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ABSTRACT

Electroencephalography (EEG) is a noninvasive technique for measuring brain
electrical activity that supports a wide range of brain-computer interaction ap-
plications. Motivated by the breakthroughs of Large Language Models (LLMs),
recent efforts have begun to explore Large EEG foundation Models trained on
broad unlabeled corpora. However, most advances focus on improving the back-
bone while neglecting the classification head. Existing models often rely on a
single class token, underutilizing the spatiotemporal structure and second-order
statistics that are crucial for EEG decoding. We propose Riemannian High Or-
der Pooling (RHOP), a plug-and-play module that injects principled Riemannian
statistics into the classifier. RHOP maps each token to a quotient Gaussian jointly
encoding mean and second-order information, yielding scale-invariant descrip-
tors. Tokens are then aggregated by estimating a Riemannian Gaussian on the
SPD manifold, where the Fréchet mean and covariance are embedded into an SPD
descriptor. The resulting normalized vector is fused with the class token for pre-
diction. RHOP is backbone-agnostic and integrates with modern EEG foundation
models, e.g., BIOT and LaBraM. Across diverse EEG benchmarks, it improves
accuracy, robustness, and efficiency under full fine-tuning, linear probing, and
from-scratch training settings.

1 INTRODUCTION

Electroencephalography (EEG), which records cortical electrical potentials with millisecond preci-
sion, provides dynamic insights into brain function. It has enabled advancements in seizure detec-
tion (Ahmad et al., 2022; Cherian & Kanaga, 2022), sleep staging (Aboalayon et al., 2016; Phan
& Mikkelsen, 2022; Zhou et al., 2025), motor imagery (Altaheri et al., 2023; Ju & Guan, 2023;
Roy et al., 2019), abnormality screening (Roy et al., 2019), emotion analysis (Suhaimi et al., 2020;
Biesmans et al., 2016; Dadebayev et al., 2022), and auditory attention (Biesmans et al., 2016). How-
ever, EEG’s practical deployment remains challenging due to issues like low signal-to-noise ratio,
inter-subject variability, and task-dependent non-stationarity (Hine et al., 2017).

Early EEG decoding pipelines relied on traditional machine-learning methods (Lotte et al., 2007).
With the rise of deep learning (LeCun et al., 2015; He et al., 2016), classic architectures such as Con-
volutional Neural Networks (CNNs) (Lawhern et al., 2018) and Long Short-Term Memory (LSTM)
networks (Phan et al., 2019) were adapted to EEG tasks, followed by transformer backbones (Peh
et al., 2022b). In parallel, geometric learning approaches have gained traction in EEG decoding
tasks, most notably those leveraging Riemannian geometry. The power and spatial distribution of
multi-channel EEG segments can be encoded into covariance matrices, which are symmetric pos-
itive definite (SPD) matrices. By operating on the SPD manifold, Riemannian methods exploit
metrics that are robust to outliers and noise (Congedo et al., 2017), leading to broad success in
practice (Pan et al., 2022; Kobler et al., 2022; Ju et al., 2024; Li et al., 2025). More recently, in-
spired by the rise of self-supervision and foundation models in vision and language, research has
followed this paradigm Devlin et al. (2018); Radford et al. (2021); Bommasani et al. (2021); OpenAI
(2023). EEG foundation models now pretrain on large unlabeled corpora with contrastive learning,
masked reconstruction, or self-prediction and then transfer to diverse downstream tasks (Banville
et al., 2021; Yang et al., 2023; Jiang et al., 2024; 2025).

Despite these advances, many foundation models still apply Global Average Pooling (GAP) or con-
catenate tokens before the final classification, which discards valuable second-order information and
underuses global spatiotemporal dependencies. Intuitively, EEG features exhibit dependencies in-
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herently across temporal and channel dimensions (Song et al., 2021a; Wang et al., 2025). Global Co-
variance Pooling (GCP) replaces GAP by summarizing activations with a covariance descriptor (Lin
et al., 2015; Wang et al., 2017), partially closing this gap. However, typical GCP compresses all
tokens into a single covariance matrix, thereby overlooking the intrinsic spatiotemporal structure of
EEG features (Lin et al., 2015; Li et al., 2017b; 2018). This raises a central question for applying
EEG foundation models to downstream decoding: Can we design a global pooling head that is both
statistics-aware and geometry-aware while respecting the underlying spatiotemporal structure?

We answer this question with Riemannian High-Order Pooling (RHOP), a plug-and-play module
for EEG foundation backbones and, to our knowledge, the first geometric pooling head tailored
for this setting. RHOP is motivated by two empirical properties of EEG features: significant spa-
tiotemporal structure and pervasive scale variation across temporal segments. First, we introduce a
quotient-Gaussian embedding that normalizes per-token covariances to correlation form and jointly
encodes first- and second-order statistics, which removes temporal scale discrepancies while pre-
serving dependency structure (Lovrić et al., 2000a; Thanwerdas & Pennec, 2022). Second, we ag-
gregate information across tokens by estimating a Riemannian Gaussian on the SPD manifold and
embedding it into an SPD descriptor, efficiently capturing high-order interactions (Pennec, 2006).
Finally, a sparse inverse-covariance layer emphasizes partial correlations and yields a compact vec-
tor, which is fused with the classification (CLS) token for prediction (Rahman et al., 2023). RHOP
is architecture-agnostic and can be attached to modern EEG backbones such as BIOT and LaBraM
(Yang et al., 2023; Jiang et al., 2024). In essence, RHOP bridges EEG foundation models with Rie-
mannian statistics by embedding token-level representations into the SPD manifolds and preserving
their spatiotemporal information and high-order dependencies in a pooling head. In summary, our
contributions are threefold:

• Quotient-Gaussian embedding. A scale-invariant embedding that transforms per-token co-
variances into correlation form and jointly encodes first- and second-order statistics, addressing
variance differences across temporal segments.

• Riemannian High-Order Pooling. A geometry-aware pooling head that preserves token-
level spatiotemporal structure and captures high-order interactions via a Riemannian Gaussian-
embedded SPD descriptor.

• Comprehensive empirical validation. RHOP delivers consistent gains and robust generaliza-
tion across EEG decoding tasks under state-of-the-art EEG foundation backbones (e.g., BIOT
and LaBraM) and three training regimes (full fine-tuning, linear probing, and train scratch).

2 RELATED WORKS

SPD manifold-based EEG decoding. Methods that operate on the SPD manifold achieve strong
EEG decoding by respecting covariance geometry and improving robustness across subjects (Con-
gedo et al., 2017; Ju et al., 2025). For example, MAtt (Pan et al., 2022) builds manifold attention di-
rectly on SPD manifolds and captures spatiotemporal dependencies, outperforming deep baselines.
SPDDSMBN (Kobler et al., 2022) learns domain-invariant tangent-space mappings for unsuper-
vised adaptation with an interpretable normalization scheme. DGCCA (Ju et al., 2024) introduces
geodesic correlation with an SPD latent space to align paired covariance modalities. SPDIM (Li
et al., 2025) addresses source-free adaptation with conditional and label shift through an SPD-
constrained parameterization. Taken together, these works show that geometry-aware learning on
SPD manifolds is powerful and motivate pairing such geometric bias with large-scale pretraining.

Brain foundation models. Foundation models are large self-supervised systems trained on broad
data and adapted to many tasks via fine-tuning (Bommasani et al., 2021), with BERT (Devlin et al.,
2018), CLIP (Radford et al., 2021), and GPT-4 (OpenAI, 2023). This paradigm is extending to
brain signals. Recent EEG studies pretrain with contrastive learning, masked reconstruction, or self-
prediction to learn transferable representations (Banville et al., 2021; Kostas et al., 2021; Chien et al.,
2022; Wang et al., 2023; Zhang et al., 2023; Mohammadi Foumani et al., 2024). BIOT learns generic
biosignal representations for joint pretraining and cross-dataset transfer (Yang et al., 2023), LaBraM
predicts masked neural tokens for general EEG features (Jiang et al., 2024), CBraMod decouples
spatial and temporal modeling with a criss-cross transformer and masked reconstruction for strong
cross-dataset generalization (Wang et al., 2025), and NeuroLM tokenizes EEG signals and uses an
LLM with multi-channel autoregression and instruction tuning to unify diverse tasks (Jiang et al.,
2025). Despite progress, many backbones compress EEG features into a single CLS token or con-
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catenate tokens before the final classification, leaving the global spatiotemporal structure underused,
which motivates our geometry-aware high-order pooling head.

Gaussian embedding. Gaussian embedding offers a geometric route to compare distributions.
The Fisher–Rao metric formalizes information geometry (Rao, 1945), but closed-form geodesics are
challenging for multivariate Gaussians. A practical remedy identifies each Gaussian with an SPD
matrix by viewing the Gaussian family as a Riemannian symmetric space, which enables affine-
invariant tools for learning (Lovrić et al., 2000a; Pennec, 2006). Alternative lines embed Gaussians
into the Siegel domain to define distances (Calvo & Oller, 1990), or relate Gaussians to affine matrix
subspaces (Gong et al., 2009). Log–Euclidean mappings linearize SPD structure and yield efficient
Gaussian descriptors for vision (Arsigny et al., 2005a; Li et al., 2017a). Deep architectures have
adopted these ideas, for example a global Gaussian layer that maps images to SPD features (Wang
et al., 2017) and a Lie-group embedding of Riemannian Gaussians for sets of SPD matrices (Nguyen,
2021). This geometric toolbox naturally connects to second-order pooling.

Global covariance pooling. GCP replaces global average pooling by summarizing activations
with a covariance descriptor (Lin et al., 2015; Wang et al., 2017). Normalization is crucial for
stability and discrimination, with matrix logarithm backpropagation (Ionescu et al., 2015), matrix
power normalization such as MPN-COV (Li et al., 2017b), and iterative matrix square root as in
iSQRT-COV (Li et al., 2018). Further advances address conditioning and scalability and introduce
graph-aware GCP (Rahman et al., 2020; Zhu et al., 2024). On the classifier side, SoT fuses CLS
and token features via global cross covariance with singular-value power normalization (Xie et al.,
2021), while SICE estimates sparse inverse covariance to emphasize partial correlations (Rahman
et al., 2023). Despite these advances, standard GCP on EEG underuses the spatiotemporal structure
of the signal by flattening all spatiotemporal tokens into a single feature dimension before covariance
pooling. This limitation motivates our Riemannian high-order pooling module.

3 PRELIMINARY

This section provides a brief overview of the foundations of SPD geometry and the concept of
Fréchet Mean (FM). For detailed discussions, please refer to Pennec (2006); Arsigny et al. (2005b).

SPD manifold. The space of n × n symmetric positive-definite matrices is denoted as S+n =
{P ∈ Rn×n | P = P⊤, P ≻ 0}. It forms a Riemannian manifold when endowed with the Affine-
Invariant Metric (AIM) (Pennec, 2006). For two points P,Q ∈ S+n , AIM distance is defined as

dAIM(P,Q) = ∥ log(P− 1
2QP− 1

2 )∥F , (1)

where ∥ · ∥F is the Frobenius norm and log(·) denotes the matrix logarithm. The associated expo-
nential and logarithm maps are given by

ExpP (S) = P
1
2 exp(P− 1

2SP− 1
2 )P

1
2 , S ∈ TPS+n , (2)

LogP (Q) = P
1
2 log(P− 1

2QP− 1
2 )P

1
2 , Q ∈ S+n , (3)

where log(·) represents the matrix exponent and TPS+n is the tangent space at P .

Fréchet Mean. Given a set of points {Pi}Ni=1 ⊂ M, the FM is the point S that minimizes the
weighted sum of squared distances to all points. the FM (Karcher, 1977b) is defined as

FM({Pi}) = argmin
S∈M

1

N

N∑
i=1

d(Pi, S)
2, (4)

where d(Pi, S) is the distance between them. The FM is locally unique on general manifolds (Afsari,
2011). In the case of (S+n , dAIM), it is globally well-defined and unique (Chakraborty et al., 2022).

4 RIEMANNIAN HIGH-ORDER POOLING

In this section, we introduce Riemannian High-order Pooling (RHOP), a plug-and-play geometric
pooling head for EEG foundation models. The overall RHOP framework consists of three parts:
quotient Gaussian embedding, Riemannian Gaussian embedding, and a sparse inverse covariance
estimation (iSICE) module (Rahman et al., 2023).
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Figure 1: Overview of our RHOP framework. The EEG backbone outputs a CLS token and token-
wise features. Each token is transformed into a quotient Gaussian and embedded as Yn ∈ S+,1

T+k on
the SPD manifold. The set {Yn} is then aggregated into a Riemannian Gaussian, whose FM Y m

and covariance are jointly embedded into an SPD descriptor G. Finally, a iSICE + utvec block
produces a sparse precision vector, which is fused with the CLS branch for classification.

4.1 QUOTIENT GAUSSIAN EMBEDDING

Let (Σ, µ) ∈ N (n) denote a Gaussian with covariance Σ and mean µ. Previous methods often used
raw covariance matrices as EEG descriptors (Pan et al., 2022; Li et al., 2025), capturing second-order
temporal dependencies but highly sensitive to scale variations. Two tokens with similar temporal dy-
namics may yield substantially different covariance matrices if their amplitudes differ. To address
this, we introduce quotient Gaussian distributions, which normalize temporal covariances to elimi-
nate scale dependence. This ensures that the representation focuses on correlation structures rather
than raw magnitudes, thereby providing a scale-invariant descriptor of temporal dynamics.
Definition 4.1 (Quotient Gaussian Distributions). Let (Σ, µ) ∈ N (n) be a Gaussian distribution.
The Quotient Gaussian distribution QN (n) is defined as

QN (n) ∼= N (n)/Diag+(n) =
{
[Σ, µ] :=

{
(D− 1

2ΣD− 1
2 , µ) | D ∈ Diag+(n)

}}
. (5)

For the quotient GaussianQN (n), each element is an equivalence class of Gaussians [Σ, µ] sharing
the same mean and whose covariances differ only by positive diagonal scalings. Within each class,
the canonical representative C = diag(Σ)−

1
2Σdiag(Σ)−

1
2 , is exactly the correlation matrix, which

is invariant to scaling. We thus denote each quotient element by (C, µ), where C is the normalized
covariance, i.e., a correlation matrix. Then, to facilitate end-to-end optimization, we embed the
quotient Gaussian into SPD matrices.
Theorem 4.2 (Quotient Gaussian Embedding ). [Proof in App. I] Let S+,1

n+k be the space of SPD
n × n matrices with determinant 1. A quotient Gaussian (C, µ) ∈ QN (n) can be identified as the
matrix in S+,1

n+k:

(detC)
− 1

n+k

[
C + kµµ⊤ µ(k)

µ(k)⊤ Ik

]
, (6)

where Ik is the k × k identity, and µ(k) repeats µ across k identical columns.

This embedding maps quotient Gaussians into the SPD manifold, enabling the joint representation
of mean and normalized covariance within a unified form. Following Nguyen (2021); Lovrić et al.
(2000b), we endow this space with the AIM introduced in Sec. 3.

4.2 RIEMANNIAN GAUSSIANS EMBEDDING

Motivated by Euclidean covariance pooling, we extend first- and second-order statistics on S+n via
Riemannian Gaussians. Given {Pi}Ni=1 ∈ S+n , the FM (Fréchet, 1948) is given as

Pm = FM({Pi}Li=1) = argmin
Y ∈S+

n

1

N

N∑
i=1

d(Y, Pi)
2, (7)

where dAIM(·, ·) is the AIM distance defined in Eq. (1). It can be computed via the Karcher
flow (Karcher, 1977a), which iteratively maps Pi to TPS+n , calculates the mean in the tangent space,
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Algorithm 1: RHOP over SPD manifolds
Input: EEG features X ∈ RD×T×N from fθ; CLS token y0
Output: Class probabilities p
for n← 1 to N do

Compute temporal statistics (µn,Σn) across channels;
Cn ← diag(Σn)

−1/2Σn diag(Σn)
−1/2;

Yn ← quotient-Gaussian embedding via Eq. (11);
end
Y m ← FM({Yn}Nn=1); Y c ← covariance as in Eq. (12);
G← embed (Y m, Y c) using Eq. (9);
g ← utvec(SICE(G;λSICE)) ;
p← softmax

(
FC([y0; g])

)
;

return p;

and maps back onto S+n until convergence (Moakher, 2005). Due to the computational cost of FM,
we follow the previous work Brooks et al. (2019); Chen et al. (2024) to set the number of iterations
to one. The implementation steps are provided in App. F.

Similarly, given FM Pm, the covariance of {Pi}Ni=1 ∈ S+n is defined as

P c =
1

N − 1

N∑
i=1

fv (LogPm(Pi)) fv (LogPm(Pi))
⊤
, (8)

where fv(·) vectorizes the lower-triangular entries of a symmetric matrix with off-diagonal terms
scaled by

√
2 (Pennec et al., 2006). Then, A Riemannian Gaussian is parameterized by the pair

(Pm, P c) ∈ S+n × S+n′ . As shown in Nguyen (2021), this pair lies on a product SPD manifold that
forms a Lie group, and the following block-matrix construction provides a Lie-group–isomorphic
embedding that preserves its algebraic and geometric structure. Let P c = LL⊤ denote the Cholesky
decomposition. The embedding is formulated as

(Pm, P c) 7→
[

L 0n′×k′

φk′
(Pm) Ik′

]
, (9)

where Ik′ is a k′ × k′ identity matrix and 0n′×k′ is a zero block. Here φ is chosen as φ = fv ◦ log,
with log(P ) = U log(Z)U⊤ representing the matrix logarithm by eigenvalue decomposition of P .

4.3 THE OVERALL FRAMEWORK OF RIEMANNIAN HIGH-ORDER POOLING

In this section, we detail the whole framework of RHOP. An EEG foundation backbone fθ (e.g.,
BIOT or LaBraM) first extracts spatiotemporal features X ∈ RD×T×N , where D is the number of
channels, T the number of temporal segments, and N the token length. For convenience we permute
to X̃ ∈ RN×T×D. We then compute temporal first- and second-order statistics for each token n,

µn =
1

D

D∑
i=1

X̃n,:,i ∈ RT , Σn =
1

D − 1

D∑
i=1

(
X̃n,:,i − µn

)(
X̃n,:,i − µn

)⊤ ∈ RT×T . (10)

To ensure that Σn is an SPD matrix, we stabilize it by adding a small multiple of the identity matrix
I , i.e., Σn ← Σn + σI , where we set σ = 0.001 in all experiments. Let Dn = diag(Σn) and
Cn = D−1/2

n ΣnD−1/2
n be the correlation matrix, which removes per-time scaling. According to

Thm. 4.2, each token is then encoded as a quotient Gaussian embedding, given below

Yn = (detCn)
− 1

T+k

[
Cn + k µnµ

⊤
n µ

(k)
n

µ
(k)⊤
n Ik

]
∈ S+,1

T+k. (11)

To aggregate information across tokens, we estimate a Riemannian Gaussian on the SPD manifold
based on the set {Yn}Nn=1. The FM and empirical Riemannian covariance are given by

Y m = FM
(
{Yn}Nn=1

)
, Y c =

1

N − 1

N∑
n=1

fv
(
LogY m(Yn)

)
fv
(
LogY m(Yn)

)⊤
. (12)
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The obtained product manifold (Y m, Y c) is embedded into an SPD matrix G using Eq. (9).

Finally, RHOP integrates global semantics with statistical structure to enhance prediction. The
backbone outputs a CLS token y0 ∈ RL for global semantics, while the statistical branch applies
iSICE (Rahman et al., 2023) to G, followed by upper-triangular extraction and vectorization , i.e.,

g = utvec
(
iSICE(G)

)
. (13)

The final prediction is obtained by concatenating y0 and g and passing them through a linear layer
with softmax activation. This design enriches the CLS token with quotient- and Riemannian-based
high-order statistics, yielding a more discriminative representation.

5 EXPERIMENTS

This section evaluates RHOP on four EEG benchmarks under training from scratch, full fine-tuning,
and linear-head tuning settings, respectively. We compare our method against state-of-the-art foun-
dation models and representative GCP heads.

5.1 EXPERIMENT SETUP

Datasets. We evaluate RHOP on four EEG benchmarks spanning abnormal detection, event
classification, motor imagery, and event-related potentials. TUAB (Obeid & Picone, 2016) con-
tains 23-channel EEG at 256 Hz labeled as normal or abnormal, with 409,455 ten-second seg-
ments. TUEV (Obeid & Picone, 2016) includes 112,491 five-second segments from 23 channels
at 256 Hz across six classes: spike & sharp wave (SPSW), generalized periodic epileptiform dis-
charges (GPED), periodic lateralized epileptiform discharges (PLED), eye movement (EYEM), arti-
fact (ARTF), and background (BCKG). BCIC2B (Steyrl et al., 2016) records EEG from 10 subjects
on three bipolar channels (C3, Cz, C4) at 250 Hz, with two-class motor imagery (left vs. right
hand). Each subject has two no-feedback sessions (120 balanced trials each) and three feedback
sessions. PhysioP300 (Goldberger et al., 2000) is a Donchin-style 6×6 row/column speller, where
rows/columns are flashed for 100 ms with 50 ms inter-stimulus intervals (≈20 flashes each), and
each subject spells 20 characters per run.

Backbones. We evaluate RHOP on two widely used EEG foundation models: BIOT (Yang et al.,
2023) and LaBraM (Jiang et al., 2024). Since public checkpoints are only available for LaBraM-
Base, we fine-tune this configuration in all experiments. To further assess robustness beyond foun-
dation pretraining, we also train BIOT from scratch without any pretraining.

Preprocessing. For TUAB and TUEV, we strictly follow the original backbone preprocessing
without any additional modifications. For BCIC2B, we use uniform units, apply a 0–38 Hz band-
pass filter, resample the data to 200 Hz, and perform EA normalization (He & Wu, 2019) within each
session. For PhysioP300, we also use uniform units, apply a 120 Hz low-pass filter, downsample to
200 Hz, and extract 2 s epochs starting at −0.7 s relative to the onset of the flicker stimulus. For
more details, please refer to App. C

Baselines. We compare RHOP with both non-foundation and foundation baselines. For non-
foundation baselines, we include widely used EEG models such as EEGNet (Lawhern et al., 2018),
EEGConformer (Song et al., 2022), SPaRCNet (Jing et al., 2023), ContraWR (Yang et al., 2021),
CNN-Transformer (Peh et al., 2022a), FFCL (Li et al., 2022), and ST-Transformer (Song et al.,
2021a), implemented following the BIOT repository (Yang et al., 2023) unless official results are
available. For foundation-model baselines, we evaluate BIOT (Yang et al., 2023) and LaBraM (Jiang
et al., 2024), using their released code and checkpoints. Since only LaBraM-Base provides public
weights, we fine-tune this variant in all experiments, while BIOT is tested both with and with-
out pretraining. In addition, we compare RHOP against several representative global covariance
pooling (GCP) heads, including iSICE (Rahman et al., 2023), iSQRT-COV (Li et al., 2018), and
SVD-Padé (Song et al., 2021b). For fairness, given EEG inputs, all backbones output produce spa-
tiotemporal tokens and a CLS token. GCP variants then compute covariance descriptors, which we
vectorize via the upper triangular (including the diagonal) before classification with a linear layer.

Metrics. We report results using five widely adopted evaluation metrics: (1) Balanced Accu-
racy, defined as the mean recall across classes, applied to both binary and multi-class settings. (2)
AUC-PR, the area under the precision–recall curve, for binary classification. (3) AUROC, the area
under the receiver operating characteristic curve, also for binary classification. (4) Cohen’s Kappa,
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Table 1: Results on TUEV with different models and model complexity.

Methods Model Size (#Params) Time / Epoch (m) Balanced Acc. Cohen’s Kappa Weighted F1
SPaRCNet 0.79M 0.06 0.4161± 0.0262 0.4233± 0.0181 0.7024± 0.0104
ContraWR 1.6M 0.07 0.4384± 0.0349 0.3912± 0.0237 0.6893± 0.0136
CNN-Transformer 3.2M 0.12 0.4087± 0.0161 0.3815± 0.0134 0.6854± 0.0293
FFCL 2.4M 0.12 0.3979± 0.0104 0.3732± 0.0188 0.6783± 0.0120
ST-Transformer 3.5M 0.03 0.3984± 0.0228 0.3765± 0.0306 0.6823± 0.0190

BIOT (non-pretrained)
BIOT 3.2M 0.12 0.4682± 0.0125 0.4482± 0.0285 0.7085± 0.0184
BIOT+iSQRT-COV 3.2M+∆33.1K 0.81 0.4480± 0.0131 0.3544± 0.0221 0.6323± 0.0203
BIOT+SVD-Padé 3.2M+∆33.1K 10.61 0.4347± 0.0133 0.4091± 0.0293 0.6906± 0.0137
BIOT+iSICE 3.2M+∆33.1K 4.71 0.4630± 0.0143 0.4563± 0.0197 0.7140± 0.0167
BIOT+RHOP 3.2M+∆1.3K 0.53 0.5355± 0.0189 0.5177± 0.0252 0.7466± 0.0084

BIOT (pretrained)
BIOT 3.2M 0.12 0.5281± 0.0225 0.5273± 0.0249 0.7492± 0.0082
BIOT+iSQRT-COV 3.2M+∆33.1K 0.81 0.4683± 0.0146 0.3563± 0.0218 0.6530± 0.0187
BIOT+SVD-Padé 3.2M+∆33.1K 10.62 0.4372± 0.0176 0.4826± 0.0162 0.7399± 0.0171
BIOT+iSICE 3.2M+∆33.1K 4.73 0.5358± 0.0241 0.5245± 0.0203 0.7534± 0.0094
BIOT+RHOP 3.2M+∆1.3K 0.73 0.5572± 0.0201 0.5460± 0.0212 0.7565± 0.0074

LaBraM-Base (pretrained)
LaBraM-Base 5.8M 1.03 0.6409± 0.0065 0.6637± 0.0093 0.8312± 0.0052
LaBraM-Base+iSQRT-COV 5.8M+∆20.3K 3.23 0.6236± 0.0226 0.6147± 0.0234 0.8062± 0.0094
LaBraM-Base+SVD-Padé 5.8M+∆20.3K 6.93 0.5605± 0.0217 0.5798± 0.0289 0.7900± 0.0101
LaBraM-Base+iSICE 5.8M+∆20.3K 13.67 0.6405± 0.0239 0.6134± 0.0302 0.8182± 0.0091
LaBraM-Base+RHOP 5.8M+∆0.9K 2.25 0.6380± 0.0056 0.6785± 0.0079 0.8420± 0.0038

Table 2: Results on TUAB with model complexity.

Methods Model Size (#Params) Time / Epoch (m) Balanced Acc. AUC-PR AUROC
SPaRCNet 0.79M 0.43 0.7896± 0.0018 0.8414± 0.0018 0.8676± 0.0012
ContraWR 1.6M 0.48 0.7746± 0.0041 0.8421± 0.0104 0.8456± 0.0074
CNN-Transformer 3.2M 0.76 0.7777± 0.0022 0.8433± 0.0039 0.8461± 0.0013
FFCL 2.4M 0.86 0.7848± 0.0038 0.8448± 0.0065 0.8569± 0.0051
ST-Transformer 3.5M 0.24 0.7966± 0.0023 0.8521± 0.0026 0.8707± 0.0019

BIOT (non-pretrained)
BIOT 3.2M 1.36 0.7925± 0.0035 0.8707± 0.0087 0.8691± 0.0033
BIOT+iSQRT-COV 3.2M+∆33.1K 4.78 0.7983± 0.0045 0.8684± 0.0051 0.8659± 0.0055
BIOT+SVD-Padé 3.2M+∆33.1K 50.71 0.7503± 0.0051 0.8274± 0.0058 0.8270± 0.0068
BIOT+iSICE 3.2M+∆33.1K 10.47 0.7959± 0.0057 0.8792± 0.0023 0.8815± 0.0043
BIOT+RHOP 3.2M+∆1.0K 3.64 0.7993± 0.0031 0.8719± 0.0084 0.8765± 0.0031

BIOT (pretrained)
BIOT 3.2M 1.09 0.7959± 0.0057 0.8792± 0.0023 0.8815± 0.0043
BIOT+iSQRT-COV 3.2M+∆33.1K 4.78 0.7819± 0.0044 0.8590± 0.0028 0.8598± 0.0039
BIOT+SVD-Padé 3.2M+∆33.1K 54.38 0.7532± 0.0064 0.8274± 0.0043 0.8270± 0.0056
BIOT+iSICE 3.2M+∆33.1K 10.50 0.7976± 0.0097 0.8617± 0.0046 0.8739± 0.0040
BIOT+RHOP 3.2M+∆1.3K 3.69 0.8102± 0.0027 0.8833± 0.0079 0.8864± 0.0033

LaBraM-Base (pretrained)
LaBraM-Base 5.8M 11.54 0.8140± 0.0019 0.8965± 0.0016 0.9022± 0.0009
LaBraM-Base+iSQRT-COV 5.8M+∆20.3K 19.07 0.8188± 0.0023 0.9039± 0.0018 0.9060± 0.0012
LaBraM-Base+SVD-Padé 5.8M+∆20.3K 31.23 0.8202± 0.0017 0.9062± 0.0014 0.9072± 0.0011
LaBraM-Base+iSICE 5.8M+∆20.3K 67.77 0.8183± 0.0018 0.9037± 0.0016 0.9059± 0.0016
LaBraM-Base+RHOP 5.8M+∆4.6K 21.48 0.8244± 0.0012 0.9078± 0.0012 0.9105± 0.0011

which measures agreement beyond chance by comparing observed and expected accuracies in a
contingency table, is used in multi-class tasks. (5) Weighted F1, the weighted harmonic mean of
precision and recall, used for multi-class evaluation. For monitoring, AUROC is adopted in binary
classification experiments, while Cohen’s Kappa is used in multi-class settings.

5.2 EVALUATIONS

Training from scratch. On TUEV, as reported in Tab. 1, RHOP yields larger gains: balanced
accuracy increases from 46.82% to 53.55%, Cohen’s Kappa from 44.82% to 51.77%, and Weighted
F1 from 70.85% to 74.66%, with only 0.53 minutes per epoch. On TUAB, as shown in Tab. 2,
BIOT with RHOP improves balanced accuracy from 79.25% to 79.93% and AUROC from 86.91%
to 87.65%, while reducing per-epoch time to 3.64 minutes compared with 10.47 minutes for iSICE
and 50.71 minutes for SVD Padé. These results highlight that RHOP is particularly effective without
pretraining, as it preserves spatiotemporal structure and high-order statistics.

Full fine-tuning. On TUEV, as shown in Tab. 1, RHOP reaches a higher Cohen’s Kappa of 67.85%
and a Weighted F1 of 84.20%, while maintaining strong balanced accuracy. On TUAB, as re-
ported in Tab. 2, LaBraM-Base with RHOP improves balanced accuracy from 81.40% to 82.44%
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Table 3: Results on BCIC2B with different models and model complexity.

Methods Model Size (#Params) Time / Epoch (m) Balanced Acc. AUC-PR AUROC
LaBraM-Base 5.8M 0.04 0.6840± 0.0059 0.7405± 0.0087 0.7472± 0.0054
LaBraM-Base+iSQRT-COV 5.8M+∆20.3K 0.38 0.6642± 0.0061 0.7210± 0.0079 0.7285± 0.0058
LaBraM-Base+SVD-Padé 5.8M+∆20.3K 0.15 0.6629± 0.0056 0.7198± 0.0083 0.7267± 0.0061
LaBraM-Base+iSICE 5.8M+∆20.3K 0.97 0.6871± 0.0058 0.7433± 0.0082 0.7510± 0.0055
LaBraM-Base+RHOP 5.8M+∆0.5K 0.05 0.6901± 0.0057 0.7485± 0.0079 0.7587± 0.0059

Table 4: Results on PhysioP300 with model complexity.

Methods Model Size (#Params) Time / Epoch (m) Balanced Acc. AUC-PR AUROC
LaBraM-Base 5.8M 0.05 0.6327± 0.019 0.6565± 0.024 0.6893± 0.027
LaBraM-Base+iSQRT-COV 5.8M+∆20.3K 0.08 0.6170± 0.016 0.6560± 0.019 0.6813± 0.012
LaBraM-Base+SVD-Padé 5.8M+∆20.3K 0.16 0.6323± 0.015 0.6400± 0.020 0.6751± 0.014
LaBraM-Base+iSICE 5.8M+∆20.3K 0.41 0.6138± 0.018 0.6350± 0.022 0.6427± 0.017
LaBraM-Base+RHOP 5.8M+∆0.4K 0.08 0.6517± 0.018 0.6630± 0.016 0.7044± 0.024

Table 5: Ablation study on different components, where QGE denotes Quotient Gaussian Embed-
ding, RGE denotes Riemannian Gaussian Embedding, and CLS indicates whether concatenation
with the classification head is applied.

QGE RGE SICE CLS TUAB TUEV
Balanced Acc. AUC-PR AUROC Balanced Acc. Cohen’s Kappa Weighted F1

✗ ✗ ✗ ✗ 0.8140± 0.0019 0.8965± 0.0016 0.9022± 0.0009 0.6409± 0.0065 0.6637± 0.0093 0.8312± 0.0052
✓ ✗ ✗ ✗ 0.8175± 0.0018 0.9002± 0.0015 0.9048± 0.0010 0.6325± 0.0062 0.6669± 0.0090 0.8331± 0.0051
✓ ✓ ✗ ✗ 0.8209± 0.0016 0.9031± 0.0014 0.9069± 0.0010 0.6355± 0.0060 0.6712± 0.0087 0.8365± 0.0049
✓ ✓ ✓ ✗ 0.8227± 0.0014 0.9056± 0.0013 0.9088± 0.0010 0.6341± 0.0058 0.6749± 0.0084 0.8391± 0.0047
✓ ✓ ✓ ✓ 0.8244± 0.0012 0.9078± 0.0012 0.9105± 0.0011 0.6380± 0.0056 0.6785± 0.0079 0.8420± 0.0038

and pushes AUROC to 91.05%. These improvements confirm that even strong pretrained backbones
benefit from RHOP, which captures dependencies overlooked by conventional heads.

Linear-head tuning. With frozen backbones, RHOP still surpasses all baselines. On BCIC2B,
LaBraM-Base with RHOP reaches 69.01% balanced accuracy and 75.87% AUROC, outperforming
all GCP heads, as given in Tab. 3. On PhysioP300, it improves balanced accuracy from 63.27% to
65.17% and AUROC from 68.93% to 70.44%, as presented in Tab. 4. These results demonstrate
RHOP’s ability to deliver discriminative representations even when backbone weights are frozen,
which makes it suitable for rapid adaptation with minimal compute.

Why RHOP outperforms GCP? Classical GCP methods such as iSQRT-COV, iSICE, and SVD
Padé collapse all tokens into a single covariance matrix, which discards temporal and channel hier-
archy. RHOP instead normalizes tokens’ covariances to correlation form, embeds both means and
normalized covariances on the SPD manifold, and aggregates via a Riemannian Gaussian defined by
a Fréchet mean and tangent-space covariance. This preserves scale-invariant dependencies, aligns
computation with manifold geometry, and emphasizes direct relationships through a sparse inverse-
covariance layer. The result is a more faithful global representation that consistently outperforms
GCP, especially in challenging setups such as TUEV with training from scratch.

Efficiency. RHOP delivers accuracy gains with minimal overhead. On TUAB, LaBraM-Base with
RHOP trains in 21.48 min per epoch with only 4.6K additional parameters, compared with 67.77
min for iSICE and 31.23 minutes for SVD-Padé as reported in Tab. 2. BIOT with RHOP requires
just 3.69 min per epoch when pretrained, and only 0.53 min per epoch when trained from scratch on
TUEV, far below iSICE and SVD Padé, as shown in Tab. 1. On BCIC2B and PhysioP300, RHOP
adds less than 1K parameters and only 0.01 min per epoch, while still improving all metrics, as
shown in Tabs. 3 and 4. Overall, RHOP combines strong accuracy, scale robustness, and geometric
fidelity with thousand-level parameter overhead and negligible training cost, making it a practical
plug-and-play head for EEG foundation backbones.

5.3 ABLATION STUDY

Quotient Gaussian Embedding vs Gaussian Embedding. Fig. 2 compares quotient Gaussian
embedding with conventional Gaussian embedding. The only difference is that conventional em-
bedding (Nguyen, 2021) directly uses the covariance matrix without normalization. On both TUAB
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Figure 2: Quotient Gaussian embedding vs Gaussian embedding on TUEV and TUAB.

Table 6: Ablation of (k, k′) on LaBraM-Base.

k k′
TUAB TUEV

Balanced Acc. AUC-PR AUROC Balanced Acc. Cohen’s Kappa Weighted F1

1
1 0.8065± 0.0019 0.8973± 0.0017 0.8988± 0.0012 0.6457± 0.0121 0.5772± 0.0203 0.7876± 0.0114
2 0.8193± 0.0021 0.9054± 0.0016 0.9064± 0.0013 0.6339± 0.0184 0.6078± 0.0227 0.8062± 0.0102
3 0.8199± 0.0020 0.9054± 0.0015 0.9060± 0.0012 0.6726± 0.0137 0.6456± 0.0181 0.8224± 0.0097

2
1 0.8171± 0.0018 0.8975± 0.0018 0.9013± 0.0012 0.6631± 0.0116 0.6471± 0.0193 0.8252± 0.0089
2 0.8249± 0.0022 0.9044± 0.0014 0.9071± 0.0011 0.6459± 0.0128 0.6008± 0.0251 0.7970± 0.0095
3 0.8163± 0.0017 0.9058± 0.0016 0.9057± 0.0011 0.6440± 0.0137 0.6196± 0.0228 0.8145± 0.0117

3
1 0.8183± 0.0019 0.9035± 0.0015 0.9062± 0.0011 0.6659± 0.0123 0.6317± 0.0273 0.8176± 0.0135
2 0.8193± 0.0020 0.9008± 0.0016 0.9039± 0.0012 0.6372± 0.0161 0.6220± 0.0234 0.8135± 0.0092
3 0.8244± 0.0012 0.9078± 0.0012 0.9105± 0.0011 0.6380± 0.0056 0.6785± 0.0079 0.8420± 0.0038

Table 7: Comparison of different GCP heads on LaBraM-Base.

Normalization TUAB TUEV
Balanced Acc. AUC-PR AUROC Balanced Acc. Cohen’s Kappa Weighted F1

SVD-Padé 0.8190± 0.0016 0.9012± 0.0014 0.9058± 0.0010 0.6368± 0.0071 0.6710± 0.0085 0.8365± 0.0049
iSQRT-COV 0.8181± 0.0017 0.9001± 0.0015 0.9051± 0.0011 0.6375± 0.0068 0.6692± 0.0091 0.8350± 0.0047
iSICE 0.8244± 0.0012 0.9078± 0.0012 0.9105± 0.0011 0.6380± 0.0056 0.6785± 0.0079 0.8420± 0.0038

and TUEV, the quotient form consistently outperforms the raw covariance representation, confirm-
ing that scale normalization is essential for robust EEG descriptors.

Component analysis. Tab. 5 evaluates the contribution of each RHOP component. QGE alone
improves performance, RGE further enhances high-order modeling, and SICE highlights partial
correlations. The best results are obtained when CLS fusion is added, which combines semantic and
statistical cues. Overall, each component provides complementary gains, and the full RHOP yields
the strongest improvements.

Embedding dimensions. The parameters k and k′ control the augmentation of mean vectors and
the embedding of Riemannian statistics in Eqs. (9) and (11). Tab. 6 reports their influence on TUAB
and TUEV. Non-trivial choices with k, k′ > 0 consistently outperform the baseline, and the optimal
configuration varies across datasets. TUAB achieves the highest AUROC with k = 3, k′ = 3,
while TUEV obtains the best Cohen’s Kappa with k = 3, k′ = 3 and the best balanced accuracy
with k = 1, k′ = 3. Increasing k or k′ expands the SPD embedding dimension and amplifies the
mean-related terms, which reduces the relative influence of the covariance structure and introduces
additional computational and numerical burdens. As a result, moderate settings such as (k = 3, k′ =
3) achieve the best trade-off between representational expressiveness and model stability.

Covariance normalization. Tab. 7 examines why iSICE is selected as the final covariance nor-
malization method. Replacing iSICE with iSQRT-COV or SVD-Padé reduces performance, while
iSICE achieves the best results on TUAB and TUEV. The reason is that iSICE imposes sparsity
during normalization, which regularizes high-dimensional features. This property is particularly ef-
fective for EEG decoding, where signals are noisy and correlations are often spurious, making iSICE
a more robust choice than dense normalization approaches.
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Table 8: Gaussianity statistics of token features after random projection. SW-p: Shapiro–Wilk
p-value; Prop.: proportion of projections with p > 0.05. p > 0.05 indicates non-rejection of
Gaussianity.

(a) Gaussianity statistics of RHOP temporal-segment
features.

Model Dataset SW-p Prop.(p > 0.05) Skew Kurt

LaBraM TUAB 0.49 0.94 −0.13 0.19
TUEV 0.47 0.89 −0.10 0.15

BIOT TUAB 0.46 0.91 −0.07 0.10
TUEV 0.44 0.85 −0.09 0.12

(b) Gaussianity statistics of GCP token-level aggre-
gated features.

Model Dataset SW-p Prop.(p > 0.05) Skew Kurt

LaBraM TUAB 0.01 0.05 0.14 18.94
TUEV 0.01 0.03 0.25 19.54

BIOT TUAB 0.02 0.03 0.22 19.16
TUEV 0.01 0.00 0.14 19.97

5.4 GAUSSIANITY ANALYSIS

In this section, we evaluate the Gaussianity of token features extracted from LaBraM and BIOT on
TUAB and TUEV, aiming to understand the statistical behavior of foundation model activations.

Testing procedure. For each dataset, we randomly sample 10 000 data samples, extract their token
representations, and assess the distributional properties of the temporal feature vectors. Each token
feature is projected onto multiple random one-dimensional directions, a standard approach for test-
ing multivariate normality. For each projection, we compute the Shapiro–Wilk p-value, skewness,
and excess kurtosis, and then average these quantities.

Discussion. As summarized in Tab. 8(a), the Gaussianity statistics reflect the distribution of
RHOP’s temporal-segment features, that is, the feature vectors obtained along the temporal dimen-
sion on which RHOP computes covariance. Along this axis, the features exhibit near-Gaussian
behavior: the Shapiro–Wilk p-values are moderate, 85%–94% of projections satisfy p > 0.05,
skewness is close to zero, and excess kurtosis remains small. These results indicate that RHOP’s
temporal-segment representations follow a Gaussian suitable for second-order modeling.

In contrast, the GCP features in Tab. 8(b) exhibit strong non-Gaussian behavior. Unlike RHOP, GCP
computes covariance after flattening and aggregating both spatial and temporal tokens, thereby mix-
ing heterogeneous EEG components within a single feature vector. When Gaussianity is assessed
along this mixed token axis, the resulting statistics deviate substantially from a normal distribu-
tion: the Shapiro–Wilk p-values are near zero, fewer than 5% of projections satisfy p > 0.05, and
the excess kurtosis reaches extremely high values. These results indicate heavy-tailed, asymmetric,
and multimodal structure, reflecting the statistical complexity introduced by combining spatial and
temporal information in a single representation.

Since RHOP evaluates covariance within coherent temporal segments—rather than across mixed
token features—it operates on statistically well-behaved representations. This explains the greater
stability of RHOP’s covariance estimates and its superior downstream performance.

6 CONCLUSION

This work introduced Riemannian High-Order Pooling, a geometry-aware classification head de-
signed to complement large EEG foundation backbones. By embedding per-token quotient Gaus-
sians on the SPD manifold and aggregating them into a Riemannian Gaussian descriptor, RHOP
preserves scale-invariant dependencies and captures high-order spatiotemporal interactions. Ex-
tensive experiments across abnormal detection, epileptic event classification, motor imagery, and
event-related potentials demonstrated that RHOP consistently improves accuracy, robustness, and
efficiency over global average pooling and classical covariance pooling. These gains persist across
different training regimes, including learning from scratch, full fine-tuning, and linear probing, con-
firming that RHOP provides a principled and effective bridge between Riemannian statistics and
foundation models. More broadly, this study underscores the importance of incorporating geometric
inductive bias into large-scale EEG systems and points toward scalable, geometry-aware modeling
of brain signals.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) only for limited assistance in language polishing and for
implementing minor parts of the code. All research ideas, experiment design, analysis, and conclu-
sions were conceived and validated by the authors, who remain fully responsible for the content of
this work.

B NOTATIONS

For better clarity, we summarize all the notations used in this paper in Tab. 9.

Table 9: Notations used in this paper.

Symbol Meaning
S+n Set of n× n symmetric positive definite matrices
dAIM(P,Q) Affine invariant Riemannian distance on S+n
ExpP (S) Exponential map at P ∈ S+n for tangent vector S ∈ TPS+n
LogP (Q) Logarithm map at P ∈ S+n for Q ∈ S+n
TPS+n Tangent space of S+n at P
∥ · ∥F Frobenius norm
WFM({wi}, {Pi}) Weighted Fréchet mean on S+n with weights {wi}
wi Nonnegative weights with

∑
i wi = 1

N (n) Family of n-dimensional Gaussians parameterized by (Σ, µ)
Σ, µ Covariance matrix and mean vector of a Gaussian
k, k′ Hyperparameters for quotient and Riemannian embedding dimensions

C DATASET DESCRIPTION AND PREPROCESSING

In this section, we provide additional implementation details to ensure full reproducibility of our
experiments, including dataset descriptions, preprocessing steps, and training configurations that
were not covered in the main paper.

C.1 THE TUAB DATASET

Description. The TUAB dataset1 is a large clinical EEG corpus in which each recording is labeled
as either normal or abnormal. The raw EEGs are 23-channel clinical recordings sampled at 256 Hz.
After segmentation into non-overlapping 10-second windows, the corpus provides 409,455 samples
for binary normal/abnormal classification.

Preprocessing. For experiments using the BIOT model, we adopt the preprocessing pipeline pro-
vided in BIOT (Yang et al., 2023). All recordings are processed using 16 bipolar montage channels
defined under the 10–20 system. Each EEG signal is first resampled to 200 Hz and then transformed
into a standardized set of 16 bipolar derivations (Yang et al., 2023), which specify fixed electrode
pairs (e.g., FP1–F7, F7–T3, T3–T5, etc.). Segments shorter than 10 seconds are discarded. For
experiments using LaBraM, we adopt the preprocessing protocol defined in (Jiang et al., 2024). The
EEG signals are first band-pass filtered between 0.1 Hz and 75 Hz to remove low-frequency drift,
followed by a 50 Hz notch filter to suppress power-line interference. All recordings are then re-
sampled to 200 Hz. Since raw EEG values typically lie within [−0.1, 0.1] mV, we normalize the
amplitude by scaling the unit to 0.1 mV such that the resulting signals fall approximately within
[−1, 1]. Each valid 10-second window inherits the normal/abnormal label of its source recording
and is stored as an individual sample for downstream training, validation, and evaluation.

Experimental Configuration. We adopt a subject-independent evaluation protocol. Since the
official subject-wise split already provides separate training and test partitions, we further divide the
training portion into an 80%–20% train–validation split, following prior work (Yang et al., 2023;
Jiang et al., 2024). The model achieving the highest validation performance is selected for final
testing. Each method is evaluated using its own preprocessing pipeline and corresponding channel
configuration: 16 channels for BIOT and 23 channels for LaBraM. To improve statistical reliability,
all experiments are repeated three times with different random seeds, and we report the mean and
standard deviation across runs.

1https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
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C.2 THE TUEV DATASET

Description. The TUEV2 corpus is a clinically annotated subset of TUEG that categorizes EEG
segments into six event types: spike and sharp wave (SPSW), generalized periodic epileptiform dis-
charges (GPED), periodic lateralized epileptiform discharges (PLED), eye movement (EYEM), arti-
fact (ARTF), and background (BCKG). All recordings contain 23 EEG channels sampled at 256 Hz,
and the dataset provides 112,491 non-overlapping 5-second segments for multiclass classification.

Preprocessing. We adopt the same preprocessing pipeline as in TUAB. Each EEG recording is
resampled to 200 Hz and transformed into the standardized 16-channel bipolar montage used in
BIOT Yang et al. (2023).Segments shorter than 5 s are discarded. Each 5-second segment inherits
the event label of its source annotation and is stored as an individual sample for downstream training,
validation, and evaluation.

Experimental Configuration. Following the official subject-wise split, the training portion is fur-
ther divided into an 80%–20% train–validation split, and the model with the best validation accuracy
is used for final testing. All experiments are repeated three times with different random seeds, and
the mean and standard deviation are reported.

C.3 THE BCIC2B DATASET

Description. The BCIC2B motor-imagery dataset3 contains recordings from 9 participants and in-
cludes both EEG and EOG modalities. EEG signals were collected from three bipolar channels (C3,
Cz, C4) at a sampling rate of 250 Hz, while ocular activity was monitored using three monopolar
EOG electrodes with a dynamic range of±1 mV. Each participant completed five experimental runs:
the first two were screening sessions without feedback, and the remaining three provided feedback.
The motor imagery task involved imagining either left-hand or right-hand movements (class 1 and
class 2). For the screening phase, each subject was recorded on two separate days within a two-week
interval, and every session consisted of 120 trials evenly distributed across the two classes.

Preprocessing. We discard all ocular channels (EOG:ch01, EOG:ch02, EOG:ch03) prior to
further processing. The EEG signals are band-pass filtered within 0–38 Hz, resampled to 200 Hz,
and subsequently normalized using EA normalization He & Wu (2019), which is widely adopted for
motor-imagery datasets.

Experimental Configuration. We employ a subject-independent evaluation. Since the BCIC2B
dataset contains recordings from 9 subjects, the experiments follow a 9-fold LOSO cross-validation
protocol. In each fold, one subject (e.g., sub1) is designated as the test set, and the remaining
subjects (sub2--sub9) are used for training. To enhance statistical reliability, every experiment
is repeated 3 times with different random seeds, and the mean and standard deviation are reported.

C.4 THE PHYSIOP300 DATASET

Description. The PhysioNetP300 dataset4 includes recordings from 12 participants performing a
P300-based character-spelling task using a Donchin speller. EEG was acquired with a 64-channel
BioSemi ActiveTwo system at a sampling rate of 2048 Hz. Each subject was asked to spell 20
characters. For each run, a target character was randomly chosen, and the rows and columns of a
standard 6×6 matrix were intensified for 100 ms with 50 ms intervals (SOA of 150 ms), resulting
in roughly 20 flashes of the target per run. During the sequence, subjects focused on the designated
character and counted its occurrences.

Preprocessing. We retain all 64 EEG channels from the BioSemi montage and first convert the
raw signals into uniform units. The data are band-pass filtered within 0–120 Hz and resampled to
200 Hz. For each trial, we use a 2-second window beginning 0.7 s before the flash onset, which
corresponds approximately to a [−0.1, 2] s peri-stimulus interval after resampling. Each extracted
epoch is assigned a binary label (target or non-target) depending on whether the intensified row or
column contains the designated character.

2https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
3https://www.bbci.de/competition/iv/#datasets
4https://physionet.org/content/erpbci/1.0.0/
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Table 10: Dataset–backbone specific hyperparameters for downstream training.

Hyperparameters TUAB/TUEV BCIC2B PhysioNetP300

LaBraM BIOT LaBraM BIOT LaBraM BIOT

Batch size 64 64 64 64 64 64
LR scheduler Cosine Cosine OneCycle OneCycle OneCycle OneCycle
Start learning rate — — 1.5e-5 1.5e-5 3.0e-5 3.0e-5
Peak/Max learning rate 5e-4 2.5e-3 4.0e-4 4.0e-4 8.0e-4 8.0e-4
Minimal learning rate 1e-6 1e-6 1.5e-7 1.5e-7 3.0e-7 3.0e-7
Optimizer AdamW Adam AdamW AdamW AdamW AdamW
Adam β 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999
Weight decay 0.05 0.0005 0.05 0.05 0.05 0.05
Total epochs 50 50 100 100 100 100
Warmup epochs 5 0 — — — —
Dropout 0 0.2 0 0.2 0 0.2
Drop path 0.1 0 0 0 0 0
Layer-wise LR decay 0.65 — - — - —
Label smoothing (multi-class) 0.1 — 0.1 — 0.1 —
Sliding-window step — — — — 125 ms 125 ms

Table 11: Comparison on TUAB using the CBraMod backbone.

Methods Model Size (#Params) Time / Epoch (m) Balanced Acc. Cohen’s Kappa Weighted F1

CBraMod (Original)* 4.0M 10.42 0.7973± 0.0024 0.8805± 0.0043 0.8745± 0.0031
CBraMod + GAP* 4.0M 10.02 0.7978± 0.0031 0.8749± 0.0165 0.8774± 0.0143
CBraMod + iSQRT-COV 4.0M+∆20.3K 17.89 0.8046± 0.0047 0.8873± 0.0064 0.8841± 0.0022
CBraMod + SVD-Padé 4.0M+∆20.3K 29.97 0.8069± 0.0051 0.8910± 0.0053 0.8885± 0.0025
CBraMod + iSICE 4.0M+∆20.3K 65.38 0.8027± 0.0054 0.8858± 0.0049 0.8823± 0.0021
CBraMod + RHOP 4.0M+∆4.6K 20.14 0.8131± 0.0019 0.8972± 0.0052 0.8913± 0.0024

* Re-implemented following the official CBraMod preprocessing protocol.

Experimental Configuration. We follow the configuration used in BENDR Kostas et al. (2021)
and exclude subjects 8, 10, and 12, leaving data from the remaining 9 participants. A subject-
independent evaluation is employed, using a 9-fold LOSO cross-validation protocol in which one
subject is held out for testing while the others are used for training. During fine-tuning, the Phys-
ioNetP300 data are processed using a 125 ms sliding window to extract temporally localized ERP
segments for classification.

D HYPERPARAMETERS SETTING

Unless otherwise stated, we use the dataset–backbone specific configurations summarized in Tab. 10.
For TUAB and TUEV, models are fine-tuned for 50 epochs with batch size 64 and cosine scheduling:
LaBraM uses AdamW with peak learning rate 5e-4, minimal 1e-6, 5 warmup epochs, drop path
0.1, and layer-wise decay 0.65; BIOT uses Adam with peak learning rate 2.5e-3, minimal 1e-6,
no warmup, and dropout 0.2. For BCIC2B and PhysioNetP300, we adopt LOSO validation and
OneCycle schedules for 100 epochs with batch size 64. BCIC2B starts at 1.5e-5, peaks at 4.0e-4,
and decays to 1.5e-7, while PhysioNetP300 starts at 3.0e-5, peaks at 8.0e-4, and decays to 3.0e-7.
Other optimizer settings follow Tab. 10 to ensure fair comparison across heads.

E MORE RESULTS

E.1 COMPARISONS USING THE CBRAMOD BACKBONE

The original CBraMod (Wang et al., 2025) employs a multi-layer nonlinear classifier rather than a
GAP head. To enable a fair comparison, we replaced this classifier with GAP, RHOP, and several
existing covariance-based pooling heads, while keeping all remaining components unchanged. Be-
cause the exact subject-level data partitions used in CBraMod cannot be faithfully reproduced, we
follow the authors’ official preprocessing protocol and re-implement the model according to their
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Table 12: Ablation of FM iterations on TUAB.

Methods #Iter Time/Epoch (min) Balanced Acc. AUC-PR AUROC
LaBraM-Base 1 21.48 0.8244± 0.0012 0.9078± 0.0012 0.9105± 0.0011
LaBraM-Base 2 24.59 0.8261± 0.0011 0.9086± 0.0011 0.9110± 0.0010
LaBraM-Base 3 27.71 0.8263± 0.0012 0.9085± 0.0011 0.9111± 0.0010
LaBraM-Base ∞ 40.19 0.8239± 0.0013 0.9077± 0.0011 0.9107± 0.0010

Table 13: Ablation of FM iterations on TUEV.

Methods #Iter Time/Epoch (min) Balanced Acc. Cohen’s Kappa Weighted F1
LaBraM-Base 1 2.25 0.6380± 0.0056 0.6785± 0.0079 0.8420± 0.0038
LaBraM-Base 2 3.38 0.6401± 0.0054 0.6802± 0.0077 0.8447± 0.0036
LaBraM-Base 3 5.02 0.6400± 0.0053 0.6803± 0.0076 0.8451± 0.0037
LaBraM-Base ∞ 10.21 0.6360± 0.0054 0.6783± 0.0076 0.8414± 0.0037

recommendations.5 As shown in Tab. 11, RHOP consistently outperforms both the original classi-
fier and other pooling baselines across all evaluation metrics, highlighting its clear advantage when
integrated into the CBraMod backbone.

E.2 ABLATION ON THE NUMBER OF FRÉCHET MEAN (FM) ITERATIONS

We evaluate the impact of the number of Fréchet Mean (FM) iterations on both TUAB and TUEV.
The results are summarized in Tabs. 12 and 13, where the iteration count is set to 1, 2, 3, and ∞,
with∞ denoting iteration until convergence (i.e., the matrix norm change falling below 1× 10−5).

Across both datasets, performance improves noticeably from 1 to 2 iterations, but the gains saturate
quickly thereafter: configurations using 2, 3, or ∞ iterations yield nearly identical results. This
indicates that a small number of FM iterations is sufficient for stable and effective Riemannian ag-
gregation. Additional iterations incur significant computational overhead without providing further
benefits. Consequently, we adopt 1 iteration as the default setting, achieving a strong balance be-
tween accuracy and efficiency. This observation is also consistent with prior studies Brooks et al.
(2019); Chen et al. (2024); Chakraborty et al. (2022).

E.3 MORE ABLATION ON (k, k′)

We further investigate the influence of the embedding dimensions k and k′ on model performance.
As shown in Tab. 14, in the Quotient-Gaussian embedding, increasing k expands the SPD dimension
from d to d + k, which amplifies the first-order term kµµ⊤. As k grows, the embedding becomes
more mean-dominated, weakening the relative contribution of second-order statistics that are known
to be highly informative for EEG decoding. Moreover, enlarging d+ k introduces quadratic growth
in matrix size, leading to increased computational burden and potential numerical instability. These
effects collectively explain why excessively large k tends to degrade performance.

A parallel interpretation applies to k′, which controls the dimensionality of the embedded mean
vector: larger values introduce additional first-order information but also increase representation
size, resulting in diminishing returns and eventual performance decline. As summarized in Tab. 14,
performance improves initially as (k, k′) increases, but the gains plateau and then decrease for overly
large values. Notably, (k = 2, k′ = 2) and (k = 3, k′ = 3) consistently lie at or near the optimum
across TUAB and TUEV, indicating that moderate dimensionality provides the balance between
representational richness, computational efficiency, and numerical stability.

F FRÉCHET MEAN ON SPD MANIFOLDS

As shown in Alg. 2, the Karcher flow algorithm computes the weighted Fréchet mean (WFM) on
the SPD manifold through an iterative process. In each iteration, the data points are projected onto
the tangent space at the current estimate Gk−1 using the logarithmic map, a weighted average is
calculated in this tangent space, and the result is mapped back to the manifold using the exponential
map. This algorithm is guaranteed to converge on manifolds with non-positive curvatures, such as

5https://github.com/wjq-learning/CBraMod/blob/main/preprocessing/
README.md
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Table 14: Ablation on embedding dimensions (k, k′) for LaBraM-Base.

k k′
TUAB TUEV

Balanced Acc. AUC-PR AUROC Balanced Acc. Cohen’s Kappa Weighted F1

1

1 0.8065±0.0019 0.8973±0.0017 0.8988±0.0012 0.6457±0.0121 0.5772±0.0203 0.7876±0.0114
2 0.8193±0.0021 0.9054±0.0016 0.9064±0.0013 0.6339±0.0184 0.6078±0.0227 0.8062±0.0102
3 0.8199±0.0020 0.9054±0.0015 0.9060±0.0012 0.6726±0.0137 0.6456±0.0181 0.8224±0.0097
4 0.8181±0.0019 0.9017±0.0016 0.9042±0.0012 0.6325±0.0142 0.6359±0.0208 0.8184±0.0105

2

1 0.8171±0.0018 0.8975±0.0018 0.9013±0.0012 0.6631±0.0116 0.6471±0.0193 0.8252±0.0089
2 0.8249±0.0022 0.9044±0.0014 0.9071±0.0011 0.6459±0.0128 0.6008±0.0251 0.7970±0.0095
3 0.8163±0.0017 0.9058±0.0016 0.9057±0.0011 0.6440±0.0137 0.6196±0.0228 0.8145±0.0117
4 0.8164±0.0018 0.9043±0.0015 0.9046±0.0012 0.6409±0.0135 0.6302±0.0221 0.8129±0.0110

3

1 0.8183±0.0019 0.9035±0.0015 0.9062±0.0011 0.6659±0.0123 0.6317±0.0273 0.8176±0.0135
2 0.8193±0.0020 0.9008±0.0016 0.9039±0.0012 0.6372±0.0161 0.6220±0.0234 0.8135±0.0092
3 0.8244±0.0012 0.9078±0.0012 0.9105±0.0011 0.6380±0.0056 0.6785±0.0079 0.8420±0.0038
4 0.8187±0.0021 0.9024±0.0017 0.9041±0.0013 0.6484±0.0138 0.6116±0.0217 0.8123±0.0109

4

1 0.8181±0.0020 0.9017±0.0016 0.9042±0.0012 0.6475±0.0125 0.6341±0.0208 0.8188±0.0107
2 0.8164±0.0019 0.9043±0.0015 0.9046±0.0011 0.6362±0.0141 0.6193±0.0221 0.8127±0.0112
3 0.8187±0.0021 0.9024±0.0017 0.9041±0.0013 0.6484±0.0138 0.6116±0.0217 0.8123±0.0109
4 0.8190±0.0020 0.9031±0.0016 0.9050±0.0012 0.6400±0.0132 0.6250±0.0225 0.8150±0.0110

Algorithm 2: Karcher Flow Algorithm on the SPD Manifold under AIM

Input : A set of SPD matrices X1...N ∈ S+d
Number of iterations K

Output : The FM GK ∈ S+d
Initialize G0 = 1

N

∑N
i=1 Xi

for k ← 1 to K do
Gk ← ExpGk−1

(∑N
i=1 LogGk−1

(Xi)
)

end

S+d (Karcher, 1977a). In practice, we initialize G0 with the arithmetic mean and set the number of
iterations to K = 1, which provides a stable and efficient approximation.

G LIMITATION

RHOP involves batched SVD to compute matrix logarithms and update sparse inverse covariance.
While such operations are generally less optimized than convolutions and attention on current GPUs,
in our case, the matrix size is very small (at most 15×15), making the actual overhead negligible.
Thus, this limitation is mainly an implementation detail rather than a practical concern.

H FUTURE WORK

RHOP is primarily motivated by EEG decoding, but its basic framework and statistics-based princi-
ples are general. The Quotient Gaussian Embedding and Riemannian Gaussian Embedding capture
two key characteristics that are particularly salient in EEG signals, i.e., spatiotemporal dependency
and scale variation. RHOP employs second-order pooling across temporal segments, which pre-
serves fine-grained temporal relations that are lost in first-order pooling schemes. More importantly,
the quotient Gaussian provides scale-invariant representations, allowing the model to focus on rela-
tional structure rather than absolute amplitude. These theoretical properties make RHOP naturally
well-suited for EEG foundation models, which typically rely on mean-based pooling.

However, the RHOP head can also be extended to other multi-channel temporal modalities that
exhibit similar structural characteristics, such as ECG, MEG, and fMRI-derived time series. In these
domains, the high-order pooling framework may enhance representation ability, while the degree of
quotient Gaussian can be adapted to reflect the discriminative role of signal amplitude. Investigating
these directions may help understand when quotient-based modeling is advantageous and shed light
on how RHOP could generalize beyond EEG.
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I PROOF OF THE THM. 4.2
Proof of Thm. 4.2 . We construct Ψ : QN (n) → S+,1

n+k and show it is a smooth embedding. Fix
k ≥ 1 and define

Φ(C, µ) =

[
C + kµµ⊤ µ(k)

µ(k)⊤ Ik

]
, µ(k) = [µ, . . . , µ]︸ ︷︷ ︸

k columns

. (14)

Observe that Φ(C, µ) is SPD and detΦ(C, µ) = detC. Indeed, with

T (µ) =

[
In µ(k)

0 Ik

]
, (15)

a direct multiplication gives

Φ(C, µ) = T (µ)

[
C 0

0 Ik

]
T (µ)⊤. (16)

Since C ∈ S+n and T (µ) is invertible, Φ(C, µ) is SPD. Also detT (µ) = 1, hence detΦ(C, µ) =
detC.

Set s(C) = (detC)
− 1

n+k and define

Ψ(C, µ) = s(C) Φ(C, µ). (17)

Then detΨ(C, µ) = 1, so Ψ(C, µ) ∈ S+,1
n+k, matching Eq. (6).

For injectivity and a smooth inverse on the image, suppose Ψ(C1, µ1) = Ψ(C2, µ2) =: X , and write

X =

[
X11 X12

X21 X22

]
. By construction X22 = s(Ci)Ik, so s(C1) = s(C2) =: s. Then X12 = s µ

(k)
i

implies µ1 = µ2 =: µ, and X11 = s(Ci + kµµ⊤) yields C1 = C2.

Conversely, given X in the image, recover s = 1
k tr(X22), then µ = s−1X12e1 (with e1 the first

basis vector in Rk), and finally C = s−1X11 − kµµ⊤. These depend smoothly on X and satisfy
Ψ(C, µ) = X . Hence Ψ is a smooth embedding.

It remains to situate this within the affine action. Let N(n) be the space of Gaussians (Σ, µ) with Σ ∈
S+n . As shown in Nguyen (2021); Lovrić et al. (2000b), Eqs. (41)–(47), the transitive Aff+(n)-
action on N(n) and the embedding j : Aff+(n) ↪→ SL(n+ k) induce

(Σ, µ) 7−→ (detΣ)
− 1

n+k

[
Σ+ kµµ⊤ µ(k)

µ(k)⊤ Ik

]
∈ S+,1

n+k. (18)

A quotient Gaussian identifies (Σ, µ) up to a positive scalar multiple on Σ. Choosing the canonical

representative C = (detΣ)−
1
nΣ yields exactly Ψ(C, µ). Therefore, Ψ is the natural embedding for

quotient Gaussians.
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