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ABSTRACT

Synthesizing realistic 12-lead electrocardiogram (ECG) data is a complex task due
to the intricate spatial and temporal dynamics of cardiac electrophysiology. Tradi-
tional generative models often struggle to capture the nuanced interdependencies
among ECG leads, which are essential for accurate medical analysis. In this paper,
we introduce a novel method that integrates partial differential equations (PDEs)
into a generative adversarial network (GAN) framework to model the spatiotem-
poral behavior of the heart’s electrical activity. By embedding PDE-based repre-
sentations directly into the generative process, our approach effectively captures
both the temporal evolution and spatial relationships between ECG leads. This
results in the production of high-fidelity synthetic 12-lead ECG data that closely
mirrors real physiological signals. We conduct extensive experiments to evalu-
ate the efficacy of our PDECGAN model, demonstrating that classifiers trained
on our synthetic data outperform those trained on data generated by conventional
methods in detecting cardiac abnormalities, with statistically significant improve-
ments. Our work highlights the potential of combining PDE-driven cardiac mod-
els with advanced generative techniques to enhance the quality and utility of syn-
thetic biomedical datasets.

1 INTRODUCTION

Electrocardiograms (ECGs) are essential diagnostic tools for monitoring and detecting heart condi-
tions by recording the electrical activity of the heart through multiple leads. The 12-lead ECG, in
particular, provides comprehensive spatial information about cardiac function, making it invaluable
for identifying a wide range of cardiac abnormalities.

Developing robust machine learning models for ECG analysis requires large and diverse datasets.
However, acquiring such datasets poses significant challenges due to privacy concerns, data security
issues, and the scarcity of data representing rare cardiac conditions (Voigt & Bussche, 2017). These
limitations hinder research and development efforts in cardiac healthcare applications.To overcome
these challenges, synthetic data generation has emerged as a promising solution (Giuffrè & Shung,
2023; de Melo et al., 2022). While existing generative models, such as Generative Adversarial Net-
works (GANs), have made progress, they often focus on single-lead ECGs, neglecting the complex
interdependencies and spa- tiotemporal dynamics of 12-lead ECG signals. Accurately modeling
these relationships is crucial for generating synthetic data that mirrors real-world cardiac function.

Recent advances in Physics-Informed Neural Networks (PINNs) have shown how integrating phys-
ical laws into neural networks can enhance the accuracy of predictions in various scientific do-
mains (Raissi et al., 2019; Karniadakis et al., 2021). PINNs leverage known physical principles,
such as partial differential equations (PDEs), to guide the learning process, ensuring that the gen-
erated outputs respect the underlying laws of nature. This approach is particularly relevant in our
work, where accurately capturing the spatiotemporal dynamics of cardiac electrophysiology is crit-
ical. Unlike ordinary differential equations (ODEs), which capture temporal dynamics alone, PDEs
model both temporal evolution and spatial relationships.

Similar to PINNs, our method ensures that the synthetic ECGs not only look realistic but also adhere
to the physiological principles governing heart activity, represent the intricate interactions within the
heart’s electrical field and the interdependencies among the 12 ECG leads.

Inspired by this, we propose PDECGAN, a novel generative framework that integrates partial differ-
ential equations (PDEs) representing cardiac electrophysiology into the GAN architecture (Good-
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fellow et al., 2014). By embedding PDE-based constraints within the generative model, PDECGAN
ensures that the synthetic ECG data not only appear realistic but also align with the underlying
physiological principles governing cardiac electrical activity.

This integration of PDE-based constraints into the GAN’s training process enables the model to learn
from both empirical data and the fundamental principles of cardiac electrophysiology, enhancing the
realism and accuracy of the synthetic ECG signals. Consequently, the generated data better captures
the observed patterns and physiological mechanisms inherent in real ECGs.

Classifiers trained on PDECGAN-generated data demonstrate improved performance in detecting
cardiac abnormalities, highlighting the practical advantages of incorporating physiological models
into the data generation process. Our empirical analysis confirms the effectiveness of this approach
in boosting classifier accuracy for heart anomaly detection.

Our key contributions in this study are as follows:

1. The PDECGAN Framework: We introduce PDECGAN, a novel generative framework
that integrates partial differential equations into a Generative Adversarial Network to accu-
rately model the spatiotemporal dynamics of 12-lead ECG signals.

2. Enhanced Synthetic Data Quality: By leveraging PDEs, PDECGAN generates high-
fidelity synthetic 12-Lead ECG heartbearts data that captures the complex relationships
between leads.

3. Improved Classification Performance: Classifiers trained on synthetic data generated
by PDECGAN demonstrate superior performance in detecting cardiac abnormalities com-
pared to those trained on data from traditional generative models.

This work showcases how integrating physiological modeling with machine learning can capture
complex cardiac dynamics, akin to modeling natural phenomena, enhancing the accuracy and effec-
tiveness of diagnostic models in medical applications.

2 RELATED WORK

The success of deep learning (DL) models, particularly in medical applications, hinges on the avail-
ability of large, annotated datasets. However, data scarcity, privacy concerns, and ethical constraints,
especially in the medical domain, hinder the collection of such datasets (de Melo et al., 2022). To
address these limitations, synthetic data generation has emerged as a crucial tool, providing high-
quality, diverse datasets for training deep neural networks (DNNs) (Cichy & Kaiser, 2019).

In the realm of cardiovascular diagnostics, synthetic electrocardiogram (ECG) data has gained at-
tention as a means to improve diagnostic models. ECGs are critical for diagnosing various heart
conditions, and generating realistic synthetic ECGs facilitates the development of robust machine
learning models.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have significantly advanced
synthetic data generation,including ECGs (Donahue et al., 2018). Early applications of GANs in
ECG generation, such as those by Zhu et al. (2019), Golany et al. (2020) and Golany et al. (2021),
demonstrated the potential of adversarial models, though they were primarily focused on single-lead
ECG generation, limiting their ability to capture the complexities of 12-lead signals.

More recent efforts have sought to address this limitation. Several methods have been proposed
for generating 12-lead ECG data. For instance, Liu et al. (2020) utilized vector quantized varia-
tional autoencoders (VQ-VAE) to improve ECG classifiers. Huang et al. (2023) developed a GAN-
based model for unsupervised noise ECG generation, and Alcaraz & Strodthoff (2023) presented
SSSD-ECG, a diffusion-based technique for 12-lead ECG synthesis. The most recent advancement,
MultiODE-GAN (Yehuda & Radinsky, 2024), extends ODE-based methods by simulating heart ac-
tivity with coupled ODEs, building on the works of (Golany et al., 2020) and (McSharry et al.,
2003). In our study, we compare PDECGAN with the current state-of-the-art models, specifically
Alcaraz & Strodthoff (2023) and (Yehuda & Radinsky, 2024).

Our work builds on these advancements by integrating partial differential equations (PDEs) with
GANs to model the spatiotemporal dynamics of 12-lead ECGs. PDEs provide a more comprehen-
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sive simulation of heart activity, capturing both the temporal progression and spatial distribution
of electrical signals across the heart. This approach is inspired by Physics-Informed Neural Net-
works (PINNs) (Raissi et al., 2019; Karniadakis et al., 2021), which have shown the effectiveness
of embedding physical laws, such as PDEs, into neural networks. By incorporating these principles,
PDECGAN achieves state-of-the-art performance in generating high-fidelity 12-lead ECG data, sur-
passing existing methods.

Furthermore, the synthetic data generated by PDECGAN demonstrates practical utility in improving
the performance of 12-lead ECG classifiers, showing enhanced results when trained on a combina-
tion of real and synthetic data (Ribeiro et al., 2020).

3 METHOD

In this section, we present our approach for integrating partial differential equations (PDEs) into a
Generative Adversarial Network (GAN) framework to generate realistic 12-lead electrocardiogram
(ECG) heartbeats. Our method leverages the strengths of PDEs in modeling the spatiotemporal
dynamics of cardiac electrical activity and the generative capabilities of GANs.

3.1 MOTIVATION AND PDE FORMULATION

The heart’s electrical activity is inherently spatiotemporal, with electrical impulses propagating
across cardiac tissue. PDEs naturally capture these dynamics, modeling both spatial and tempo-
ral variations in a unified framework. By formulating the ECG generation process as a PDE, we
incorporate physiological parameters that reflect realistic cardiac dynamics.

∂u

∂t
= F (u,x, t,∇u,∇2u, . . . ,θ), (1)

Here, u(t,x) represents the multi-dimensional ECG signal at time t and spatial coordinates x, while
F defines the dynamics of the ECG signals, including physiological parameters θ such as heart rate
variability and ECG morphology.

Our proposed framework simulates the dynamics of 12-lead ECG heartbeats using a system of PDEs
that capture both temporal and spatial variations inherent in cardiac electrical activity. The PDE for
each lead i becomes:

∂ui(t)

∂t
= f(ui(t); θ) +D

∑
j∈N (i)

wij [uj(t)− ui(t)], (2)

where:

• ui(t) is the ECG signal amplitude at lead i and time t.
• f(ui(t); θ): Nonlinear function representing physiological processes, modeled by a neural

network with parameters θ.
• D Diffusion coefficient modeling spatial interactions between leads.
• N (i): Set of neighboring leads to lead i.
• wij : Weighting factor representing the interaction strength between leads i and j.

3.2 NUMERICAL SOLUTION

3.2.1 TEMPORAL DERIVATIVE APPROXIMATION

We approximate the temporal derivative of the ECG signal using finite differences. The temporal
derivative for lead i at time t is approximated using a forward difference:

∂ui(x, t)

∂t
≈ ui(x, t+∆t)− ui(x, t)

∆t
(3)
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where:

• ui(x, t): Signal amplitude at spatial position x and time t.

• ∆t is the sampling interval.

3.2.2 SPATIAL INTERACTION APPROXIMATION

The spatial interaction term in equation 2 is approximated using:

∑
j∈N (i)

wij [uj(t)− ui(t)], (4)

where wij is determined based on the physical proximity and physiological relationships between
leads i and j.

3.2.3 INITIAL CONDITIONS AND PDESTEP FUNCTION

The generator receives an initial condition U(0) for all leads, which is generated from a latent vector
z sampled from a prior distribution (e.g., Gaussian).

U(0) = G(z; θG), (5)

where θG are the parameters of the generator network.

To simulate the temporal evolution of the ECG signals, we iteratively apply a function called
PDEStep, which advances the ECG signals from time t to t+∆t:

U(t+∆t) = PDEStep(U(t),∆t, G(U(t),xt, t, z; θG)), (6)

In this context, PDEStep computes the next state of the ECG signals using the discretized PDEs,
and G provides the necessary neural network computations for f(ui(t); θ).

3.2.4 NUMERICAL INTEGRATION AND SOLVE FUNCTION

The entire sequence of ECG signals over the time interval [0, T ] is obtained by iteratively applying
the PDEStep function. This process is represented by a Solve function:

U = [U(0),U(∆t), . . . ,U(T )] = Solve(U(0); θG), (7)

where θG represents the generator’s parameters.

The Solve function effectively integrates the PDE over time, using the initial condition and the
generator’s dynamics, to produce the complete ECG signal sequence.

3.2.5 UPDATE RULE

Combining Equations equation 2 and the finite difference approximation of the temporal derivative,
the update rule within the PDEStep function is:

ui(t+∆t) = ui(t) + ∆t

f(ui(t); θ) +D
∑

j∈N (i)

wij [uj(t)− ui(t)]

 , (8)

This equation is used within the PDEStep function to advance the ECG signals at each time step.
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3.3 GAN FRAMEWORK

3.3.1 GENERATOR AND DISCRIMINATOR DESIGN

Generator G The generator aims to produce ECG signals that satisfy both the data distribution and
the PDE constraints. It receives the initial condition U(0) from Equation equation 5 and computes
the entire sequence U by iteratively applying the PDEStep function within the Solve process as
described in Equation equation 7.

Discriminator D The discriminator distinguishes between real ECG signals and those generated
by G. It assesses the realism of the entire 12-lead ECG signal sequence.

3.3.2 LOSS FUNCTIONS

Adversarial Loss The adversarial loss for the generator is defined as:

L
(G)
adv = −Ez∼pz

[
logD(Û)

]
, (9)

where Û = Solve(G(z; θ)) is the generated ECG signal sequence.

The adversarial loss for the discriminator is:

L
(D)
adv = −EU∼pdata [logD(U)]− Ez∼pz

[
log(1−D(Û))

]
, (10)

where U represents real ECG signal sequences from the dataset.

PDE Loss To ensure that the generated signals satisfy the PDE constraints, we define a PDE loss
based on the residual of the discretized PDE within each PDEStep:

Residuali(t) =
ui(t+∆t)− ui(t)

∆t
−

f(ui(t); θf ) +D
∑

j∈N (i)

wij [uj(t)− ui(t)]

 . (11)

The PDE loss is then defined as:

LPDE =
1

N

N∑
i=1

∑
t

(Residuali(t))
2
, (12)

where N is the number of leads.

Total Generator Loss The total loss for the generator combines the adversarial and PDE losses:

LG = λadvL
(G)
adv + λPDELPDE, (13)

where λadv and λPDE are hyperparameters that balance the importance of each loss term.

4 ECG CLASSIFIER

To evaluate the realism and utility of the synthetic 12-lead ECG data generated by PDECGAN, we
employ a state-of-the-art Residual Neural Network (ResNet) architecture, which is well-established
for its effectiveness in 12-lead ECG classification tasks (Attia et al., 2019; Ribeiro et al., 2020;
Nejedly et al., 2021). This model serves as a benchmark for assessing the impact of synthetic data
by comparing its performance when trained on real data versus a combination of real and synthetic
data.
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The ResNet implementation begins with a convolutional layer containing 16 filters of size 7x7,
followed by a max-pooling layer to reduce dimensionality while enhancing feature extraction. The
network’s backbone consists of five residual blocks, each made up of three convolutional layers
with batch normalization and ReLU activation. Each block incorporates a skip connection, ensuring
that input data bypasses the convolutional layers and connects directly to the block’s output. This
structure mitigates the degradation of training signals, allowing for deeper network training.

The network complexity increases across blocks, with the number of filters growing from 16 in
the first block to 64 in the last. A stride of 2 is applied to the first convolutional layer of each
block (except the first) to downsize the temporal dimension and manage computational load. The
final global average pooling layer reduces the feature space, feeding into a dense layer that outputs
the classification probabilities for abnormal ECGs, using a sigmoid activation function for binary
classification.

To ensure optimal training, the network’s weights are initialized using the initialization method (He
et al., 2016), while biases are set to zero to maintain consistency and stability during training.

5 EXPERIMENTAL EVALUATION

ECG DATASET

The empirical evaluation of our proposed method relies on the use of the Georgia 12-Lead ECG
Challenge (G12EC) dataset, sourced from Emory University, Atlanta, Georgia, as part of the Phys-
ionet 2020 Challenge (Alday et al., 2020). This dataset is pivotal to our study due to its comprehen-
sive coverage and diverse representation of cardiac conditions. It consists of 10,344 12-lead ECG
recordings obtained from 7,871 patients, reflecting a broad demographic spectrum primarily from
the southeastern United States.

Each recording in the G12EC dataset captures 10 seconds of ECG data, sampled at a high resolu-
tion of 500 Hz, translating to 5,000 time points per recording. This high-frequency data collection
ensures detailed ECG waveforms, facilitating accurate analysis and synthesis in our research.

To ensure robust model evaluation, we employed 5-fold cross-validation, dividing the dataset into
training and validation subsets. This approach allows for more reliable performance estimates by
rotating the training and validation data across different splits. In addition, 20% of the dataset was set
aside as an independent test set, reserved exclusively for evaluating the final model’s performance.
This setup ensures that the model assessment is rigorous and generalizes well to unseen data.

EXPERIMENTAL METHODOLOGY

To evaluate the quality of the synthetic data generated by PDECGAN, we follow the evaluation
methodology outlined in (Alcaraz & Strodthoff, 2023; Yehuda & Radinsky, 2024), focusing on 12-
lead ECG classification using the G12C dataset.

We train a ResNet classifier (Section 4 ) on both real and synthetic data, then assess its performance
on a real test set. Comparable performance between models trained solely on real data and those
trained on a combination of real and synthetic data would indicate the synthetic data’s high quality.
We evaluate three scenarios:

No synthetic data: Training is conducted exclusively on real data.

Synthetic data from PDECGAN: Training combines real data with synthetic ECG heartbeats gen-
erated by PDECGAN.

Synthetic data from other models:Training uses real data and synthetic ECGs generated by alter-
native models (Section 6).

If the model trained on a combination of real and synthetic data outperforms the model trained
solely on real data, it indicates that the synthetic data is of high quality and contributes positively to
model training. Conversely, a noticeable drop in test accuracy would suggest that the synthetic data
deviates from the real data distribution, reflecting lower quality in the generated samples.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

IMPLEMENTATION DETAILS

To prepare the raw ECG data for training and testing, we applied signal processing techniques us-
ing NeuroKit2, a Python library for neurophysiological signal processing (Makowski et al., 2021).
The ECG signal was segmented into individual heartbeat cycles by detecting R-peaks, which indi-
cate ventricular contractions. These R-peaks were detected using Lead II, known for its clear peak
visibility, and the RR intervals (time between successive R-peaks) were used for segmentation.

This segmentation is initially performed on Lead II, commonly used due to its clear visibility of
R-peaks, and serves as a reference for synchronizing the segmentation across the remaining leads.
By aligning the segmentation of all 12 leads with that of Lead II, we ensure temporal coherence
across the dataset, maintaining the integrity of the cardiac cycle’s representation in each lead.

Additionally, to enhance the relevance and reliability of our dataset for training generative models,
we specifically select ECG examples that exhibit abnormalities consistently across all cycles. This
approach avoids the potential bias and variance in training that might arise from using examples
where anomalies are only present in isolated cycles within the signal. Each segmented ECG cycle,
represented as x̂ ∈ R12×L, retains the original annotations from the full signal x ∈ R12×5000,
ensuring that each cycle is accurately labeled according to the comprehensive diagnostic features of
the overall ECG recording.

6 EXPERIMENTAL RESULTS

MAIN RESULT

This study evaluates the effectiveness of PDECGAN, a generative model that uses partial differential
equations (PDEs) to produce high-quality synthetic 12-lead ECG data. We assess its impact by
comparing the sensitivity and specificity of heart abnormality detection between classifiers trained
solely on real data and those trained on a combination of real and synthetic data.

As detailed in Table 1, incorporating synthetic data significantly improves specificity (while main-
taining constant sensitivity) across various heart abnormalities. Classifiers trained on both real and
synthetic data consistently outperformed those trained on real data alone, demonstrating the syn-
thetic data’s role in enhancing model robustness and diagnostic accuracy. The addition of synthetic
data reduces overfitting and improves generalization to unseen real-world data.

The improvements were validated using a 5-fold cross-validated paired t-test, with p-values below
0.05, confirming their statistical significance. Significant improvements are highlighted in bold in
the table.

Table 1: Baseline Classifier Performance: Real Data vs. Real + PDECGAN Synthetic Data

Abnormality Baseline CLS(Ribeiro et al.) PDECGAN
Sensitivity Specificity Sensitivity Specificity

IAVB 0.94 0.82 0.94 0.87
RBBB 0.94 0.89 0.94 0.93
LBBB 0.97 0.96 0.97 0.96

NSIVCB 0.78 0.72 0.78 0.79
LAnFB 0.89 0.76 0.89 0.82

LAD 0.89 0.88 0.89 0.91
QAb 0.81 0.70 0.81 0.74
AFL 0.93 0.83 0.93 0.88

COMPARATIVE ANALYSIS OF GENERATIVE MODELS

In this ablation study, we compare the performance of various generative models in producing syn-
thetic 12-lead ECG data, particularly focusing on how these models influence the specificity of
classifiers trained with the generated data. The objective is to highlight the strengths of different
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generative approaches and demonstrate the superior capability of our proposed method, PDECGAN,
in enhancing classifier performance. We included several generative models in our analysis, with
the latest being state-of-the-art approaches:

• DCGAN (Radford et al., 2016): A GAN variant known for stable training dynamics and
success in image generation, adapted here for waveform data.

• WaveGAN (Donahue et al., 2018): Designed specifically for generating audio waveforms,
WaveGAN effectively captures temporal patterns and is applicable to ECG data.

• SSSD-ECG (Alcaraz & Strodthoff, 2023): A recent diffusion-based model designed for
generating synthetic multi-lead ECG data.

• MultiODE-GAN (Yehuda & Radinsky, 2024): An ODE-based generative model that re-
fines ECG signal realism by simulating heart activity with coupled ODEs.

• PDECGAN: Our proposed method that integrates PDEs into the generative process to en-
capsulate both spatial and temporal heart dynamics comprehensively.

Table 2: Classifier Performance with Real and Synthetic Data from Various Generative Models

Abnormality Sensitivity Specificity
DCGAN WaveGAN SSSD-ECG MultiODEGAN PDECGAN

IAVB 0.94 0.82 0.83 0.84 0.85 0.87
RBBB 0.94 0.89 0.89 0.90 0.92 0.93
LBBB 0.97 0.95 0.96 0.96 0.96 0.96

NSIVCB 0.78 0.70 0.73 0.75 0.76 0.79
LAnFB 0.89 0.76 0.77 0.77 0.80 0.82

LAD 0.89 0.87 0.89 0.90 0.91 0.91
QAb 0.81 0.70 0.70 0.72 0.72 0.74
AFL 0.93 0.82 0.84 0.85 0.87 0.88

IMPACT OF CLASSIFIER ARCHITECTURES

In this experiment, we explore how different classifier architectures utilize synthetic data generated
by PDECGAN. Specifically, we assess whether alternative architectures can better leverage this data.

We compare two models:

• Standard ResNet (Ribeiro et al., 2020): Our baseline classifier, shown in Table 1 , used in
previous experiments.

• ResNet with Multi-Head Attention (Nejedly et al., 2021): An enhanced ResNet incorpo-
rating attention mechanisms, which performed highly in the PhysioNet Challenge.

Both classifiers were trained on a combination of real and synthetic data generated by PDECGAN
and evaluated on a real test set. As shown in Table 3, the ResNet with Multi-Head Attention demon-
strated significantly improved specificity when incorporating synthetic data from PDECGAN, com-
pared to being trained only on real data.

These results emphasize the compatibility of our synthetic data with advanced neural network archi-
tectures, showing that PDECGAN not only meets the complexity demands of sophisticated models
but also enhances their performance. This is particularly important in medical applications, where
diagnostic accuracy is crucial, and real-world data may be limited or imbalanced.

IMPACT OF SYNTHETIC DATA NUMBER

We conducted an experiment to examines how varying the quantity of synthetic samples generated
by PDECGAN influences classifier performance in detecting heart abnormalities from 12-lead ECG
data.

8
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Table 3: Evaluation Results for a Different Classifier Architecture

Abnormality CLS(Nejedly et al.) PDECGAN
Sensitivity Specificity Sensitivity Specificity

IAVB 0.93 0.85 0.93 0.90
RBBB 0.93 0.90 0.93 0.92
LBBB 0.96 0.96 0.96 0.97

NSIVCB 0.80 0.73 0.80 0.78
LAnFB 0.90 0.76 0.90 0.80

LAD 0.91 0.87 0.91 0.90
QAb 0.83 0.72 0.83 0.76
AFL 0.92 0.82 0.92 0.88

Experimental Design: We generated synthetic datasets at different scales relative to the number
of real samples (N) for each class: 0.3N, 0.7N, N, 1.5N, and 2N. Classifiers were trained on these
augmented datasets and evaluated on a fixed real test set, focusing on changes in specificity while
maintaining constant sensitivity.

As shown in Table 4, increasing the volume of synthetic data generally improved specificity, with
peak performance typically observed at N and 1.5N synthetic samples.

Table 4: Classifier Performance Comparison at Various Sample Sizes

Abnormality Sensitivity Specificity
0.3N 0.7N N 1.5N 2N

IAVB 0.94 0.83 0.84 0.87 0.87 0.85
RBBB 0.94 0.90 0.92 0.93 0.92 0.91
LBBB 0.97 0.96 0.96 0.96 0.95 0.95

NSIVCB 0.78 0.74 0.78 0.79 0.79 0.79
LAnFB 0.89 0.78 0.81 0.82 0.82 0.80

LAD 0.89 0.90 0.90 0.91 0.91 0.90
QAb 0.81 0.72 0.74 0.74 0.74 0.73
AFL 0.93 0.85 0.86 0.88 0.88 0.86

EFFECT OF SPLITTING THE PDE LOSS

We conducted an experiment to evaluate the individual and combined contributions of the temporal
and spatial derivatives within our PDE-GAN framework. This helps quantify the impact of each
component on the fidelity and realism of the generated 12-lead ECG signals.

To assess the effects of these constraints separately, we split the PDE loss into temporal and spatial
components:

LPDE = λPDELTemporal + (1− λPDE)LSpatial, (14)

where:

• LTemporal =
1
N

∑N
i=1

∑
t

[
ui(t+∆t)−ui(t)

∆t − f(ui(t); θ)
]2

,

• LSpatial =
1
N

∑N
i=1

∑
t

[
D

∑
j∈N (i) wij [uj(t)− ui(t)]

]2
,

• λPDE is a hyperparameter that balances between the spatia to the temporal loss component.

By adjusting λPDE, we control the influence of each component:

• λPDE = 0 isolates the spatial constraint, ignoring temporal dynamics.

9
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• λPDE = 1 isolates the temporal dynamics, removing the spatial constraint.

As shown in Figure 1, experiments with various λPDE values (ranging from 0 to 1) reveal that λPDE =
0.7 achieves optimal classifier performance. This suggests that a balanced approach effectively
leverages both temporal and spatial dependencies, with temporal dynamics being crucial but not
exclusively dominant.

0 0.1 0.3 0.5 0.7 0.9 1
PDE
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Figure 1: Classifier performance (specificity with constant sensitivity) across different λPDE value.
Optimal performance is achieved at λPDE = 0.7, demonstrating the performance balance between
temporal and spatial components.

7 CONCLUSION

In this work, we introduced PDECGAN, a novel framework that integrates partial differential equa-
tions (PDEs) into a GAN architecture to generate realistic 12-lead ECG signals. By embedding both
spatial and temporal constraints, PDECGAN produces physiologically accurate synthetic data.

Our results demonstrate that classifiers trained on a combination of real and PDECGAN-generated
data outperform those trained on real data alone, achieving significant improvements in specificity
and generalization. This highlights the value of integrating physiological models into generative
frameworks for medical data synthesis.

PDECGAN enhances the fidelity of synthetic ECG data, making it highly valuable for clinical re-
search and machine learning applications in healthcare.
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A INCORPORATING ECG LEAD RELATIONSHIPS

The 12-lead ECG system includes standard limb leads (I, II, III) and augmented limb leads (aVR,
aVL, aVF). These leads are interrelated based on Einthoven’s and Goldberger’s laws:

Lead I = Lead II − Lead III, (15)
Lead II = Lead I + Lead III, (16)

Lead III = Lead II − Lead I, (17)

aV R = −1

2
(Lead I + Lead II), (18)

aV L =
1

2
(Lead I − Lead III), (19)

aV F =
1

2
(Lead II + Lead III). (20)

These relationships imply that not all leads are independent. Specifically, the limb leads can be
determined from any two of them.
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B HYPERPARAMETERS

The hyperparameters D, wij , λadv, and λPDE are tuned to balance the trade-off between signal real-
ism and adherence to physiological dynamics. The diffusion coefficient D and weights wij are set
based on the physical proximity and physiological relationships between the leads.

C TRAINING PROCEDURE

We train the generator and discriminator iteratively using the standard GAN training procedure, in-
corporating the PDE loss to enforce the physical constraints of the ECG dynamics. At each iteration,
we:

1. Sample a batch of latent vectors {zk} and generate synthetic ECG sequences {Ûk}.

2. Compute the adversarial loss L
(D)
adv and update the discriminator parameters to minimize

this loss.
3. Compute the total generator loss LG using Equation equation 13.
4. Update the generator parameters θG and θf to minimize LG.

Role of the Neural Networks Two neural networks are involved in our model:

• The generator network G, which generates the initial ECG state u(0) from a latent vector
z.

• The network modeling f(ui(t); θf ), which captures the nonlinear physiological processes
influencing the ECG signals over time.

Choice of the Diffusion Coefficient D The diffusion coefficient D controls the strength of spatial
interactions between leads. A larger D implies stronger coupling between leads, which can capture
correlated activities across different parts of the heart.

Determination of Interaction Weights wij The weights wij are determined based on anatomical
knowledge and empirical correlations between ECG leads. For instance, leads that are physically
close or measure similar cardiac activity will have higher weights.

Numerical Stability and Time Step ∆t The choice of ∆t is crucial for numerical stability. We
select ∆t to satisfy the Courant–Friedrichs–Lewy (CFL) condition for the discrete system, ensuring
stable and accurate simulations.

Integration with GAN Training The PDE constraints are integrated into the GAN training by
incorporating the PDE loss LPDE into the total generator loss. This enforces the physical plausibility
of the generated ECG signals while still allowing the generator to learn from the data distribution
through the adversarial loss.
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