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Abstract

Autonomous agents powered by language models (LMs) have demonstrated promise in
their ability to perform decision-making tasks such as web automation. However, a key
limitation remains: LMs, primarily optimized for natural language understanding and
generation, struggle with multi-step reasoning, planning, and using environmental feedback
when attempting to solve realistic computer tasks. Towards addressing this, we propose
an inference-time search algorithm for LM agents to explicitly perform exploration and
multi-step planning in interactive web environments. Our approach is a form of best-first
tree search that operates within the actual environment space, and is complementary with
most existing state-of-the-art agents. It is the first tree search algorithm for LM agents that
shows effectiveness on realistic web tasks. On the challenging VisualWebArena benchmark,
applying our search algorithm on top of a GPT-4o agent yields a 39.7% relative increase
in success rate compared to the same baseline without search, setting a state-of-the-art
success rate of 26.4%. On WebArena, search also yields a 28.0% relative improvement over
a baseline agent, setting a competitive success rate of 19.2%. Our experiments showcase
the effectiveness of search for web agents, and we demonstrate that performance scales with
increased test-time compute.

1 Introduction

Building agents that can perceive, plan, and act autonomously has been a long standing goal of artificial
intelligence research (Russell & Norvig, 1995; Franklin & Graesser, 1996). In recent years, the advent of large
language models (LMs) with strong general capabilities has paved the way towards building language-guided
agents that can automate computer tasks. However, the best LM agents today are still far worse than humans.
On the realistic web benchmarks WebArena (Zhou et al., 2024b) and VisualWebArena (Koh et al., 2024),
humans succeed on 78% and 89% of tasks respectively, but agents — even those powered by the latest frontier
models — are far worse, typically achieving success rates below 20%. One significant bottleneck in existing
agents arises from their inability to leverage test-time computation for exploration and multi-step planning.
Search and planning is especially important in open ended web environments, as the potential action space
(i.e., all possible actions one can take on a webpage) is much larger than in most video games or text-based
simulators. There are often multiple plausible actions that must be sequenced to reach a goal, and being able
to efficiently explore and prune trajectories is essential. In artificial intelligence systems, one effective strategy
for leveraging test-compute to improve results is search: iteratively constructing, exploring, and pruning a
graph of intermediate states and possible solutions (Newell et al., 1959; Silver et al., 2016; Laird, 2019). The
effectiveness of search algorithms has been shown time and time again, enabling models to achieve or surpass
human-level performance on a variety of games, including Go (Silver et al., 2016; 2017), poker (Brown &
Sandholm, 2018; 2019), and Diplomacy (Gray et al., 2020).

How might we apply search in the context of automating computer tasks, where the search space is large
and — unlike games — there do not exist clear cut rewards and win conditions? Towards this goal, we
propose a method to enable autonomous web agents to search over a graph that is iteratively constructed
through exploration of an interactive web environment. This search procedure is grounded within the actual
environment space, and is guided with environmental feedback. Our approach allows agents to enumerate a
much larger number of potentially promising trajectories at test time, reducing uncertainty through explicit
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Figure 1: Our proposed search algorithm. At each iteration, we pick the next state sp to expand from frontier
F and compute a score v for it using the value function. Then, we add the possible states that the agent can
get to from sp to the frontier and repeat the search procedure. Faded nodes indicate explored and pruned
states. Blue dashed arrows indicate backtracking.

exploration and multi-step planning. To the best of our knowledge, this is the first time that inference-time
search has been shown to improve the success rate of autonomous agents in realistic web environments. In
order to handle the lack of clear cut rewards in these diverse environments, we propose a model-based value
function to guide best-first search. The value function is computed by marginalizing over reasoning chains of
a multimodal LM conditioned on the agent’s observations, producing finegrained scores to effectively guide
search.

Our experiments show that this search procedure is complementary with existing LM agents, and enables
these models to perform better on harder and longer horizon tasks. On VisualWebArena (Koh et al., 2024),
search improves the performance of a baseline GPT-4o (OpenAI, 2024) agent by 39.7% relative to the baseline
without search, setting a new state-of-the-art (SOTA) success rate of 26.4%. On WebArena (Zhou et al.,
2024b), search is also highly effective, contributing a 28.0% relative improvement (yielding a competitive
success rate of 19.2%). We also demonstrate that our search procedure benefits from scale: achieving improved
performance as the agent is allotted greater amounts of test-time computation. Our code and models are
publicly released at removed_for_review.

2 Background

2.1 Realistic Simulated Web Environments

Towards the goal of developing autonomous web agents powered by large language models, several prior
works focused on building evaluation benchmarks for measuring the progress of models on web tasks.
Mind2Web (Deng et al., 2023) is an evaluation benchmark that measures the ability of frontier models
in predicting actions taken on static Internet pages. VisualWebBench (Liu et al., 2024b) introduced a
multimodal benchmark for assessing the ability of models to understand web content. Others have looked
towards simulators (as opposed to static HTML content): MiniWoB (Shi et al., 2017; Liu et al., 2018) was one
of the first interactive simulators for web tasks, but consisted of simplified environments that do not directly
translate into real world performance. WebShop (Yao et al., 2022a) simulates a simplified e-commerce site with
real world data. WebLINX (Lù et al., 2024) proposes a benchmark for tackling conversational web navigation,
which involves communication between the agent and a human instructor. MMInA (Zhang et al., 2024c) and
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OSWorld (Xie et al., 2024a) propose benchmarks to measure the ability of agents to accomplish tasks by
navigating across multiple computer applications. WorkArena (Drouin et al., 2024) is a simulated environment
for tasks on the ServiceNow platform. Outside of the web, environments such AndroidWorld (Rawles et al.,
2024) is a dynamic environment for measuring the performance of agents on mobile applications. Several other
work build comprehensive, highly realistic, fully-featured web simulators. WebArena (WA) (Zhou et al., 2024b)
is a benchmark of 812 tasks across 5 realistic self-hosted re-implementations of popular websites (Shopping,
Reddit, CMS, GitLab, Maps), each populated with real world data. VisualWebArena (VWA) (Koh et al.,
2024) is a multimodal extension to WebArena, consisting of 910 new tasks across realistic re-implementations
of 3 popular real world sites (Classifieds, Reddit, Shopping). To solve tasks in VWA, agents must leverage
visual grounding and understand image inputs — a realistic and challenging test for multimodal agents.

Action Type a Description
click [elem] Click on elem.
hover [elem] Hover on elem.
type [elem] [text] Type text on elem.
press [key_comb] Press a key combo.
new_tab Open a new tab.
tab_focus [index] Focus on the i-th tab.
tab_close Close current tab.
goto [url] Open url.
go_back Click back.
go_forward Click forward.
scroll [up|down] Scroll up or down.
stop [answer] End with an output.

Table 1: Possible actions A in the (Vi-
sual)WebArena environments.

As the (V)WA environments are one of the most realistic
and comprehensive evaluation suites for web tasks, we
primarily benchmark our method on (V)WA. We briefly
describe the setting here but refer readers to Zhou et al.
(2024b) for additional context. The environment E =
(S,A, Ω, T ) consists of a set of states S, actions A (Tab. 1),
and a deterministic transition function T : S × A → S
that defines transitions between states conditioned on
actions. Each task in the benchmark consists of a goal
specified with a natural language instruction I (e.g., “Find
me the cheapest red Toyota car below $2000.”). Each task
has a predefined reward function R : S × A → {0, 1}
which measures whether an agent’s execution is successful.
We implement our search algorithm on the (V)WA web
simulators, but our method is fully general and can be
applied to any setting with an interactive environment.

2.2 Language-Guided Autonomous Agents

Autonomous web agents, powered by frontier (multimodal) language models (Google, 2023; OpenAI, 2024;
Anthropic, 2024), are the SOTA approaches for many of the above benchmarks. Kim et al. (2024) showed
that large language models can be prompted to execute computer tasks on MiniWoB++ (Liu et al., 2018),
requiring far fewer demonstrations than reinforcement learning methods. AutoWebGLM (Lai et al., 2024)
collects web browsing data for curriculum training and develops a web navigation agent based off a 6B
parameter language model that outperforms GPT-4 on WebArena. Patel et al. (2024) showed that a language
model agent can improve its performance through finetuning on its own synthetically generated data. Pan
et al. (2024) show that introducing an automatic evaluator to provide guidance on task failure or success can
improve the performance of a baseline Reflexion (Shinn et al., 2024) agent. Fu et al. (2024) extracts domain
knowledge from offline data and provides this to the language agent during inference, to enable it to leverage
helpful domain knowledge. SteP (Sodhi et al., 2024) and AWM (Wang et al., 2024b) propose methods to
enable agents to dynamically compose policies to solve web tasks.

In the multimodal setting, WebGUM (Furuta et al., 2024) finetuned a 3B parameter multimodal language
model on a large corpus of demonstrations, achieving strong performance on MiniWoB and WebShop. Koh
et al. (2024) showed that prompting multimodal language models with a Set-of-Marks (Yang et al., 2023)
representation enables the model to navigate complex webpages more effectively than text-only agents.
SeeAct (Zheng et al., 2024) demonstrated that frontier multimodal models can be grounded and prompted to
solve web tasks. ICAL (Sarch et al., 2024) builds a memory of multimodal insights from demonstrations and
human feedback. Our procedure is an inference-time approach that is compatible with many of these past
approaches that focus on developing better base agents.
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2.3 Search and Planning

Our method also draws inspiration from a rich history of search and planning algorithms in computer science.
Search algorithms such as breadth-first search, depth-first search, and A* search (Hart et al., 1968) have long
been used in artificial intelligence systems. Newell et al. (1959) and Laird (2019) cast goal-oriented behavior
as search through a space of possible states. Dean et al. (1993) and Tash & Russell (1994) proposed planning
algorithms over a limited search horizon, and employed an expansion strategy to improve plans based off
heuristics. Tash & Russell (1994) showed that this allowed agents to provide appropriate responses to time
pressure and randomness in the world. Deep Blue (Campbell et al., 2002), the chess engine which defeated
world champion Kasparov in chess in 1997, was based on massive parallel tree search. Pluribus (Brown &
Sandholm, 2019) leverages search to find better multiplayer poker strategies for dynamic situations.

In deep learning, search algorithms with neural network components have been instrumental in achieving
superhuman performance in many games. Monte-Carlo Tree Search (MCTS) (Browne et al., 2012) was used
to provide lookahead search in the AlphaGo (Silver et al., 2016; 2017) systems that achieved superhuman
performance in the game of Go. Gray et al. (2020) performs one-step lookahead search to achieve SOTA on
no-press Diplomacy. More recently, several papers (Yao et al., 2024; Besta et al., 2024) showed the potential
of applying search to large language models to introduce exploration, enhancing performance on text based
tasks that require non-trivial planning. Others have applied MCTS (Hao et al., 2023; Zhou et al., 2024a; Xie
et al., 2024b; Chen et al., 2024a; Zhang et al., 2024b; Wang et al., 2024a; Zhang et al., 2024a) to improve the
performance of LMs on math and science benchmarks (Cobbe et al., 2021; Wang et al., 2023a) or simplified
environments (Yao et al., 2022a; Valmeekam et al., 2023; Zhou et al., 2024a).

In contrast to prior work, we search over the actual environment space of realistic, complex websites. This
means that search mechanics need to incorporate not just the text outputs of the agent, but also external
environmental feedback.

3 Method

In this section, we describe the search procedure (Fig. 1) in detail. Successfully solving a task in a web
environment such as (V)WA can be interpreted as navigating to a goal state s∗ which gives a positive reward
R(s∗) = 1. The agent starts at state s0 (e.g., the homepage). Given a natural language instruction I,
the agent’s goal is to navigate to s∗ by executing actions (a0, . . . , at) ∈ A. Each action produces a new
state st+1 ∈ S and observation ot+1 ∈ Ω from the environment. The transition st → st+1 is governed by a
deterministic transition function T : S ×A → S.

Most approaches treat this as a partially observable Markov decision process, and only condition on the
current observation ot when predicting the next action at to take. This has significant limitations: the error
of the agent compounds with each step, and if an erroneous action is taken at time t, it cannot be easily
rectified if this leads to a bad state. Our approach aims to alleviate this by explicitly conducting search and
backtracking to identify better trajectories.

3.1 Agent Backbone

Most SOTA web agents are built through prompting large (multimodal) language models (Zhou et al., 2024b;
Pan et al., 2024; Fu et al., 2024; Zheng et al., 2024; Koh et al., 2024). A pretrained language model or
multimodal model fϕ is prompted with the current webpage observation ot and instructed to predict the
next action at to be executed. It is common to leverage prompting techniques, such as ReAct (Yao et al.,
2022b), RCI (Kim et al., 2024), or Chain-of-Thought (CoT) prompting (Wei et al., 2022), to improve the
performance of the agent. Language model agents also allow us to sample a diverse set of actions (e.g., with
nucleus sampling (Holtzman et al., 2020)), which is essential for creating plausible branches to explore during
search (see Sec. 3.3). Our proposed search algorithm can in principle be applied to any base agent. We
show in Sec. 4 that search improves inference-time performance on a range of models without retraining or
finetuning fϕ.
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3.2 Value Function

We implement a best-first search heuristic using a value function fv which estimates the expected reward
E[R(st)] of the current state st, where the ground truth goal state would provide perfect reward of 1. As the
state st of the simulator is not always accessible to the agent (st may include private information such as site
database entries), the value function computes the value vt using the current and previous observations, as
well as the natural language task instruction I:

vt = fv(I, {o1, . . . , ot}) ∈ [0, 1]
In our experiments (Sec. 4.1), the value function is implemented by prompting a multimodal language model
with the task instruction and observation screenshots.

3.3 Search Algorithm

Our proposed search algorithm is a best-first search method loosely inspired by A* search (Hart et al., 1968),
a classic graph traversal algorithm used widely in computer science. We use a language model agent to
propose candidate branches of the search tree. The search has hyperparameters depth d, branching factor
b, and search budget c which determine the maximum size of the search tree,1 and termination threshold
θ. The search procedure is summarized in Fig. 1. We describe it in detail in the following paragraphs and
provide the formal algorithm in Appendix A.4.

At time t in the execution trajectory, the agent has previously executed a sequence of actions to arrive at the
current state st. We begin the search algorithm from st by initializing the frontier F ← {} (implemented
as a max priority queue) which holds the set of states that we plan to evaluate, the best state found so far
ŝt ← st, the score of the best sequence v̂t ← 0, and the search counter s← 0.

At each iteration of the search process, we extract the next state from the frontier, sp ← pop(F). We use the
value function to compute the score for state sp (with observation op and previous observations o1, . . . , op−1):

vp = fv(I, {o1, . . . , op})

Then, we increment s, and if vp is higher than the current best score v̂t, we update it and our best state
accordingly:

s← s + 1

ŝt ←

{
sp if vp > v̂t

ŝt otherwise
v̂t ← max(v̂t, vp)

If vp ≥ θ (i.e., the agent is likely to have found a goal state) or s ≥ c (the search budget has been exceeded),
we will terminate the search and navigate to the best state ŝt found thus far. Otherwise, if the current branch
does not exceed the maximum depth (i.e., |(s0, . . . , sp)| < d), we will generate plausible next actions for
branching by obtaining b candidate actions {a1

p, . . . , ab
p} from the language model agent fϕ. For each i, we

execute ai
p and add the resulting state si

p to the frontier with the score of the current state2:

F ← F ∪ (vp, si
p) for i = 1, . . . , b

This concludes one iteration of search. If both termination conditions have not been reached, we backtrack
and repeat this for the next best state from the updated frontier F .

4 Experiments

We run experiments on the full set of 910 VisualWebArena (VWA) and 812 WebArena (WA) tasks. The
tasks are distributed across a set of diverse and realistic websites.

1In Sec. 5.1 we show that increasing the size of the search tree improves results by leveraging increased compute.
2We opt for this approach instead of immediately computing the value for resulting states si

p as immediate evaluation requires
more backtracking calls, which would incur much more overhead in the (V)WA simulators.
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4.1 Implementation Details

Baseline agent models Our search algorithm is compatible with most off-the-shelf language model agents.
In this work, we test it with simpler, more general, prompt-based agents, and leave incorporation of our
method with more performant methods that incorporate domain-specific techniques (Fu et al., 2024; Sodhi
et al., 2024) for future work. We run several prompt-based agent baselines:

• Multimodal SoM: For multimodal models that accept multiple image-text inputs, such as GPT-
4o (OpenAI, 2024) (gpt-4o-2024-05-13), we run the multimodal agent from Koh et al. (2024) with
the same prompt. We similarly apply a preprocessing step to assign a Set-of-Marks (SoM) (Yang
et al., 2023) representation to the webpage. This highlights every interactable element on the webpage
with a bounding box and a unique ID. The input to the agent is a screenshot of the SoM-annotated
webpage, and a text description of the elements on the page with their assigned IDs.

• Caption-augmented: For base models that are not multimodal (e.g., Llama-3-70B-Instruct (Dubey
et al., 2024)), we run the caption-augmented agent with the same prompt from Koh et al. (2024).
We generate captions for each image on the webpage using an off-the-shelf captioning model (in our
case, BLIP-2; Li et al. 2023). The accessibility tree3 representation of the webpage is used as the
input observation.

• Text-only: On WebArena (which does not require visual grounding), we run text-only agents using
the prompt from Zhou et al. (2024b), for both GPT-4o and Llama-3-70B-Instruct. This model uses
an accessibility tree (w/o captions) of the current page as input.

Search parameters Our search parameters are set to d = 5, b = 5, c = 20, and we stop execution after
a maximum of 5 actions. We enforce these constraints due to compute and budget limitations, though we
expect that increasing these parameters is likely to further improve results (see Sec. 5.1 for results on scaling
search parameters). We note that the fairly strict limitations on maximum actions imply that there are
certain tasks that are intractable (e.g., VWA tasks with “hard” action difficulty usually require humans to
execute 10 or more actions to complete). Despite this, our results show that GPT-4o with search capped at 5
max actions still substantially outperforms the GPT-4o baseline (without search) with 30 max actions.

Obtaining actions We sample actions using nucleus sampling (Holtzman et al., 2020) with a temperature
of 1.0 and top-p of 0.95 for all experiments. At each step of execution, we generate 20 outputs from the
model by prompting it with CoT reasoning (Wei et al., 2022). We aggregate the count of the actions and use
the top-b actions for branching.

Value function As detailed in Sec. 3.2, we require a value function which scores the likelihood that the
current state st is a goal state. We implement the value function by prompting a multimodal language model
with the task instruction I, screenshots of the agent’s trajectory, previous actions the agent took, and the
current page URL. The full prompt is provided in Appendix A.3.2. The multimodal LM is instructed to
output whether the current state is a success, a failure, and if it’s a failure, whether it is on a trajectory
towards success. These outputs are assigned values of 1, 0, and 0.5 respectively (and 0 for invalid output). In
order to get more finegrained and reliable scores, we leverage ideas from self-consistency prompting (Wang
et al., 2023b), and sample multiple reasoning paths by prompting the multimodal LM with CoT (Wei et al.,
2022). We sample 20 different paths from the GPT-4o model using ancestral sampling (temperature of 1.0
and top-p of 1.0). The final value assigned to state st, used in the best-first search heuristic, is computed by
averaging the values from each of the 20 reasoning paths. In our implementation, calling the value function is
significantly cheaper than predicting the next action, as action prediction consumes more input tokens for
few-shot examples and the representation of the page. 4
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Agent Model Max Steps No Search + Search ∆

VWA

Llama-3-70B-Instruct + captions (Koh et al., 2024)
30

9.8% - -
GPT-4o + SoM (Koh et al., 2024) 19.8% - -
ICAL (Sarch et al., 2024) 23.4% - -
Llama-3-70B-Instruct + captions 5 7.6% 16.7% +119.7%
GPT-4o + SoM 18.9% 26.4% +39.7%

WA

GPT-4o (Zhou et al., 2024b)

30

13.1% - -
GPT-4 + Reflexion (Pan et al., 2024) 15.6% - -
AutoWebGLM (Lai et al., 2024) 18.2% - -
AutoEval (Pan et al., 2024) 20.2% - -
BrowserGym (Drouin et al., 2024) 23.5% - -
SteP (Sodhi et al., 2024) 33.5% - -
GUI-API Hybrid Agent (Song et al., 2024) 35.8% - -
AgentOccam (Yang et al., 2024b) 43.1% - -
AgentOccam-Judge (Yang et al., 2024b) 45.7% - -
Llama-3-70B-Instruct 5 7.6% 10.1% +32.3%
GPT-4o 15.0% 19.2% +28.0%

Table 2: Success rates (SR) and relative change (∆) for baseline models and models that employ search on
the VisualWebArena (VWA) (Koh et al., 2024) and WebArena (WA) (Zhou et al., 2024b) benchmarks. We
also show other published approaches. Search substantially improves our baseline models, setting a new
state-of-the-art on VWA.

4.2 Results

Our results are summarized in Tab. 2. Introducing search increases success rate substantially across the
board. Search improves the success rate of the baseline GPT-4o + SoM agent on VWA by 39.7% relatively
(increasing from 18.6% to 26.4%), setting a new state-of-the-art on the benchmark. On WA, introducing
search to the GPT-4o agent improves the success rate substantially as well, increasing it by 28.0% relatively
(15.0% to 19.2%). While other baseline agents obtain higher performance than our GPT-4o baseline through
domain-specific techniques such as introducing website specific guidelines (Sodhi et al., 2024; Fu et al., 2024)
or engineering improved input spaces (Song et al., 2024; Yang et al., 2024b), these techniques are orthogonal
to — and potentially complementary with — our search-based approach.

With weaker base models, we also observe substantial improvements. For the Llama-3 caption-augmented
agent on VWA, introducing search improves the success rate on VWA by 119.7% relative to the baseline
(7.6% to 16.7%). With search, Llama-3-70B-Instruct achieves success rates that are close to the best frontier
multimodal models that do not use search. On WebArena, we also see a substantial relative improvement of
32.2% for the text-based Llama-3 agent (7.6% to 10.1%). The strong performance of the Llama-3-70B-Instruct
agent with search can prove to be a cost effective agent model for iteration in future work that requires access
to model internals. These results over a variety of model scales and capabilities demonstrate the generality
and effectiveness of our approach.

5 Analysis

5.1 Ablations

We conduct several ablations on a subset of 200 VWA tasks.

Search budget We plot the success rate of the GPT-4o agent with search limited to varying budgets
c ∈ {0, 5, 10, 15, 20} in Fig. 2. All experiments are conducted with search parameters of depth d = 5 and

3https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree
4We estimate the API cost of the GPT-4o SoM agent for action prediction to be approximately 2× that of computing the

value.
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Figure 2: Success rate on a subset of 200 VWA
tasks with search budget c. c = 0 indicates no
search is performed. Success rate generally in-
creases as c increases.

Depth d Branch b SR (↑) ∆
0 1 24.5% 0%

1 3 26.0% +6%
5 32.0% +31%

2 3 31.5% +29%
5 35.0% +43%

3 5 35.5% +45%
5 5 37.0% +51%

Table 3: Success rate (SR) and relative change (∆)
over the baseline without search on a subset of
200 VWA tasks with varying search depth (d) and
branching factor (b). d = 0 indicates no search is
performed. All methods use a max search budget
c = 20.

branching factor b = 5. The search budget specifies the maximum number of node expansions performed
at each step. For example, a search budget of 10 indicates that at most 10 nodes will be expanded, after
which the agent will commit to and execute the trajectory with the highest value. We observe that success
rate generally increases as search budget increases. Notably, performing even very small amounts of search
(c = 5) substantially improves success rate by 30.6% relative to not doing search (24.5% to 32.0%). When the
budget is increased to c = 20, this improves success rate by 51.0% relative to not doing search (from 24.5% to
37.0%), highlighting the benefit of scaling the search budget.

Search depth and breadth We run an ablation experiment varying the search branching factor b and
maximum depth d. The results are summarized in Tab. 3. We observe that in general, success rate increases
as the size of search tree increases (along both b and d dimensions), and scaling both b and d is necessary to
achieve strong performance.

Value Function SR (↑)
None (no search) 24.5%
LLaVA (w/ SC, n = 20) 30.0%
GPT-4o (no SC) 28.5%
GPT-4o (w/ SC, n = 5) 32.5%
GPT-4o (w/ SC, n = 20) 37.0%
Groundtruth 43.5%

Table 4: Success rate of the GPT-
4o agent with different value func-
tions.

Varying the value function We ablate the multimodal model used
for the value function, swapping out GPT-4o for (1) the LLaVA-v1.6-
34B (Liu et al., 2024a) multimodal model prompted zero-shot (with
only the current observation, as LLaVA only supports a single image
input) and (2) the groundtruth reward from VWA (which is a sparse
reward signal that returns either 0 or 1), and (3) GPT-4o without
self-consistency. The results are summarized in Tab. 4. We find that
the GPT-4o value function significant outperforms the LLaVA model,
improving the result of the agent from 30.0% to 37.0%. The groundtruth
reward function achieves a success rate of 43.5%. These results suggest
that there is still significant headroom in improving the search algorithm
with better value functions. We also observe that self-consistency is
essential for good performance (28.5% → 37.0%), which we attribute to it enabling marginalization over
multiple reasoning chains, reducing noise during state evaluation.
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Website No Search Search ∆
Classifieds 18.4% 26.5% +44%
Reddit 17.1% 20.5% +20%
Shopping 20.0% 29.0% +45%
Overall 18.9% 26.4% +40%

Table 6: Success rates and relative change (∆) of
the GPT-4o agent on VWA websites.

Website No Search Search ∆
CMS 11.0% 16.5% +50%
Map 21.1% 25.8% +22%
Shopping 24.0% 28.1% +17%
Reddit 7.9% 10.5% +33%
Gitlab 10.2% 13.3% +30%
Overall 15.0% 19.2% +28%

Table 7: Success rates and relative change (∆) of
the GPT-4o agent on WA websites.
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Trajectory Reranking
Tree Search (c = 5)
Tree Search (c = 20)

Figure 3: Success rate of a trajectory re-ranking
approach compared to our approach.

Comparison to Trajectory-Level Reranking An
alternative to tree search would be to generate multiple
trajectories, re-rank, and commit to the best one as
scored by the value function, similar to the methods
proposed in Chen et al. (2024b) and Pan et al. (2024)
without their Reflexion (Shinn et al., 2024) component.
This is a less practical method, as it is harder to prevent
destructive actions from being executed (see Sec. 5.4
for more discussion) as the agent is required to take the
trajectory to completion before it can be evaluated. It
is also a more limited form of search, as it only considers
entire trajectories and cannot backtrack to prune bad
branches. Nevertheless, we perform an ablation where
we sample n trajectories from the GPT-4o agent (with
nucleus sampling (Holtzman et al., 2020) at each step
using a temperature of 1.0 and top-p of 0.95) and use
the same value function to re-rank the trajectories,
picking the best one out of n.

We observe that this re-ranking baseline starts to plateau around 7 runs, which achieves a success rate of
30%. This underperforms our approach with search budget c ≥ 5 (Fig. 2). It is also substantially worse than
our approach with c = 20, which achieves a success rate of 37.0% on the ablation subset.

5.2 Success Rate Breakdown

Difficulty No Search Search ∆
easy 34.2% 42.3% +24%
medium 12.7% 22.2% +75%
hard 10.2% 14.9% +47%

Table 5: Success rates and relative change (∆)
of the GPT-4o agent on VWA tasks of different
action difficulty levels.

Success rate by task difficulty The VWA benchmark
includes labels for the action difficulty of each task. These
labels are human annotated, and roughly indicate the
number of actions a human would need to take to solve
the tasks: easy tasks require 3 or fewer actions, medium
tasks require 4–9 actions, and hard tasks demand 10 or
more. These guidelines are approximate and devised by
the human annotators of VWA, so there may exist more
optimal solutions in practice. The increase in success
rate from introducing search is summarized in Tab. 5.
Introducing search improves performance across all difficulty levels, but introduces much greater gains in
medium difficulty tasks, with a relative increase of 75% in success rate (from 12.7% to 22.2%). We hypothesize
that this is because our search parameters (max depth d = 5) are beneficial for a large proportion of medium
difficulty tasks. Conversely, achieving even better performance on hard tasks may require search over deeper
trees. Easy tasks do not benefit as much from search, as they generally involve less planning (some can be
solved with 1 or 2 actions), and baselines already have higher success rates.
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Task Instruction (   ): “I recall seeing this exact item on the site, help me find the most recent 
post of it. I recall seeing it in either the Collectibles or Antiques section.”

1 2

3 4

5
Success
✅

v = 0.5

v = 0.2

v = 0.53

v = 0.53

v = 0.45

v = 0.63

v = 0.63

…

…

1 Search sequence Backtracking State valuesv = 0.4v = 0.5v = 1.0

v = 1.0

6

Legend:

GPT-4o Agent + Search

Starting State

Figure 4: Search can improve robustness by backtracking from bad actions. Shown above is a trajectory for
VWA classifieds task #48 where greedily picking the first sampled actions would have led to a failure (the
path in the first row).

Success rates by website Tables 6 and 7 summarize the success rates across the various websites in the
VWA and WA benchmarks. We observe an improvement in success rates across the board, demonstrating
that our method generalizes across sites. Specifically, the increase is most substantial on the Classifieds and
Shopping sites in VWA, with relative increases of 44% and 45%, and the CMS site in the WA benchmark
(relative improvement of 50%).

5.3 Qualitative Results

In this section, we discuss some qualitative examples of agent trajectories, and identify various failure modes
that are solved when incorporating search.

More robust multi-step planning Many tasks in VWA and WA require an agent to keep a persistent
memory of multiple previous actions and observations. A common failure mode amongst agents without
search is that they tend to undo previous actions, or get stuck in loops (see Appendix C.4 of Koh et al. 2024).
An example for VWA shopping task #256 is shown in Fig. 1, where the agent is tasked to add two different
types of canned fruit from the same brand to the comparison list. The baseline agent successfully adds the
first item, but fails to navigate to the second item, as it returns to the homepage in step 3 and gets confused.
This is an example of compounding error leading to overall task failure, which is fairly common in existing
baseline agents without search. When search is introduced, the agent explores other plausible trajectories
and backtracks when those eventually result in failure: the same GPT-4o agent with search is able to find a
successful multi-step trajectory for the same task, which involves adding the first item (action #1 in Fig. 1),
typing in a search query (#6), and adding the correct second item to the comparison list (#9).

Resolving uncertainty An inherent issue with sampling actions from language models is that we are
sampling from a distribution over text, and the first sample we generate may not always be the best action
to take in the environment. Search allows us to evaluate each generated action concretely by executing it in
the simulator, and use the received environmental feedback to make better decisions. One example is VWA
classifieds task #48 (Fig. 4), which is to find a post containing a particular image. If the agent executes the
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first sampled action at every step (i.e., the sequence in the top row), it results in failure. Search allows the
agent to explore and enumerate multiple possibilities.

5.4 Limitations

While we have shown that introducing search to language model agents achieves promising results on web
tasks, our approach does come with some practical considerations.

Search can be slow Introducing search allows us to expend more compute at inference time to extract
stronger results from the baseline LM agent. However, this results in trajectories taking significantly longer
to execute, as the agent has to perform more exploration and hence more inference calls to the LM. For
example, a search budget of c = 20 implies that an agent with search could potentially expand up to 20
states in each search iteration, which would use up to 20× more LM calls than an agent without search.
Research on improving the efficiency and throughput of machine learning systems (Leviathan et al., 2023;
Dao et al., 2022; Dao, 2023) will likely help with optimizing this, but for practical deployment one may need
to carefully set the search parameters b, d, and c to balance between achieving better results and overall time
spent completing a task.

In our approach, we implemented search by keeping track of the sequence of actions required to get to a state.
During backtracking, we reset the environment and apply the same sequence after resetting the environment.
This is necessary, as naively executing the go_back action (Tab. 1) may discard important information on the
page, such as the scroll offset and already entered text.

Destructive actions For real world deployment, we will need to restrict the search space to actions that
are not destructive. Destructive actions are defined as actions that will irreversibly change the state of the
website and are difficult to backtrack from. For example, placing an order on an e-commerce site is typically
difficult to undo. One way to address this is to introduce a classifier that predicts when certain actions
are destructive, and prevent node expansion for those states. If we have specific domain knowledge about
the downstream application (e.g., we know certain pages should be off limits), such rules can be manually
enforced with high accuracy. One advantage of tree search is that it is easier to incorporate such a constraint:
it can be directly integrated into the value function to prevent execution of dangerous actions. Another
direction to handle this would be to train a world model (Ha & Schmidhuber, 2018) that we can use for
simulations during search. Search may also be more easily implemented in offline settings where actions are
non-destructive as they can always be undone or reset, such as programming (Jimenez et al., 2023; Yang
et al., 2024a) or Microsoft Excel (Li et al., 2024).

6 Conclusion

In this paper, we introduced an inference-time search algorithm designed to enhance the capabilities of
language model agents on realistic web tasks. Our approach integrates best-first tree search with LM agents,
enabling them to explore and evaluate multiple action trajectories to achieve superior performance on web
tasks. This is the first time search has been shown to significantly improve the success rates of LM agents on
realistic web environments, as demonstrated on the (Visual)WebArena benchmarks. Our search procedure is
general, and it will be valuable to apply it to other domains in future work. We believe that inference-time
search will be a key component for building capable agents that can plan, reason, and act autonomously to
perform computer tasks.

Statement of Broader Impact

As an active area of machine learning research, language model web agents present both opportunities and
potential ethical considerations. Improved web agents could improve accessibility for users with disabilities,
automate repetitive or tedious tasks, and potentially democratize access to complex web platforms. Our
search method contributes towards making such benefits more reliable and widely available by improving the
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robustness and success rate of language model agents. However, we acknowledge several considerations of
broader impact:

• Intended uses. Our work is a research product that aims to advance the development of web agents
that can help augment humans by automating computer tasks. It is not in its current state intended
for deployment in practical scenarios. However, we acknowledge that as they get better, enhanced
web agents might be leveraged for malicious purposes, such as more sophisticated phishing attempts
or automated attacks on web services. As with all emerging technologies, developers deploying these
technologies should incorporate consider potential misuse scenarios and implement the appropriate
safeguards.

• Privacy: More capable web agents could potentially be used to scrape personal information or
navigate private areas of websites more effectively. We emphasize the importance of respecting user
privacy and website terms of service in any real-world deployment of these technologies.

• Economic impact. As web agents become more capable, there may be concerns about job
displacement for roles that involve web-based tasks. We believe that web agents will augment human
capability, and will be able to improve the overall quality of work by automating tedious computer
tasks. However, as this technology starts being deployed more broadly, researchers and developers
should proactively consider how to manage this transition and support affected workers.

• Fairness and bias. As with any modern AI system, web agents may inherit or amplify biases
present in their training data or underlying language models. Care must be taken to assess and
mitigate unfair treatment or representation of different user groups. As an inference time algorithm,
our approach can easily be applied to any off-the-shelf language model, and will likely benefit from
upstream efforts on language model safety and alignment.

Our approach also potentially provides a framework that could help address some of these concerns. The
value function in our tree search algorithm offers a natural way to encode safety constraints at inference time.
For example, classifiers can be integrated with our proposed value function to prevent destructive actions or
violations of privacy and security policies. We encourage further research into the ethical implications of web
agents, and the development of guidelines and best practices for the responsible deployment of web agents.
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A Appendix

In the appendix we provide further qualitative analysis and implementation details, including the prompts
used in our experiments.

A.1 Qualitative Examples

We discuss several other qualitative examples from the agent with search.

Figure 5: WA task #14 is an example where performing more exploration helps the model to identify a
trajectory that is likely to be more successful than others.

Enabling exploration A significant advantage of models with search is their ability to explore larger parts
of the environment compared to models without search. Fig. 5 part of the search tree for WebArena task
#14 (in the CMS environment), where the model is able to take multiple plausible actions at the first step
(actions 1, 2, 3, and 4 in the graph), and expand the search tree to find the best trajectory (3→ 5→ 6→ 10,
which achieves the highest value of 0.68). In this case, the model terminates after hitting the search budget c
(rather than finding a state with value of 1.0), committing to the best found trajectory thus far, which is
successful. This also highlights that our value function does not need to be perfect for search to be helpful.

Improving robustness As discussed in Sec. 5.3, the baseline agent can be prone to selecting bad samples
from the language model due to randomness from nucleus sampling. Search allows the agent to explore each
possibility and identify the best trajectories. VWA shopping task #96 (shown in Fig. 6) is another example.
The baseline agent fails on this task, but the agent with search avoids the first two trajectories (ending at
actions 3 and 4) due to low values assigned after exploring the subsequent states. It is able to prune these
and identify a successful trajectory (highlighted in Fig. 6).
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Task Instruction (   ): “I need something like this for my apartment. Can you add one to my 
wishlist?”
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Figure 6: VWA shopping task #96 is another example where search allows the model to be more robust to
sampling bad actions. On this task, the baseline agent without search failed, but the agent with search is
able to prune less promising trajectories (faded nodes in the figure) to identify the successful one.

Agent Model Value Function Max Steps No Search + Search ∆

VWA

Llama-3-70B-Instruct (Koh et al., 2024) - 30 9.8% - -
GPT-4o + SoM (Koh et al., 2024) - 19.8% - -
Llama-3-70B-Instruct + captions LLaVA-1.6-34B

5

7.6% 13.5% +77.6%
Llama-3-70B-Instruct + captions GPT-4o 7.6% 16.7% +119.7%
Llama-3.1-70B-Instruct + captions GPT-4o 9.1% 16.2% +78.0%
GPT-4o-mini + SoM GPT-4o-mini 9.1% 14.4% +58.2%
GPT-4o + SoM GPT-4o 18.9% 26.4% +39.7%

WA

GPT-4o (Zhou et al., 2024b) -

30

13.1% - -
GPT-4 + Reflexion (Pan et al., 2024) - 15.6% - -
AutoWebGLM (Lai et al., 2024) - 18.2% - -
AutoEval (Pan et al., 2024) - 20.2% - -
BrowserGym (Drouin et al., 2024) - 23.5% - -
SteP (Sodhi et al., 2024) - 35.8% - -
Llama-3-70B-Instruct GPT-4o 5 7.6% 10.1% +32.3%
GPT-4o GPT-4o 15.0% 19.2% +28.0%

Table 8: Success rates (SR) and relative change (∆) for baseline models and models that employ search on
the VisualWebArena (VWA) (Koh et al., 2024) and WebArena (WA) (Zhou et al., 2024b) benchmarks. We
also show other published approaches. Search substantially improves our baseline models, setting a new
state-of-the-art on VWA.

A.2 Additional Ablations

A.2.1 Value Function Ablations

In Sec. 4.2 of the main paper, we experimented with using gpt-4o as our value function. In Tab. 8, we present
results using different language models as the agent models and the value functions. We observe that our
tree search algorithm is effective across a range of different model sizes and capabilities. In particular, our
approach applied to the Llama-3-70B-Instruct and LLaVA-1.6-34B value function yields a 77.6% relative
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improvement over the baseline Llama-3-70B-Instruct agent on VWA (7.6% to 13.5%), and is a fully open
sourced and reproducible baseline. For the GPT-4o-mini model (a relatively weaker model compared to
GPT-4o) we also observed improvements when it is used as both the agent model and the value function,
improving performance by 58.2% over the no-search baseline on VWA (9.1% to 14.4%).

A.3 Implementation Details

A.3.1 Language Model Agents

For all experiments, we use a webpage viewport width of 1280, a viewport height of 2048, and truncate text
observations to 3840 tokens. We sample from models using nucleus sampling with a temperature of 1.0 and a
temperature of 1.0 and a top-p of 0.95. The system message used in all our experiments is provided in Fig. 7.
This instructs the agent with the guidelines for the web navigation task, and list out all the possible actions
that it can perform.

For the GPT-4o agent on VWA, we use the same prompt with SoM prompting from Koh et al. (2024),
reproduced in Fig. 8. The model is provided with 3 in-context examples. A similar prompt (without the image
screenshots) is used for the caption-augmented Llama-3-70B-Instruct agent which takes the caption-augmented
accessibility tree as input (shown in Fig. 9). On WA, the agents take the accessibility tree as input, and we
use the same prompt from Zhou et al. (2024b) that includes 2 in-context examples (reproduced in Fig. 10).

A.3.2 Value Function

As described in Sec. 3.2, we implement the value function fv by prompting a multimodal language model
with all current and previously seen observations {o1, . . . , op}. We use a prompt similar to the one from Pan
et al. (2024), but make several modifications:

• Instead of just the current screenshot, we include the last-d screenshots of the evaluated trajectory,
to enable the value function to more accurately compute success or failure for tasks that involve
multi-step reasoning (e.g., whether the final observation corresponds to the second item in the second
row of the second last observation).

• We modify the instructions to include more detailed instructions about what constitutes a failure or
a success crtieria. This is necessary as our search occurs over a denser graph (compared to generating
and re-ranking trajectories), and requires a more accurate value function. We refer readers to Chen
et al. (2024b) for more discussion.

• Rather than a binary output, we instruct the model to produce whether the given observations have
succeeded at the task or failed. If it fails, we further prompt the model to output if it is possibly on
the right track to success. This allows us to collect scores in ‘{0, 0.5, 1}, enabling more finegrained
value outputs (in addition to the averaging of multiple reasoning paths described in Sec. 4.1).

The full system message and prompt for the value function is provided in Tab. 11. We also note that our
value function is heavily visual, which may be one explanation for why our method is more effective on the
multimodal VWA benchmark than on WA (Sec. 4). Including more finegrained textual information about the
trajectory on top of the screenshots, such as the accessibility tree representations of each page, may further
improve its performance (at greater compute and API cost).

A.4 Search Algorithm

Our search procedure described in Sec. 3.3 is summarized in Algorithm. 1.

A.4.1 Environment Reset

In this section, we describe the implementation details of the backtracking used in our search procedure:
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Algorithm 1 Our proposed search algorithm at step t

Require: depth d, branching factor b, search budget c, start state st

1: Initialize frontier F ← {} as a max priority queue
2: Initialize best state ŝt ← st

3: Initialize the best score v̂t ← −∞
4: Initialize the search counter s← 0
5: while s < c do
6: sp, vprev ← pop(F)
7: Backtrack and execute new actions to get to state sp

8: Compute the score vp = fv(I, {o1, . . . , op}) from current and previous observations
9: s← s + 1

10: if vp ≥ v̂t then
11: v̂t ← vp

12: ŝt ← sp

13: end if
14: if vp ≥ θ then
15: break {Found a likely successful state}
16: end if
17: if s ≥ c then
18: break {Search budget exceeded}
19: end if
20: if |s0, ..., sp| < d then
21: Sample b candidates for the next action from the LM: {a1

p, ..., ab
p} ∼ fθ(op)

22: for i← 1 to b do
23: Execute ai

p to get to state si
p

24: Add new candidate state and the current value to the frontier: F ← F ∪ (si
p, vp)

25: end for
26: end if
27: end while
28: Reset F ← {} and s← 0
29: Go to the best state ŝt

30: Set t← t + (#actions to get from st to ŝt)

1. We maintain a max priority queue that contains sequences of actions and their score v (from the
value function). Each element is a sequence of actions that the agent has to sequentially execute
starting from the initial state (task dependent, but often the website homepage) to get to state s
that has the corresponding score v.

2. After we execute a new action (L23 of Algorithm. 1), we append this action to the sequence of actions
and add the new sequence to the priority queue with its corresponding score v.

3. In order to reset the environment to get a clean slate for the next node to explore, we reset to the
initial state again, and repeat the execution of the next sequence of actions starting from step 1.

We implemented backtracking in this fashion, as we found that this was a substantially more complete way of
resetting the state, as opposed to simply clicking the “back” button on the browser for example, as this does
not persist certain web states such as the scroll offset, or retain text in text inputs. While our implementation
does improve fidelity of backtracking and resets, it however does add significant overhead in terms of time
(see Sec. 5.4 for more discussion).

The exact code implementation details can be found within the removed_for_review file of our publicly
available code at removed_for_review.
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You are an autonomous intelligent agent tasked with navigating a web browser. You will be given web-based tasks.
These tasks will be accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page screenshot: This is a screenshot of the webpage, with each interactable element assigned a
unique numerical id. Each bounding box and its respective id shares the same color.
The observation, which lists the IDs of all interactable elements on the current web page with their text content if any,
in the format [id] [tagType] [text content]. tagType is the type of the element, such as button, link, or textbox. text
content is the text content of the element. For example, [1234] [button] [’Add to Cart’] means that there is a button
with id 1234 and text content ’Add to Cart’ on the current web page. [] [StaticText] [text] means that the element is
of some text that is not interactable.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your progress.

The actions you can perform fall into several categories:

Page Operation Actions:
ˋˋˋclick [id]ˋˋˋ: This action clicks on an element with a specific id on the webpage.
ˋˋˋtype [id] [content]ˋˋˋ: Use this to type the content into the field with id. By default, the “Enter” key is pressed
after typing unless press_enter_after is set to 0, i.e., ˋˋˋtype [id] [content] [0]ˋˋˋ.
ˋˋˋhover [id]ˋˋˋ: Hover over an element with id.
ˋˋˋpress [key_comb]ˋˋˋ: Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+v).
ˋˋˋscroll [down]ˋˋˋ or ˋˋˋscroll [up]ˋˋˋ: Scroll the page up or down.

Tab Management Actions:
ˋˋˋnew_tabˋˋˋ: Open a new, empty browser tab.
ˋˋˋtab_focus [tab_index]ˋˋˋ: Switch the browser’s focus to a specific tab using its index.
ˋˋˋclose_tabˋˋˋ: Close the currently active tab.

URL Navigation Actions:
ˋˋˋgoto [url]ˋˋˋ: Navigate to a specific URL.
ˋˋˋgo_backˋˋˋ: Navigate to the previously viewed page.
ˋˋˋgo_forwardˋˋˋ: Navigate to the next page (if a previous ’go_back’ action was performed).

Completion Action:
ˋˋˋstop [answer]ˋˋˋ: Issue this action when you believe the task is complete. If the objective is to find a text-based
answer, provide the answer in the bracket.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has a list of websites you can
visit.
http://homepage.com/password.html lists all the account name and password for the websites. You can use them to
log in to the websites.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start with a “In summary, the next action I will perform is” phrase,
followed by action inside ˋˋˋˋˋˋ. For example, “In summary, the next action I will perform is ˋˋˋclick [1234]ˋˋˋ”.
5. Issue stop action when you think you have achieved the objective. Don’t generate anything after stop.

Figure 7: System message from Koh et al. (2024) in our SoM agent.
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example_user:
IMAGES: (1) current page screenshot
OBSERVATION:
[31] [IMG] [Image, description: hp fx-7010dn fax machine, url: B08GKZ3ZKD.0.jpg]
[32] [A] [HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)]
[ ] [StaticText] [$279.49]
[33] [BUTTON] [Add to Cart]
[34] [A] [Add to Wish List]
[35] [A] [Add to Compare]
URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine?
PREVIOUS ACTION: None
example_assistant: Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which is the
product identified in the objective. Its price is $279.49. I think I have achieved the objective. I will issue the stop
action with the answer. In summary, the next action I will perform is ´´´stop [$279.49]´´´
example_user:
IMAGES: (1) current page screenshot
OBSERVATION:
[ ] [StaticText] [/f/food]
[ ] [StaticText] [[homemade] Obligatory Halloween Pumpkin Loaf! Submitted by kneechalice t3_yid9lu 1 year ago]
[9] [IMG] [ ]
[ ] [StaticText] [Submitted by kneechalice t3_yid9lu 1 year ago]
[10] [A] [kneechalice]
[11] [A] [45 comments]
[ ] [StaticText] [[I ate] Maple Pecan Croissant Submitted by AccordingtoJP t3_y3hrpn 1 year ago]
[14] [IMG] [ ]
[ ] [StaticText] [Submitted by AccordingtoJP t3_y3hrpn 1 year ago]
[15] [A] [AccordingtoJP]
[16] [A] [204 comments]
URL: http://reddit.com
OBJECTIVE: Tell me what the top comment on the croissant post says.
PREVIOUS ACTION: None
example_assistant: Let’s think step-by-step. This page has a post titled ’[I ate] Maple Pecan Croissant’, which is the
post mentioned in the objective. In order to find the top comment, I will navigate into the comments section of the
post. In summary, the next action I will perform is ´´´click [11]´´´
example_user:
IMAGES: (1) current page screenshot
OBSERVATION:
[ ] [StaticText] [What are you looking for today?]
[5] [INPUT] [ ]
[6] [SELECT] [Select a category]
[7] [BUTTON] [Search]
[ ] [StaticText] [Latest Listings]
[ ] [StaticText] [Atlas Powered Audio System w/ Tripod 150.00 $ Music instruments Borough of Red Lion
(Pennsylvania) 2023/11/16]
[8] [IMG] [Atlas Powered Audio System w/ Tripod]
[9] [A] [Atlas Powered Audio System w/ Tripod]
[ ] [StaticText] [150.00 $]
[ ] [StaticText] [Neptune Gaming Console 350.00 $ Video gaming Pennwyn (Pennsylvania) 2023/11/16]
URL: http://classifieds.com
OBJECTIVE: Help me find the cheapest dark colored guitar.
PREVIOUS ACTION: None
example_assistant: Let’s think step-by-step. The objective is to find the cheapest dark colored guitar on the site. The
site has a search box whose ID is [5]. I can search for guitars by entering “guitar”. I can submit this by pressing the
Enter afterwards. In summary, the next action I will perform is ´´´type [5] [guitar] [1]´´´

Figure 8: In-context examples and prompt adopted from Koh et al. (2024) for our SoM agents. The webpage
screenshots with SoM are added to the end of each round of the example_user dialogue.
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example_user:
OBSERVATION:
[1744] [link] [’HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)’]
[1749] [StaticText] [$279.49]
[1757] [button] [’Add to Cart’]
[1760] [button] [’Add to Wish List’]
[1761] [button] [’Add to Compare’]
URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine?
PREVIOUS ACTION: None
example_assistant: Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which is the
product identified in the objective. Its price is $279.49. I think I have achieved the objective. I will issue the stop
action with the answer. In summary, the next action I will perform is ´´´stop [$279.49]´´´ example_user:
IMAGES: (1) current page screenshot
OBSERVATION:
[204] [heading] [’/f/food’]
[593] [heading] [’[homemade] Obligatory Halloween Pumpkin Loaf!’]
[942] [link] [’[homemade] Obligatory Halloween Pumpkin Loaf!’]
[945] [StaticText] [’Submitted by ’]
[30] [link] [’kneechalice’ expanded: False]
[1484] [StaticText] [’t3_yid9lu’]
[949] [time] [’October 31, 2022 at 10:10:03 AM EDT’]
[1488] [StaticText] [’1 year ago’]
[1489] [link] [’45 comments’]
[605] [heading] [’[I ate] Maple Pecan Croissant’]
[963] [link] [’[I ate] Maple Pecan Croissant’]
[966] [StaticText] [’Submitted by ’]
[37] [link] [’AccordingtoJP’ expanded: False]
[1494] [StaticText] [’t3_y3hrpn’]
[970] [time] [’October 13, 2022 at 10:41:09 PM EDT’]
[1498] [StaticText] [’1 year ago’]
[1499] [link] [’204 comments’]
URL: http://reddit.com
OBJECTIVE: Tell me what the top comment on the croissant post says.
PREVIOUS ACTION: None
example_assistant: Let’s think step-by-step. This page has a post titled ’[I ate] Maple Pecan Croissant’, which is the
post mentioned in the objective. In order to find the top comment, I will navigate into the comments section of the
post. In summary, the next action I will perform is ´´´click [1499]´´´ example_user:
IMAGES: (1) current page screenshot
OBSERVATION:
[42] [link] [’My account’]
[43] [link] [’Logout’]
[44] [link] [’Publish Ad’]
[25] [heading] [’What are you looking for today?’]
[143] [StaticText] [’Keyword’]
[81] [textbox] [’e.g., a blue used car’ required: False]
[146] [StaticText] [’Category’]
[28] [heading] [’Latest Listings’]
URL: http://classifieds.com
OBJECTIVE: Help me find the cheapest dark colored guitar.
PREVIOUS ACTION: None
example_assistant: Let’s think step-by-step. The objective is to find the cheapest dark colored guitar on the site. The
site has a search box whose ID is [5]. I can search for guitars by entering “guitar”. I can submit this by pressing the
Enter afterwards. In summary, the next action I will perform is ´´´type [81] [guitar] [1]´´´

Figure 9: In-context examples and prompt used for the caption-augmented Llama-3 agent. The webpage
accessibility tree is added to the end of each round of the example_user dialogue.
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example_user:
OBSERVATION:
[1744] [link] [’HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)’]
[1749] [StaticText] [$279.49]
[1757] [button] [’Add to Cart’]
[1760] [button] [’Add to Wish List’]
[1761] [button] [’Add to Compare’]
URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine?
PREVIOUS ACTION: None
example_assistant: Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which is the
product identified in the objective. Its price is $279.49. I think I have achieved the objective. I will issue the stop
action with the answer. In summary, the next action I will perform is ´´´stop [$279.49]´´´ example_user:
IMAGES: (1) current page screenshot
OBSERVATION:
[164] [textbox] [’Search’ focused: True required: False]
[171] [button] [’Go’]
[174] [link] [’Find directions between two points’]
[212] [heading] [’Search Results’]
[216] [button] [’Close’]
URL: http://openstreetmap.org
OBJECTIVE: Show me the restaurants near CMU
PREVIOUS ACTION: None
example_assistant: Let’s think step-by-step. This page has a search box whose ID is [164]. According to the nominatim
rule of openstreetmap, I can search for the restaurants near a location by “restaurants near”. I can submit my typing
by pressing the Enter afterwards. In summary, the next action I will perform is ´´´ type [164][restaurants near
CMU][1]´´´

Figure 10: In-context examples and prompt used for the text-only GPT-4o agent on WebArena. The webpage
accessibility tree is added to the end of each round of the example_user dialogue.
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system_message:
You are an expert in evaluating the performance of a web navigation agent. The agent is designed to help a human
user navigate a website to complete a task. Given the user’s intent, the agent’s action history, the final state of the
webpage, and the agent’s response to the user, your goal is to decide whether the agent’s execution is successful or not.
If the current state is a failure but it looks like the agent is on the right track towards success, you should also output
as such.

There are three types of tasks:
1. Information seeking: The user wants to obtain certain information from the webpage, such as the information of a
product, reviews, the text in a comment or post, the date of a submission, etc. This may be formulated in the intent
as “tell me”, “what is”, or “list out”. The agent’s response must contain the information the user wants, or explicitly
state that the information is not available. Otherwise, e.g. the agent encounters an exception and respond with the
error content, the task is considered to be a failure. It is VERY IMPORTANT that the bot response is the stop
action with the correct output. If the bot response is not stop (e.g., it is click, type, or goto), it is considered a failure
for information seeking tasks.
2. Site navigation: The user wants to navigate to a specific page (which may also be specified in the intent as “find”,
“show me”, “navigate to”). Carefully examine the agent’s action history and the final state of the webpage (shown in
the LAST IMAGE) to determine whether the agent successfully completes the task. It is VERY IMPORTANT that
the agent actually navigates to the specified page (reflected by the final state of the webpage, in the LAST IMAGE)
and NOT just output the name of the item or post. Make sure that the final url is compatible with the task. For
example, if you are tasked to navigate to a comment or an item, the final page and url should be that of the specific
comment/item and not the overall post or search page. If asked to navigate to a page with a similar image, make sure
that an image on the page is semantically SIMILAR to the intent image. If asked to look for a particular post or item,
make sure that the image on the page is EXACTLY the intent image. For this type of task to be considered successful,
the LAST IMAGE and current URL should reflect the correct content. No need to consider the agent’s response.
3. Content modification: The user wants to modify the content of a webpage or configuration. Ensure that the
agent actually commits to the modification. For example, if the agent writes a review or a comment but does not
click post, the task is considered to be a failure. Carefully examine the agent’s action history and the final state
of the webpage to determine whether the agent successfully completes the task. No need to consider the agent’s response.

*IMPORTANT*
Format your response into two lines as shown below:

Thoughts: <your thoughts and reasoning process>
Status: “success” or “failure”
On the right track to success: “yes” or “no”

user:
<intent screenshots>
User Intent: intent
<obs_screenshot_1> ... <obs_screenshot_d>
Action History: last_actions_str
Bot response to the user: last_response
Current URL: current_url
The images corresponding to the user intent are shown in the FIRST {len(intent_images)} images (before the User
Intent).
The last {len(screenshots)} snapshots of the agent’s trajectory are shown in the LAST {len(screenshots)} images. The
LAST IMAGE represents the current state of the webpage.

Figure 11: System message and prompt used for the value function. Blue text indicates items that will be
replaced by image content during the call to the value function.
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