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Abstract

Most machine learning evaluation is based on001
the assumption that machine and human re-002
sponses are repeatable enough to be measured003
against data with unitary, authoritative, “gold004
standard” responses, via simple metrics such005
as accuracy, precision, and recall. However,006
AI models have multiple sources of stochastic-007
ity. And the human raters who create gold stan-008
dards tend to disagree with each other, often009
in meaningful ways. Thus, a single output re-010
sponse per input item may not provide enough011
information. We introduce methods for deter-012
mining whether an (existing or planned) eval-013
uation dataset has enough responses per item014
to reliably compare the performance of one015
model to another. We apply our methods016
to several of very few extant gold standard017
test sets with multiple disaggregated responses018
per item and show that there are usually not019
enough responses per item to reliably com-020
pare the performance of one model against an-021
other. Our methods also allow us to estimate022
the number of responses per item for hypotheti-023
cal datasets with similar response distributions024
to the existing datasets we study. When two025
models are very far apart in their predictive026
performance, fewer raters are needed to con-027
fidently compare them, as expected. However,028
as the models draw closer, we find that a larger029
number of raters than are currently typical in030
annotation collection are needed to ensure that031
the power analysis correctly reflects the differ-032
ence in performance.033

1 Introduction034

A design problem that is critical for assuring end-035

to-end quality in AI is to determine how much data036

must be collected to ensure that the breadth of the037

operational domain is fully tested. This is one of038

the problems that statistical power analysis (PA)039

solves (Bausell and Li, 2002). After tests are run,040

one must determine how reliable the results are,041

based on the amount of data collected. Here, null042

hypothesis statistical tests (NHSTs and confidence 043

intervals (CIs) are widely used when reporting ex- 044

perimental results. 045

NHST and CI, in the context of PA, are widely 046

considered to be gold standards for estimating 047

variance due to sampling error; however, nearly 048

all existing approaches for them fail to capture a 049

key source of variance in AI systems, namely re- 050

sponse variance. This comes from two sources: 051

models and humans. During AI model inference, 052

non-determinism arises from parallelism (floating 053

point math on different data arrival orders (Shan- 054

mugavelu et al., 2024), MoE routing (Shazeer 055

et al., 2017)) in addition to inherent stochasticity 056

in inference process (Monte Carlo dropout (Gal 057

and Ghahramani, 2016), ensembling (Lakshmi- 058

narayanan et al., 2017)) as well as the model itself 059

(variational autoencoders, temperature parameter 060

of LLMs). 061

Human feedback continues to play a critical role 062

in making AI useful. The increasingly sophisti- 063

cated behavior of AI models has made it easier 064

for people with little-to-no computer training to 065

interact with them (Daugherty and Wilson, 2018). 066

However, humans themselves frequently disagree 067

in their views and behaviors, and on “gold standard” 068

annotations. This is true on important but highly 069

subjective questions such as what is offensive, but 070

also for much more seemingly objective or mun- 071

dane tasks such as medical image analysis or object 072

detection. 073

We present a method, building on the multistage 074

bootstrapping approach of (Wein et al., 2023), for 075

estimating the amount of test items N , and re- 076

sponses per item K, to account for sampling vari- 077

ance in AI evaluation with humans in the loop, 078

before more data are collected and models are re- 079

trained, thus giving us critical information about 080

how to budget resources for building benchmark 081

datasets. This approach simulates the responses 082

from a pool of human raters and two ML models, 083
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rather than relying on analytical methods that are084

not designed for multistage sampling. The simula-085

tion enables us to generate enough response data to086

explore the significance boundary for NHST under087

various metrics, for N test examples (items) with088

K responses per item for each model and pool of089

human raters. We apply this method to two existing090

evaluation datasets that have multiple responses091

per item, and have retained those individual rat-092

ings rather than an aggregate response per item093

(e.g., per-item means). We show that many of these094

datasets lack enough responses to construct reliable095

evaluations of ML models. We further show that, in096

general, one can create reliable datasets with fewer097

total responses by collecting fewer items with more098

responses per item.099

2 Related Work100

Statistical testing of system performance is criti-101

cal to the understanding of state-of-the-art perfor-102

mance on a task or within a domain, in particular103

due to the flawed nature of benchmarking practices104

in machine learning evaluation (Ethayarajh and Ju-105

rafsky, 2020; Raji et al., 2021; Rodriguez et al.,106

2021; Hernandez-Orallo, 2020). Existing metrics107

such as Student’s t-test (Student, 1908) are based108

on the assumption that the datasets are normally dis-109

tributed with the same standard deviation (Søgaard110

et al., 2014), which may not be the case machine111

learning predictions and are therefore not applica-112

ble, in particular when testing the system on new113

datasets (Søgaard, 2013). Dietterich (1998) applied114

hypothesis testing to machine learning systems and115

(Dror et al., 2020; Deutsch et al., 2021) provide116

a survey and guide to state-of-the-art techniques117

for statistical significance testing in AI systems.118

Longjohn et al. (2025) study the problem of aggre-119

gating across multiple tests.120

All of these studies apply to the case where each121

model yields a single response and a single correct122

label exists for each training example; therefore,123

the issue of response variance is ignored. More re-124

cently, Gundersen (2020) exploited pseudo-random125

seeds to generate multiple model responses that126

could be used for improved statistical testing in127

the presence of a single correct label for each128

item. Goldberg et al. (2018) showed how to re-129

vise p-value calculation when “gold” annotations130

exist but are unknown and in its place multiple131

noisy “bronze” annotations are available, where132

the probability of a bronze annotation matching the133

gold is given. In our work, ratings are subjective 134

and, hence, there is no single right answer; that is, 135

ground truth is a distribution. 136

Our approach incorporates response variance 137

from both ML models and human raters. The na- 138

ture of response variance of the former was studied 139

in (Szymański and Gorman, 2020), claiming that 140

human rater response variance on individual items 141

is most often due to measurable differences in per- 142

spective or ambiguity of the item, as opposed to 143

noise. The nature of response variance in ML mod- 144

els was studied in (R Artstein, 2008; Plank et al., 145

2014). 146

Related crowdsourcing studies have examined 147

the trade-offs between cost and quality of anno- 148

tation collection (Snow et al., 2008) or gave rec- 149

ommendations for which crowdsourcing platforms 150

and protocols to use (Wang et al., 2013). Chau 151

et al. (2020) explored the use of peer-review and 152

self-review to resolve disagreement in annotating, 153

and Hovy et al. (2013) developed an unsupervised 154

model to identify which Mechanical Turk raters 155

are reliable. Recent assessments of leaderboard 156

practices have also led to models able to indicate 157

which items are most useful to annotate for evalua- 158

tion purposes (Rodriguez et al., 2021). (Welinder 159

and Perona, 2010) developed a system to select 160

the most useful/informative labels to collect, which 161

can lead to a reduction in annotation cost. 162

Sheng et al. (2008) focus on ML data curation 163

and examines when one should obtain multiple, 164

noisy training labels to improve model accuracy, 165

assuming there exists a single correct label for each 166

example. Lin et al. (2014) claims that response 167

variance is less important than item variance – at 168

least for training data – and suggests collecting 169

more items with a single response is more valuable 170

than collecting multiple responses per item. 171

Wein et al. (2023) investigate p-value sensitivity 172

of both metrics and test-set sampling methods in 173

hypothesis testing, which therefore can affect the 174

power analysis. While the latter did not turn out to 175

be important in our study, metrics did. Clearly, dif- 176

ferent metrics (e.g., mean absolute error vs Spear- 177

man rank-correlation) will produce different scores 178

for the same matrix of responses, so it stands to 179

reason that any comparison will have different p- 180

values for different metrics. They model a metric 181

as a function Γ(M,G), where M is a matrix of 182

model predictions which returns a score forM . We 183

assume Γ is given here but focus on the best per- 184
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forming of these metrics in experiments. Homan185

et al. (2024) initiates a study of the trade-off be-186

tween number of items and responses using a toy187

simulator. Here, we use real datasets to investigate188

these trade-offs and perform experiments that shed189

light on the mechanism for how response variance190

provides statistical significance.191

The term multistage sampling is commonly used192

in statistics when the data is subsampled at multi-193

ple levels of granularity, usually for stratification.194

Bootstrap resampling has been applied in this set-195

ting (Mashreghi et al., 2016) and so the sampling196

method we describe herein can be seen as an in-197

stance of these. The Pigeonhole Bootstrap (Owen,198

2007) is quite different from our multistage boot-199

strapping in that it resamples independently over200

rows and columns to form a Cartesian product201

rather than being nested.202

It would be remiss not to mention other classes203

of techniques besides hypothesis testing that are204

commonly used for measuring statistical differ-205

ences in model performance; see (Riezler and Hag-206

mann, 2021) for a survey. Likelihood ratios provide207

an alternative form of significance testing and have208

been used for evaluating the impact of variability209

in data characteristics and hyperparameter settings210

on ML models (Hagmann et al., 2023). Estimation211

statistics for reliability, most notably confidence212

intervals, take variance into account to produce213

a range of values and are often used to assess a214

difference in model performance via non-overlap.215

Circularity testing based on general additive mod-216

els has been proposed for evaluating the validity of217

ML models (Riezler and Hagmann, 2021).218

3 Problem Statement219

We wish to apply null hypothesis significance test-220

ing (NHST) to compare the performance of two221

ML models, A and B, on a test set of N items222

with K responses per item and decide if one model223

is significantly better than the other. We evaluate224

this with respect to human-annotated benchmark225

“gold” responses, G, and according to a metric,226

Γ, which we assume is provided as a design hy-227

perparameter. For example, a common metric for228

evaluating regression models is the mean absolute229

error (differences) between model predictions and230

gold annotations.231

The null hypothesis makes the assumption that232

the respective model output distributions are the233

same in relation to G. Our goal is to determine234

whether the observations would be at most 5% 235

likely under the null hypothesis and, therefore, the 236

null hypothesis can be rejected. The 5% level is 237

what our calculated p-values are compared against 238

to conclude significance. Our motivation here is to 239

determine whether a dataset—which we represent 240

as GN×K , a matrix of N items and K responses— 241

is large enough to provide replicable test results. 242

This can be applied either post-hoc, as a test of 243

the reliability of results, or at design time, before 244

data is gathered and to help determine how best 245

to allocate the usually limited amount of resources 246

available for gathering human annotations. 247

A key innovation in this work is to treat a data 248

set GN×K (as well as the responses from models 249

A and B) as a matrix of responses, instead of the 250

pervasive simplifying assumption thatG is a vector, 251

whose value for each item is an aggregation, such 252

the mean, of a number of independent annotator 253

(or model) responses. The notation captures the 254

further insight that the distribution of responses for 255

each item in a dataset is different. 256

4 Methods 257

4.1 Simulator 258

We use a simulator to generate annotations and 259

model predictions for individual items by modeling 260

the responses for each item as a random variable. 261

It takes input parameters N and K, along with 262

a perturbation parameter ε. In the first stage, it 263

randomly chooses hyperparameters θ1, . . . , θN ∼ 264

Pitems, each corresponding to an item θi, from a 265

fixed distribution that serve as model parameters 266

for the second stage. In the second stage, for each 267

item i we sample K responses from a second dis- 268

tribution Presponses(θi). We do this for each of 269

three datasets respectively representing responses 270

from gold annotations, GN×K and two machines, 271

AN×K and BN×K . 272

These choices operationalize a solution to the 273

paradox that one must have data in G, A, and B to 274

know if it has enough statistical power. Instead, we 275

simulate a set of gold items and responses (G) and 276

then simulate an ideal machine (A) – ideal because 277

it draws its simulated responses from the same dis- 278

tribution as the gold – and then explore how such 279

an ideal system would compare in significance to 280

another model (B) whose response distributions 281

differ from gold by an amount (ε) we experimen- 282

tally control. This gives us a-priori control over 283

the hypothesis test, because we know which model 284
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is better through a controllable parameter.285

For any given selection of N and K, we have286

response matrices GN×K and AN×K and, for each287

ε, a matrix BN×K,ε. We then seek to compare A288

and B to each other to determine which is better;289

the answer, should almost always be A unless ε =290

0. When evaluating AI systems, the comparison of291

A and B involves differencing each of their item292

responses to those of G using a suitable metric,293

which is then aggregated across the items. We294

compare the performance between A and B via295

Γ(A,B,G).296

4.2 Estimating p-values297

Given N , K, and ε, p-values are esti-298

mated by drawing b (bootstrap) resam-299

ples Salt = 〈GN×K
1 , AN×K

1 , BN×K
1,ε 〉, . . . ,300

〈GN×K
b , AN×K

b , BN×K
b,ε 〉 for the alternative301

hypothesis according to the process described302

in Section 4.1. Since the null hypothesis makes303

the assumption that the distributions of A and304

B are the same with respect to G, we construct305

Snull by pooling the items from AN×K and306

BN×K and then independently sampling from307

this pool. When sampling responses from A,308

for each item i we sample each response by309

sampling from Presponses(θi), where θi = (µi, σi).310

Sampling responses from B is similar but we first311

choose δi ∼ Unif(−ε, ε) and then sample from312

Presponses(θi), where θi = (µi + δi, σi).313

Next, we estimate the expected p-value under the314

alternative hypothesis as the average one-sided p-315

value over all samples in Salt, computed by count-316

ing for each salt = 〈GN×K
alt , AN×K

alt , BN×K
alt,ε 〉 ∈317

Salt the fraction of samples snull ∈ Snull where318

Γ(snull) is at least as extreme as Γ(salt). Here “at319

least as extreme” is determined by computing Γalt320

(respectively, Γnull), the median of Γ over Salt (re-321

spectively, Snull). If Γalt > Γnull, then “at least as322

extreme” means Γ(snull) ≥ Γ(salt). Otherwise, it323

means Γ(snull) < Γ(salt). The estimator is fast to324

compute if the Γ values are presorted, and because325

it is averaged over a large number of samples from326

the alternative hypothesis, it is a robust estimator327

for determining whether N ×K is a large enough328

sample size.329

Finally, as is typical for NHST, we reject the null330

hypothesis when the p-value is below significance331

level α = 0.05.332

4.3 Fitting the Simulator to Real Data 333

The simulator allows us to generate many test sets 334

to extrapolate patterns beyond one domain or sys- 335

tem. By holding the item distributions for A,B 336

and G fixed, we can draw from them repeatedly to 337

generate test sets similar to a real dataset but with 338

arbitrarily large values of N and K, which would 339

be infeasible with actual human annotations. 340

In contrast to the pure simulation framework 341

from (Wein et al., 2023), the datasets we study 342

have discrete-valued responses. Therefore, in order 343

to apply the simulator framework to these datasets, 344

we use per-item location and scale measures (e.g., 345

mean and standard deviation) to fit distributions — 346

one for location and one for scale — so that we can 347

draw samples {(µi, σi), i ∈ [1, N ]} and then sam- 348

ple an item’s responses from a generalized normal 349

distribution N (µi, σi).1 While distribution fitting 350

is outside the scope of this paper, one can employ 351

the simple technique of computing per-item means 352

and standard deviations and then using grid search 353

on hyperparameters for Pitems to minimize the ex- 354

pected mean absolute error between simulated vs 355

real per-item location and scale values. 356

We used the censored normal distribution for 357

N , which assumes a latent continuous distribution 358

that is not observed exactly but measured to within 359

intervals, including left and right intervals which 360

pool (not truncate) the smallest and largest values, 361

respectively. This provides support for head and/or 362

tail bias. For example, items in the Stanford Toxic- 363

ity dataset (see Section 5) rated at either extreme 364

(either “not toxic” or “extremely toxic”) tend to 365

have more agreement among raters. We use dis- 366

tributions fitted to each dataset from distribution 367

families tailored to each dataset. This involves vi- 368

sualizing the distributions of response means and 369

standard deviations of the item responses in each 370

dataset to get a sense of what they look like and 371

then choosing a parameterized family of distribu- 372

tions to fit the data to. Figure 1 illustrates goodness- 373

of-fit for simulations of datasets used in this paper. 374

5 Data 375

Unfortunately, there are precious few public 376

datasets having both a large number of items and 377

disaggregated responses. We apply the metrics and 378

p-value estimators to the following datasets, all 379

1This framework is general enough to accommodate an
additional shape parameter, such as the skew of a skew normal
distribution, though it wasn’t utilized in our experiments.
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of which are secondary to us. We essentially ig-380

nore the content of each item in each dataset and381

use only the human responses associated with each382

item. Even though these responses were generated383

by humans–and we believe modeling human an-384

notators is a promising direction to explore—to385

simplify our analysis and minimize risk we ignore386

any information about those humans and treat the387

responses for each item as, effectively, an anony-388

mous sample.389

The first data was taken from SemEval-2024390

Task 11: Learning with Disagreements (LeWiDi)391

(Leonardelli et al., 2023). We chose this dataset392

because is is among the very few we could find393

that retained individual, i.e., “disaggregated,” rater394

responses; most datasets contain some aggrega-395

tion of the responses, such as the mean (but not396

the variance), or the plurality, etc. The Mul-397

tiDomain Agreement (Leonardelli et al., 2021)398

dataset contains tweets about Black Lives Matter,399

the US 2020 presidential election, and COVID-400

19 annotated for offensiveness. The test set has401

3057 items annotated by 5 raters each. We fit402

the means and standard deviations of the item403

responses to truncated normal distributions with404

(µ = −0.5, σ = 1) and (µ = −0.3923, σ =405

0.8502), respectively. This dataset does not ap-406

pear to be publically available other than from the407

LeWiDi github site. The author of this dataset is408

also a co-author of (Leonardelli et al., 2023). In-409

structions for directly obtaining the dataset from410

the author are available at https://github.com/411

dhfbk/annotators-agreement-dataset.412

The Stanford Toxicity dataset (Kumar et al.,413

2021) was also used in (Wein et al., 2023). It con-414

tains 107,620 items annotated by 5 raters each with415

ratings on a 5-point Likert scale: not/slightly/mod-416

erately/very/extremely toxic. We use the same dis-417

tributions as they do, namely, a folded normal with418

(µ = 0.19, σ = 0.11) for the means and a triangu-419

lar distribution with (a = −0.05, b = 0.21, c =420

0.45) for the standard deviations. The data is421

available at https://data.esrg.stanford.edu/422

study/toxicity-perspectives. It is encrypted,423

but the website gives instructions for how to de-424

crypt it. There is no published license.425

6 Results426

We mainly used the following metrics in experi-427

ments:428

• Mean absolute error difference (MAE).429

The distances (errors) from the per-item 430

mean gold response to machine response 431

averaged over the items: ΓMAE(A,B,G) = 432
1
N

∑N
i

(∣∣∣ 1K ∑K
j Bij −

1
K

∑K
j Gij

∣∣∣ − 433∣∣∣ 1K ∑K
j Aij −

1
K

∑K
j Gij

∣∣∣) 434

• Item-wise wins (Wins). The fraction of items 435

in the test set for which the absolute error 436

of A is smaller than B: ΓWins(A,B,G) = 437∑N
i=1 1<(|Ai −Gi|, |Bi −Gi|)/N 438

• Mean EMD difference (MEMD). The Earth 439

mover’s distance for each item between 440

the system and the gold standard re- 441

sponses, and then take the mean of those 442

item-wise EMDs: ΓMEMD(A,B,G) = 443∑N
i=1 (EMD(Bi, Gi)− EMD(Ai, Gi)) /N 444

(a) Stanford Toxicity

(b) MultiDomain Agreement

Figure 1: Empirical CDFs of item-level response
means and standard deviations in (a) the Stanford Tox-
icity dataset vs clipped, folded normal CDF with 〈µ =
0.19, σ = 0.11〉 and clipped triangular distribution
CDF with 〈a = −0.05, b = 0.21, c = 0.45〉, respec-
tively; and (b) the MultiDomain-Agreement dataset
vs truncated normal CDF with 〈µ = −0.5, σ = 1〉
and truncated normal CDF with 〈µ = −0.3923, σ =
0.8502〉, respectively.

Upon publication we will release to the public 445

the code used to run our experiments. We used 446
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(a) Toxicity (ε = 0.05)

(b) MultiDomain (ε = 0.1)

Figure 2: p-value vs K with ΓMAE at various N ×K

the python libraries numpy, pandas, and scipy, ver-447

sions 2.2.3, 2.2.1, and 1.13.1, respectively. Our448

experiments took various times to running, with the449

longest experiments (producing any of the points450

in our figures) running approximately nine hours.451

Figure 2 demonstrates that trading off items for452

responses is beneficial at a wide range of (N ×K)453

values, with p-value decreasing as K increases.454

(The benefit of increasing K is strikingly more ap-455

parent when viewing p-values vs K with a fixed456

N but we omit these graphs for brevity.) Here457

ΓMAE was used with distortion ε = 0.1 but similar458

Figure 3: p-value vs K with ΓMAE at various N ×K
for Toxicity at log-scale on the y-axis

(a) Toxicity (ε = 0.05)

(b) MultiDomain (ε = 0.1)

Figure 4: p-value vs K with a fixed budget N ×K =
2500 for various metrics

trends were observed using other metrics, amounts 459

of distortion, as well as different datasets. There 460

is indeed a point where trading N for K is bene- 461

ficial for statistical significance: in this case, the 462

curves hit an inflection point before K = 500; see 463

Figure 3. 464

Figure 4 graphs p-value as a function of number 465

of responses at ε = 0.1, where number of items 466

varies such that N ×K = 2500, and demonstrates 467

a similar trend across five different metrics. 468

6.1 Power Analysis 469

Figure 5 demonstrates greater statistical power for 470

Multistage Bootstrap as number of items (“sam- 471

ple size”) increases, achieving a power of 90% 472

(i.e., probability of not rejecting the null hypothesis 473

when it’s false) before the other tests. We used 474

α = 0.05 as the significance level for power cal- 475

culation (i.e., the data is inconsistent with the null 476

hypothesis at least 95% of the time). 477

For the baseline (paired) statistical tests, the 478

mean response of each item was pre-computed for 479

Model A, Model B and for “gold” G, resulting in 480

āi, b̄i, ḡi, respectively, for each item i. The baseline 481

tests then consider the null hypothesis that the dis- 482

tributions across the items of |āi − ḡi| and |b̄i − ḡi| 483

are the same in the case of the permutation test, 484

or have the same center in the case of Welch’s t- 485
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(a) varying N with K = 5

(b) varying N with K = 10

(c) varying K with N = 1000

Figure 5: Power Analysis of Toxicity data (ε = 0.1)

test and the Wilcoxon signed-rank test. In contrast,486

our Multistage Bootstrap resamples both the set of487

items and, for each item, the set of responses once488

per iteration, hence considering the disaggregated489

distribution of responses.490

7 Discussion491

Our results confirm our predictions indicate that492

the number of raters and items do have a notable493

impact on p-value estimation, to different degrees494

depending on the metric. ΓWins provides a discrete495

decision for each item, counting those decisions496

(i.e.“wins”) across the test set and normalizing by497

the number of items. ΓWins is also presented as498

a meta-metric of sorts: it can use any item-level499

metric, with absolute error being used here, and500

requires both model’s predictions as input in order501

to directly compare their predictions at the item502

level. 503

In general, increasing N (number of test set 504

items) increases the statistical power of any mea- 505

surement by simply providing more scores to base 506

the final metric score on. The more scores there are, 507

the more stable the variance across simulation runs 508

will be, and the lower the p-value. All examined 509

metrics respond well to increasing N . 510

Increasing K (number of responses per item) 511

increases the statistical power of each item level 512

aggregate. As K increases, the lower the variance 513

of an individual item’s aggregate will be across 514

simulation runs, thereby lowering the p-value. All 515

tested metrics also respond well to increasing K. 516

The difference between the metrics lies in the 517

way the item-level scores are used. For Wins, 518

which responds better to increasing N , the A’s 519

andB’s item-level scores are directly compared. In 520

each run, these item-level scores will vary, but in 521

many cases that variance won’t change the pairwise 522

comparison. For example, if Ai’s metric score is 523

0.10 and Bi’s is 0.12 on the first simulation, a win 524

is recorded for A. In the next simulation, if the 525

scores are 0.11 and 0.12, respectively, this score 526

change does not change the Win, as Ai’s score is 527

still lower. This indicates the item-level variance in 528

the discrete win decision is far lower than the score 529

variance - so adding more responses is less likely 530

to further reduce the variance than adding items. 531

By contrast, for ΓMAE and ΓMEMD, any changes 532

in item-level metric scores do impact the variance, 533

both at the item and test-set level. Since the item- 534

level scores come from the response distribution, 535

adding more responses stabilizes the simulated dis- 536

tributions under repeated test set generation, re- 537

ducing the metric variance across simulations and 538

lowering the p-value. 539

The implications of these results are that the 540

item/response trade-off should be handled differ- 541

ently depending on the metric itself, and the de- 542

mands on number of raters and items are high for 543

all metrics in order to provide statistical guarantees. 544

8 Conclusion 545

In this work, we experimented with simulated data 546

in order to examine the trade-off between num- 547

ber of items and number of annotations per item 548

(aka responses) necessary to compare two systems 549

against human judgments with statistical signif- 550

icance (p < 0.05). As expected, we see that 551

when two systems are more similar in performance, 552

7



DRAFT

a greater number of annotations is required to553

achieve significance on their comparison. Further,554

the metric itself affects the utility of an increase in555

either items or responses.556

These results suggest that current evaluation557

practices are not sufficient to confidently assess558

two systems’ performance against gold judgments,559

as using 25,000-50,000 annotations in a test set560

is rarely seen. Even when using 1000 items, at561

least 25 raters are needed for systems to achieve562

significance with MAE.563

Additionally, we found that the trade-off be-564

tween number of items and number of responses565

per item, depended on the metric. For two of our566

tested metrics, MAE and mean EMD, adding more567

responses than items is a more optimal division to568

achieve lower p-values. For the Wins metric, the569

opposite is true: more items and fewer responses570

per item lead to lower p-values. Still, in all cases571

for all metrics, increasing the total number of re-572

sponses consistently lowers p-values, and thereby573

increases the sensitivity of the evaluation instru-574

ment.575

For real-world data, we actually found MAE to576

be more sensitive than Wins, and we speculate that577

this may be due to the discrete response domains578

in the real-world data, compared to the real-valued579

responses in the synthetic data.580

9 Limitations581

The effectiveness of (Wein et al., 2023)’s simu-582

lator depends on how well the probabilistic mod-583

els capture realistic distributions of responses over584

items. Although we used rigorous methods to fit585

the parameters of these distributions to our datasets,586

our choice of distribution family to use for each587

dataset was based on visual inspection of the data.588

Given more datasets with disaggregated responses589

we hope in future work to develop rigorous meth-590

ods for model selection. However, the dearth of591

such publicly-available datasets impedes progress592

in this direction. One key limitation future work593

will address is that we treat the responses as in-594

dependent from item-to-item, when in reality re-595

sponses usually depend on which human annotator596

or instance of a model produced the response. Hy-597

pothesis testing such as that described here is not598

a comprehensive measure of data quality; it only599

estimates the likelihood of sampling error. It does600

not account for sampling bias leading to data that601

is not representative of the sampling distribution.602

The simulator is only intended to capture the 603

complexity of the annotations. It is not intended 604

to capture the complexity of real model predic- 605

tions but rather to compare a near-perfect model, 606

A, against a version, B, that has been perturbed by 607

a controlled amount via a variance parameter. In 608

practice, this functions as an approximate bound 609

the model response variance. 610

Otherwise, we have taken precautions to avoid 611

common “p-hacking” pitfalls, such as that the null 612

hypothesis and significance threshold α are inde- 613

pendent of the dataset. We attempt to avoid op- 614

tional stopping by performing power analysis. 615

While the distribution of responses depend on 616

each item, we do not assume a fixed correspon- 617

dence between ratings and raters. This assumption 618

is valid, for example, with a large rating pool where 619

each rater annotates at most one item. Therefore, 620

there is no meaningful ordering of the responses 621

within each item. For convenience, we use the term 622

“matrix” for what is really a sequence of multisets. 623

Modeling the dependence of annotations from the 624

same annotators across multiple items is something 625

we chose to ignore in this paper so as not to dis- 626

tract from its main focus on the impact of response 627

variance on hypothesis testing. 628

Ethical considerations 629

The paper focuses on a method to ensure that 630

enough data is collected during testing to ensure 631

that large enough observed differences between 632

the performance of two machines on the data are 633

significant. While such analysis can ensure that 634

experiment results are meaningful and replicable, 635

p-values have a tendency to be used more than 636

they are understood. It is important to understand 637

what p-values guarantee and what the limitations of 638

our, or any other particular NHST framework, are. 639

Misinterpreting the analysis can lead dishonest or 640

misleading claims about the reliability of the data 641

for testing. 642
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Piotr Szymański and Kyle Gorman. 2020. Is the best 811
better? Bayesian statistical model comparison for 812
natural language processing. In Proceedings of the 813
2020 Conference on Empirical Methods in Natural 814
Language Processing (EMNLP), pages 2203–2212, 815
Online. Association for Computational Linguistics. 816

Aobo Wang, Cong Duy Vu Hoang, and Min-Yen 817
Kan. 2013. Perspectives on crowdsourcing annota- 818
tions for natural language processing. Language re- 819
sources and evaluation, 47:9–31. 820

Shira Wein, Christopher Homan, Lora Aroyo, and 821
Chris Welty. 2023. Follow the leader(board) with 822
confidence: Estimating p-values from a single test 823
set with item and response variance. In Findings of 824
the Association for Computational Linguistics: ACL 825
2023, pages 3138–3161, Toronto, Canada. Associa- 826
tion for Computational Linguistics. 827

Peter Welinder and Pietro Perona. 2010. Online 828
crowdsourcing: rating annotators and obtaining cost- 829
effective labels. In 2010 IEEE Computer Soci- 830
ety Conference on Computer Vision and Pattern 831
Recognition-Workshops, pages 25–32. IEEE. 832

10

https://doi.org/10.2200/S01137ED1V01Y202110HLT055
https://doi.org/10.2200/S01137ED1V01Y202110HLT055
https://doi.org/10.2200/S01137ED1V01Y202110HLT055
https://doi.org/10.2200/S01137ED1V01Y202110HLT055
https://doi.org/10.2200/S01137ED1V01Y202110HLT055
https://doi.org/10.48550/ARXIV.2408.05148
https://doi.org/10.48550/ARXIV.2408.05148
https://doi.org/10.48550/ARXIV.2408.05148
https://doi.org/10.48550/ARXIV.2408.05148
https://doi.org/10.48550/ARXIV.2408.05148
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://doi.org/10.1145/1401890.1401965
https://doi.org/10.1145/1401890.1401965
https://doi.org/10.1145/1401890.1401965
https://doi.org/10.1145/1401890.1401965
https://doi.org/10.1145/1401890.1401965
https://aclanthology.org/D08-1027
https://aclanthology.org/D08-1027
https://aclanthology.org/D08-1027
https://aclanthology.org/D08-1027
https://aclanthology.org/D08-1027
https://aclanthology.org/N13-1068
https://aclanthology.org/N13-1068
https://aclanthology.org/N13-1068
https://doi.org/10.3115/v1/W14-1601
https://doi.org/10.18653/v1/2020.emnlp-main.172
https://doi.org/10.18653/v1/2020.emnlp-main.172
https://doi.org/10.18653/v1/2020.emnlp-main.172
https://doi.org/10.18653/v1/2020.emnlp-main.172
https://doi.org/10.18653/v1/2020.emnlp-main.172
https://doi.org/10.18653/v1/2023.findings-acl.196
https://doi.org/10.18653/v1/2023.findings-acl.196
https://doi.org/10.18653/v1/2023.findings-acl.196
https://doi.org/10.18653/v1/2023.findings-acl.196
https://doi.org/10.18653/v1/2023.findings-acl.196

	Introduction
	Related Work
	Problem Statement
	Methods
	Simulator
	Estimating p-values
	Fitting the Simulator to Real Data

	Data
	Results
	Power Analysis

	Discussion
	Conclusion
	Limitations

