averaged activations of the last fully connected layer with 512 neurons averaged 8 by 8.
CE (cross Entropy). KL (Kl_divergence). MAE (mean absolute error). CS (cosine similarity). DS
(distance).
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