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ABSTRACT

The recently proposed Generalized Referring Expression Segmentation (GRES)
and Comprehension (GREC) tasks extend the traditional RES/REC paradigm by
incorporating multi-target and non-target scenarios. However, the existing ap-
proaches focus on these tasks individually, leaving the unified generalized multi-
task visual grounding unexplored. Moreover, current GRES methods are limited
to global segmentation, lacking fine-grained instance-level awareness. To address
these gaps, this paper introduces a novel Instance-aware Generalized multi-task
Visual Grounding (IGVG) framework. IGVG is the first to integrate GREC and
GRES, establishing a consistent correspondence between detection and segmenta-
tion via query guidance. Additionally, IGVG introduces instance-level awareness,
enabling precise and fine-grained instance recognition. Furthermore, we present a
Point-guided Instance-aware Perception Head (PIPH), which employs attention-
based query generation to identify coarse reference points. These points guide
the correspondence between queries, objects, and instances, enhancing the direc-
tivity and interpretability of the queries. Experimental results on the gRefCOCO
(GREC/GRES), Ref-ZOM, and R-RefCOCO/+/g benchmarks demonstrate that
IGVG outperforms state-of-the-art methods.

1 INTRODUCTION

Classic Referring Expression Perception (REP) tasks primarily include Referring Expression Com-
prehension (REC) (Yu et al., 2018a; Yang et al., 2020; Shi et al., 2023) and Referring Expression
Segmentation (RES) (Liu et al., 2023e; Shang et al., 2024; Chen et al., 2024). The goal of REC
is to locate a specific target based on textual descriptions, while RES aims to achieve more fine-
grained, pixel-level localization. Both REC and RES share a common characteristic, i.e., one-to-one
correspondence between textual description and target object. Recently, the generalized REP tasks,
such as Generalized REC (GREC) (He et al., 2023) and RES (GRES) (Liu et al., 2023a), have been
proposed to extend the applicability of classic methods by involving multiple/non-target scenarios.

Furthermore, numerous studies have focused on multi-task learning, which aims to tackle detection
and segmentation with a unified architecture. MCN (Luo et al., 2020) is one of the first approaches to
combine REC and RES while investigating consistency constraints. Subsequent works (Li & Sigal,
2021; Zhu et al., 2022; Liu et al., 2023d) have primarily concentrated on harnessing the comple-
mentary strengths across multiple tasks. However, the effectiveness of joint multi-task learning in
generalized scenarios has yet to be explored and validated. In this paper, we heuristically construct a
generalized multi-task visual grounding framework that simplifies task complexity while achieving
complementary predictions. As illustrated in Fig. 1(c), we adopt a straightforward architecture in
which two independent decoders for detection and segmentation are jointly trained to build a bridge
between GREC and GRES tasks.

As illustrated in Fig. 1(b), most existing GRES methods (Liu et al., 2023a; Zhang et al., 2024;
Xia et al., 2024; Luo et al., 2024) merge all target masks into a single global mask, effectively
treating the task as semantic segmentation that classifies all targets as a unified foreground against the
background. These methods exhibit certain limitations. On the one hand, the models lack instance-
level perception during training, resulting in the loss of fine-grained supervision. On the other
hand, their predictions fail to capture instance-level awareness, yielding only coarse foreground
masks, which are inadequate for scenarios requiring detailed instance perception. In this paper, we
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Figure 1: Comparison of Different Tasks: (a) The transformer-based GREC paradigm; (b) Com-
mon GRES tasks that predict the global mask and non-target branch separately; (c) The proposed
IGVG framework, which integrates GREC and GRES to enable instance-level referring segmenta-
tion. Additionally, instance-aware queries are guided and constructed through adaptive selection of
reference points. We visualize the boxes and masks predicted by five queries.

combine both instance-level and global semantic supervision to equip the model with instance-aware
capabilities, while enhancing perceptual performance through multi-granularity joint learning of
referred targets. Additionally, by establishing associations between queries, objects, and instances,
we ensure consistent predictions for both bounding boxes and masks from the same query.

Moreover, existing GREC methods can be illustrated in Fig. 1(a), which follows a query-based
architecture. Many recent studies focus on query design, including the incorporation of prior infor-
mation (Meng et al., 2021; Liu et al., 2022) and the exploration of query matching strategies (Li
et al., 2022a; Zhang et al., 2022; Chen et al., 2023). These methods employ handcrafted or learnable
priors to enhance the directivity of queries, thereby accelerating convergence during training. How-
ever, in the context of the GREC task, the text typically references regional image content rather than
the whole. Therefore, queries can be generated following regional spatial priors regarding the text
references. In this paper, we propose a point-guided instance-aware perception head that adaptively
selects prior points and utilizes them to identify corresponding instance locations, thereby enhancing
the interpretability of query predictions. As shown in Fig. 1(c), we filter prior reference points based
on attention distributions and direct the queries toward the nearest corresponding targets through
point-guided target matching. The last row of Fig. 1(c) illustrates the predicted boxes and masks for
five queries alongside their prior points.

The main contributions of this paper are summarized as follows:

• We propose an Instance-aware Generalized multi-task Visual Grounding (IGVG) frame-
work, which pioneeringly addresses the GREC and GRES tasks simultaneously.

• IGVG possesses instance-aware segmentation capabilities while ensuring consistent pre-
dictions with the detection task. Additionally, it integrates global semantic segmentation to
achieve multi-granularity predictions, further enhancing robustness.

• We develop a Point-guided Instance-aware Perception Head (PIPH) that improves the di-
rectivity and interpretability of query-to-target correspondence.

• The proposed IGVG framework achieves promising results on the gRefCOCO (GREC),
gRefCOCO (GRES), Ref-ZOM, and R-RefCOCO/+/g datasets, significantly outperform-
ing the state-of-the-art approaches.

2 RELATED WORK

Traditional Referring Expression Comprehension/Segmentation. In conventional REC, one sen-
tence corresponds to a single target bounding box. Early two-stage methods (Yu et al., 2018a;b;
Hong et al., 2019; Liu et al., 2019; Chen et al., 2021) tackled this problem by first generating candi-
date proposals and then matching the referring expression to the proposals. Later, one-stage meth-
ods (Zhou et al., 2021; Luo et al., 2020; Yang et al., 2020) adopted a dense anchor strategy to enable
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efficient inference. In recent years, many Transformer-based methods (Ye et al., 2022; Zhu et al.,
2022; Deng et al., 2021; Su et al., 2023a) have been proposed to effectively capture cross-modal
relationships. RES, on the other hand, is a task where one sentence corresponds to a set of pixels.
Classical approaches (Hu et al., 2016; Liu et al., 2017; Huang et al., 2020; Feng et al., 2021) typi-
cally rely on convolution-based operations for cross-modal fusion to generate segmentation masks.
To address the limitation of insufficient visual-language relation modeling in previous works, recent
studies (Yang et al., 2022; Ding et al., 2021; Liu et al., 2023b;e; Kim et al., 2022) have employed ad-
vanced attention-based mechanisms (Vaswani et al., 2017) to enhance the multimodal interaction. In
particular, SimVG (Dai et al., 2024) improves referential understanding by decoupling multimodal
fusion from downstream tasks to upstream pre-training. Building on this, our work focuses on gen-
eralized scenarios and introduces an adaptively point-guided multi-task visual grounding approach.

Generalized Referring Expression Comprehension/Segmentation. Recently, to mitigate the in-
flexibility of REC with one-to-one pairing, ReLA (Liu et al., 2023a) introduced the GRES task,
which expanded the scope to include both empty-target and multiple-target scenarios. Furthermore,
GREC (He et al., 2023) extended GRES from segmentation to detection tasks. Similarly, DMMI (Hu
et al., 2023) introduced a new benchmark and baseline for beyond-single-target segmentation, and
RefSegformer (Wu et al., 2024) equipped transformer-based models with empty-target sentence
discrimination, achieving robust segmentation performance. Nonetheless, all these methods pre-
dict a global mask that combines all instances, directly overlooking the importance of fine-grained
instance-level information. In contrast, the proposed approach reuses instance annotations by in-
corporating instance-level in addition to global semantics supervision. This not only enhances the
model’s instance-aware capability but also ensures consistent predictions between target and in-
stances.

Multi-Task Visual Grounding (MTVG). MTVG aims to localize and segment referring expres-
sions using a single integrated model. Some Transformer-based methods (Luo et al., 2020; Li &
Sigal, 2021; Su et al., 2023b; Chen et al., 2024) have pursued more comprehensive multimodal
modeling approaches to improve the performance of multi-task visual grounding. SeqTR (Zhu et al.,
2022) and PolyFormer (Liu et al., 2023d) utilized a sequential transformer model that processes vi-
sual and textual data in a unified manner, sequentially refining predictions to enhance multi-task
visual grounding performance. Recently, LLM-based methods (Peng et al., 2023; Lai et al., 2024;
Xia et al., 2024; Rasheed et al., 2024) harnessed the capabilities of large language models (LLMs) to
enforce rule-based serialization of predictions, effectively integrating the REC and RIS tasks within
a unified framework. However, multi-task visual grounding in generalized scenarios remains under-
explored. To bridge this gap, this paper pioneeringly presents a solution that combines GREC and
GRES in a single framework.

3 THE PROPOSED IGVG METHOD

In this section, we provide an overview of the IGVG architecture, as illustrated in Fig. 2. The pro-
cess begins by independently embedding and processing an image I ∈ RH×W×3 and a textual
expression E using a Multi-Modality Encoder (MME) (Wang et al., 2023), which performs vision-
language encoding and fusion. The MME outputs include visual features F ′

i ∈ RNi×C′
and textual

features F ′
t ∈ RNt×C′

. Next, we respectively apply image projection (IP) and text projection (TP),
to map F ′

i and F ′
t to a lower dimension C, yielding Fi and Ft. The architecture then branches into

two core components. The first component is the proposed Point-guided Instance-aware Perception
Head (PIPH), depicted in the light blue section of Fig. 2. Its primary function is to adaptively filter
key prior points, match them with the corresponding targets, and perform both object detection and
instance-level segmentation. This part will be elaborated in Sec. 3.1. The second component inherits
the global segmentation approach of the mainstream GRES methods. It first utilizes SimFPN (Li
et al., 2022b) to extend the single-layer output of ViT to multi-scale features. A simple Unet de-
coder is then employed to fuse hierarchical information and produce global segmentation results
Sglobal ∈ RH′×W ′×C . This result serves three purposes: 1) interacting with object queries to gen-
erate instance-aware semantic queries for instance segmentation; 2) providing global segmentation
predictions; 3) guiding non-target predictions. It is important to note that this section focuses pri-
marily on the core innovations of our method. Some details, such as the STS and post-processing
steps, are provided in Appendix D.
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Figure 2: Overview of IGVG. The Multi-Modality Encoder (MME) simultaneously fuses the re-
ferring expression and image. After obtaining the fused features, Ft and Fi, one branch performs
global semantic segmentation and non-target prediction. The other branch highlighted in light blue
is the proposed Point-guided Instance-aware Perception Head (PIPH) which filters reference points
using an attention map. These points are then used as initial positions in the deformable decoder,
guiding the final target and instance predictions.

3.1 THE POINT-GUIDED INSTANCE-AWARE PERCEPTION HEAD (PIPH)

As shown in the light blue part of Fig. 2, the core idea of PIPH is to adaptively filter prior reference
points through the Attention-guided Query Generation module (AQG), guiding subsequent object
detection and instance segmentation. This not only enhances the interpretability of the queries but
also achieves finer-grained perception. Specifically, an attention-based query selector is first used
to select the query set Qinit ∈ RNq×C and the initial prior point set Pr ∈ RNq×2. These are then
passed through a deformable DETR decoder (Zhu et al., 2020) to dynamically query contextual
information from multi-scale image features, generating refined queries Qd ∈ RNq×C that capture
different target contextual semantics.

Subsequently, the model computes the cost between all targets through the prior points, predicted
boxes, and confidence scores. The optimal assignment between queries and targets Mq2b is deter-
mined using the Hungarian algorithm (Carion et al., 2020). On the one hand, the model directly
computes the DETR object detection loss. On the other hand, Qd is multiplied with the global
segmentation result Sglobal to obtain a response mask Qs ∈ RNq×H′×W ′

for each query within
the global context. Using Mq2b, we pass this information to the instance mask matching process,
constructing the pairing relationships Mq2i. This ensures the consistency between predicted boxes
and masks for each query with respect to their corresponding targets. Last, the instance segmen-
tation loss, Lins−seg , supervises both the positive and negative sample masks to reinforce accurate
instance segmentation.

3.1.1 THE ATTENTION-GUIDED QUERY GENERATION (AQG) MODULE

AQG aims to adaptively select suitable initial reference points and query embeddings. To this end,
as shown in Fig. 3, we first use a Score Text Selector (STS) to filter Nq effective queries from the
Nq text tokens, which are then used as Q in cross-attention with image patches (K/V). The attention
map is obtained by:

Mattn = Softmax
(
Ffilter · F⊤

i√
dk

)
· Fi. (1)

Next, we perform average pooling on Mattn across the Nq channels to obtain the spatial score dis-
tribution map Ms. Then, we employ a Dist-Score Point Selector to adaptively select prior loca-
tion points Pr from Fi that cover all possible referential instances and their corresponding queries
Qfilter. By concatenating Qfilter with Fq and passing them through an MLP layer, we obtain the
initial query embeddings Qinit. This process can be expressed as follows:

Ms = AvgPool(Mattn), Qinit = MLP(Concat(Qfilter,Fq)). (2)
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Figure 3: The AQG module. It selects initial reference points and contextually rich the initial
queries. First, a Score Text Selector (STS) filters a small number of effective and highly responsive
tokens from Ft, which are used as query (Q) in the multi-head cross attention, with Fi serving as
key (K) and value (V). Then the Dist-Score Point Selector (DSPS) selects points based on distance
and response scores to cover as many referred instances as possible. Q1, Q2, . . . , Q8 are point, box,
and mask prediction of 8 queries.

Score Text Selector (STS) selects effective and highly responsive tokens from the text token set.
This process balances two main factors. First, it excludes padding tokens to retain only the tokens
containing meaningful information. Second, it evaluates each token’s responsiveness using an L2
norm score. This strategy preferentially selects the tokens with high scores and valid content. The
details for STS are described in the Appendix (Algorithm 2).

Val testA testB
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
on

ve
ra

ge
 A

cc
ur

ac
y

0.68 0.65 0.62

0.85 0.83 0.80

0.96 0.94 0.91

W/o Minimap Sup.
TopK Selector
Dist-Score Point Selector

Figure 4: Bar chart of CoverAcc. The ‘W/o
Minimap Sup.’ bar represents the results with-
out supervision on the attention map. The
‘TopK Selector’ bar indicates the use of the
TopK strategy to select Nq queries.

Algorithm 1 Dist-Score Point Selector
Require: Input attnmap M ∈ RH×W , num of points

Nq , distance weight Wdist

Ensure: Selected points R ∈ RNq

1: Apply sigmoid: M← σ(M)
2: Initialize set R
3: Candidate points: P = {(i, j) | i ∈ [1, H], j ∈

[1,W ]}
4: Find max point: pmax = argmax(M)
5: Add pmax to R and remove from P
6: for k = 1 to Nq − 1 do
7: Compute minimum distance from each point in

P to any point in R
8: Compute combined score: S = M+Wdist×D
9: Select best point: pbest = argmax(S)

10: Add pbest to R and remove from P
11: end for
12: return Selected points R

Dist-Score Point Selector (DSPS) ensures that the selected points do not merely concentrate on a
few specific instances. Instead, the selection covers as many potential target instances as possible.
DSPS is based on a greedy algorithm, as described in Algorithm 1. The selection criterion for points
is that the chosen points should not only have high scores but also be as distant as possible from the
previously selected points, corresponding to line 8 in Algorithm 1. Finally, based on the selected
set of points R = {(xi, yi) | i = 1, 2, . . . , Nq} , the corresponding queries Qfilter are choosen from
Fi. To rigorously express the advantages of DSPS, we introduce a metric called Coverage Accuracy
(CoverAcc), which measures the quality of points based on their coverage of targets:

CoverAcc =
1

N

∑ TP

TP + FN
(3)
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where TP denotes the number of targets covered by points within the target box regions, and FN
represents the number of targets not covered by any point. The denominator reflects the total number
of targets. From Fig. 4, we can draw two conclusions. First, supervision from minimap enhances the
reliability of point selection in the attention map. Second, DSPS significantly improves the coverage
of instances by reference points.

3.1.2 THE INSTANCE-AWARE POINT-GUIDED MATCHER

The core idea of the matching process is to guide the query-to-target matching relationship through
reference points. This process can be divided into two main components: 1) Using reference points
to guide the matching between Qd and targets. 2) Establishing the matching relationship between
Qs and instances based on the correspondence between boxes and instances. This strategy ensures
that the target and instance associated with each query remain consistent.

Point-guided Target Matcher. Compared to traditional Hungarian matching in DETR, we intro-
duce an additional weighting term in the cost matrix that accounts for the distance between the point
and the center of the target box. This modification establishs a more direct association between the
initial reference points and the target objects. The cost is defined as:

Cij = λcls · CE(pcls
i , p̂cls

j ) + λbox · L1(p
box
i , p̂box

j )

+ λgiou · GIoU(pbox
i , p̂box

j ) + λpoint · L1(p
point
i , p̂centerbox

j ).
(4)

Query-Instance Matcher. After applying the point-guided target matcher, we obtain the query-to-
object matching relationship Mq2b. The query-instance matcher then propagates Mq2b to establish
the query-to-instance matching relationship Mq2i, given the one-to-one correspondence between
objects and instances. In essence, Qd contains the target’s positional information, while Sglobal

provides global semantic information. The dot product between Qd and Sglobal effectively captures
the process where queries use feature similarity comparisons to generate instance-aware semantic
masks. Thus, Qs can be interpreted as an instance-level semantic query.

3.2 TRAINING OBJECTIVES

The training objective includes four components. 1) Detection: The detection branch employs a
loss function Ldetr similar to DETR, incorporating the L1, Cross-Entropy, and GIoU loss functions
to handle the detection task. 2) Global Segmentation: This branch uses the BCE and Dice loss
functions, similar to those used in (Liu et al., 2023e), to quantify the difference between the ground
truth and predicted global masks: Mgt and Sglobal. 3) Instance Segmentation: The instance seg-
mentation branch also utilizes the same BCE and Dice losses as the global segmentation branch, but
applies additional weighting to balance positive and negative samples. 4) The Non-Target Branch:
This branch is responsible for binary classification and employs the BCE loss to distinguish between
target and non-target regions. The total loss function is defined as:

Ltotal = λgrec · Ldetr + λglobal · Lseg + λinstance · Lins−seg + λexist · Lexist, (5)
where the instance segmentation loss Lins−seg is computed as:

Lins−seg =
1

Npos

∑
i

L(pos)
seg +

λneg

Nneg

∑
j

L(neg)
seg , (6)

where positive and negative sample weights are accounted for in the instance segmentation. The
default settings for hyperparameters can be found in Appendix C.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENT SETUPS

We evaluate our model on four benchmarks, gRefCOCO (GREC/GRES), R-RefCOCO/+/g, and
Ref-ZOM, with the official evaluation metrics. Each benchmark and metrics are elaborated in Ap-
pendix A and Appendix B. Limited to the space, the implementation details are described in Ap-
pendix C, and more ablation studies are referred to Appendix E.
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Method Backbone
Val TestA TestB

gIoU cIoU N-acc. gIoU cIoU N-acc. gIoU cIoU N-acc.

MLLM Methods

LISA-V-7B (Lai et al., 2024) (ft) SAM-ViT-H 61.63 61.76 54.67 66.27 68.50 50.01 58.84 60.63 51.91
GSVA-V-7B (Xia et al., 2024) (ft) SAM-ViT-H 66.47 63.29 62.43 71.08 69.93 65.31 62.23 60.47 60.56

Specialist Methods

MattNet (Yu et al., 2018a) ResNet-101 48.24 47.51 41.15 59.30 58.66 44.04 46.14 45.33 41.32
LTS (Jing et al., 2021) DarkNet-53 52.70 52.30 - 62.64 61.87 - 50.42 49.96 -
VLT (Ding et al., 2021) DarkNet-53 52.00 52.51 47.17 63.20 62.19 48.74 50.88 50.52 47.82
CRIS (Liu et al., 2023e) CLIP-R101 56.27 55.34 - 63.42 63.82 - 51.79 51.04 -
LAVT (Yang et al., 2022) Swin-B 58.40 57.64 49.32 65.90 65.32 49.25 55.83 55.04 48.46
ReLA (Liu et al., 2023a) Swin-B 63.60 62.42 56.37 70.03 69.26 59.02 61.02 59.88 58.40
HDC (Luo et al., 2024) Swin-B 68.28 65.42 63.38 72.52 71.60 65.29 63.85 62.79 60.68
IGVG (Ours) ViT-B 73.36 69.22 72.84 75.21 74.51 71.09 66.74 65.67 65.18

Table 1: Comparison with the state-of-the-art methods on gRefCOCO. -V-7B means Vicuna-7B. (ft)
denotes that the model is finetuned on the training set of gRefCOCO.

Method
R-RefCOCO R-RefCOCO+ R-RefCOCOg

mIoU mRR rIoU mIoU mRR rIoU mIoU mRR rIoU
CRIS (Liu et al., 2023e) 43.58 76.62 29.01 32.13 72.67 21.42 27.82 74.47 14.60
EFN (Feng et al., 2021) 58.33 64.64 32.53 37.74 77.12 24.24 32.53 75.33 19.44
VLT (Ding et al., 2021) 61.66 63.36 34.05 50.15 75.37 34.19 49.67 67.31 31.64
LAVT (Yang et al., 2022) 69.59 58.25 36.20 56.99 73.45 36.98 59.52 61.60 34.91
LAVT+ (Yang et al., 2022) 54.70 82.39 40.11 45.99 86.35 39.71 47.22 81.45 35.46
RefSegformer (Wu et al., 2024) 68.78 73.73 46.08 55.82 81.23 42.14 54.99 71.31 37.65
HDC (Luo et al., 2024) 74.35 83.69 52.81 64.85 87.51 49.09 65.11 84.19 43.85
IGVG (Ours) 76.73 92.15 62.41 69.73 94.63 59.13 70.16 92.30 54.36

Table 4: Comparison with state-of-the-art methods on the R-RefCOCO/+/g dataset.

Method Backbone oIoU mIoU Acc.
MLLM Methods

LISA-V-7B (ft) SAM-ViT-H 65.39 66.41 93.39
GSVA-V-7B (ft) SAM-ViT-H 68.13 68.29 94.59

Specialist Methods
MCN DarkNet-53 54.70 55.03 75.81
VLT DarkNet-53 60.43 60.21 79.26
LAVT Swin-B 64.78 64.45 83.11
DMMI Swin-B 68.21 68.77 87.02
HDC Swin-B 69.31 68.81 93.34
IGVG (Ours) ViT-B 71.52 71.12 97.42

Table 2: Comparison with state-of-the-art meth-
ods on the Ref-ZOM dataset.

Methods
Val TestA TestB

F1score N-acc. F1score N-acc. F1score N-acc.
MCN 28.0 30.6 32.3 32.0 26.8 30.3
VLT 36.6 35.2 40.2 34.1 30.2 32.5
MDETR 42.7 36.3 50.0 34.5 36.5 31.0
UNINEXT 58.2 50.6 46.4 49.3 42.9 48.2
SimVG 62.1 54.7 64.6 57.2 54.8 57.2
IGVG 73.5 72.8 70.2 71.1 60.8 65.2

Table 3: GREC benchmark results on the gRe-
fCOCO dataset. The threshold is set to 0.7 for
all the methods.

4.2 MAIN RESULTS

Results on GRES. To evaluate the effectiveness of our approach in a generalized setting, we first
conduct a comparative analysis with the existing specialized methods on the gRefCOCO dataset (Liu
et al., 2023a), as presented in Tab. 1. The results demonstrate that our method establishes new
state-of-the-art performance across all the metrics in three evaluation sets of the large-scale GRES
benchmark. Notably, compared with the existing state-of-the-art method HDC (Luo et al., 2024),
IGVG surpasses it with significant improvements of +5.1%, +2.7%, and +2.9% in gIoU on the
val, testA, and testB sets, respectively. Furthermore, we report our results on the Ref-ZOM bench-
mark (Hu et al., 2023) in Tab. 2. Our method consistently outperforms the other methods under a
fair comparison, achieving +5.7% improvement in Accuracy, +2.4% in oIoU, and +2.7% in mIoU.
It is worth highlighting that our approach even surpasses GSVA (Xia et al., 2024), which leverages
Multi-Modal Large Language Models (MLLM) (Liu et al., 2023c). In addition, we extend our evalu-
ation to the R-RefCOCO/+/g datasets (Wu et al., 2024). As illustrated in Tab. 4, our method achieves
substantial improvements of +9.6%, +10.0%, and +10.5% in rIoU for the R-RefCOCO/+/g tasks
when compared to HDC.
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Multi-task Ins.-aware PIPH F1score N-acc. gIoU cIoU
65.98 66.13 65.03 64.77

✓ 67.13 69.98 67.33 64.90
✓ ✓ 68.42 71.86 70.13 65.88
✓ ✓ ✓ 71.43 75.87 72.41 67.39

Table 5: Effectiveness of the core modules.

STS DSPS ITQ F1score N-acc. gIoU cIoU
69.20 69.95 70.43 66.36

✓ 69.09 70.80 70.51 66.16
✓ ✓ 71.16 72.87 71.73 67.40

✓ ✓ ✓ 71.43 75.87 72.41 67.39

Table 6: Effects of the AQG components.

Query Decoder F1score N-acc. gIoU cIoU
DETR 67.87 71.55 70.72 66.70
Def. DETR 69.14 72.31 71.23 66.87
MS Def. DETR 70.98 74.22 71.49 67.08
Point-prior MS Def. DETR 71.43 75.87 72.41 67.39

Table 7: Comparison of different decoders.

Global Sup. Ins. Sup. Neg. Sup. F1score N-acc. gIoU cIoU
✓ 67.77 67.63 67.90 65.77

✓ 69.46 72.96 69.19 65.15
✓ ✓ 71.71 74.45 72.15 66.91
✓ ✓ ✓ 71.43 75.87 72.41 67.39

Table 8: Impact of different level of supervision.

Results on GREC. In addition to performing general segmentation, our IGVG model is also capable
of handling detection tasks. We evaluate the detection performance of IGVG on the GREC (He
et al., 2023) dataset and compare it with existing state-of-the-art methods. The results are presented
in Tab. 3. Notably, under the same threshold of 0.7, IGVG significantly outperforms the existing
state-of-the-art method SimVG (Dai et al., 2024) with the improvements of +11.4%, +5.6%, and
+6.0% in F1score on the validation, testA, and testB sets, respectively.

4.3 ABLATION STUDY

4.3.1 EFFECTIVENESS OF THE CORE MODULES

The core issues discussed in this paper include: 1) the impact of multi-task joint learning on gen-
eralized visual grounding; 2) the influence of fine-grained instance-aware perception; and 3) the
effectiveness of the proposed Point-guided Instance-aware Perception Head. As shown in Tab. 5,
multi-task joint supervision positively contributes to task complementarity in generalized scenarios,
leading to performance improvements in both the GREC and GRES benchmarks. Specifically, the
F1score is increased by 1.2% and gIoU is improved by 2.3%. After incorporating an instance-level
segmentation branch to enable query-guided instance perception, the F1score is improved by 1.3%
and gIoU is increased by 3.2%. Finally, introducing point priors to guide both instance and object
predictions for all queries resulted in a further improvements of 3.0% in F1score and 2.3% in gIoU.

4.3.2 THE POINT-GUIDED INSTANCE-AWARE PERCEPTION HEAD

Analysis of Attention-guided Query Generation. First, the Score Text Selector (STS) chooses Nq

highly responsive tokens from the Nt tokens of Ft, thereby reducing the computational cost of multi-
head cross attention. As observed in Tab. 6, the introduction of STS results in almost no accuracy
loss. The Dist-Score Point Selector (DSPS) selects Nq prior reference points covering different
instances based on attention responses. In contrast, the baseline uses a strategy of selecting the Top
Nq points, and DSPS improves F1score by 2.1% and gIoU by 1.2%. Lastly, we designed Inject Text
Query (ITQ) to assist in learning the attention map. This not only helps to optimize the attention
map but also injects text information into the initial query, resulting in a +3.0% improvement in
N-acc and a +0.7% increase in gIoU.

Analysis of Different Decoders. As shown in Tab. 7, our baseline method uses the original
DETR (Carion et al., 2020) decoder. By introducing the Deformable DETR decoder, we observe an
improvement of 1.3% in F1score and 0.5% in gIoU. Furthermore, we design a multi-scale feature
map using SimFPN, and by employing a hierarchical multi-scale Deformable DETR decoder, N-acc
increases by 1.9%. Finally, using the points filtered by AQG as the initial reference points for the
Deformable DETR yields a further improvement of 0.5% in F1score and 0.9% in gIoU.

Analysis of Different Levels of Supervision. As shown in Tab. 8, the impact of different levels of
semantic supervision on performance is significant. Instance-level supervision alone outperforms
global-level supervision, enhancing both detection and segmentation performance by equipping
the model with instance awareness. Interestingly, we find that the joint training with both global
and instance segmentation improves instance-aware performance even without fusion during post-
processing. We hypothesize that this is due to global supervision encouraging Sglobal to produce
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Image A bottle of beer near the laptop and
the keyboard of the apple laptop Book behind cat headComp in back and computerComp in back

Batter and man on left in bluebatter The umpire in blue uniform 
and a batter with helmet

blonde broccoli on back 
bottomImage

No Target

No Target

Figure 5: Multi-task Visual Grounding Results. Both GREC and GRES results for the same image
under different expressions.
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Figure 6: Instance-level Segmentation Results. The ‘Instance’ row presents instance-level seg-
mentation. The ‘Semantic’ row presents the combination of both segmentation and instance masks.

strong semantic representations, thereby enhancing the discriminability of constructing the query
mask Qs. Finally, we introduce negative sample supervision, which guides the model to suppress
mask predictions for negative sample queries.

4.4 QUALITATIVE RESULTS

IGVG effectively integrates and jointly accomplishes both the GREC and GRES tasks. Fig. 5
demonstrates the synchronized execution of detection and segmentation by IGVG, highlighting its
ability to handle these tasks concurrently. Furthermore, IGVG exhibits instance-aware capabilities,
enabling more fine-grained instance-level segmentation. Fig. 6 illustrates instance-level predictions,
along with the combined final predictions. More visualization can be found in Appendix F.

5 CONCLUSION

This paper presents the Instance-aware Generalized Multi-task Visual Grounding (IGVG) frame-
work, which, for the first time, unifies the GREC and GRES tasks while exploring the feasibility
of instance-aware perception in GRES. Additionally, we propose a novel Point-guided Instance-
aware Perception Head (PIPH) that adaptively selects prior reference points through attention maps,
incorporating spatial priors into queries to enhance instance-specific targeting. Furthermore, by es-
tablishing associations between queries, objects, and instances, we achieve consistent predictions for
points, boxes, and masks. Lastly, our IGVG framework significantly outperforms existing methods
across gRefCOCO (GREC/GRES), Ref-ZOM, and R-RefCOCO/+/g datasets.
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