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Summary
We study fixed-budget pure exploration settings for multi-task representation learning

(MTRL) in linear and bilinear bandits. In fixed budget MTRL linear bandit setting the goal is to
find the optimal arm of each of the tasks with high probability within a pre-specified budget.
Similarly, in a fixed budget MTRL bilinear setting the goal is to find the optimal left and right
arms of each of the tasks with high precision within the budget. In both of these MTRL settings,
the tasks share a common low-dimensional linear representation. Therefore, the goal is to
leverage this underlying structure to expedite learning and identify the optimal arm(s) of each
of the tasks with high precision.

We prove the first lower bound for the fixed-budget linear MTRL setting that takes into
account the shared structure across the tasks. Motivated from the lower bound we propose
the algorithm FB-DOE that uses a double experimental design approach to allocate samples
optimally to the arms across the tasks, and thereby first learn the shared common representation
and then identify the optimal arm(s) of each task. This is the first study on fixed-budget pure
exploration of MTRL in linear and bilinear bandits. Our results show that learning the shared
representation, jointly with allocating actions across the tasks following a double experimental
design approach, achieves a smaller probability of error than solving the tasks independently.

Contribution(s)
1. We formulate the first fixed-budget MTRL problem for the linear and bilinear bandit settings

and establish the first lower bound for the fixed-budget MTRL linear bandit setting.
Context: Previous work of MTRL setting studied fixed confidence linear (Du et al., 2023)
and bilinear bandits (Mukherjee et al., 2023b). We establish the first lower bound for the
fixed-budget MTRL in linear bandit setting and show that probability of error scales as
Ω̃(M exp(−n∆2/H2,lin log2 k)). Our bound contains the worst case hardness parameter
H2,lin instead of the true hardness parameter H1,lin. The work Du et al. (2023); Mukherjee
et al. (2023b) provides no such lower bounds for the pure exploration MTRL setting.

2. We propose a double experimental design algorithm for fixed-budget MTRL linear bandits
setting and prove a tight upper bound on the probability of error.
Context: Our proposed algorithm for fixed-budget MTRL linear bandits has the probability
of error scaling as Õ(M exp(−n∆2/H2,lin log2 k)). Therefore, the upper bound on the
probability of error of our proposed algorithm matches the lower bound with respect to the
parameters k, d, M , and worst case hardness H2,lin. Previous work (Du et al., 2023) studied
fixed confidence MTRL linear bandit setting.

3. We also extend our work to fixed-budget bilinear bandit settings and again propose a double
experimental design algorithm.
Context: Our proposed algorithm achieves a probability of error that scales as
Õ(M(exp(−n∆2)/H2,bilin log2(k1 + k2)r). Previous work (Mukherjee et al., 2023b) stud-
ied fixed confidence MTRL bilinear bandit setting. We show the first upper bound on the
probability of error in bilinear setting that has the worst case hardness parameter H2,bilin in
the bound.
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Abstract

In this paper, we study fixed-budget pure exploration settings for multi-task representa-1
tion learning (MTRL) in linear and bilinear bandits. In fixed budget MTRL linear bandit2
setting the goal is to find the optimal arm of each of the tasks with high probability3
within a pre-specified budget. Similarly, in a fixed budget MTRL bilinear setting the goal4
is to find the optimal left and right arms of each of the tasks with high precision within5
the budget. In both of these MTRL settings, the tasks share a common low-dimensional6
linear representation. Therefore, the goal is to leverage this underlying structure to7
expedite learning and identify the optimal arm(s) of each of the tasks with high precision.8
We prove the first lower bound for the fixed-budget linear MTRL setting that takes9
into account the shared structure across the tasks. Motivated from the lower bound10
we propose the algorithm FB-DOE that uses a double experimental design approach11
to allocate samples optimally to the arms across the tasks, and thereby first learn the12
shared common representation and then identify the optimal arm(s) of each task. This is13
the first study on fixed-budget pure exploration of MTRL in linear and bilinear bandits.14
Our results show that learning the shared representation, jointly with allocating actions15
across the tasks following a double experimental design approach, achieves a smaller16
probability of error than solving the tasks independently.17

1 Introduction18

In this paper, we study Multi-task Representation Learning (MTRL) for fixed budget pure exploration19
settings in linear and bilinear bandits. Both linear and bilinear bandits are an important class of20
sequential decision-making problems. The linear bandit setting shows up in a lot of real-world21
settings such as news content recommendation (Li et al., 2010), ad recommendation (Chu et al.,22
2011), online safe decision making (Kazerouni et al., 2017). Similarly, the bilinear bandit setting23
shows up in applications that require interactions between pairs of items. For example, in a drug24
discovery application, scientists may want to determine whether a particular (drug, protein) pair25
interacts in the desired way (Luo et al., 2017; Jun et al., 2019). Likewise, an online dating service26
might match a pair of people and gather feedback about their compatibility (Shen et al., 2023). A27
clothing website’s recommendation system may suggest a pair of items (top, bottom) for a customer28
based on their likelihood of matching (Reyes et al., 2021).29

We focus on the multi-task representation learning setting (Bengio et al., 1990; Schaul & Schmidhuber,30
2010). In many decision-making problems there exists several interrelated tasks such as treatment31
planning for different diseases (Bragman et al., 2018) and content optimization for multiple websites32
(Agarwal et al., 2009). Often, there exists a shared representation among these tasks, such as the33
features of drugs or the representations of website items. Therefore, we can leverage this shared34
representation to accelerate learning. This area of research is called multi-task representation learning35
and has recently generated a lot of attention in machine learning (Bengio et al., 2013; Li et al., 2014;36
Maurer et al., 2016; Du et al., 2020; Tripuraneni et al., 2021; Du et al., 2023; Mukherjee et al., 2023b).37
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There are many applications of this multi-task representation learning in real-world settings. For38
instance, in clinical treatment planning, we seek to determine the optimal treatments for multiple39
diseases, and there may exist a low-dimensional representation common to multiple diseases. To40
avoid the time-consuming process of conducting clinical trials for individual tasks and collecting41
samples, we utilize the shared representation and decrease the total number of required samples.42

Moreover, in many settings, it is expensive to collect samples and the learner wants to identify the43
optimal arm with high precision within a pre-specified number of samples n. This is termed the fixed44
budget setting (Bubeck et al., 2009; Audibert et al., 2010; Azizi et al., 2022; Lalitha et al., 2023)45
and the goal of the learner is to minimize the probability of error in identifying the optimal arm(s).46
Previously the Katz-Samuels et al. (2020); Yang & Tan (2021); Azizi et al. (2022) studied the setting47
under a single task linear bandit setting without representation learning component. Recent work48
(Du et al., 2023; Mukherjee et al., 2023b) focused on the fixed confidence setting for the MTRL49
linear and bilinear bandits. Note that Carpentier & Locatelli (2016) have shown that fixed budget50
setting requires a different approach than fixed confidence as the strategy that is optimal in fixed51
confidence may not be achievable in fixed budget setting. Therefore, the fixed budget MTRL in linear52
and bilinear bandits is an important area of study that has remained underexplored.53

In particular, if we directly apply an existing approach from linear bandits, such as OD-LinBAI (Yang54
& Tan, 2021) or GSE (Azizi et al., 2022), to the linear MTRL fixed budget setting, the resulting55
probability of error scales as Õ(M exp(−n∆2/d log2 d)), where Õ(·) hides other smaller factors,56
d is the dimension of the feature of the arms, and ∆ is the minimum reward gap. In this paper, for57
illustration purpose, we consider OD-LinBAI as a representative algorithm for single task fixed-58
budget linear bandits. Similarly, in the bilinear MTRL fixed budget setting, the probability of error59
of OD-LinBAI scales as Õ(M exp(−n∆2/d1d2 log2 d1d2)) where d1, d2 are the dimensions of the60
feature of the left and right arms, respectively. Meanwhile, the power of MTRL lies in leveraging61
the underlying shared representation across tasks to expedite learning, which further reduces the62
individual task learning to a low dimensional latent space. Importantly, for linear bandits the low63
dimensional latent features scale with latent dimension k ≪ d; for bilinear bandits, the latent64
dimensions of left and right arms k1, k2 ≪ d1, d2, and the rank of hidden parameter matrix scales as65
r ≪ min{k1, k2}. The performance of OD-LinBAI suffers as it treats the task individually, and fails66
to learn the shared representation and the latent features in low dimension. Hence the two questions67
to ask are these:68

1) Can we design a MTRL algorithm for fixed-budget pure exploration in linear bandits
whose probability of error scales as Õ(M exp(−n∆2/k log2 k))?
2) Can we design a MTRL algorithm for fixed-budget pure exploration in bilinear bandits
whose probability of error scales as Õ(M exp(−n∆2)/(k1 + k2)r log2((k1 + k2)r))?

69

In this paper, we answer positively to the above questions and make the following novel contributions70
to the MTRL decision-making setting:71

1) We formulate the fixed-budget MTRL problem for the linear and bilinear bandit setting. To our72
knowledge, this is the first work that explores MTRL for fixed-budget pure exploration in linear and73
bilinear bandits.74

2) We establish the first lower bound for the fixed-budget MTRL in linear bandit setting and show75
that probability of error scales as Ω̃(M exp(−n∆2/H2,lin log2 k)), where H2,lin is the worst case76
hardness of the problem. We leave getting a lower bound with respect to true hardness H1,lin for77
future works.78

3) Motivated by the lower bound we propose the algorithm Fixed Budget Double Optimal DEsign79
(abbreviated as FB-DOE) for the fixed-budget MTRL in linear bandits whose probability of error80
scales as Õ(M exp(−n∆2/H2,lin log2 k)). Therefore, FB-DOE upperbound matches the lower81
bound in the linear MTRL setting with respect to the parameters k, d, M , and H2,lin. This improves82
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over OD-LinBAI whose probability of error scales as Õ(M exp(−n∆2/H ′
2,lin log2 d)) and H ′

2,lin >83
H2,lin.84

4) Our algorithm FB-DOE for the fixed-budget MTRL in bilinear bandits achieves a probability85
of error that scales as Õ(M(exp(−n∆2)/H2,bilin log(k1 + k2)r). This improves over OD-LinBAI86
whose probability of error scales as Õ(M exp(−n∆2/H ′

2,bilin log2 d1d2)) and H ′
2,bilin > H2,bilin.87

2 MTRL Fixed Budget Linear Bandit88

In this section, we study the linear fixed-budget MTRL bandits. We first introduce the setting in89
Section 2.1. Recall that our goal is to devise an algorithm for the fixed-budget linear MTRL setting.90
To this effect, we first present the lower bound for fixed-budget linear MTRL bandits in Section 2.2.91
Motivated by the lower bound, we then introduce the MTRL algorithm for the fixed-budget linear92
bandits in Section 2.3.93

2.1 Preliminaries94

We now introduce the linear MTRL setting (Yang et al., 2020; 2022; Du et al., 2023). We denote95
[n] = {1, 2, . . . , n}. We consider a setting with M tasks, indexed by m ∈ [M ]. Each task m consists96
of a set of arms denoted by X ⊂ Rd and an unknown parameter θm,∗ ∈ Rd. For each x ∈ X ,97
∥x∥2 ≤ Lx for some Lx. In the linear bandit setting, at each round t, the learner chooses an arm98
xm,t ∈ X for each task m, and the expected reward is x⊤

m,tθm,∗. We assume that each θm,∗ can99
be decomposed as θm,∗ = Bwm, where B ∈ Rd×k is shared across tasks, while wm ∈ Rk is100
task-specific (Yang et al., 2020; 2022). Let ∥wm∥2 ≤ 1. We assume that k ≪ d, k ≥ 2 and M ≫ d,101
hence B facilitates dimensionality reduction. In the context of MTRL, B is referred to as feature102
extractor, while xm,t is termed as rich observations. The reward for task m ∈ [M ] at round t is:103

rm,t = x⊤
m,tθm,∗ + ηm,t = x⊤

m,tBwm + ηm,t
(a)
= g⊤

m,twm + ηm,t. (1)

where ηm,t represents independent zero-mean 1-sub-Gaussian noise, and in (a), g⊤
m,t ≜ x⊤

m,tB ∈ Rk104
denotes the latent feature. After the learner commits the batch of actions {xm,t : m ∈ [M ]}, they105
receive the batch of rewards {rm,t : m ∈ [M ]}. The latent feature gm,t is unknown to the learner106
and needs to be learnt for each task m, hence the term MTRL. Let i∗m be the optimal arm in task m107
and define the gap ∆m,i=(x

⊤
i∗m

−xi)
⊤θm,∗ for i ̸= i∗m. WLOG we assume i∗m = 1. For simplicity,108

we assume that the expected rewards of the arms are in descending order and that the best arm is109
unique. The goal is to identify the optimal arm i∗m for each task m ∈ [M ].110

2.2 Lower Bound for Linear Fixed Budget MTRL111

In this section, we present the first lower bound for the fixed-budget linear MTRL setting. The key112
idea is to formulate the linear MTRL linear setting as a hypothesis-testing problem. To this effect,113
we first define an environment model for task m as Dm

ij consisting of A actions and J hypotheses114
with true hypothesis θm

∗ = θm
i,j (ij-th column). This is shown in (2) where, each ιij is distinct and115

satisfies ιij < β/4J + Γ/4N for some β > 0, N > maxm∈[M ]
kd log2 k
∆m,min

. The θm
11 is the optimal116

hypothesis in Dm
11, θm

12 is the optimal hypothesis in Dm
12 and so on such that for each Dm

ij and117
i ∈ [N ], j ∈ [J ] we have column (i, j) as the optimal hypothesis. This is a general hypothesis118
testing setting where the functions µa(θ

m) can be thought of as linear functions of θm such that119
µa(θ

m) = xm(a)⊤θm = xm(a)Biw
m
j for some i ∈ [N ] and j ∈ [J ]. Note that this environment is120

different than previously studied for single-task linear bandit setting of Huang et al. (2017); Lattimore121
& Szepesvári (2020) as they do not consider the shared feature extractor B and the latent parameters122
wm.123

Theorem 1. (Lower Bound) Let |Θ| = 2d and θm,∗ ∈ Θ. Then any δ-PAC policy π in the linear124
MTRL setting suffers a total probability of error as Ω(exp(− Mn

log2 d ) +M exp(− n
H2,lin log2 k )) for the125

environment in (2), where H2,lin = maxm∈[M ] max2≤i≤k
i

∆2
m,i

is the hardness parameter.126
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θm = B1w
m
1 B1w

m
2 B1w

m
3 . . . Biw

m
j . . . BNwm

J

µ1(θ
m) = β+Γ β+Γ−(βJ +

Γ
N ) β+Γ−( 2βJ + 2Γ

N ) . . . β+Γ−( (j−1)β
J + (i−1)Γ

N ) . . . β + Γ−( (N−1)β
J + (N−1)Γ

N )
µ2(θ

m) = ι211 ι212 ι213 . . . ι2ij . . . ι2NJ

...
...

µA(θ
m) = ιA11 ιA12 ιA13 . . . ιAij . . . ιANJ

(2)

Discussion 1. Observe that Theorem 1 has two terms in the bound. The first term is the probability127
of error in estimating the feature extractor B that increases as the number of tasks M increases and128
depends on the ambient dimension d. The second term is the probability of error of misidentifying129
the optimal arm in each task m. This term scales with the number of tasks M and latent dimension130
k ≪ d,. The problem complexity parameter H2,lin is present in the term 2, which captures the131
worst-case difficulty of identifying the optimal arm across tasks. Note that we do not get the true132
hardness H1,lin = maxm∈[M ]

∑k
i=1

1
∆2

m,i
in the lower bound, and we leave this to future works.133

Proof (Overview:) The proof differs from the lower bound proof techniques of Carpentier & Locatelli134
(2016); Huang et al. (2017) for the structured bandit settings. We reduce our MTRL linear bandit135
problem to the hypothesis testing setting and construct a worst-case environment as in (2). The key136
technical novelty lies in constructing the worst-case environment in (2), which jointly scales with the137
number of tasks and the latent parameter wm, whereas (Huang et al., 2017; Mukherjee et al., 2022)138
only consider a single-task setting. The proof is given in Appendix A.2.139

2.3 Proposed Algorithm FB-DOE140

We now present our algorithm for the fixed-budget linear MTRL setting. The Theorem 1 shows that141
an optimal agnostic algorithm should first estimate the shared feature extractor B and then estimate142
the optimal arm per task. Moreover, the budget n must carefully be divided to reach the optimal rate143
with respect to k, d, and M . Motivated by this we propose the FB-DOE, which is a phase-based,144
two-stage arm elimination algorithm. Recall that in the fixed budget setting the budget n is given. So145
we divide the algorithm into two stages. The first stage consists of n/2 rounds, where the FB-DOE146
estimates the feature extractor B̂n. Then the second stage consists of another n/2 rounds, where the147
FB-DOE eliminates sub-optimal arms in each task m and finally outputs the estimated optimal arm148
î∗m for each task m. Now we discuss each stage of FB-DOE.149

2.3.1 Stage 1: Estimating B150

In the first stage, FB-DOE leverages the batch of rewards {rm,t : m ∈ [M ]} at every round t from151
M tasks to learn the feature extractor B. To this end, FB-DOE first solves the E-optimal design in152
line 2 of Algorithm 1 in Appendix A.1. Note that E-optimal design minimizes the spectral norm of153
the inverse of the sample covariance matrix and is therefore the most suited strategy at the subspace154
recovery stage. For each task m, FB-DOE samples each arm x(i) for ⌈τEmbE

x (i)⌉ times, where155
τEm = n/2M, bE

x (i) is the allocation proportion of E-optimal design on x(i). With slight abuse156
of notation, we let rm,t(i) be the reward observed for the t-th pull of arm x(i). It then builds an157
estimator Ẑn for the average hidden parameter Z∗ := 1

M

∑M
m=1 θm,∗θ

⊤
m,∗ as follows:158

Ẑn=
2

Mn

M∑
m=1

θ̂mθ̂⊤
m−

( τE
m∑

t=1

xm,tx
⊤
m,t

)−1

, θ̂m=

( τE
m∑

t=1

xm,tx
⊤
m,t

)−1 τE
m∑

t=1

xm,trm,t (3)

where θ̂m ∈ Rd serves as an estimator for θm,∗. Next, it performs SVD decomposition on Ẑn, and159
let the top-k left singular vectors of Ẑn be B̂n, which serves as the estimator for the feature extractor160
B. This is shown in lines 3-5 of the pseudocode in Algorithm 1 in Appendix A.1.161
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2.3.2 Stage 2: Per task arm elimination162

In the second stage, FB-DOE aims to identify the optimal arm in each task m by reducing the original163
d-dimensional linear bandits to a lower k-dimension problem. This is done as follows: For each task164
m, define the dimension-reduced arm set Gm as Gm = {g̃m = B̂⊤

nx,∀x ∈ X}. Note that g̃m ∈ Rk165
and so we have reduced the original d-dimensional linear bandits to k-dimensional linear bandits for166
each task m. This step critically sets us apart from standard linear fixed-budget works (Yang & Tan,167
2021; Azizi et al., 2022). Then FB-DOE runs the G-optimal design similar to OD-LinBAI. We use168
G-optimal design in this stage, as it minimizes the maximum prediction error for feature vectors. In169
particular, FB-DOE partitions the remaining n/2 rounds into ⌈log2 k⌉ phases. It then maintains an170
active arm set Gm,ℓ in each phase ℓ = 1, 2, . . . , ⌈log2 k⌉. The length of each phase roughly equals171
nm(k), defined as172

nm(k)=

n
2M −min(A,

k(k+1)
2 )−

∑⌈log2 k⌉−1

ℓ=1

⌈
k
2ℓ

⌉
⌈log2 k⌉ . (4)

We use nm(k) to signify that phase length depends on the latent dimension k. Motivated by the173
equivalence of the original arm vectors and the dimension-reduced arm vectors, at the beginning of174
each phase ℓ, FB-DOE computes a set of dimension-reduced arm vectors {g̃m,ℓ(i) : i ∈ Gm,ℓ−1} ⊂175
Rkm,ℓ that spans the km,ℓ-dimensional Euclidean space Rkm,ℓ . This can be implemented based on176
the arm vectors of the last phase {g̃m,ℓ−1(i) : i ∈ Gm,ℓ−1} in an iterative manner (see lines 9-14 of177
Algorithm 1 in Appendix A.1).178

Finally, FB-DOE finds a G-optimal design bG
m,ℓ for each task m in phase ℓ with the current dimension-179

reduced arm vectors, with a restriction on the cardinality of the support when ℓ = 1. FB-DOE then180
pulls each arm in Gm,ℓ−1 according to bG

m,ℓ. Specifically, it samples each arm i ∈ G̃m,ℓ−1 exactly181
Nm,ℓ(i) = ⌈bG

m,ℓ(i) ·nm(k)⌉ times, where nm(k) is defined in (4). This step stands in sharp contrast182
to prior fixed-confidence MTRL algorithm (Du et al., 2023), as the low dimensional elimination per183
task in every phase must be done carefully to reach the exponentially low probability of error (see184
lines 9-18 of Algorithm 1 in Appendix A.1).185

Note that the support of the G-optimal design bG
m,ℓ must span Rkm,ℓ by Lemma A.1. Therefore, the186

ordinary least-square (OLS) estimator can be applied to estimate wm (Line 21 of Algorithm 1 in187
Appendix A.1). Then for each arm i ∈ Gm,ℓ−1, an estimate of the expected reward is derived using188
only the observed rewards in that phase. At the end of each phase ℓ, FB-DOE eliminates a subset189
of possibly sub-optimal arms for each task m. In particular, |Gm,0| − ⌈k/2⌉ arms are eliminated190
in the first phase, and about half of the active arms are eliminated in each of the following phases.191
Eventually, there is only a single arm î∗m in the active set for each task m, which is the output of192
FB-DOE. The full pseudo-code is given in Algorithm 1. We further discuss rounding procedures in193
Remark A.18 and additional insights on algorithm in Remark A.19.194

2.4 Probability of error195

In this section, we analyze FB-DOE and bound the probability of error in identifying the optimal arm196
i∗m for each task m ∈ [M ]. We first state assumptions required for our main results on linear setting.197

Assumption 2.1. (Diverse Tasks) We assume that σmin(
1
M

∑M
m=1 wmw⊤

m) ≥ c0
k , for some c0 > 0.198

This assumption ensures that the parameters w1, . . . ,wM are well-distributed in all directions of Rk,199
which is necessary for recovering the feature extractor B (Yang et al., 2020; 2022; Du et al., 2023).200

Assumption 2.2. (Eigenvalue of G-optimal Design Matrix) For any task m ∈ [M ],201
σmin(

∑
i b

G
m(i)B⊤x(i)x(i)⊤B) ≥ ω for some constant ω > 0.202

This assumption ensures that the covariance matrix
∑

i b
G
m(i)B⊤x(i)x(i)⊤B under the optimal203

sample allocation in the second stage is invertible, which is necessary for estimating wm.204

Let Õω,Lx
(·) hide problem dependent factors ω and Lx. Then under Assumption 2.1 and Assump-205

tion 2.2, we have the following guarantee for FB-DOE in the MTRL linear bandit setting.206
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Algorithm 1 Fixed Budget Double Optimal Design (FB-DOE) for Linear Bandits

1: Input: time budget n, arm set X ⊂ Rd.
2: Let E-optimal design be bE

x =argminb∈△X

∥∥(∑i b(i)x x⊤)−1
∥∥. Set τE

m = n
2M

.
3: Stage 1 (Feature Recovery): Pull arm x(i) ∈ X exactly ⌈bE

x (i)τ
E
m⌉ times for each task m and observe

rewards {rm,t}τ
E
m

t=1.
4: Compute Ẑn using (3). Let B̂n be the top-k left singular vectors of Ẑn.
5: Build g̃m(i) = x(i)⊤B̂n for all x(i) ∈ X for each m ∈ [M ]. Denote the set Gm containing g̃m.
6: Initialize tm,0 = 1,Gm,0 ← Gm and km,0 = k. For each arm g̃m(i) ∈ Gm,0, set g̃m,0(i) = g̃m(i).

Calculate nm(k) using (4).
7: Stage 2 (Low dimensional elimination)
8: for ℓ = 1 to ⌈log2 k⌉ do
9: Set km,ℓ = dim (span ({g̃m,ℓ−1(i) : i ∈ Gm,ℓ−1})).

10: if km,ℓ = km,ℓ−1 then
11: For each arm i ∈ Gm,ℓ−1, set g̃m,ℓ(i) = g̃m,ℓ−1(i).
12: else
13: Find matrix Hm,ℓ ∈ Rkm,ℓ−1×km,ℓ whose columns form an orthonormal basis of the subspace

spanned by {g̃m,ℓ−1(i) : i ∈ Gm,ℓ−1}. For each arm i ∈ Gm,ℓ−1, set g̃m,ℓ(i) = H⊤
m,ℓg̃m,ℓ−1(i)

14: end if
15: if ℓ = 1 then
16: Find a G-optimal design bG

m,ℓ : {g̃m,ℓ(i) : i ∈ Gm,ℓ−1} → [0, 1] with
∣∣Supp (bG

m,ℓ

)∣∣ ≤ k(k+1)
2

.
17: else
18: Find a G-optimal design bG

m,ℓ : {g̃m,ℓ(i) : i ∈ Gm,ℓ−1} → [0, 1].
19: end if
20: Set Nm,ℓ(i) =

⌈
bG
m,ℓ (g̃m,ℓ(i)) · nm(k)

⌉
and Nm,ℓ =

∑
i∈Gm,ℓ−1

Nm,ℓ(i). Choose each arm i ∈
Gm,ℓ−1 in each task m exactly Nm,ℓ(i) times.

21: Calculate the OLS estimator for each task m:

ŵm,ℓ = Σ−1
m,ℓ

tm,ℓ+Tm,ℓ−1∑
t=tm,ℓ

g̃m (At) rm,t with Σm,ℓ =
∑

i∈Gm,ℓ−1

Nm,ℓ(i)g̃m,ℓ(i)g̃m,ℓ(i)
⊤

22: Set θ̂m = B̂ŵm for each task m. For each arm i ∈ Gm,ℓ−1, estimate the expected reward: µ̂m,ℓ(i) =

⟨θ̂m,ℓ,xm(i)⟩.
23: Let Gm,ℓ be the set of ⌈k/2ℓ⌉ arms in Gm,ℓ−1 with the largest estimates of the expected rewards.
24: Set tm,ℓ+1 = tm,ℓ +Nm,ℓ.
25: end for

Theorem 2. (informal) Define ∆ = minm mini∈X ∆m,i and H2, lin = maxm∈[M ] max2≤i≤k
i

∆2
m,i

.207

If Mn ≥ ⌈L4
xk

2d2c′(ρE)2 log2(2d)
ω2∆2 ⌉, then the total probability of error of Algorithm 1 is given by208

Õω,Lx
(exp(−Mn

log2 d ) +M exp(− n
H2, lin log2 k )).209

Discussion 2. We have two terms in the bound of Theorem 2. The first term is the probability210
of error in estimating the feature extractor B. Observe that as the number of tasks M increases,211
the first term decays faster, indicating that FB-DOE has a better estimation of the feature extractor212
B. The second term is the probability of error that FB-DOE suffers in misidentifying the optimal213
arm in each task m. Observe that the second term scales with the number of tasks M and low214
dimension k ≪ d, as FB-DOE runs an individual G-optimal design for each task in lower dimension215
k. The problem complexity parameter H2,lin is present in the term 2, which captures the worst-case216
difficulty of identifying the optimal arm across tasks. Note that this improves upon the bound of linear217
OD-LinBAI which scales as Õ(M exp(− n

log2 dH′
2, lin

)), where H ′
2, lin = maxm∈[M ] max2≤i≤d

i
∆2

m,i
218

and H ′
2, lin > H2, lin . We further discuss the bounds in Remark A.20 and theoretical comparison219

in Remark A.21. Also, observe that the condition Mn ≥ ⌈L4
xk

2d2c′(ρE)2 log2(2d)
ω2∆2 ⌉ depends on the220

number of tasks and the given budget n. If budget n is small, a large number of tasks M can ensure221
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the condition of Theorem 2 is satisfied, and it speeds up learning of shared representation across the222
tasks.223

We remark that the upper bound on the probability of error in Theorem 2 matches the lower bound224
in Theorem 1 with respect to the parameters k, d, M and H2mlin. However, note that H2, lin ≤225
H1, lin = maxm∈[M ]

∑k
i=1

1
∆2

m,i
≤ H2, lin log2 k. We leave getting a lower bound with true problem-226

dependent parameter H1, lin for future works.227

Proof (Overview): We divide the proof into three steps. In step 1 we bound the estimation error of228
the average estimator Ẑn. In step 2 we analyze the estimation error for feature extractor B. Finally in229
step 3 we bound the probability of wrongly eliminating optimal arm in low dimension.230

Step 1 (Estimation of average parameter, Stage 1): In the first stage FB-DOE builds the estimator231
Ẑn for the average parameter Z∗ = 1

M

∑M
m=1 θ∗,mθ⊤

∗,m. We modify the proof technique of Du et al.232
(2023), and show in Lemma A.6 of Appendix A.3 that the total probability of error in the first stage233

is given by
(

C(ρE)2d2

√
Mn

exp
(
−Mn

2

))
. Here, ρE is the optimization value of the E-optimal design in234

line 2 of Algorithm 1. Since the tasks share the same arm set X , the ρE = ρEm for any m ∈ [M ].235
Observe that as the number of tasks M increases, the FB-DOE has better estimates of Z∗.236

Step 2 (Estimation of feature extractor, Stage 1): Now using the estimator in (3) we get a good237
estimation of the feature extractor B. Let B̂n be the top-k left singular vectors of Ẑn. Then238
using the Davis-Kahan sin θ Theorem (Bhatia, 2013) in Lemma A.9, we have ∥(B̂⊥

n )
⊤B∥ ≤239

Õ
(
ρE
(

2ckd√
Mn

exp
(
−Mn

2

) ))
. Recall that for task m, Gm consists of all latent arms g̃m(i) = B̂⊤

nx(i)240

for each x(i) ∈ X . Then we prove that σmin(
∑

g̃m(i)∈Gm
bG
m(i)g̃m(i)g̃m(i)⊤) > 0 (Lemma A.10),241

which guarantees that the G-optimal design in stage 2 is valid. Next, Lemma A.12 states that the242
feature estimation error is low, such that for any task m ∈ [M ] and g̃m(j) ∈ Gm, ∥g̃m(j)∥2

Σ−1
m,ℓ

≤243

∥gm(j)∥2
Σ−1

m,ℓ

+
cL4

x

kω2 exp(−Mn) for some constant c > 0. Finally using Lemma A.13, we show244

that the parameter estimation error is also low with the estimated feature g̃m(j). We remark that in245
all these steps the key challenge lies in deriving an exponentially decaying error bound under the246
budget n (Lemma A.10, Lemma A.12), which requires a significantly different analysis than the247
arguments in Du et al. (2023); Yang et al. (2020; 2022)—they only apply for fixed confidence or248
regret minimization setting.249

Step 3 (Elimination in low dimension): In the final step we bound the probability of error in250
outputting i∗m for individual tasks. Our key technical novelty lies in controlling the probability of251
error for each task m even with the noisy latent features in low dimension Rk. Additionally, we have252

to account for feature and parameter estimation error for Mn > ⌈L4
xk

2d2c′(ρE)2 log2(2d)
ω2∆2 ⌉, which is253

not studied in Yang & Tan (2021). In Lemma A.14 we show that indeed the total budget used is at254
most n. Then in Lemma A.16, Lemma A.17 we ensure that the best arm i∗m is eliminated in phase ℓ255
with an exponentially small probability with the right complexity parameter H2, lin appearing in the256
bound. This parameter does not show up in the fixed confidence analysis of Du et al. (2023). We257
combine all steps to get the final claim in Theorem 2.258

Technical challenge: Our key technical is to combine the proof technique of Du et al. (2023)259
with that of Yang & Tan (2021) to derive the upper bound. In the first stage, we derive the high260
confidence bounds that are exponentially decaying with budget n where we modify Lemma C.3261
of Du et al. (2023) to take into account the fixed sample size of our phase (i.e n/2 rounds). This262
leads to a new estimation of the feature extractor B in Lemma A.9, and then for a sufficiently large263

Mn > ⌈L4
xk

2d2c′(ρE)2 log2(2d)
ω2∆2 ⌉ we have a non-vacuous solution to the G-optimal design in stage 2.264

These are shown in Lemma A.6-Lemma A.13. In the second stage, our technical novelty lies in265
controlling the probability of error for the noisy latent features in low-dimensional multi-task linear266
bandits. This is shown in Lemma A.14, Lemma A.16, and Lemma A.17. Note that this approach267
differs from the existing art of fixed budget linear bandit settings (Katz-Samuels et al., 2020; Yang268
& Tan, 2021; Azizi et al., 2022) and significantly different than the fixed confidence linear bandit269
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proofs in (Soare et al., 2014; Mason et al., 2021; Degenne & Koolen, 2019). This is because these270
works do not study the multi-task setting and therefore do not need to control the noisy latent feature271
estimation error in the bounds.272

3 MTRL Fixed Budget Bilinear Bandit273

In this section, we present the algorithm for the fixed-budget bilinear bandit setting. Similar as the274
linear MTRL setting, again we show that a double experimental design approach will lead to a lower275
probability of error than solving the tasks individually.276

3.1 Preliminaries of MTRL for bilinear bandits277

In the MTRL bilinear bandit setting, we again consider a scenario with M tasks, indexed as m = [M ].278
Each task is associated with a hidden parameter Θm,∗ ∈ Rd1×d2 . In the bilinear bandit setting,279
different from the conventional linear bandit framework, each task consists of left and right arm sets280
denoted by X ⊂ Rd1 and Z ⊂ Rd2 respectively. So the learner observes a pair of arms denoted by281
xm,t ∈ X and zm,t ∈ Z for each task m in each round t. The interaction of this arm pair with the282
hidden parameter, Θm,∗ ∈ Rd1×d2 , produces noisy feedback (reward) rm,t = x⊤

m,tΘm,∗zm,t+ηm,t.283
The term ηm,t represents independent zero-mean 1-sub-Gaussian noise.284

Following the setting of Mukherjee et al. (2023b), we assume that each Θm,∗ can be decomposed285
as Θm,∗ = B1Sm,∗B

⊤
2 , where B1 ∈ Rd1×k1 and B2 ∈ Rd2×k2 are shared across tasks, while286

Sm,∗ ∈ Rk1×k2 is task-specific. We assume that k1, k2 ≪ d1, d2, and k1, k2 ≥ 2 as well as287
M ≫ d1, d2. Thus, B1 and B2 serve as means of dimension reduction. Additionally, we assume288
each Sm,∗ has rank r ≪ min{k1, k2}. In the context of MTRL, B1 and B2 are referred to as feature289
extractors, while xm,t and zm,t are termed rich observations. The reward for task m ∈ [M ] at round290
t is:291

rm,t = x⊤
m,tΘm,∗zm,t + ηm,t = x⊤

m,tB1Sm,∗B
⊤
2 zm,t + ηm,t

(a)
= g⊤

m,tSm,∗vm,t + ηm,t. (5)

where, (a) follows as g⊤
m,t ≜ x⊤

m,tB1 and vm,t ≜ B⊤
2 zm,t. Similar to the learning procedure in292

Yang et al. (2020; 2022), at each round t ∈ [n], the learner chooses left and right actions xm,t ∈ X293
and zm,t ∈ Z for each task m ∈ [M ]. After committing the batch of actions {xm,t, zm,t : m ∈ [M ]},294
the learner receives the batch of rewards {rm,t : m ∈ [M ]}. Furthermore, in (5), we refer gm,t ∈ Rk1295
and vm,t ∈ Rk2 as the latent features. Both gm,t and vm,t are unknown to the learner and need296
to be learned for each task m. WLOG let i∗m = 1 be the optimal arm in task m and define gap297
∆m,i = (x⊤

i∗m
Θm,∗zi∗m−x

⊤
i Θm,∗zi) for i ̸= i∗m. Let ∥x∥, ∥z∥ ≤ Lx, ∥Sm,∗∥F ≤ 1. Again, for298

simplicity we assume that the expected rewards of the arms are in descending order and the best arm299
is unique. Let Sr be the minimum eigenvalue of Θm,∗ for any m ∈ [M ].300

3.2 Proposed algorithm: extension of FB-DOE301

We now present an extension of FB-DOE to the bilinear bandit setting. The FB-DOE is a phase-based,302
three-stage arm elimination algorithm. The key difference from the linear bandit setting is that we303
need to have an extra stage to estimate the task-specific parameter Sm,∗. Specifically, the algorithm304
divides the fixed budget n into three stages. The first stage consists of n/3 rounds where FB-DOE305
estimates the left and the right feature extractors B1 and B2. The second stage consists of another306
n/3 rounds where FB-DOE aims to estimate the parameter Sm,∗ for each task m. The third stage307
consists of the last n/3 rounds. Here FB-DOE eliminates sub-optimal arms in each task m and finally308
outputs the estimated optimal arm î∗m for each task m. The full pseudo-code is given in Algorithm 2309
in Appendix A.1. Now we discuss individual stages of FB-DOE.310

3.2.1 Stage 1: Estimating B1 and B2311

FB-DOE first leverages the batch of rewards {rm,t : m ∈ [M ]} at every round t from M tasks to312
learn the feature extractors B1 and B2. To do this, FB-DOE first vectorizes arms x ∈ X , z ∈ Z into313
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a new vector w = vec(x; z) ∈ W and define wm,t = vec(xm,t; zm,t). The FB-DOE then solves314
the E-optimal design in line 2 of Algorithm 2. For each task m, FB-DOE samples each w(i) ∈ W315
for ⌈τEbE

w(i)⌉ times, where τEm = n/3M and bE
w(i) is the allocation of E-optimal design on w(i).316

Then it builds the estimator Ẑn for the average parameters Z∗ = 1
M

∑M
m=1 θm,∗θ

⊤
m,∗ as follows,317

where θm,∗ ∈ Rd1d2 is the vector of Θm,∗:318

Ẑn=
3

Mn

M∑
m=1

τE
m∑

t=1

θ̂mθ̂⊤
m−(

τE
m∑

t=1

wm,tw
⊤
m,t)

−1, θ̂m = (

τE
m∑

t=1

wm,tw
⊤
m,t)

−1

τE
m∑

t=1

wm,trm,t (6)

where θ̂m ∈ Rd1d2 is an estimator for θm,∗. Then it performs SVD decomposition on Ẑn, and let319
B̂1,n, B̂2,n be the top-k1 left and top-k2 right singular vectors of Ẑn, respectively, which are the320
estimations of the feature extractors B1 and B2. This is shown in lines 3-6 of Algorithm 2.321

3.2.2 Stage 2: Estimating per task Sm,∗322

In the second stage of phase ℓ, the goal is to recover the hidden parameter Sm,∗ for each task m.323
FB-DOE proceeds as follows: First, let g̃m = x⊤B̂1,n and ṽm = z⊤B̂2,n be the latent left and right324
arm respectively for each m. Then FB-DOE defines the vector w̃m = vec(g̃m; ṽm) ∈ W̃m and then325
solves the E-optimal design in line 7 of Algorithm 2. For each task m, it then samples the latent arm326
w̃ ∈ W̃m for ⌈τ̃EmbE

m,w̃⌉ times, where τ̃Em := n
3M and bE

m,w̃ is the solution to E-optimal design on327

w̃. Then it builds an estimator Ŝm,n for each task m in line 9 as follows:328

Ŝm,n = argmin
Θ∈Rk1×k2

Ln(Θ) + λn∥Θ∥nuc, Ln(Θ) =

τE
m∑

t=1

(
rm,t − ⟨g̃m,tṽ

⊤
m,t,Θ⟩

)2
. (7)

Once FB-DOE recovers the Ŝm,n for each task m, it reduces the d1d2 bilinear bandit to a k1k2329
dimension bilinear bandit where the left and right arms are g̃m(i) ∈ Rk1 , ṽm(i) ∈ Rk2 respectively330
for each x(i) ∈ X and z(i) ∈ Z .331

3.2.3 Stage 3: Rotated arm elimination per task332

In the third stage, for each task m, FB-DOE defines the rotated arm set Gm for these k1k2 di-333

mensional bilinear bandits. Consider the SVD of Ŝm,n = Ûm,nD̂m,nV̂
⊤
m,n. Define Ĥm,n =334

[Ûm,nÛ
⊥
m,n]

⊤Ŝm,n[V̂m,nV̂
⊥
m,n] where Û⊥

m,n and V̂⊥
m,n are the complementary subspaces of Ûm,n335

and V̂m,n respectively. Then define the vectorized arm set so that the last (k1 − r) · (k2 − r)336
components are from the complementary subspaces as:337

Gm =
{[
vec

(
g̃m,1:rṽ

⊤
m,1:r

)
;vec

(
g̃m,r+1:k1 ṽ

⊤
m,1:r

)
;

vec
(
g̃m,1:rṽ

⊤
m,r+1:k2

)
;vec

(
g̃m,r+1:k1

ṽ⊤
m,r+1:k2

)]}
ŝm,n,1:k̃ = [vec(Ĥm,n,1:r,1:r);vec(Ĥm,n,r+1:k1,1:r);

vec(Ĥm,n,1:r,r+1:k2
)],

ŝm,n,k̃+1:k1k2
= vec(Ĥm,n,r+1:k1,r+1:k2

). (8)

where k̃ = (k1 + k2)r is the dimension of the rotated arm set. This is shown in line 9 of Algorithm 2.338
Now we implement a phase-based G-optimal design (like OD-LinBAI) where in the first phase ℓ = 0339
we construct a per-task optimal design for the rotated arm set Gm,0. Recall that to minimize the340
probability of error for the m-th bilinear bandit we need to sample according to G-optimal design:341

bG
m,ℓ=argmin

b
max

g∈G
m,ℓ

∥g∥2(∑i b(i)g(i) g(i)⊤+Λm,ℓ)−1 . (9)
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Here Λm,ℓ is a positive definite diagonal matrix defined as:342

Λm,ℓ = diag[λ, . . . , λ︸ ︷︷ ︸
k̃

, λ⊥
ℓ , . . . , λ

⊥
ℓ︸ ︷︷ ︸

k1k2−k̃

] (10)

where, λ⊥
ℓ := n/24k̃ log(1 + n/3λ) ≫ λ. Then FB-DOE runs G-optimal design on the arm set343

Gm,ℓ following the (9) and then samples each w ∈ Gm,ℓ for Nm,ℓ(i) = ⌈bG
wm,ℓ (i) · nm(k̃)⌉ times344

where bG
m,ℓ is the solution to the G-optimal design, defined in step 19-23 of Algorithm 2. At the ℓ-th345

phase of stage 3, sample the actions according to the G-optimal design similar to Algorithm 1. This346
is shown in steps 11-30. The only difference with Algorithm 1 is the estimator ŝm,ℓ ∈ Rk1k2 . Then347
for each task m we can just use the observations from this phase to build the estimator ŝm,ℓ as shown348
in (11). Finally, FB-DOE eliminates the sub-optimal arms using the estimator ŝm,ℓ, and builds the349
next phase active set Gm,ℓ and stops when ℓ = ⌈log2 k̃⌉.350

3.3 Probability of Error351

In this section, we analyze FB-DOE for the bilinear bandits and bound the total probability of error352
in outputting the optimal arm i∗m for each task m ∈ [M ]. We first state our assumptions.353

Assumption 3.1. (Diverse tasks) We assume that σmin(
1
M

∑M
m=1 Sm,∗) ≥ c0Sr

k1k2
, for some c0 > 0354

where Sr is the r-th largest singular value of Θm,∗355

This ensures the possibility of recovering the feature extractors B1 and B2 shared across tasks (Yang356
et al., 2020; 2022; Mukherjee et al., 2023b).357

Assumption 3.2. (Eigenvalue of E-optimal design matrix) For the arm sets X ,Z we have358
σmin(

∑
i b

E
w(i)B⊤

1 x(i)x(i)
⊤B1) ≥ ω, σmin(

∑
i b

E
w(i)B⊤

2 z(i)z(i)
⊤B2) ≥ ω for constant ω > 0.359

Assumption 3.3. (Eigenvalue of G-optimal design matrix) There exists a constant ω >360
0 such that for each task m ∈ [M ], σmin(

∑
i b

G
m(i)U⊤

mg(i)g(i)⊤Um) ≥ ω, and361
σmin(

∑
i b

G
m(i)V⊤

mv(i)v(i)⊤Vm) ≥ ω.362

Assumption 3.2 and Assumption 3.3 ensures that the covariance matrix in second and third stage is363
invertible under the E and G-optimal design, respectively. Then under Assumptions 3.1, 3.2, and 3.3,364
we have the following probability of error for FB-DOE in bilinear bandit setting.365

Theorem 3. Define ∆ = minm mini∈X ,Z ∆m,i and H2, bilin = maxm∈[M ] max2≤i≤(k1+k2)r
i

∆2
m,i

.366

If Mn ≥ ⌈ (d1d2)
2(k1k2)

2c′(ρE)2 log2(2d1d2)
S2
rω

2∆2 ⌉, then the total probability of error of Algorithm 2 is given367

by Õω,Lx,Sr

(
exp(− Mn

log2 d1d2
) +M exp( −n

log2(k1+k2)
) +M exp(− n

H2, bilin log2(k1+k2)r
)
)
.368

Discussion 2. We have three terms in the bound of Theorem 3 . The first term is the probability369
of error in estimating the feature extractors B1 and B2. Observe that as the number of tasks M370
increases, the first term decays faster, indicating that FB-DOE has a better estimate of the feature371
extractors. The second term is the probability of error that FB-DOE suffers in estimating the hidden372
parameter Sm,∗ for each task m. This term scales with M and (k1 + k2). Finally, the third term373
is the probability of error of mis-identifying the optimal left and right arm in each task m. The374
third term scales with the number of tasks M and rotated low dimension (k1 + k2)r ≪ d1, d2 since375
FB-DOE runs an individual G-optimal design for each task in lower dimension (k1 + k2)r. The376
problem complexity parameter H2,bilin is present in term 3, which captures the worst-case difficulty377
of identifying the optimal left and right arm in each task. This improves upon the bound of bilinear378
OD-LinBAI which scales as Õ(M exp(− n

H′
2, bilin log2 d1d2

)) where H ′
2, bilin =maxm max

2≤i≤d1d2

i
∆2

m,i
379

and H ′
2, bilin > H2, bilin . We further discuss the bounds in Remark A.40.380

Proof (Overview): The proof here follows similar arguments as that of the linear setting (Theorem 2),381
although more involved due to the bilinear structure. In particular, the proof now consists of four382
steps. In step 1 we again bound the error of the estimator Ẑn. In step 2 we analyze the estimation383
error of feature extractors B1 and B2, as well as left and right latent features. In step 3 we bound the384
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error of estimator Ŝm,n for each task m, and further bound the estimation error of latent left and right385
features which now scale with k̃. Finally, in step 4 we bound the probability of wrongly eliminating386
optimal arm in low dimension.387

Step 1 (Estimation of average parameter, Stage 1): Note that FB-DOE builds the average estimator388
Ẑn for the quantity Z∗ = 1

M

∑M
m=1 θm,∗θ

⊤
m,∗. We show that the total probability of error in389

first stage is given by (C(ρE)2d2

√
Mn

exp(−Mn
2 )) in Lemma A.22 in Appendix A.4. Here, ρE is the390

optimization value of the E-optimal design in line 2. We modify the proof technique Mukherjee et al.391
(2023b) to account for the fixed budget setting.392

Step 2 (Estimation of feature extractors, Stage 1): Now using the estimator Ẑn in (6) we obtain esti-393
mators B̂1,n and B̂2,n for the feature extractors B1 and B2, respectively. Then again using the Davis-394
Kahan sin θ Theorem (Bhatia, 2013), we bound the estimation error of B̂1,n and B̂2,n in Lemma A.24,395
and Lemma A.25. Let g̃m(i) = B̂⊤

1,nx(i) for each x(i) ∈ X and ṽm(i) = B̂⊤
2,nz(i) for each z(i) ∈396

Z for task m. Let w̃m(i) = vec(x̃(i); z̃(i)). Then we show that σmin(
∑

w̃(i) b
E
m(i)w̃(i)w̃(i)⊤) > 0397

in Lemma A.26. This ensures that the E-optimal design in stage 2 is feasible and not vacuous. In398
Lemma A.27, we prove that the feature estimation error is low such that for each task m ∈ [M ] and399

any g̃m(j) ∈ G̃m, ∥g̃m(j)∥2Σ−1
m,ℓ

≤ ∥g(j)∥2Σ−1
m,ℓ

+
cL4

x

S2
rk1k2ω2 exp(−Mn) for some constant c > 0.400

A similar result holds for ṽm(j) ∈ Vm for each task m. In all these steps the key novelty lies in401
establishing an exponentially decaying error bound under the budget n.402

Step 3 (Estimation of Sm,∗, Stage 2): Using the estimator in (21) we get a good estimation of403
the Sm,∗ for sufficiently large n. The key novelty in this step is to use Restricted String Convexity404
and Theorem 15 of Lu et al. (2021) to derive the exponentially decaying bound with the right405
dependence on k1, k2. Let the SVD of Ŝm,n = Ûm,nD̂m,nV̂

⊤
m,n. Again using the Davis-Kahan406

sin θ Theorem, we show in Lemma A.32, A.33 that we have good estimators Ûm,n and V̂m,n.407
FB-DOE then rotates the arms following (8). Let g

m
(i) = Û⊤

m,nx(i) for each g̃m(i) ∈ Gm and408

vm(i) = V̂⊤
m,nz(i) for each ṽm(i) ∈ Vm for task m. Then we ensure in Lemma A.36 that409

σmin(
∑

i∈Gm
bG
m(i)g̃m(i)g̃m(i)⊤) > 0. This ensures that the G-optimal design in stage 3 is valid.410

In Lemma A.37, we ensure that for any task m ∈ [M ], the estimation error of each g̃m(j) ∈ Gm411
decays exponentially. A similar result holds for ṽj ∈ Vm for each task m. Finally using Lemma A.38412
we ensure that the estimation error is also low with the estimated features g̃m(j) and ṽm(j). Note413
that in all these steps the key novelty lies in deriving an exponentially decaying error bound under414
budget n with the right complexity parameter H2, bilin appearing in the bound. This parameter does415
not show up in the fixed confidence analysis of Mukherjee et al. (2023a).416

Step 4 (Elimination in low dimension): In the final step we follow the same steps as in step 3 of the417
proof of Theorem 2 for the rotated arm set Gm (see line 10) for each task m. The final result follows418
by combining all the steps.419

We leave proving the lower bound for fixed budget bilinear bandit setting to future works.420

4 Experiments421

In this section, we show two synthetic proof-of-concept experiments for MTRL linear and bilinear422
bandit settings and one-real world linear MTRL experiment on Nectar Dataset (Zhu et al., 2023).423

Here’s the converted version using the subfigure format you specified: latexCopy In the MTRL linear424
bandit experiments (synthetic and Nectar), we compare against the OD-LinBAI (Yang & Tan, 2021).425
Figure 1a and Figure 1c show that FB-DOE achieves a lower probability of error than the OD-LinBAI426
with an increasing number of tasks. Note that the real-world experiment does not follow the linear427
MTRL Assumption 2.1, 2.2. In the MTRL bilinear bandit experiment, we compare against the fixed428
budget OD-LinBAI algorithm as there is no existing fixed budget algorithm for bilinear bandits.429
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(a) Linear setting (b) Bilinear setting (c) Nectar Dataset
Figure 1: Probability error with increasing task numbers.

From Figure 1b, we see that FB-DOE achieves a lower probability of error than OD-LinBAI with an430
increasing number of tasks. We defer a fuller description of the experimental setup to Appendix A.5.431

5 Conclusions and Future Directions432

In this paper, we formulate the first fixed budget pure exploration (bi)linear MTRL setting. We433
propose the first double and triple optimal design based algorithms for the fixed budget (bi)linear434
bandit setting. We show that our proposed algorithm FB-DOE in linear bandit setting achieves a435
probability of error scaling as Õ(M exp(−n∆2/k log2 k)), which improves upon OD-LinBAI error436
of Õ(M exp(−n∆2/d log2 d)). Similarly, in the bilinear bandits, FB-DOE achieves a probability of437
error scaling as Õ(M(exp(−n∆2/(k1 + k2)r log2(k1 + k2)r)), which improves upon OD-LinBAI438
error of Õ(M exp(−n∆2/d1d2 log2 d1d2)). We also provide the first probability of error lower439
bound for the linear fixed budget MTRL setting and show that FB-DOE probability of error upper440
bound matches the lower bound with respect to k, d,M and worst case hardness paramater H2,lin.441
In the future, we wish to extend our results to other structured bandit settings (Degenne & Koolen,442
2019; Tirinzoni et al., 2020).443
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A Appendix558

The G-optimal design (Pukelsheim, 2006; Fedorov, 2010) problem aims at finding a probability559
distribution b : {x(i) : i ∈ [A]} → [0, 1] that minimises560

g(bG) = max
i∈[A]

∥x(i)∥2V(bG)−1

where V(b) =
∑

i∈[A] b(i)x(i)x(i)
⊤. Then the following lemma states the existence of a small-561

support G-optimal design and the minimum value of g.562

Lemma A.1. 1 (Restatement of Theorem 21.1 (Kiefer-Wolfowitz) from (Lattimore & Szepesvári,563
2020)). Assume that X ⊂ Rd is compact and span(X ) = Rd. Then the following are equivalent:564

(a) bG is a minimiser of g.565

(b) bG is a maximiser of f(b) = log detV(b).566

(c) g
(
bG
)
= d.567

Furthermore, there exists a minimiser bG of g such that
∣∣Supp (bG

)∣∣ ≤ d(d+ 1)/2.568

A.1 Pseudocode of Linear and Bilinear Algorithm569

Now we present the bilinear FB-DOE in Algorithm 2.570

A.2 Lower bounds for Linear Bandits571

Theorem 1. (Lower Bound) Let |Θ| = 2d, θm,∗ ∈ Θ and M > maxm
kd log2 k
∆m,min

, where ∆m,min > 0

is the minimum gap in task m. Then any δ-PAC policy π in the linear MTRL setting suffers a total
probability of error as

Ω

(
exp

(
− Mn

log2 d

)
+M exp

(
− n

H2,lin log2 k

))
for the environment in (2), where H2,lin = maxm∈[M ] max2≤i≤k

i
∆2

m,i
is the hardness parameter.572

Proof. Step 1 (Define Environment): We again define the environment model below for easier573
exposition to the reader. This is same as (2). Define the environment for the task m as Dm

ij consisting574
of A actions and J hypotheses with true hypothesis θm

∗ = θm
i,j (ij-th column) as follows:575

θm = B1w
m
1 B1w

m
2 B1w

m
3 . . . Biw

m
j . . . BNwm

J

µ1(θ
m) = β+Γ β+Γ−(βJ +

Γ
N ) β+Γ−( 2βJ + 2Γ

N ) . . . β+Γ−( (j−1)β
J + (i−1)Γ

N ) . . . β + Γ−( (N−1)β
J + (N−1)Γ

N )
µ2(θ

m) = ι211 ι212 ι213 . . . ι2ij . . . ι2NJ

...
...

µA(θ
m) = ιA11 ιA12 ιA13 . . . ιAij . . . ιANJ

(12)

where, each ιij is distinct and satisfies ιij < β/4J + Γ/4N . θm
11 is the optimal hypothesis in Dm

11,576
θm
12 is the optimal hypothesis in Dm

12 and so on such that for each Dm
ij and i ∈ [N ], j ∈ [J ] we have577

column (i, j) as the optimal hypothesis.578

This is a general hypothesis testing setting where the functions µa(θ
m) can be thought of as linear579

functions of θm such that µa(θ
m) = xm(a)⊤θm = xm(a)Biw

m
j for some i ∈ [N ] and j ∈ [J ].580

Assume that 0 < µa(θ
m) ≤ 1. We also assume that all arms have the same variance σ2 and581

σ2 > 1/4. We will subsequently derive a suitable choice for N .582
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Algorithm 2 Fixed Budget Double Optimal Design (FB-DOE) for Bilinear Bandits

1: Input: time budget n, arm sets X ⊂ Rd1 ,Z ⊂ Rd2 .
2: Define w(i) = vec(x(i); z(i)) ∈ Rd1d2 for each x(i) ∈ X and z(i) ∈ Z . LetW denote this new arm set.
3: Stage 1 (Feature Recovery): Let E-optimal design be bE

w=argminb∈△W

∥∥(∑i b(i)w w⊤)−1
∥∥. Set

τE
m = n

3M
.

4: Pull arm wm(i) ∈ Wm exactly ⌈bE
w(i)τE

m⌉ times for each task m and observe rewards {rm,t}τ
E
m

t=1.
5: Compute Ẑn using (3). Let B̂1,n be the top-k left singular vectors of Ẑn and B̂2,n be the top-k right

singular vectors of Ẑn.
6: Build g̃m(i) = x(i)⊤B̂1,n for all x(i) ∈ X and ṽm(i) = z(i)⊤B̂2,n for all z(i) ∈ Z for each m ∈ [M ].

Then define w̃(i) = vec(g̃m(i); ṽm(i)) ∈ Rk1k2 for each g̃m(i) and ṽm(i). Let W̃m denote this new arm
set for each task m.

7: Stage 2 (Learn Sm,∗): Let E-optimal design be bE
w̃ = argminb∈△W̃

∥∥(∑i b(i)w̃m(i) w̃m(i)⊤)−1
∥∥.

Set τE
m = n

3M
.

8: Pull arm w̃m(i) ∈ W̃m exactly ⌈b̂E
w̃(i)τE

m⌉ times for each task m and observe rewards {rm,t}τ
E
m

t=1.
9: Compute Ŝm,n using (3). Rotate the arms and build arm set G

m
, s.t. each g

m
(i) ∈ Rk̃ using (25) and

k̃=(k1+k2)r.
10: Initialize tm,0 = 1,G

m,0
← G

m
and k̃m,0 = k̃. For each arm g

m
(i) ∈ G

m,0
, set g

m,0
(i) = g

m
(i).

Calculate nm(k̃) using (4).
11: Stage 3 (Low dimensional elimination)
12: for ℓ = 1 to ⌈log2 k̃⌉ do
13: Set k̃m,ℓ = dim

(
span

({
g
m,ℓ−1

(i) : i ∈ G
m,ℓ−1

}))
.

14: if k̃m,ℓ = k̃m,ℓ−1 then
15: For each arm i ∈ G

m,ℓ−1
, set g

m
(i) = g

m−1
(i).

16: else
17: Find matrix Hm,ℓ ∈ Rk̃m,ℓ−1×k̃m,ℓ whose columns form an orthonormal basis of the subspace

spanned by
{
g
m,ℓ−1

(i) : i ∈ G
m,ℓ−1

}
. For each arm i ∈ G

m,ℓ−1
, set g

m,ℓ
(i) = H⊤

m,ℓgm,ℓ−1
(i)

18: end if
19: if ℓ = 1 then
20: Find a G-optimal design bG

m,ℓ :
{
g
m,ℓ

(i) : i ∈ G
m,ℓ−1

}
→ [0, 1] with

∣∣Supp (bG
m,ℓ

)∣∣ ≤ k̃(k̃+1)
2

.
21: else
22: Find a G-optimal design bG

m,ℓ :
{
g
m,ℓ

(i) : i ∈ G
m,ℓ−1

}
→ [0, 1].

23: end if
24: Set Nm,ℓ(i) = ⌈bG

m,ℓ(gm,ℓ
(i)) · nm(k̃)⌉, nm(k̃) defined in (4), and Nm,ℓ =

∑
i∈G

m,ℓ−1
Nm,ℓ(i).

Choose each arm i ∈ G
m,ℓ−1

exactly Nm,ℓ(i) times.
25: Calculate the OLS estimator for each task m with the Λm,ℓ defined in (10):

ŝm,ℓ = Σ−1
m,ℓ

tm,ℓ+Tm,ℓ−1∑
t=tm,ℓ

g
m
(At) rm,t with Σm,ℓ =

∑
i∈Gm,ℓ−1

Tm,ℓ(i)g
m,ℓ

(i)g
m,ℓ

(i)⊤ +Λm,ℓ

(11)

26: Reshape ŝm,ℓ ∈ Rk1k2 into Ŝm,ℓ ∈ Rk1×k2 . Set Θ̂m,ℓ = B̂1,nŜm,ℓB̂
⊤
2,n for each task m.

27: For each i ∈ G
m,ℓ−1

, estimate the expected reward: µ̂m,ℓ(i) = xm(i)⊤Θ̂m,ℓzm(i).

28: Let G
m,ℓ

be the set of ⌈k̃/2ℓ⌉ arms in G
m,ℓ−1

with the largest estimates of the expected rewards.
29: Set tm,ℓ+1 = tm,ℓ +Nm,ℓ.
30: end for

Now observe that between any two hypothesis θm and θm′
we have the following583

KL

(
N (µi(θ

m), σ2
i ))
∣∣∣∣N (µi(θ

m′
),σ2))

)
=

(µi(θ
m)− µi(θ

m′
))2

2σ2

(a)

≥ (µi(θ
m)− µi(θ

m′
))2

8
(13)
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where, (a) follows from the condition that σ2 > 1/4.584

Step 2 (Minimum samples to verify θm
∗ ): Let for the model Dm

11 the optimal hypothesis be585
θm,∗ = θm

11. Let, for model Dm
11 the Λm

11 be the set of alternate models having a different optimal586
hypothesis than θm,∗ = θm

11 such that all models having different optimal hypothesis than θm
11 such587

as Dm
21, D

m
31, . . . D

m
NJ are in Λm

11. Let τmδ be the stopping time for any δ-PAC policy π. That is τδ is588
the time that any algorithm stops and outputs its estimate θ̂τδ . We will subsequently choose a suitable589
value of δ to satisfy the constraint of the budget n.590

Let Tm,t(a) denote the number of times the action a has been sampled till round t for the task m.591
Let θ̂m

τδ
be the predicted optimal hypothesis at round τmδ . We first consider the model Dm

11. Define592

the event ξ = {θ̂τm
δ

̸= θm
∗ } as the error event in model Dm

11. Let event ξ′ = {θ̂τδ ̸= θ
′

m,∗} be593

the corresponding error event in model Dm
12. Note that ξ∁ ⊂ ξ′. Since π is δ-PAC policy we have594

PDm
11,π

(ξ) ≤ δ and PDm
12,π

(ξ∁) ≤ δ. Then595

2δ ≥ PDm
11,π

(ξ) + PDm
12,π

(ξ∁)
(a)

≥ 1

2
exp

(
−KL

(
PDm

11,π
||PDm

12,π

))
KL
(
PDm

11,π
||PDm

12,π

)
≥ log

(
1

4δ

)
1

8

A∑
i=1

EDm
11,π

[Tm,τδ(i)] ·
(
µi(θm,∗) − µi(θ

′

m,∗)
)2 (b)

≥ log

(
1

4δ

)
1

8

(
β + Γ− β +

β

J
− Γ +

Γ

N

)2

EDm
11,π

[Tm,τδ(1)] +
1

8

A∑
i=2

(ιi1 − ιi2)
2EDm

11,π
[Tm,τδ(i)]

(c)

≥ log

(
1

4δ

)
1

8

(
β

J
+

Γ

N

)2

EDm
11,π

[Tm,τδ(1)] +
1

8

A∑
i=2

(ιi11 − ιi12)
2EDm

11,π
[Tm,τδ(i)] ≥ log

(
1

4δ

)
1

8

(
β

J
+

Γ

N

)2

EDm
11,π

[Tm,τδ(1)] +
1

8

A∑
i=2

1

16

(
β

J
+

Γ

N

)2

EDm
11,π

[Tm,τδ(i)]
(d)

≥ log

(
1

4δ

)

where, (a) follows from Lemma A.3, (b) follows from Lemma A.2, (c) follows from the construction596

of the bandit environments and (13), and (d) follows as (ιaij − ιaij′)
2 ≤ 1

16

(
β
J + Γ

N

)2
for any i-th597

action and j-th hypothesis.598

Now, we consider the alternate model Dm
13. Again define the event ξ = {θ̂τδ ̸= θm,∗} as the error599

event in model Dm
11 and the event ξ′ = {θ̂τδ ̸= θ

′′

m,∗} be the corresponding error event in model600

Dm
31. Note that ξ∁ ⊂ ξ′. Now since π is δ-PAC policy we have PDm

11,π
(ξ) ≤ δ and PDm

13,π
(ξ∁) ≤ δ.601

Following the same way as before we can show that,602

1

8

(
2β

J
+

2Γ

N

)2

EDm
13,π

[Tm,τδ(1)] +
1

8

A∑
i=2

1

16

(
β

J
+

Γ

N

)2

EDm
13,π

[Tm,τδ(i)]
(d)

≥ log

(
1

4δ

)
.

(14)

18



Multi-task Representation Learning for Fixed Budget Pure-Exploration in Linear and Bilinear
Bandits

Similarly, we get the equations for all the other (NJ − 2) alternate models in Λm
11. Now consider an603

optimization problem (ignoring the constant factor of 1
8 across all the constraints)604

min
ti:i∈[A]

∑
ti

s.t.

(
β

J
+

Γ

N

)2

t1 +
1

16

(
β

J
+

Γ

N

)2 A∑
i=2

ti ≥ log(1/4δ)

(
2β

J
+

2Γ

N

)2

t1 +
1

16

(
β

J
+

Γ

N

)2 A∑
i=2

ti ≥ log(1/4δ)

...(
(J − 1)β

J
+

(N − 1)Γ

N

)2

t1 +
1

16

(
β

J
+

Γ

N

)2 A∑
i=2

ti ≥ log(1/4δ)

ti ≥ 0,∀i ∈ [A]

where the optimization variables are ti. It can be seen that the optimum objective value is605 (
β
J + Γ

N

)2
log(1/4δ). Interpreting ti = EDm

11,π
[Tm,τδ(i)] for all i, we get that EDm

11,π
[τδ] =606 ∑

i ti = t1. Now we have that t1 ≥ J2β−2 log(1/4δ) which gives us the required lower bound to607
the number of pulls of action 1 for task m. Observe that the optimum objective value is reached608

by substituting t1 = 1
16

(
β
J + Γ

N

)2
log(1/4δ) and t2 = . . . = tA = 0. It follows that for ver-609

ifying any hypothesis θm
j ̸= θm

∗ the verification proportion is given by πθm
j

= (1, 0, 0, . . . , 0︸ ︷︷ ︸
(A-1) zeros

).610

Observe setting 1
16

(
β
J + Γ

N

)
≥
√
log(1/4δ)/n recovers τδ ≥ n which implies that a budget of611

atmost n samples is required for verifying hypothesis θm
j = θm,∗. For the remaining steps we take612 (

nβ2

J2 + nΓ2

N2

)
≥ log(1/4δ)/n. This implies that613

log(1/4δ)/n ≤ 1

16

(
β

J
+

Γ

N

)2
(a)
=⇒ log(1/4δ) ≤ n

8

(
β2

J2
+

Γ2

N2

)
=⇒ 1/4δ ≤ exp

(
nβ2

J2
+

nΓ2

N2

)
=⇒ δ ≥ 1

4
exp

(
−nβ2

J2
− nΓ2

N2

)
(b)
=⇒ δ ≥ 1

4
exp

(
−2nβ2

J2

)
+

1

4
exp

(
−2nΓ2

N2

)
where, (a) follows as (a+ b)2 ≤ 2(a2 + b2) for a, b > 0, (b) follows as exp(−a− b) ≥ exp(−2a)+614
exp(−2b) if b < a. This implies that nΓ2/N2 < nβ2/J2 for sufficiently large N . This also shows a615
suitable lower bound to δ that depends on the budget n.616

Then the total probability of error across all the M tasks is given by617

Mδ ≥ M

4
exp

(
−2nβ2

J2

)
+

M

4
exp

(
−2nΓ2

N2

)
≥ M

4
exp

(
−2nβ2

J2

)
+

M

4
exp

(
−2nΓ2

N2

)
. (15)

Recall that H1,lin = maxm∈[M ]

∑k
i=1

1
∆2

m,i
, and ∆2

m,min = mini ∆m,i. Then we can show that618

H1,lin = max
m∈[M ]

k∑
i=1

1

∆2
m,i

≥ max
m∈[M ]

max
i∈[k]

i

∆2
m,(i)

= H2,lin
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It follows that H2,lin ≤ H1,lin ≤ (log2 k)H2,lin. Now setting J2

β2 = maxm∈[M ]
k log2 k
∆2

m,min
we have that619

− max
m∈[M ]

∆2
m,min

k log2 k
≥ − 1

H2,lin log2 k

and setting Γ2 = 1
log2 d we have that620

Γ2

N2
<

β2

J2
=⇒ 1

N2 log2 d
< max

m∈[M ]

∆2
m,min

k log2 k
=⇒ N2 > max

m∈[M ]

k log2 k

log2 d∆
2
m,min

=⇒ N > max
m∈[M ]

kd log2 k

∆m,min

satisfies all the above conditions. Plugging everything back in (15) we have that621

Mδ ≥ M

4
exp

(
− 2n

N2 log2 d

)
+

M

4
exp

(
− 2n

H2,lin log2 k

)
(a)

≥ 1

4
exp

(
− 2Mn

log2 d

)
+

M

4
exp

(
− 2n

H2,lin log2 k

)
where, (a) follows as for N2 > 2n

log2 d logM+2nM we have that622

M

4
exp

(
− 2n

N2 log2 d

)
>

1

4
exp

(
− 2Mn

log2 d

)
.

Note that as 2n
log2 d logM+2nM > 0 the condition for N is satisfied by any budget n ≥ 1 and number623

of tasks M ≥ 1. Hence, for M > maxm
kd log2 k
∆m,min

we have all the conditions satisfied. The claim of624
the theorem follows.625

Lemma A.2. (Restatement of Lemma 15.1 in Lattimore & Szepesvári (2020), Divergence De-626
composition) Let B and B′ be two bandit models having different optimal hypothesis θ∗ and θ

′∗627
respectively. Fix some policy π and round n. Let PB,π and PB′,π be two probability measures628
induced by some n-round interaction of π with B and π with B′ respectively. Then629

KL (PB,π||PB′,π) =

A∑
i=1

EB,π[Tn(i)] ·KL(N (µi(θ), 1)||N (µi(θ∗), 1))

where, KL (.||.) denotes the Kullback-Leibler divergence between two probability measures and630
Tn(i) denotes the number of times action i has been sampled till round n.631

Lemma A.3. (Restatement of Lemma 2.6 in Tsybakov (2008)) Let P,Q be two probability measures632
on the same measurable space (Ω,F) and let ξ ⊂ F be any arbitrary event then633

P(ξ) +Q
(
ξ∁
)
⩾

1

2
exp (−KL(P||Q))

where ξ∁ denotes the complement of event ξ and KL(P||Q) denotes the Kullback-Leibler divergence634
between P and Q.635

A.3 Linear Bandit Fixed Budget Proofs636

Define X+
batch :=

(
X⊤

batch Xbatch
)−1

X⊤
batch where X+

batch = [x1,x2, . . . ,xτE
m
]⊤ is constructed637

through the E-optimal design. Also note that ρE1 = ρE2 = . . . = ρEM = ρE as the action set638
X is common across the tasks. Also, recall that639

θ̂m,t = X+
batch rm,t.

Good Event: Define the good event Fn that the algorithm has a good estimate of Z∗ as follows:640

Fn =

{∥∥∥Ẑn − Z
∥∥∥
F
≤ C

∥∥X+
batch

∥∥2( 2cd2√
Mn

exp

(
−Mn

2

))}
(16)

where, C1 > 0, some nonzero constant.641
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Lemma A.4. (Restatement of Lemma C.3 from (Du et al., 2023)) Define the event

ξn :=

∥Zn − E [Zn]∥ ≤
c
∥∥X+

batch

∥∥2 d log ( 16d
δn

)
√
Mn

log

(
16dMn

δn

)
Then it holds that Pr(ξn) ≥ 1− δn

2 .642

Lemma A.5. (Truncated Matrix Bernstern Inequality - Summation) Consider a truncation level
U > 0. If {Z1, . . . ,Zn} is a sequence of d1 × d2 independent random matrices, and Z ′

i =
Zi · 1 {∥Zi∥ ≤ U} and ∆ ≥ ∥E [Zi]− E [Z ′

i]∥ for any i ∈ [n], then for τ ≥ 2n∆,

Pr

[∥∥∥∥∥
n∑

i=1

(Zi − E [Zi])

∥∥∥∥∥ ≥ τ

]
≤ (d1 + d2) exp

(
−1

4
· τ2

2σ2 + Uτ
3

)
+ nPr [∥Zi∥ ≥ U ] ,

where643

σ2 = max

{∥∥∥∥∥
n∑

i=1

E
[
(Z ′

i − E [Z ′
i])

⊤
(Z ′

i − E [Z ′
i])
]∥∥∥∥∥ ,

∥∥∥∥∥
n∑

i=1

E
[
(Z ′

i − E [Z ′
i]) (Z

′
i − E [Z ′

i])
⊤
]∥∥∥∥∥
}

≤ max

{∥∥∥∥∥
n∑

i=1

E
[
Z ′⊤

i Z ′
i

]∥∥∥∥∥ ,
∥∥∥∥∥

n∑
i=1

E
[
Z ′

iZ
′⊤
i

]∥∥∥∥∥
}

Furthermore, we have

Pr

[∥∥∥∥∥
n∑

i=1

(Zi − E [Zi])

∥∥∥∥∥ ≥ 4

√
σ2 log

(
d1 + d2

δ

)
+ 4U log

(
d1 + d2

δ

)]
≤ δ+nPr [∥Zi∥ ≥ U ] .

Lemma A.6. Define the event

Fn :=

{
∥Zn − E [Zn]∥ ≥ C

∥∥X+
batch

∥∥2( 2cd2√
Mn

exp

(
−Mn

2

))}
It follows then that644

P (Fn) ≤ 4d exp (−Mn)

Proof. We use the truncated Matrix Bernstein inequality (Lemma A.5) to prove the exponentially645
low probability of error in the following way. Set R =

√
Mn and define the truncation matrix An as646

follows:647

Am,t :=
1

M

 2x⊤
1 θmηm,1 · · · x⊤

1 θmηm,1 + x⊤
n/2θmηm,n/2

· · · · · · · · ·
x⊤
1 θmηm,1 + x⊤

n/2θmηm,n/2 · · · 2x⊤
n/2θmηm,n/2


An :=

M∑
m=1

n/2∑
t=1

Am,t

and truncation matrix Cn as:648

Cm,t :=
1

M

 (ηm,1)
2 · · · ηm,1ηm,n/2

· · · · · · · · ·
ηm,1ηm,n/2 · · ·

(
ηm,n/2

)2


Cn :=

M∑
m=1

n/2∑
j=1

Cm,t.
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Then it can be shown easily using Lemma A.4 that the average estimation matrix Zn can be upper649
bounded as650

∥Zn − E [Zn]∥ ≤
∥∥X+

batch

∥∥2 (∥An − E [An]∥+ ∥Cn − E [Cn]∥)

such that ∥Am,t∥ ≤ 2
Mn · 2dcR, and ∥Cm,t∥ ≤ 2

Mn · 2dc′R where c, c′ > 0. Note that ∥Cm,t,i∥ ≤651
1

Mn · 2dc′R because log(n/δ) ≤
√
Mn. Now using the truncated Matrix Bernstein inequality in652

Lemma A.5 we have that653

∥Zn − E [Zn]∥ ≤
∥∥X+

batch

∥∥2( 2dc

Mn
· 2d ·

(
R+

1

R

)
exp

(
−R2

2

)
+

d

Mn
· 2dc′ ·

(
R+

1

R

)
exp

(
−R2

2

))

holds as the noise |ηm,t| ≤ R with probability 1− 4d exp
(
−R2

2

)
because ηm,t is 1-sub Gaussian654

and c, c′ > 0. Setting R =
√
Mn we have that655

∥Zn − E [Zn]∥

≤
∥∥X+

batch

∥∥2( 2dc

Mn
· 2d ·

(√
Mn+

1√
Mn

)
exp

(
−Mn

2

)
+

d

Mn
· 2dc′ ·

(√
Mn+

1√
Mn

)
exp

(
−Mn

2

))
≤
∥∥X+

batch

∥∥2( 2cd2√
Mn

exp

(
−Mn

2

)
+

2cd2

(Mn)3/2
exp

(
−Mn

2

)
+

2c′d2√
Mn

exp

(
−Mn

2

)
+

2c′d2

(Mn)3/2
exp

(
−Mn

2

))
≤ C

∥∥X+
batch

∥∥2( 2cd2√
Mn

exp

(
−Mn

2

))
The claim of the lemma follows.656

Lemma A.7. (Restatement of Lemma C.2 in (Du et al., 2023)) Define the total number of samples657

T =

⌈
C
(
ρE
)2

k4

M
polylog

(
ρE , d, k,

1

δ

)⌉

where C is an absolute constant. For a budget n > 0, task m ∈ [M ], round t ∈ [T ]. we have that658

θ̂m,t = X+
batch rm,t,

and659

ZT =
1

M

M∑
m=1

T∑
t=1

θ̂m,t

(
θ̂m,t

)⊤
−X+

batch

(
X+

batch

)⊤
.

It holds then660

E [ZT ] =
1

M

M∑
m=1

θmθ⊤
m

Lemma A.8. (Expectation of Ẑn ). It holds that for n >
2L4

xk
2d2c′(ρE)2 log2(2d)

ω2M∆2 the E
[
Ẑn

]
= Z =661

1
M

∑M
m=1 θm,∗(θm,∗)

⊤.662

Proof. First note that the total number of samples in stage 1 is sufficiently high such that663

n

2
>

L4
xk

2d2c′(ρE)2 log2(2d)

ω2M∆2
≥

⌈
Cn
(
ρE
)2

k4

M
polylog

(
ρE , d, k

)⌉
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for some constant C > 0 and δ = c′ exp(−n) for som c′ > 0. Then for the first stage after n
2 samples664

we can re-write665

Ẑn =
2

M
∑

m τEm

M∑
m=1

τE
m∑

t=1

θ̂m,tθ̂
⊤
m,t −X+

batch

(
X+

batch

)⊤
.

Now using Lemma A.7 we can prove the claim of the lemma.666

Lemma A.9. (Concentration of B̂n ). Suppose that event Fn holds. Then, for any n > 0,667

∥∥∥(B̂⊥
n )

⊤B
∥∥∥ ≤ c′ρE

(
2ckd√
Mn

exp

(
−Mn

2

))

for some constant c′ > 0 and ρE=minb∈△X

∥∥(∑x∈X bxx x⊤)−1
∥∥.668

Proof. Using the Davis-Kahan sin θ Theorem (Bhatia, 2013) and letting τEm be large enough to satisfy669 ∥∥∥Ẑn − Z
∥∥∥
F
≤ C1d log(2d)√

M
∑

m τE
m

, we have670

∥∥∥(B̂⊥
n )

⊤B
∥∥∥ ≤

∥∥∥Ẑn − E
[
Ẑn

]∥∥∥
σr

(
E
[
Ẑn

])
− σr+1

(
E
[
Ẑn

])
−
∥∥∥Ẑn − E

[
Ẑn

]∥∥∥
(a)

≤ k

c0

∥∥∥Ẑn − E
[
Ẑn

]∥∥∥
(b)

≤
ck
∥∥X+

batch

∥∥2 d√
M
∑

m τEm
exp

(
−Mn

2

)
(c)

≤ c′ρEkd√
M
∑

m τEm
exp

(
−Mn

2

)
=

c′ρEkd√
Mn

exp

(
−Mn

2

)

where, (a) follows from Assumption 2.1, the (b) follows from event Fn and (c) follows as671 ∥∥X+
batch

∥∥2 ≤ 4ρE , and τEm = n
2M . The claim of the lemma follows.672

We now need to show that σmin(
∑

g̃m(i)∈G bm(i)g̃(i)g̃(i)⊤) > 0. If this holds true then we can673
sample the following G-optimal design and the solution to the G-optimal design in the second phase674
is not vacuous.675

Lemma A.10. For Mn > ⌈L4
xk

2d2c′(ρE)2 log2(2d)
ω2∆2 ⌉ we have676

σmin(
∑
i∈Gm

bG
m(i)g̃m(i)g̃m(i)⊤) > 0

Proof. We can show that677

∑
i∈Gm

bG
m(i)g̃m(i)g̃m(i)⊤

(a)
=
∑
i∈Gm

bG
m(i) B̂⊤

nx(i)︸ ︷︷ ︸
g̃m(i)

x(i)B̂⊤
n︸ ︷︷ ︸

g̃m(i)⊤
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where, in (a) the bG
m(i) is the sampling proportion for the arm x(i) in second stage. Also note that678

from Lemma A.9 we know that679 ∥∥∥(B̂⊥
n )

⊤B
∥∥∥ ≤ c′ρEkd√

Mn
exp

(
−Mn

2

)
(a)

≤ ω

L2
x

c′ρEkd∆

c′kdρE log(2d)
exp

(
−M

2
· L

4
xd

2c′(ρE)2 log2(2d)

ω2M∆2

)
=

ω

L2
x

∆

log(2d)︸ ︷︷ ︸
≤1

exp

(
−d2c′(ρE)2 log2(2d)

2ω2∆2

)

≤ ω

L2
x

exp

(
−d2c′(ρE)2 log2(2d)

2ω2∆2

)
︸ ︷︷ ︸

≤1

where (a) follows by substituting the value of n, and observe that the last inequality does not depend680

on the number of tasks M or budget n. Hence for Mn ≥ ⌈L4
xk

2d2c′(ρE)2 log2(2d)
ω2∆2 ⌉ we have681 ∥∥∥B̂⊤

nB
⊥
∥∥∥ ≤ min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
. (17)

This holds with high probability as the event Fn holds true. This helps us to apply Lemma A.11 to682
get the claim of the lemma.683

Lemma A.11. (Restatement of Lemma C.5 from Du et al. (2023)) For any round n > 0 and task684

m ∈ [M ], if
∥∥∥B̂⊤

nB
⊥
∥∥∥ ≤ ω

L2
x

then we have685

σmin

(
A∑
i=1

bG
m (i) B̂⊤

nx(i)x(i)
⊤B̂n

)
> 0

where bG
m(i) is the sampling proportion of x(i).686

Lemma A.12. Suppose that event Fn holds and Mn > ⌈L4
xk

2d2c′(ρE)2 log2(2d)
ω2∆2 ⌉. Then define

Σm,ℓ =
∑

i∈Gm,ℓ−1

bm,ℓ (i) g̃m,ℓ(i)g̃m,ℓ(i)
⊤.

For any task m ∈ [M ] and g̃m,ℓ(j) ∈ Rk,687

∥g̃m,ℓ(j)∥2Σ−1
m,ℓ

≤ ∥gm(j)∥2Σ−1
m,ℓ

+
cL4

x

kω2
exp(−Mn)

for some constant c > 0.688

Proof. Observe that we can rewrite the689

∥g̃m,ℓ(j)∥2Σ−1
m,ℓ

=
∥∥∥B̂⊤

nxj

∥∥∥2(∑
i∈Gm,ℓ−1

bG
m,ℓ(i)B̂

⊤
n x(i)x(i)⊤B̂n

)−1

Then we can show that690 ∑
i∈Gm,ℓ−1

bG
m,ℓ (i) B̂

⊤
nx(i)x(i)

⊤B̂n =
∑

i∈Gm,ℓ−1

bG
m,ℓ (i)

(
B̂⊤

nBB⊤x(i)
)
·
(
B̂⊤

nBB⊤x(i)
)⊤

+
∑

i∈Gm,ℓ−1

bG
m,ℓ (i)

((
B̂⊤

nBB⊤x(i)
)
·
(
B̂⊤

nB⊥B
⊤
⊥x(i)

)⊤

+
(
B̂⊤

nB⊥B
⊤
⊥x(i)

)
·
(
B̂⊤

nBB⊤x(i)
)⊤

+
(
B̂⊤

nB⊥B
⊤
⊥x(i)

)
·
(
B̂⊤

nB⊥B
⊤
⊥x(i)

)⊤)
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Then define the matrix691

Pn =
∑

i∈Gm,ℓ−1

bG
m,ℓ (i)

(
B̂⊤

nBB⊤x(i)
)
·
(
B̂⊤

nBB⊤x(i)
)⊤

Qn =
∑

i∈Gm,ℓ−1

bG
m,ℓ (i)

((
B̂⊤

nBB⊤x(i)
)
·
(
B̂⊤

nB⊥B
⊤
⊥x(i)

)⊤
+

(
B̂⊤

nB⊥B
⊤
⊥x(i)

)
·
(
B̂⊤

nBB⊤x(i)
)⊤

+
(
B̂⊤

nB⊥B
⊤
⊥x(i)

)
·
(
B̂⊤

nB⊥B
⊤
⊥x(i)

)⊤)
.

Then, we have
∑

i∈Gm,ℓ−1
bG
m,ℓ (i) B̂

⊤
nx(i)x(i)

⊤B̂n = Pn +Qn.692

From Assumption 2.2, we have that for any task m ∈ [M ],
∑

i∈Gm,ℓ−1
bG
m,ℓ (i)B

⊤x(i)x(i)⊤B693

is invertible. Since B̂⊤
nB is also invertible, we have that Pn is invertible. According to694

Lemma A.10, we have that
∑

i∈Gm,ℓ−1
bG
m,ℓ (i) B̂

⊤
nx(i)x(i)

⊤B̂n is also invertible. Then we can695

write
(∑

i∈Gm,ℓ−1
bG
m,ℓ (i) B̂

⊤
nx(i)x(i)

⊤B̂n

)−1

as follows696  ∑
i∈Gm,ℓ−1

bG
m,ℓ (i) B̂

⊤
nx(i)x(i)

⊤B̂n

−1

= P−1
n − (Pn +Qn)

−1
QnP

−1
n

Hence, for any task m ∈ [M ] and xj ∈ Rd, we have697

∥∥∥B̂⊤
nxj

∥∥∥2(∑
i∈Gm,ℓ−1

bG
m,ℓ(i)B̂

⊤
n x(i)x(i)⊤B̂n

)−1 =
(
B̂⊤

nxj

)⊤ ∑
i∈Gm,ℓ−1

bG
m,ℓ (i) B̂

⊤
nx(i)x(i)

⊤B̂n

−1

B̂⊤
nxj

=
(
B̂⊤

nxj

)⊤
P−1

n B̂⊤
nxj︸ ︷︷ ︸

Term 1

−
(
B̂⊤

nxj

)⊤
(Pn +Qn)

−1
QnP

−1
n B̂⊤

nxj︸ ︷︷ ︸
Term 2

.

From Lemma A.10, and (17) we have698 ∥∥∥B̂⊤
nB

⊥
∥∥∥ ≤ min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
Now we can decompose the term 1 into the following 4 terms699

Term 1 =
(
B̂⊤

nxj

)⊤
P−1

n B̂⊤
nxj

=
(
B̂⊤

nBB⊤xj + B̂⊤
nB⊥B

⊤
⊥xj

)⊤
P−1

n

(
B̂⊤

nBB⊤xj + B̂⊤
nB⊥B

⊤
⊥xj

)
=
(
B̂⊤

nBB⊤xj

)⊤
P−1

n

(
B̂⊤

nBB⊤xj

)
︸ ︷︷ ︸

Term 1-1

+
(
B̂⊤

nBB⊤xj

)⊤
P−1

n

(
B̂⊤

nB⊥B
⊤
⊥xj

)
︸ ︷︷ ︸

Term 1-3

+
(
B̂⊤

nB⊥B
⊤
⊥xj

)⊤
P−1

n

(
B̂⊤

nBB⊤xj

)
︸ ︷︷ ︸

Term 1-2

+
(
B̂⊤

nB⊥B
⊤
⊥xj

)⊤
P−1

n

(
B̂⊤

nB⊥B
⊤
⊥xj

)
︸ ︷︷ ︸

Term 1-4

.

It follows using the steps similar to Lemma C.10 of (Du et al., 2023) and combining with our700
Lemma A.10, and (17) we have that701

Term 1− 1 =
∥∥∥B̂⊤

nxj

∥∥∥2(∑
i∈Gm,ℓ−1

bG
m,ℓ(i)B̂

⊤
n x(i)x(i)⊤B̂n

)−1 , Term 1− 2 ≤ c2 min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
Term 1− 3 ≤ c3 min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
, Term 1− 4 ≤ c4 min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
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Combining the 4 terms above we get the upper bound to term 1 as follows702

Term 1 =
(
B̂⊤

nxj

)⊤
P−1

n B̂⊤
nxj ≤

∥∥B⊤xj

∥∥2(∑
i∈Gm,ℓ−1

B⊤x(i)x(i)⊤B
)−1 +

cL4
x

kω2
exp(−Mn).

for some constant c > 0. Similarly, we can show that703

Term 2 =
(
B̂⊤

nxj

)⊤
(Pn +Qn)

−1
QnP

−1
n B̂⊤

nxj ≤
c′L4

x

kω2
exp(−Mn)

for some constant c′ > 0. Combining everything we have that704

∥g̃m,ℓ(j)∥2Σ−1
m,ℓ

≤ ∥g(j)∥2Σ−1
m,ℓ

+
cL4

x

kω2
exp(−Mn)

for some constant c > 0. The claim of the lemma follows.705

Lemma A.13. Let Fn hold. Define ∆̃m,i = g̃m(i)⊤ŵm− g̃m(i∗m)⊤ŵm and ∆m,i = gm(i)⊤wm−706
gm(i∗m)⊤wm. Then the estimation error in the second stage is given by707

|∆̃m,i −∆m,i| ≤ 6kLx min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
.

Further for Mn > ⌈L4
xk

2d2c′(ρE)2 log2(2d)
ω2∆2 ⌉ we have that708

|∆̃m,i −∆m,i| ≤
∆m,i

2
.

Proof. Combining our Lemma A.10, and (17) we can bound the estimation error for any pair of709
x,x′ ∈ Rd for a task m as follows:710

∣∣∣(x− x′)⊤θ̂m,n − (x− x′)⊤θm,∗

∣∣∣ ≤ 2k · LxLw

∥∥∥B̂⊤
n,⊥B

∥∥∥+
√

ρGm · 2 log
(
4n2M

δ

)
√
n

+ 2LxLw

∥∥∥B̂⊤
n,⊥B

∥∥∥
Setting Lw = 1, ρGm = k and log

(
4n2M

δ

)
= n and as the event Fn holds, we get that711

∣∣∣(x− x′)⊤θ̂m,n − (x− x′)⊤θm,∗

∣∣∣ ≤ 6kLx min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
This implies that712

|∆̃m,i −∆m,i| ≤ 6kLx min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
Now for n >

L4
xk

2d2c′(ρE)2 log2(2d)
ω2M∆2 we can show that713

6kLx min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
= 6kLx min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
≤ 6kLx min

{
ω

L2
x

,
ω

L2
x

(2d)−
L4
xk2d2c′(ρE)2

ω2∆2

}
(a)

≤ ∆

2

(b)

≤ ∆m,i

2

where, (a) holds as for any ∆ > 0, d, k > 1, ω > 0 the following holds714

log(
∆

12
) + log(

Lx

kω
) > −L4

xk
2d2c′(ρE)2

ω2∆2
log(2d).

The (b) holds as ∆m,i ≥ ∆. The claim of the lemma follows.715
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Lemma A.14. With parameter nm defined in (4), Algorithm 1 terminates in phase ⌈log2 k⌉ with no716
more than a total of n arm pulls.717

Proof. Proof. When k = 2, Algorithm 1 terminates in one phase. When k > 2, by the property of718
ceiling function, we have 1

2 < k
2⌈log2 k⌉ ≤ 1. Thus, the number of arms in the active set for each task719

m is Gm,⌈log2 k⌉−1 is
⌈

k
2⌈log2 k⌉−1

⌉
= 2, in phase ⌈log2 k⌉.720

Now we bound the number of arm pulls. For any phase ℓ,
∣∣∣Supp(bG

ℓ,m

)∣∣∣ is always bounded by the721

cardinality of the active set Gm,ℓ−1. In particular, for the first phase, according to Lemma A.1, there722

exists a G-optimal design bG
m,ℓ with

∣∣∣Supp(bG
m,ℓ

)∣∣∣ ≤ k(k + 1)/2. Altogether, we have723

∣∣Supp (bG
m,ℓ

)∣∣ ≤ {min
(
A, k(k+1)

2

)
when ℓ = 1⌈

k
2ℓ−1

⌉
when ℓ > 1

. (18)

Then the number of total arm pulls for each task m is bounded as724

⌈log2 k⌉∑
ℓ=1

Nm,ℓ =

⌈log2 k⌉∑
ℓ=1

∑
i∈Gm,ℓ

Nm,ℓ(i)
(a)
=

⌈log2 k⌉∑
ℓ=1

∑
i∈Gm,ℓ

⌈
bG
m,ℓ (g̃m,ℓ(i)) · nm

⌉
(b)

≤
⌈log2 k⌉∑
ℓ=1

∣∣Supp (bG
m,ℓ

)∣∣+ ∑
i∈Gm,ℓ

bG
m,ℓ (g̃m,ℓ(i)) · nm


(c)

≤ min

(
A,

k(k + 1)

2

)
+

⌈log2 k⌉∑
ℓ=2

⌈
k

2ℓ−1

⌉
+ ⌈log2 k⌉ · nm

(d)
=

n

2M

where, (a) follows as the allocation to each arm in task m is given by atmost
⌈
bG
m,ℓ (g̃m,ℓ(i)) · nm

⌉
,725

(b) follows by using the two cases in (18), (c) follows by using Lemma A.1, and finally (d) follows726
plugging the value of nm from (4). Therefore summing over all tasks m ∈ [M ] we get that the727
second stage is at most728

M∑
m=1

τEm =

M∑
m=1

n

2M
=

n

2
.

For the first stage, for each phase m ∈ [M ] the algorithm uses atmost n
2 samples for the E-optimal729

design. Summing over all phases and stages we get that the total budget is used atmost n.730

Lemma A.15. For an arbitrary constant ∆ and x ∈ Rd we can show that731

P
(
x⊤
(
θ̂n − θ∗

)
> ∆

)
≤ exp

(
− ∆2

2∥x∥2
Σ−1

n

)

where, Σn =
∑n

i=1

∑K
j=1 xi,j(xi,j)

⊤.732

Proof. We follow the proof technique of section 2.2 of Jamieson & Jain (2022). Under the sub-733
Gaussian noise assumption, we can show that for any vector x ∈ Rd the following holds734

x⊤
(
θ̂n − θ∗

)
= x⊤ (X⊤X

)−1
X⊤︸ ︷︷ ︸

w

η = w⊤η.
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Then for an arbitrary constant ∆ and x ∈ Rd, we can show that735

P
(
x⊤
(
θ̂n − θ∗

)
> ∆

)
= P

(
w⊤η > ∆

)
(a)

≤ exp(−λ∆)E
[
exp

(
λw⊤η

)]
, let λ > 0

= exp(−λ∆)E

[
exp

(
λ

t∑
s=1

wsηs

)]
(b)
= exp(−λ∆)

t∏
s=1

E [exp (λwsηs)]

(c)

≤ exp(−λ∆)

t∏
s=1

exp
(
λ2w2

s/2
)

= exp(−λ∆) exp

(
λ2

2
∥w∥22

)
(d)

≤ exp

(
− ∆2

2∥w∥22

)
(e)
= exp

(
− ∆2

2x⊤ (X⊤X)
−1

x

)
= exp

(
− ∆2

2∥x∥2
Σ−1

n

)

where, (a) follows from Chernoff Bound, (b) follows from independence of, (c) follows sub-Gaussian
assumption, (d) follows by setting λ = ∆

∥w∥2
2

, and (e) follows from the equality

∥w∥22 = x⊤ (X⊤X
)−1

X⊤X
(
X⊤X

)−1
x = x⊤ (X⊤X

)−1
x.

The claim of the lemma follows.736

The following lemma bounds the probability that a certain arm has its estimate of the expected reward737
larger than that of the best arm in a single phase ℓ.738

Lemma A.16. Suppose Fn holds, and Mn > ⌈L4
xk

2d2c′(ρE)2 log2(2d)
ω2∆2 ⌉. For a fixed realization of

X̂m,ℓ−1 satisfying i∗m ∈ X̂m,ℓ−1, for any arm i ∈ X̂m,ℓ−1,

P (µ̂m,ℓ(i
∗
m) < µ̂m,ℓ(i)) ≤ exp

(
cL4

x

kω2

)
exp

(
−

nm∆2
m,i

32
⌈

k
2ℓ−1

⌉)

Proof. Let θ∗
m,ℓ denote the corresponding unknown parameter vector for the task m and phase ℓ for

the dimensionality-reduced arm vectors {g̃m,ℓ(i) : i ∈ Gm,ℓ−1}. Also, we set

Σm,ℓ =
∑

i∈Gm,ℓ−1

bm,ℓ (i) g̃m,ℓ(i)g̃m,ℓ(i)
⊤.

Then we can show using the identities that θ̂m,ℓ = B̂nŵm,ℓ, θ∗
m = Bwm and for n >739

L4
xk

2d2c′(ρE)2 log2(2d)
ω2M∆2 that740

∥g̃m,ℓ(j)∥2Σ−1
m,ℓ

≤ ∥g(j)∥2Σ−1
m,ℓ

+
cL4

x

kω2
exp(−Mn) (19)
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the following:741

P (µ̂m,ℓ(i
∗
m) < µ̂m,ℓ(i)) = P

(
(θ̂∗

m,ℓ)
⊤xm,ℓ(i

∗
m) < (θ̂∗

m,ℓ)
⊤xm,ℓ(i))

)
=P
(
(B̂nŵm,ℓ)

⊤xm,ℓ(i
∗
m) < (B̂nŵm,ℓ)

⊤xm,ℓ(i)
)

=P
(
ŵ⊤

m,ℓg̃m,ℓ(i
∗
m) < ŵ⊤

m,ℓg̃m,ℓ(i)
)

=P
(
(ŵm,ℓ)

⊤g̃m,ℓ(i
∗
m)− (ŵm,ℓ)

⊤g̃m,ℓ(i)− ∆̃m,i < −∆̃m,i

)
(a)

≤P
(
(ŵm,ℓ)

⊤g̃m,ℓ(i
∗
m)− (ŵm,ℓ)

⊤g̃m,ℓ(i)−
(
(wm)⊤ (g̃m,ℓ(i

∗
m)− g̃m,ℓ(i))

)
< −∆m,i +

∆m,i

2

)
=P
(
⟨ŵm,ℓ −wm, g̃m,ℓ(i

∗
m)− g̃m,ℓ(i)⟩ < −3∆m,i

2

)
(b)

≤ exp

−
9∆2

m,i

4

2 ∥g̃m,ℓ(i∗m)− g̃m,ℓ(i)∥2Σ−1
m,ℓ


(c)

≤ exp

−
9∆2

m,i

4

8maxi∈Gm,ℓ
∥g̃m,ℓ(i)∥2Σ−1

m,ℓ


(d)

≤ exp

−
9∆2

m,i

4 · nm

8maxi∈Gm,ℓ
∥g̃m,ℓ(i)∥2Σ−1

m,ℓ


(e)

≤ exp

−
9∆2

m,i

4 · nm

8maxi∈Gm,ℓ
∥g̃m,ℓ(i)∥2Σ−1

m,ℓ
+

cL4
x

kω2 exp(−Mn)


(f)

≤ exp

−
nm

9∆2
m,i

4

8dk +
cL4

x

kω2

 (g)

≤ exp

(
cL4

x

kω2

)
exp

−
nm

9∆2
m,i

4

8
⌈

k
2k−1

⌉
 ≤ exp

(
cL4

x

kω2

)
exp

(
−

nm∆2
m,i

32
⌈

k
2k−1

⌉) .

where, (a) follows from Lemma A.13 and n >
L4

xd
2c′(ρE)2 log2(2d)

ω2M∆2 (b) follows from Lemma A.15,742
(c) follows from triangle inequality. The inequality in (d) follows from743

∥g̃m,ℓ(i)∥2Σ−1
m,ℓ

= g̃m,ℓ(i)
⊤Σ−1

m,ℓg̃m,ℓ(i)

= g̃m,ℓ(i)
⊤

 ∑
j∈Gm,ℓ−1

Tm,ℓ(j)g̃m,ℓ(j)g̃m,ℓ(j)
⊤

−1

g̃m,ℓ(i)

≤ g̃m,ℓ(i)
⊤

 ∑
j∈Gm,ℓ−1

nmbm,ℓ (j) g̃m,ℓ(j)g̃m,ℓ(j)
⊤

−1

g̃m,ℓ(i)

=
1

nm
g̃m,ℓ(i)

⊤

 ∑
j∈Gm,ℓ−1

bm,ℓ (j) g̃m,ℓ(j)g̃m,ℓ(j)
⊤

−1

g̃m,ℓ(i)

=
1

nm
g̃m,ℓ(i)

⊤Σ−1
m,ℓg̃m,ℓ(i)

=
1

nm
∥g̃m,ℓ(i)∥2Σ−1

m,ℓ
.

The equality in (f) follows from Lemma A.1 and the property of G-optimal design. Also we drop744
exp(−Mn) < 1. The inequality in (g) follows from the fact that the dimension of the space spanned745
by the corresponding arm vectors of the active arm set Gm,ℓ−1 is not larger than the cardinality of746
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Gm,ℓ−1. Also note that the additional term exp
(

cL4
x

kω2

)
which results from latent feature estimation747

error. The claim of the lemma follows.748

Lemma A.17. Assume that the best arm i∗m is not eliminated before phase ℓ, i.e., i∗m ∈ Gm,ℓ−1. Then
the probability that the best arm is eliminated in phase ℓ is bounded as

P (i∗m /∈ Gm,ℓ | i∗m ∈ Gm,ℓ−1) ≤


4A
k exp

(
cL4

x

kω2

)
exp

(
−

nm∆2
m,iℓ

32im,ℓ

)
when ℓ = 1

3 exp
(

cL4
x

kω2

)
exp

(
−

nm∆2
m,iℓ

32im,ℓ

)
when ℓ > 1

where im,ℓ =
⌈

k
2ℓ+1

⌉
+ 1.749

Proof. First, as Lemma A.16, we conditioned on the specific realization of Gm,ℓ−1 such that 1 ∈750
Gm,ℓ−1. Define Hm,ℓ as the set of arms in Gm,ℓ−1 excluding the best arm and

⌈
k

2ℓ+1

⌉
− 1 suboptimal751

arms with the largest expected rewards. Therefore, we have |Hm,ℓ| = |Gm,ℓ−1| −
⌈

k
2ℓ+1

⌉
and752

mini∈Hm,ℓ
∆m,i ≥∆m,⌈ k

2ℓ+1 ⌉+1·753

If the best arm for task m, i∗m is eliminated in phase ℓ, then at least
⌈

k
2r

⌉
−
⌈

k
2ℓ+1

⌉
+ 1 arms of Hm,ℓ754

have their estimates of the expected rewards larger than that of the best arm.755

Let Nm,ℓ denote the number of arms in Hm,ℓ whose estimates of the expected rewards are larger756
than that of the best arm. By Lemma A.16, we have757

E [Nm,ℓ] =
∑

i∈Hm,ℓ

P (µ̂m,ℓ(i
∗
m) < µ̂m,ℓ(i)) ≤ exp

(
cL4

x

kω2

) ∑
i∈Hm,ℓ

exp

(
−

nm∆2
m,i

32
⌈

k
2r−1

⌉)

≤ exp

(
cL4

x

kω2

)
|Hm,ℓ| max

i∈Hm,ℓ

exp

(
−

nm∆2
m,i

32
⌈

k
2ℓ−1

⌉)

≤ exp

(
cL4

x

kω2

)(
|Gm,ℓ−1| −

⌈
k

2ℓ+1⌉

⌉)
exp

−
nm∆2

m,⌈ k

2ℓ+1 ⌉+1

32
⌈

k
2ℓ−1

⌉


≤ exp

(
cL4

x

kω2

)(
|Gm,ℓ−1| −

⌈
k

2ℓ+1

⌉)
exp

−
nm∆2

m,⌈ k

2ℓ+1 ⌉+1

32
(⌈

k
2ℓ−1

⌉
+ 1
)
 .

Then, together with Markov’s inequality, we obtain758

P (i∗m /∈ Gm,ℓ) ≤ P
(
Tm,ℓ ≥

⌈
k

2ℓ

⌉
−
⌈

k

2ℓ+1

⌉
+ 1

)
≤ E [Tm,ℓ]⌈

k
2ℓ

⌉
−
⌈

k
2ℓ+1

⌉
+ 1

≤
|Gm,ℓ−1| −

⌈
k

2ℓ+1

⌉⌈
k
2ℓ

⌉
−
⌈

k
2ℓ+1

⌉
+ 1

exp

−
nm∆2

m,⌈ k

2ℓ+1 ⌉+1

32
(⌈

k
2ℓ+1

⌉
+ 1
)
 .

When ℓ = 1, we have |Gm,ℓ−1| = A. Thus,759

|Gm,ℓ−1| −
⌈

k
2ℓ+1

⌉⌈
k
2r

⌉
−
⌈

k
2ℓ+1

⌉
+ 1

=
A−

⌈
k

2ℓ+1

⌉⌈
k
2r

⌉
−
⌈

k
2ℓ+1

⌉
+ 1

≤ A
k
2 − k

22

=
4A

k
.
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When ℓ > 1, we have |Gm,ℓ−1| =
⌈

k
2ℓ−1

⌉
. Thus,760

|Gm,ℓ−1| −
⌈

k
2ℓ+1

⌉⌈
k
2r

⌉
−
⌈

k
2ℓ+1

⌉
+ 1

=

⌈
k

2ℓ−1

⌉
−
⌈

k
2ℓ+1

⌉⌈
k
2r

⌉
−
⌈

k
2ℓ+1

⌉
+ 1

≤
k

2ℓ−1 + 1−
⌈

k
2ℓ+1

⌉
k
2ℓ

−
⌈

k
2ℓ+1

⌉
+ 1

≤
3 · k

2ℓ+1 + k
2ℓ+1 + 1−

⌈
k

2ℓ+1

⌉
k

2ℓ+1 + k
2ℓ+1 + 1−

⌈
k

2ℓ+1

⌉
≤ 3

where the last inequality results from the fact that for any x, y > 0, 3x+y
x+y ≤ 3. Therefore, for this

specific realization of Gm,ℓ−1 satisfying 1 ∈ Gm,ℓ−1,

P (i∗m /∈ Gm,ℓ) ≤


4A
k exp

(
cL4

x

kω2

)
exp

(
−

nm∆2
m,iℓ

32im,ℓ

)
when ℓ = 1

3 exp
(

cL4
x

kω2

)
exp

(
−

nm∆2
m,iℓ

32im,ℓ

)
when ℓ > 1

where im,ℓ =
⌈

k
2ℓ+1

⌉
+ 1. Finally, by the law of total probability, the error probability of phase ℓ

conditioned on i∗m ∈ Gm,ℓ−1 can be bounded as

P [i∗m /∈ Gm,ℓ | i∗m ∈ Gm,ℓ−1] ≤


4A
k exp

(
cL4

x

kω2

)
exp

(
−

nm∆2
m,iℓ

32im,ℓ

)
when ℓ = 1

3 exp
(

cL4
x

kω2

)
exp

(
−

nm∆2
m,iℓ

32im,ℓ

)
when ℓ > 1.

The claim of the lemma follows.761

Now we prove the main theorem for linear MTRL FB-DOE.762

Theorem 2. Define ∆ = minm mini∈X ∆m,i, Mn ≥ ⌈L4
xk

2d2c′(ρE)2 log2(2d)
ω2∆2 ⌉ and ℓ > 1. The total763

probability of error of the algorithm for ℓ > 1 is given by764

8 exp

(
−Mn

log2 d

)
+M (3 log2 k) exp

(
− n

64H2, lin
+

cL4
x

kω2

)
and ∥x∥ ≤ Lx, ω > 0 is defined in Assumption 2.2 and H2, lin = maxm∈[M ] max2≤i≤k

i
∆2

m,i
is the765

linear MTRL hardness parameter.766

Proof. Stage 1: Using Lemma A.6 we can show that the probability of error in the first stage is767
bounded by768

8d exp (−Mn)
(a)

≤ 8 exp

(
−Mn

log2 d

)
.

where, (a) follows as769

exp (−Mn+ log d) ≤ exp

(
− Mn

log2 d

)
.

The above inequality holds true because770

−Mn+ log d ≤
(
− Mn

log2 d

)
=⇒ (log2 d) log d−Mn (log2 d) ≤ −Mn

=⇒ (log2 d) log d ≤ Mn (log2 d)−Mn

(b)
=⇒ (log2 d) log d ≤ Mn (log2 d− 1)
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We can now substitute the lower bound value of Mn ≥
⌈

L4
xk

2d2c′(ρ5)
2
log2(2d)

ω2∆2

⌉
and see that (b)771

holds true, and d ≫ k and k ≥ 2. So we have log2 d ≫ 1 and so (log2 d− 1) is a positive quantity.772

Also we have shown in Lemma A.10 that if the good event Fn holds, then we get a valid G-optimal773

design and
∥∥∥(B̂⊥

n )
⊤B
∥∥∥ ≤ min

{
ω
L2

x
, ω
L2

x
exp (−Mn)

}
for Mn ≥ ⌈L4

xk
2d2c′(ρE)2 log2(2d)

ω2∆2 ⌉.774

Stage 2: By applying Lemma A.14 and Lemma A.17, we have775

P
(
î∗m ̸= i∗m

)
= P

[
i∗m /∈ Gm,⌈log2 k⌉

]
≤

⌈log2 k⌉∑
ℓ=1

P [i∗m /∈ Gm,ℓ | i∗m ∈ Gm,ℓ−1]

≤ exp

(
cL4

x

kω2

) ⌈log2 k⌉∑
ℓ=2

3 exp

(
−
nm∆2

m,iℓ

32im,ℓ

)

≤ (3 (⌈log2 k⌉ − 1)) exp

(
cL4

x

kω2

)
exp

(
−nm

32
· 1

max2≤i≤d
i

∆2
i

)

< (3 log2 k) exp

(
cL4

x

kω2

)
exp

(
− nm

32H2, lin

)
where H2, lin is defined as

H2, lin = max
m∈[M ]

max
2≤i≤k

i

∆2
m,i

.

Note that this is for a single task m. So the total probability of error in stage 2 is given by776

M (3 log2 k) exp

(
cL4

x

kω2

)
exp

(
− nm

32H2, lin

)

Combining both stage 1 and stage 2 and substituting the value of nm we get that the total probability777
of error is given by778

8d exp (−Mn) +M (3 log2 k) exp

(
cL4

x

kω2

)
exp

(
− n

64H2, lin

)
(20)

The claim of the theorem follows.779

Remark A.18. (Rounding Error) Note that FB-DOE samples each arm ⌈τEmbE
x (i)⌉ in stage 1 and780

⌈bG
m,ℓ(i) · nm(k)⌉ times in stage 2. However, this may lead to oversampling of an arm than what781

the design ( G or E-optimal) is suggesting. However, we can match the number of allocations of an782
arm to the design using efficient Rounding Procedures (Pukelsheim, 2006; Fiez et al., 2019). This783
results in an estimation error of at most a multiplicative factor of (1β), for some β > 0 (Lattimore &784
Szepesvári, 2020; Fiez et al., 2019; Du et al., 2023). For convenience and easier exposition of our785
result, we drop this factor of (1 + β).786

Remark A.19. (Algorithmic Discussion) Note that the allocation of n/2 total number of samples to787
each stage may seem arbitrary and one might be tempted to allocate total samples to the two stages788
more carefully. One such approach is shown in Chen et al. (2022) which studies the representation of789
learning in an active learning setting and minimizes the expected risk. However, we note that such an790
approach will only result in a linear scaling with C ′n for some C ′ > 0 while the scaling with the791
dimensions will remain unchanged which is the main theme of this paper.792

Remark A.20. (Discussion on Bound) Observe that the probability of error depends on budget n,793
ambient dimension d, latent dimension k and linear hardness parameter H2, lin . The H2, lin quantifies794
the difficulty of identifying the best arm in the linear bandit MTRL setting. In the single task setting,795
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when M = 1, then the bounds scale with the ambient dimension d. Then the H2, lin = max2≤i≤d
i

∆2 .796
This single task H2, lin generalizes its stochastic bandit analogue H2,stoc = max2≤i≤A

i
∆2

i
proposed797

by Audibert et al. (2010); Bubeck et al. (2009) for standard multi-armed bandits. Note that H2, lin798
is never larger than H2,stoc since H2, lin is a function of the first d− 1 optimality gaps while H2,stoc799
considers all of the d− 1 optimality gaps. In general, we have800

H2, lin ≤ H2,stoc ≤
A

d
H2, lin

and both inequalities are essentially sharp, i.e., can be achieved by some linear bandit instances. This801
shows that the hardness in linear bandits due to their correlated structure should depend on d instead802
of A. Finally, note that when M > 1, it follows that H2, lin should scale with the worst possible d803
gaps among all tasks.804

Observe that the final probability of error in (20) consists of two terms. The first term is the probability805
of error in estimation of the feature extractor B. The second term is the error in the estimation of the806
optimal arm in each task. Additionally, the factor exp

(
cL4

x

kω2

)
captures the error in estimating latent807

features. Also, note that from (20) we can show that808

(3 log2 k) exp

(
cL4

x

kω2

)
exp

(
− n

64H2, lin

)
= exp

(
− n

64H2, lin
+ log (3 log2 k) +

cL4
x

kω2

)
(a)

≤ exp

(
− n

192H2, lin log2 k
+

cL4
x

kω2

)
where, (a) follows as809

exp
(
− n

64
+ log log2 k

)
≤ exp

(
− n

64
+ log2 3k

)
≤ exp

(
− n

192 log2 k

)
Then we introduce another novel lemma Lemma A.12 which shows using Lemma A.10 and (17)810
that the latent feature estimation is low. In Lemma A.13 we ensure that the estimation error with811
the latent parameter is low. This requires a different analysis than similar art in Du et al. (2023);812
Yang et al. (2020; 2022) as they only study fixed confidence or regret minimization setting. In the813
second stage, our technical novelty lies in controlling the probability of error for the noisy latent814
features in low dimensional multi-task linear bandits. This is shown in Lemma A.14, Lemma A.16,815
and Lemma A.17. Note that this approach differs from the existing art of fixed budget linear bandit816
settings (Katz-Samuels et al., 2020; Yang & Tan, 2021; Azizi et al., 2022) and significantly different817
than the fixed confidence linear bandit proofs in (Soare et al., 2014; Mason et al., 2021; Degenne &818
Koolen, 2019).819
Remark A.21. (Comparison with Peace, BayesGap, and GSE) We now comment on the choice820
of OD-LinBAI in the second stage of FB-DOE as opposed to Peace (Katz-Samuels et al., 2020),821
BayesGap (Hoffman et al., 2014) or GSE (Azizi et al., 2022). In Yang & Tan (2021) they show that822
OD-LinBAI is minimax optimal in case of stochastic K-armed bandits, which is a special case of823
single task linear bandit setting. However, Yang & Tan (2021) also shows that Peace is not minimax824
optimal and suffers from an additional factor of log d. This same argument also holds for FB-DOE.825
The BayesGap (Hoffman et al., 2014) algorithm works in the Bayesian linear bandit setting. It826
requires access to the problem-dependent parameter H1 =

∑
i ∆

−2
i in a single task linear bandit827

setting. Note, that H1 needs to be estimated using the true reward gap means, which is not practical.828
However, our algorithm FB-DOEdoes not require such access to the problem-dependent parameter829
H1. Finally, we discuss the GSE algorithm (Azizi et al., 2022) which is also motivated by G-optimal830
design (Pukelsheim, 2006). Azizi et al. (2022) shows that GSE and OD-LinBAI outperform each831
other in some domains. In the case of single task linear bandits when A < O(d2) the OD-LinBAI832
has a lower probability of error, whereas in the case when A = dq for some q > 2, the GSE has a833
lower probability of error. The same argument also holds for FB-DOE. Nevertheless, our approach in834
stage 2 is quite general once the latent features have been estimated from stage 1 with exponentially835
decaying probability. After that, an algorithmic modification in stage 2 (similar to GSE) enables us to836
plug in the result of GSE to our bound. We leave this to future work.837
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A.4 Bi-Linear Bandit Fixed Budget Proofs838

Stage 1 for FB-DOE839

Define W+
batch :=

(
W⊤

batch Wbatch
)−1

W⊤
batch where W+

batch = [w1,w2, . . . ,wτm
E
]⊤ is constructed840

through the E-optimal design. Let w = vec(x; z) ∈ Rd1d2 . Also note that ρE1 = ρE2 = . . . = ρEM =841
ρE as the action set X , and Z are common across the tasks. Also rotate Θm,∗ ∈ Rd1×d2 into the842
vector θm,∗ ∈ Rd1d2 . Then recall that843

θ̂t,m,j = W+
batch rm,t,

where, θ̂m,t ∈ Rd1d2 . In stage 1 it builds the estimator Ẑn as follows: The estimated parameter for844
task m at round t be denoted by θ̂m,t ∈ Rd1d2 such that845

θ̂m,t = (

τE
m∑

t=1

wm,tw
⊤
m,t)

−1

τE
m∑

t=1

wm,trm,t

Then calculate the estimate at round n as846

Ẑn=
3

Mn

M∑
m=1

τE
m∑

t=1

θ̂m,tθ̂
⊤
m,t−(

τE
m∑

t=1

wm,tw
⊤
m,t)

−1 (21)

Lemma A.22. Define the event

Fn :=

{
∥Zn − E [Zn]∥ ≥ C

∥∥W+
batch

∥∥2(2c(d1d2)
2

√
Mn

exp

(
−Mn

2

))}

It follows then that847

P (Fn) ≤ 4d1d2 exp (−Mn)

Proof. We again proceed as Lemma A.6. Set R =
√
Mn and define the truncation matrix An,Cn848

as in the Lemma A.6. Then we can show that the quantity849

∥Zn − E [Zn]∥ ≤
∥∥W+

batch

∥∥2 (∥An − E [An]∥+ ∥Cn − E [Cn]∥)

such that ∥Am,t,i∥ ≤ 3
Mn · 2(d1d2)cR, and ∥Cm,t,i∥ ≤ 3

Mn · 2(d1d2)c′R where c, c′ > 0. Note850
that ∥Cm,t,i∥ ≤ 1

Mn · 2(d1d2)c′R because log(n/δ) ≤
√
Mn. Now using the truncated Matrix851

Bernstein inequality we have that852

∥Zn − E [Zn]∥ ≤
∥∥W+

batch

∥∥2(2(d1d2)c

Mn
· 2(d1d2) ·

(
R+

1

R

)
exp

(
−R2

2

)
+
(d1d2)

Mn
· 2(d1d2)c′ ·

(
R+

1

R

)
exp

(
−R2

2

))
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holds as the noise |ηm,t| ≤ R with probability 1 − 4(d1d2) exp
(
−R2

2

)
because ηm,t is 1-sub853

Gaussian and c, c′ > 0. Setting R =
√
Mn we have that854

∥Zn − E [Zn]∥ ≤
∥∥W+

batch

∥∥2(2(d1d2)c

Mn
· 2(d1d2) ·

(√
Mn+

1√
Mn

)
exp

(
−Mn

2

)
+
(d1d2)

Mn
· 2(d1d2)c′ ·

(√
Mn+

1√
Mn

)
exp

(
−Mn

2

))
≤
∥∥W+

batch

∥∥2(2c(d1d2)
2

√
Mn

exp

(
−Mn

2

)
+

2c(d1d2)
2

(Mn)3/2
exp

(
−Mn

2

)
+
2c′(d1d2)

2

√
Mn

exp

(
−Mn

2

)
+

2c′(d1d2)
2

(Mn)3/2
exp

(
−Mn

2

))
≤ C

∥∥W+
batch

∥∥2(2c(d1d2)
2

√
Mn

exp

(
−Mn

2

))
The claim of the lemma follows.855

Lemma A.23. (Expectation of Ẑn ). It holds that E
[
Ẑn

]
= Z = 1

M

∑M
m=1 θm,∗θ

⊤
m,∗.856

Proof. First note that the total number of samples in stage 1 is sufficiently high such that857

n

3
>

L4
x(k1k2)

2(d1d2)
2c′(ρE)2 log2(2d1d2)

S2
rω

2M∆2
≥

⌈
Cn
(
ρE
)2

k1k
4
2

M
polylog

(
ρE , d1d2, k1k2

)⌉
for some constant C > 0 and δ = c′ exp(−n) for som c′ > 0. for some constant C > 0 and858
δ = c′ exp(−n) for som c′ > 0. Then for the first stage after n

2 samples we can re-write859

Ẑn =
2

M
∑

m τEm

M∑
m=1

τE
m∑

t=1

θm,tθ
⊤
m,t −W+

batch

(
W+

batch

)⊤
.

Now using Lemma A.7 we can prove the claim of the lemma.860

Lemma A.24. (Concentration of B̂1,n ). Suppose that event Fn holds. Then, for any n > 0,861 ∥∥∥(B̂⊥
1,n)

⊤B1

∥∥∥ ≤ c′ρE(k1k2)(d1d2)

Sr

√
Mn

exp

(
−Mn

2

)
for some constant c′ > 0 and ρEm=minb∈△W

∥∥(∑w∈W b(i)w(i)w(i)⊤)−1
∥∥.862

Proof. Using the Davis-Kahan sin θ Theorem (Bhatia, 2013) and letting τEm be large enough to satisfy863 ∥∥∥Ẑn − Z
∥∥∥
F
≤ C1(d1d2)

2√
M

∑
m τE

m

exp
(
−Mn

2

)
, we have864

∥∥∥(B̂⊥
1,n)

⊤B1

∥∥∥ ≤

∥∥∥Ẑn − E
[
Ẑn

]∥∥∥
σr

(
E
[
Ẑn

])
− σr+1

(
E
[
Ẑn

])
−
∥∥∥Ẑn − E

[
Ẑn

]∥∥∥
(a)

≤ k1k2
Src0

∥∥∥Ẑn − E
[
Ẑn

]∥∥∥
(b)

≤
ck1k2c0

∥∥W+
batch

∥∥2 (d1d2)
Sr

√
M
∑

m τEm
exp

(
−Mn

2

)
(c)

≤ c′ρE(k1k2)(d1d2)

Sr

√
M
∑

m τEm
exp

(
−Mn

2

)
=

c′ρE(k1k2)(d1d2)

Sr

√
Mn

exp

(
−Mn

2

)
where, (a) follows from Assumption 3.1, the (b) follows from event Fn and (c) follows as865 ∥∥W+

batch

∥∥2 ≤ 4ρEm, and τEm = n
3M . The claim of the lemma follows.866
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Lemma A.25. (Concentration of B̂2,n ). Suppose that event Fn holds. Then, for any n > 0,867 ∥∥∥(B̂⊥
2,n)

⊤B2

∥∥∥ ≤ c′ρE(k1k2)(d1d2)

Sr

√
Mn

exp

(
−Mn

2

)
for some constant c′ > 0 and ρEm=minb∈△W

∥∥(∑w∈W b(i)w(i)w(i)⊤)−1
∥∥.868

Proof. Using the Davis-Kahan sin θ Theorem (Bhatia, 2013) and letting τEm be large enough to satisfy869 ∥∥∥Ẑn − Z
∥∥∥
F
≤ C1(k1k2)(d1d2)√

M
∑

m τE
m

exp
(
−Mn

2

)
, we have following the same steps as in Lemma A.24 that870

∥∥∥(B̂⊥
2,n)

⊤B2

∥∥∥ ≤

∥∥∥Ẑn − E
[
Ẑn

]∥∥∥
σr

(
E
[
Ẑn

])
− σr+1

(
E
[
Ẑn

])
−
∥∥∥Ẑn − E

[
Ẑn

]∥∥∥
≤ c′ρE(k1k2)(d1d2)

Sr

√
Mn

exp

(
−Mn

2

)
where, (a) follows from Assumption 3.1, the (b) follows from event Fn and (c) follows as871 ∥∥W+

batch

∥∥2 ≤ 4ρEm, and τEm = n
3M . The claim of the lemma follows.872

We now need to show that σmin(
∑

g̃m(i)∈G bm(i)g̃(i)g̃(i)⊤) > 0. If this holds true then we can873
sample following E-optimal design in the second stage and the solution to the E-optimal design in874
the second phase is not vacuous.875

Lemma A.26. For Mn > ⌈ (k1k2)
2(d1d2)

2c′(ρE
m)2 log2(2(d1d2))

S2
rω

2∆2 ⌉ we have876

σmin(
∑
i

bE
w̃(i)w̃(i)w̃(i)⊤) > 0

Proof. We can show that877 ∑
i

bE
w̃(i)w̃(i)w̃(i)⊤

(a)
=
∑
i

bE(i)
(
B̂⊤

1,nxm(i)xm(i)B̂⊤
1,n

)
Ŝm,n

(
B̂⊤

2,nzm(i)zm(i)B̂⊤
2,n

)
where, in (a) the bE(i) is the sampling proportion for the arms x, and z.878 ∥∥∥(B̂⊥

1,n)
⊤B1

∥∥∥ ≤ c′ρE(k1k2)(d1d2)

Sr

√
Mn

exp

(
−Mn

2

)
(a)

≤ ω
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x

c′Srρ
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2c′(ρE)2 log2(2(d1d2))

S2
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)
=

ω
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x

∆

log(2d)︸ ︷︷ ︸
≤1

exp

(
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2(d1d2)
2c′(ρE)2 log2(2(d1d2))

2S2
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)

≤ ω
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x

exp

(
− (k1k2)

2(d1d2)
2c′(ρE)2 log2(2(d1d2))

2S2
rω

2∆2

)
where (a) follows by substituting the value of n, and observe that the last inequality does not depend879

on the number of tasks M or budget n. Hence, for Mn ≥ ⌈ (k1k2)
2(d1d2)

2c′(ρE
m)2 log2(2(d1d2))

S2
rω

2∆2 ⌉880

∥∥∥B̂⊤
1,nB

⊥
1

∥∥∥ ≤ min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
(22)
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Similarly we can show for n ≥ (k1k2)
2(d1d2)

2c′(ρE
m)2 log2(2(d1d2))

S2
rMω2∆2881

∥∥∥B̂⊤
2,nB

⊥
2

∥∥∥ ≤ min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
(23)

Then recall that for two positive semidefinite matrices A,B we have that882

λmin(A)λmin(B) ≤ λmin(AB).

Then we apply Lemma A.11 to show that883

σmin

(∑
i

bE
w(i)

(
B̂⊤

1,nxm(i)xm(i)B̂⊤
1,n

))
> 0, σmin

(∑
i

bE
w(i)

(
B̂⊤

2,nzm(i)zm(i)B̂⊤
2,n

))
> 0

and the σmin(Ŝm,n) > 0 by the construction of (7). Hence we get the claim of the lemma.884

Lemma A.27. Suppose that event Fn holds and Mn > ⌈L4
x(k1k2)

2(d1d2)
2L4

xc
′(ρE)2 log2(2d1d2)

S2
rω

2∆2 ⌉. Then
define

Vm =
∑
i

bE
w̃ (i) w̃m(i)w̃m(i)⊤.

where, w̃m(i) = vec(g̃m(i); ṽm(i)). For any task m ∈ [M ] and xj ∈ Rd,885

∥w̃(j)∥2V−1
m

≤ ∥w(j)∥2V−1
m

+
cL4

x

k1k2S2
rω

2
exp(−Mn)

for some constant c > 0886

Proof. The proof of this lemma follows directly from Lemma A.12 and using the relation from (22)887
and (23)888 ∥∥∥B̂⊤

1,nB
⊥
1

∥∥∥ ≤ min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
∥∥∥B̂⊤

2,nB
⊥
2

∥∥∥ ≤ min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
Plugging the value of n and usin Assumption 3.2, we have that for any task m ∈889
[M ],

∑
i b

E
w (i)B⊤

1 x(i)x(i)
⊤B1 and

∑
i b

E
w (i)B⊤

2 x(i)x(i)
⊤B2 is invertible we can get the claim890

of the lemma.891

Let ŝm,n = vec(Ŝm,n) ∈ Rk1k2 and sm,∗ = vec(Sm,∗) ∈ Rk1k2 .892

Lemma A.28. Let Fn hold. Define ∆̃m,i = w̃(i)⊤ŝm,n − w̃(i∗m)⊤ŝm,n and ∆m,i = w(i)⊤sm,∗ −893
w(i∗m)⊤sm,∗. Then the estimation error in second stage is given by894

|∆̃m,i −∆m,i| ≤ 6kLx min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
.

Further for Mn > ⌈L4
x(k1k2)

2(d1d2)
2c′(ρE)2 log2(2d1d2)

Srω2∆2 ⌉ we have that895

|∆̃m,i −∆m,i| ≤
∆m,i

2
.
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Proof. The proof follows the same steps as in Lemma A.13 by first using the relation that under the896
event Fn the following holds,897 ∥∥∥B̂⊤

1,nB
⊥
1

∥∥∥ ≤ min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
∥∥∥B̂⊤

2,nB
⊥
2

∥∥∥ ≤ min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
.

Then plugging in the value of n gives the claim of the lemma. This can be shown as follows:898

∣∣(w̃ − w̃′)⊤ŝm,n − (w̃ − w̃′)⊤sm,∗
∣∣ ≤ 2k1k2 · LxLw

∥∥∥B̂⊤
1,nB

⊥
1

∥∥∥∥∥∥B̂⊤
2,nB

⊥
2

∥∥∥+
√

ρE · 2 log
(
4n2M

δ

)
√
n

+ 2LxLw

∥∥∥B̂⊤
1,nB

⊥
1

∥∥∥∥∥∥B̂⊤
2,nB

⊥
2

∥∥∥
Setting Lw = 1, ρE = 2k1k2 and log

(
4n2M

δ

)
= n and as the event Fn holds, we get that899

∣∣(w̃ − w̃′)⊤ŝm,n − (w̃ − w̃′)⊤sm,∗
∣∣ ≤ 6k1k2Lx min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
This implies that900

|∆̃m,i −∆m,i| ≤ 6k1k2Lx min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
Now for Mn > ⌈L4

x(k1k2)
2(d1d2)

2c′(ρE)2 log2(2d1d2)
ω2∆2 ⌉ we can show that901

6k1k2Lx min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
= 6k1k2Lx min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
≤ 6k1k2Lx min

{
ω

L2
x

,
ω

L2
x

(2d)
−L4

x(k1k2)2(d1d2)2c′(ρE)2

S2
rω2∆2

}
(a)

≤ ∆

2

(b)

≤ ∆m,i

2

where, (a) holds as for any ∆ > 0, d, k > 1, ω > 0 the following holds902

log(
∆

12
) + log(

Lx

kω
) > −L4

x(k1k2)
2(d1d2)

2c′(ρE)2

S2
rω

2∆2
log(2d1d2).

The (b) holds as ∆m,i ≥ ∆. The claim of the lemma follows.903

Second Stage for FB-DOE904

Good Event: Define the good event F ′
n that the algorithm has a good estimate of Sm,∗ for each905

m ∈ [M ] as follows:906

F ′
n =

{∥∥∥Ŝm,∗ − Sm,∗

∥∥∥
F
≤ c(k1 + k2)

3/2
√
r√

n

}
, (24)

where, C2 > 0, some nonzero constant. Let the matrix W̃t = x̃tz̃
⊤
t .907

Lemma A.29. (Restatement of Lemma 23 of Lu et al. (2021), Converence under RSC, adapted908
from Proposition 10.1 in Wainwright (2019)) Suppose the observations W̃1, . . . ,W̃n ∈ Rk1×k2909
satisfies the non-scaled RSC condition, such that910

1

n

n∑
t=1

〈
W̃t,S

〉2
≥ κ∥S∥2F − τ2n∥S∥2nuc,∀S ∈ Rk1×k2 .
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Then under the event G :=
{∥∥∥ 1

n

∑n
t=1 ηtW̃t

∥∥∥ ≤ λn

2

}
, any optimal solution Ŝn to (7) satisfies the911

bound below:912

∥∥∥Ŝn − S∗

∥∥∥2
F
≤ 4.5

λ2
n

κ2
r,

where r = rank (Θ∗) and 1
τ2
n
≥ 64r

κ .913

Lemma A.30. (Restatement of Theorem 15 of (Lu et al., 2021), Distribution b satisfies RSC)
Sample W̃1, . . . ,W̃n/3 ∈ Rk1×k2 from W̃ according to b, and define w̃i := vec

(
W̃i

)
, Q̃ =[

w̃T
1 ; . . . ; w̃

T
n

]
∈ Rn/3×k1k2 and Γ̂ := 3

nQ̃
T Q̃. Let Σn be the covariance matrix after sampling

W̃t using distribution b. Then under the condition that the minimum eigenvalue of covariance matrix
Σn is greater than 0, there exists constants c1, c2 > 0, such that with probability 1− δ,

S̃T
mΓ̂S̃m =

3

n

n/3∑
t=1

〈
W̃t,Sm

〉2
≥ c1

k1k2
∥Sm∥2F − c2 (k1 + k2)

nk1k2
∥Sm∥2nuc,∀Sm ∈ Rk1×k2 ,

for n = Ω
(
(k1 + k2) log

(
1
δ

))
, where S̃m := vec(Sm,∗).914

Lemma A.30 states that sampling W̃t from W̃ according to distribution b guarantees that the915
sampled arms satisfies Restricted String Convexity (RSC) condition. We further show that un-916
der RSC condition, the estimated Ŝm,n is guaranteed to converge to Sm,∗ at a fast rate in917
Lemma A.31. Using Lemma A.26, and Lemma A.28 we know that in the second stage for918

Mn > ⌈L4
x(k1k2)

2(d1d2)
2c′(ρE)2 log2(2d1d2)

S2
rω

2∆2 ⌉ the minimum eigenvalue is greater than 0, and the es-919
timation error of features are small. We also know from Jun et al. (2019) that E-optimal design920
satisfies the property of the distribution D.921

Lemma A.31. The event Fn ∩ F ′
n in (24) holds with probability greater than 1 − 2(k1 +922

k2)
3/2 exp

(
cL4

x

k1k2S2
rω

2

)
exp

(
−n

2

)
.923

Proof. Define the rare event ξ :=
{
maxt=1,...,T1

|ηt| >
√
2n
}

, so that P(ξ) ≤ exp (−n) can be924
proved by the definition of sub-Gaussian. Define By matrix Bernstein inequality, the probability of925
G (λn)

c can be bounded in the following way using Lemma A.29 as follows:926

P

(∥∥∥∥∥ 1n
n∑

t=1

ηtW̃t

∥∥∥∥∥ > ϵ

)
(a)

≤ P

(∥∥∥∥∥ 1n
n∑

t=1

ηtW̃t

∥∥∥∥∥ > ϵ | ξc
)

+ P(ξ)

(b)

≤ (k1 + k2) exp

 −nϵ2/2

2 log
(
4n
δ

)
max {1/k1, 1/k2}+ ϵ

√
2 log

(
4n
δ

)
/3

+ δ/2

where, in (a) the matrix W̃t = x̃tz̃
⊤
t , and (b) follows from Matrix Bernstein inequality. Now927

setting log
(
k1+k2

δ

)
= n, p = k1 + k2 ≥ max {1/k1, 1/k2}. This implies that log

(
4n
δ

)
≤ (k1 +928
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k2) log(4n) + n ≤ 2np. Then set929

(k1 + k2) exp

(
−nϵ2/2

4np2 + ϵ
√
4np/3

)
= δ

=⇒ exp

(
−nϵ2/2

4np2 + ϵ
√
4np/3

)
=

δ

k1 + k2

=⇒ 4np2 + ϵ
√
4np/3

nϵ2/2
= log

(
k1 + k2

δ

)
=⇒ 4np2 + ϵ

√
4np/3

log
(
k1+k2

δ

) = nϵ2/2

=⇒ 4np2 + 2ϵ
√
4np/3

n log
(
k1+k2

δ

) = ϵ2

=⇒ 4p

log
(
k1+k2

δ

) + ϵ2
√
4p

3
√
n log

(
k1+k2

δ

) = ϵ2

=⇒ ϵ2 − ϵ2
√
4p

3n
√
n

− 4p

n
= 0

=⇒ ϵ =

2
√
4p

n
√
n
+
√

16p
9n3 + 4 · 1 · 4p

n

2

=⇒ ϵ =

√
4p

n
√
n
+ 2

√
p

9n3
+

p

n

where the last equality follows by quadratic formula. Therefore by setting ϵ = c(k1+k2)√
n

for some930
constant c > 0 we get that931

P

(∥∥∥∥∥ 1n
n∑

t=1

ηtW̃t

∥∥∥∥∥ >
c(k1 + k2)√

n

)
≤ C (k1 + k2) exp

(
−n

2

)

for some constant C > 0. Now set λn = 2ϵ, we need λ2
n = C(k1+k2)

n and under this condition we932
have P (G (λn)) ≥ 1 − C (k1 + k2) exp

(−n
2

)
. Finally we complete the proof by noting that the933

scaling of the right hand side in Lemma A.29 under above choice of λn is less than (k1+k2)
3r

n . This934
yields that935

P(F ′
n) = P

(∥∥∥Ŝm,∗ − Sm,∗

∥∥∥
F
≥ c(k1 + k2)

3/2
√
r√

n

)
≤ C (k1 + k2)

3/2
exp

(
−n

2

)
.

Finally, note that the latent feature estimation error in the second stage results in an additional factor936

of exp
(

cL4
x

k1k2S2
rω

2

)
. This yields that937

P(F ′
n) = P

(∥∥∥Ŝm,∗ − Sm,∗

∥∥∥
F
≥ c(k1 + k2)

3/2
√
r√

n

)
≤ C (k1 + k2)

3/2
exp

(
cL4

x

k1k2S2
rω

2

)
exp

(
−n

2

)
.

The claim of the lemma follows.938

Lemma A.32. (Concentration of Ûm,n ). Suppose that event Fn holds. Then, for any n > 0,939 ∥∥∥(Û⊥
m,n)

⊤Um

∥∥∥ ≤ c′(k1k2)
2.5

√
r

Sr
√
n

exp

(
−n

2

)
,

for some constant c′ > 0.940
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Proof. Using the Davis-Kahan sin θ Theorem (Bhatia, 2013) and letting τEm = n
3M be large enough941

to satisfy
∥∥∥Ŝm,∗ − Sm,∗

∥∥∥
F
≤ c(k1+k2)

3/2√r√
n

, we have942

∥∥∥(Û⊥
m,n)

⊤Um

∥∥∥ ≤

∥∥∥Ŝm,∗ − E
[
Ŝm,∗

]∥∥∥
σr

(
E
[
Ŝm,∗

])
− σr+1

(
E
[
Ŝm,∗

])
−
∥∥∥Ŝm,∗ − E

[
Ŝm,∗

]∥∥∥
(a)

≤ k1k2
Src0

∥∥∥Ŝm,∗ − E
[
Ŝm,∗

]∥∥∥
(b)

≤ c′(k1k2)(k1 + k2)
3/2

√
r

Sr
√
n

exp

(
−n

2

)
≤ c′(k1k2)

2.5
√
r

Sr
√
n

exp

(
−n

2

)
where, (a) follows from Assumption 3.1, the (b) follows from event F ′

n. The claim of the lemma943
follows.944

Lemma A.33. (Concentration of V̂m,n ). Suppose that event F ′
n holds. Then, for any n > 0,945 ∥∥∥(V̂⊥

m,n)
⊤Vm

∥∥∥ ≤ c′(k1k2)
2.5

√
r

Sr
√
n

exp

(
−n

2

)
for some constant c′ > 0.946

Proof. Using the Davis-Kahan sin θ Theorem (Bhatia, 2013) and letting τEm = n
3M be large enough947

to satisfy
∥∥∥Ŝm,∗ − Sm,∗

∥∥∥
F
≤ c(k1+k2)

3/2√r√
n

, we have following the same steps as in Lemma A.32948

that949

∥∥∥(V̂⊥
m,n)

⊤Vm

∥∥∥ (a)

≤

∥∥∥Ŝm,∗ − E
[
Ŝm,∗

]∥∥∥
σr

(
E
[
Ŝm,∗

])
− σr+1

(
E
[
Ŝm,∗

])
−
∥∥∥Ŝm,∗ − E

[
Ŝm,∗

]∥∥∥
(b)

≤ c′(k1k2)
2.5

√
r

Sr
√
n

exp

(
−n

2

)
where, (a) follows from Assumption 3.1, the (b) follows from event F ′

n. The claim of the lemma950
follows.951

Arm rotation in Stage 2 Recall that the SVD of Ŝm,n = Ûm,nD̂m,nV̂
⊤
m,n. Define Ĥm,ℓ =952

[Ûm,nÛ
⊥
m,n]

⊤Ŝm,n[V̂m,nV̂
⊥
m,n]. Then define the vectorized arm set so that the last (k1 − r) ·953

(k2 − r) components are from the complementary subspaces as follows:954

Gm,0 =
{[
vec

(
g̃m,1:rṽ

⊤
m,1:r

)
;vec

(
g̃m,r+1:k1

ṽ⊤
m,1:r

)
;

vec
(
g̃m,1:rṽ

⊤
m,r+1:k2

)
;vec

(
g̃m,r+1:k1 ṽ

⊤
m,r+1:k2

)]}
ŝm,n,1:k̃ = [vec(Ĥm,n,1:r,1:r);vec(Ĥm,n,r+1:k1,1:r);

vec(Ĥm,n,1:r,r+1:k2)],

ŝm,n,k̃+1:k1k2
= vec(Ĥm,n,r+1:k1,r+1:k2). (25)

Finally we estimate the955

ŝm,n = argmin
s

1
2∥Wm,ns− rm∥22 + 1

2∥s∥
2
Λm,n

(26)
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Lemma A.34. (Restatement of Lemma 3 of Valko et al. (2014)) If λ⊥ = n

3k1k2 log(1+ n
3λ )

, then956

log
|VT |
|Λ|

≤ 2k1k2 log
(
1 +

n

3λ

)
Lemma A.35. (Restatement of Lemma 1 of Jun et al. (2019)) Using Lemma A.34 we can show that957

∥s∗∥Λ ≤
√
λ
∥∥s1:k̃∥∥22 + λ⊥

∥∥∥sk̃+1:k1k2

∥∥∥2
2
≤

√
λB +

√
λ⊥B⊥

Setting B⊥ = 3
n , and λ⊥ = n

3k1k2 log(1+ n
3λ )

results in 1
2 ∥s∗∥

2
Λ ≤ 1

36n .958

Lemma A.36. For Mn > ⌈ (k1k2)
2(d1d2)

2L4
xc

′(ρE
m)2 log2(2(d1d2))

S2
rω

2∆2 ⌉ we have959

σmin(
∑
i

bE
w(i)w(i)w(i)⊤) > 0

Proof. We can show that960 ∑
i

bE
w(i)w(i)w(i)⊤

(a)
=
∑
i

bE
w(i)

(
Û⊤

m,nx̃mx̃mÛ⊤
1,n

)
D̂m,n

(
V̂⊤

m,nz̃mz̃mV̂⊤
m,n

)
where, in (a) the bG

m(i) is the sampling proportion for the arms x̃ ∈ Rk1 , z̃ ∈ Rk2 , Û ∈ Rk1×r and961
V̂ ∈ Rk1×r. Also note that from Lemma A.32 and Lemma A.33 we know that962 ∥∥∥(Û⊥

m,n)
⊤Um

∥∥∥ ≤ c′(k1k2)
2
√
r

Sr
√
n

exp

(
−n

2

)
(a)

≤ ω

L2
x

c′Srρ
E(k1k2)(d1d2)∆

c′Sr(k1k2)dρE log(2d)
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2
· L

4
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)
=

ω
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x

∆
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exp

(
− (k1k2)
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2c′L4

x(ρ
E)2 log2(2d)

2S2
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)
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L2
x
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(
− (k1k2)

2(d1d2)
2c′L4

x(ρ
E)2 log2(2d)

2S2
rω

2∆2

)
where (a) follows by substituting the value of n, and observe that the last inequality does not depend963

on the number of tasks M or budget n. Hence, for Mn ≥ ⌈ (k1k2)
2(d1d2)

2L4
xc

′(ρE
m)2 log2(2(d1d2))

S2
rω

2∆2 ⌉ we964
have965 ∥∥∥Û⊤

m,nU
⊥
m

∥∥∥ ≤ min

{
ω

L2
x

,
ω

L2
x

exp (−n)

}
. (27)

Similarly we can show that for Mn ≥ ⌈ (k1k2)
2(d1d2)

2L4
xc

′(ρE
m)2 log2(2(d1d2))

S2
rω

2∆2 ⌉ we have966

∥∥∥V̂⊤
m,nV

⊥
m

∥∥∥ ≤ min

{
ω

L2
x

,
ω

L2
x

exp (−n)

}
,
∥∥∥D̂⊤

m,nD
⊥
m

∥∥∥ ≤ min

{
ω

L2
x

,
ω

L2
x

exp (−n)

}
. (28)

This holds with high probability as the event F ′
n holds true. Then following the same steps as in967

Lemma A.26 and applying Lemma A.11 we get the claim of the lemma.968

If this holds true then we can sample the following G-optimal design and the solution to the G-optimal969
design in the third phase is not vacuous.970
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Lemma A.37. Suppose that event F ′
n holds and Mn >

L4
x(k1k2)

2(d1d2)
2L4

xc
′(ρE)2 log2(2d1d2)

S2
rω

2∆2 . Then
define

Σm,ℓ =
∑
i

bG
m,g̃ (i) g̃m,ℓ(i)g̃m,ℓ(i)

⊤.

For any task m ∈ [M ] and xj ∈ Rd,971

∥g̃(j)∥2Σ−1
m,ℓ

≤ ∥g(j)∥2Σ−1
m,ℓ

+
cL4

x

(k1 + k2)rS2
rω

2
exp(−Mn)

for some constant c > 0972

Proof. The proof of this lemma follows using the same steps as in Lemma A.12 and using the relation973
from (27) and (28)974 ∥∥∥Û⊤

m,nU
⊥
m

∥∥∥ ≤ min

{
ω

L2
x

,
ω

L2
x

exp (−n)

}
.∥∥∥V̂⊤

m,nV
⊥
m

∥∥∥ ≤ min

{
ω

L2
x

,
ω

L2
x

exp (−n)

}
.

Plugging the value of n and using Assumption 3.3, we have that for any task m ∈975
[M ],

∑
i b

G
w (i)U⊤

mg(i)g(i)⊤Um and
∑

i b
G
w (i)V⊤

mv(i)v(i)⊤Vm is invertible we can get the976
claim of the lemma.977

Recall that ŝm,n = vec(Ŝm,n) ∈ R(k1k2 and sm,∗ = vec(Sm,∗) ∈ Rk1k2 .978

Lemma A.38. Let ∆̃m,i = g(i)⊤ŝm,n − g(i∗m)⊤ŝm,n and ∆m,i = w(i)⊤sm,∗ − w(i∗m)⊤sm,∗.979
Then the estimation error in second stage is given by980

|∆̃m,i −∆m,i| ≤ 6(k1 + k2)rLx min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
.

Further for Mn >
L4

x(k1k2)
2(d1d2)

2c′(ρE)2 log2(2d1d2)
S2
rω

2∆2 we have that981

|∆̃m,i −∆m,i| ≤
∆m,i

2
.

Proof. The proof follows the same steps as in Lemma A.13 by first using the relation that982 ∥∥∥Û⊤
m,nU

⊥
m

∥∥∥ ≤ min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
∥∥∥V̂⊤

m,nV
⊥
m

∥∥∥ ≤ min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
.

Then plugging in the value of n gives the claim of the lemma.983

Again, for this stage using the same steps as in Lemma A.13 we can bound the estimation error for984
any pair of g,g′ ∈ Rk for a task m as follows:985 ∣∣(g − g′)⊤ŝm,n − (g − g′)⊤sm,∗

∣∣ ≤ 2k̃ · LxLw

∥∥∥Û⊤
n,⊥U

∥∥∥∥∥∥V̂⊤
n,⊥V

∥∥∥
+

√
ρEm · 2 log

(
4n2M

δ

)
√
n

+ 2LxLw

∥∥∥Û⊤
n,⊥U

∥∥∥∥∥∥V̂⊤
n,⊥V

∥∥∥
Setting Lw = 1, ρEm = 2k̃ log(1 + n

3λ ) and log
(

4n2M
δ

)
= n and as the event Fn holds, we get that986

∣∣(g − g′)⊤ŝm,n − (g − g′)⊤sm,∗
∣∣ ≤ 6k log(1 +

n

3λ
)Lx min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
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This implies that987

|∆̃m,i −∆m,i| ≤ 6kLx min

{
ω

L2
x

,
ω

L2
x

exp (−Mn+ log log(1 + n/3λ))

}
Now for n >

L4
xk

2d2c′(ρE)2 log2(2d)
ω2M∆2 we can show that988

6k̃Lx min

{
ω

L2
x

,
ω

L2
x

exp (−Mn)

}
= 6k̃Lx min

{
ω

L2
x

,
ω

L2
x

exp (−Mn+ log log(1 + n/3λ))

}
≲ 6k̃Lx min

{
ω

L2
x

,
ω

L2
x

(2d)
−L4

x(k1k2)2(d1d2)2c′(ρE)2

S2
rω2∆2

}
(a)

≤ ∆

2

(b)

≤ ∆m,i

2

where, (a) holds as for any ∆ > 0, d, k > 1, ω > 0 the following holds989

log(
∆

12
) + log(

Lx

kω
) > −L4

xk
2d2c′(ρE)2

ω2∆2
log(2d).

The (b) holds as ∆m,i ≥ ∆. The claim of the lemma follows.990

Third Stage for FB-DOE991

Now we apply the G-optimal design to the rotated arm set.992

Lemma A.39. Assume that the best arm i∗m is not eliminated before phase ℓ, i.e., i∗m ∈ Gm,ℓ−1. Then
the probability that the best arm is eliminated in phase ℓ is bounded as

P (i∗m /∈ Gm,ℓ | i∗m ∈ Gm,ℓ−1) ≤


4A

(k1+k2)r
exp

(
cL4

x

(k1+k2)rS2
rω

2

)
exp

(
−

nm∆2
m,iℓ

32im,ℓ
+ log log(1 + n/3λ)

)
when ℓ = 1

3 exp
(

cL4
x

(k1+k2)rS2
rω

2

)
exp

(
−

nm∆2
m,iℓ

32im,ℓ
+ log log(1 + n/3λ)

)
when ℓ > 1

where im,ℓ =
⌈
(k1+k2)r

2ℓ+1

⌉
+ 1.993

Proof. We use the same proof technique as for the linear budget fixed arm setting in Lemma A.17.994
Note that we use the rotated arm set of dimension (k1 + k2)r. Additionally observe that the latent995

feature estimation error factor exp
(

cL4
x

(k1+k2)rS2
rω

2

)
that shows up in the bound.996

We prove the main theorem for bilinear bandits.997

Theorem 3. Define ∆ = minm mini∈X ∆m,i, Mn ≥ ⌈ (d1d2)
2(k1k2)

2c′(ρE)2 log2(2d1d2)
ω2S2

r∆
2 ⌉ and ℓ > 1.998

Set λ⊥ = n

3k1k2 log(1+ n
3λ )

and λ > 0 in Λm,ℓ for each task m. Then the total probability of error of999

the algorithm is given by1000

8 exp

(
−Mn

log2 d1d2

)
+ CM exp

(
cL4

x

k1k2S2
rω

2

)
exp

(
−n

2 log2(k1 + k2)

)
+M (6 log2(k1 + k2)r) exp

(
cL4

x

(k1 + k2)rS2
rω

2

)
exp

(
− nm

32H2, bilin

)
.

Proof. Stage 1: Using Lemma A.22 we can show that the probability of error in the first stage is1001
bounded by1002

8d1d2 exp (−Mn) ≤ 8 exp

(
−Mn

log2 d1d2

)
.
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Also we have show in Lemma A.10 that if the good event Fn holds, then we get a valid G-optimal1003

design and
∥∥∥(B̂⊥

n )
⊤B
∥∥∥ ≤ c for some constant c for Mn ≥ ⌈ (d1d2)

2(k1k2)
2c′(ρE)2 log2(2d1d2)
ω2S2

r∆
2 ⌉.1004

Stage 2: Using Lemma A.31 we can show that the probability of error in the second stage is bounded1005
by1006

CM (k1 + k2)
3/2

exp

(
cL4

x

k1k2S2
rω

2

)
exp

(
−n

2

)

Also we have show in Lemma A.36 that if the good event F ′
n holds, then we get a valid G-optimal1007

design for the third stage.1008

Stage 3: Assume that Fn ∩ F ′
n holds. First note that by rotation of the arms we have reduced the1009

effective dimension to k̃ = (k1 + k2)r. By applying Lemma A.14 and Lemma A.17, we have for1010
ℓ > 11011

P
(
î∗m ̸= i∗m

)
= P

[
i∗m /∈ Gm,⌈log2(k1+k2)r⌉

]
≤

⌈log2(k1+k2)r⌉∑
ℓ=1
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ℓ=2

3 exp

(
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x

(k1 + k2)rS2
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2

)
exp

(
−
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)

≤ (3 (⌈log2(k1 + k2)r⌉ − 1)) exp
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·
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32
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i

∆2
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+ log log(1 + n/3λ)


< (3 log2(k1 + k2)r) exp
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2

)
exp

(
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+ log log(1 + n/3λ)

)

where H2, bilin is defined as

H2, bilin = max
m∈[M ]

max
2≤i≤(k1+k2)r

i

∆2
m,i

.

Note that this is for a single task m. So the total probability of error in stage 3 is given by1012

M (3 log2(k1 + k2)r) exp

(
cL4

x

(k1 + k2)rS2
rω

2

)
exp

(
− nm

32H2, bilin
+ log log(1 + n/3λ)

)
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Combining stages 1, 2, and 3, and substituting the value of nm (and ignoring the log log factor) we1013
get that the total probability of error is given by1014 ∑

m

P
(
î∗m ̸= i∗m

)
≤ 8 exp

(
−Mn

log2 d1d2

)
+ CM (k1 + k2)

3/2
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≤ 8 exp
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)
+ CM exp
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)
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(
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)
+M (6 log2(k1 + k2)r) exp

(
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(
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(29)

where, (a) follows as1015 √
(k1 + k2) exp

(
−n

2

)
≤ exp

(
− n

32H2, bilin

)
=⇒ exp

(
−n

2
+

3

2
log(k1 + k2)

)
≤ exp

(
− n

32H2, bilin

)
for Mn ≥ (d1d2)

2(k1k2)
2c′(ρE)2 log2(2d1d2)
ω2S2

r∆
2 . The (b) follows as1016

exp
(
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2
+ log(k1 + k2)

)
≤ exp

(
− n

2 log2(k1 + k2)

)
The claim of the theorem follows.1017

Remark A.40. (Discussion on Bound) Observe that the probability of error depends on budget1018
n, ambient dimension d1, d2, latent dimension k1, k2 and bilinear hardness parameter H2, bilin .1019
The H2, lin quantifies the difficulty of identifying the best arm in the bilinear bandit MTRL setting.1020
Observe that the final probability of error in (29) consist of three terms. The first term is the probability1021
of error in estimation of the feature extractors B1, B2. The second term is the error in the estimation1022

of the hidden parameter Sm,∗ in each task m. Additionally, the factor exp
(

cL4
x

k1k2S2
rω

2

)
captures the1023

error in estimating latent features in second stage. The third term consist of the probability of error1024

in identifying the pair of best arms in each task. Again, the factor exp
(

cL4
x

(k1+k2)rS2
rω

2

)
captures the1025

error in estimating latent features in third stage. Finally, note that the log log(1 + n/3λ) term in the1026
third factor is much smaller that − nm

32H2, bilin
and so can be effectively ignored.1027

Note that our key technical challenge in the fixed budget MTRL bilinear setting lies in carefully1028
constructing the high confidence bounds that is exponentially decaying with budget n. In the1029
stage 1 using Lemma A.22 we have to again modify Lemma C.3 of (Du et al., 2023) for the1030
bilinear setting so that we get the exponentially decaying bound. This leads to a new estimation1031
of the feature extractors B1, B2 in Lemma A.24, Lemma A.25, and then for a sufficiently large1032

Mn > ⌈ (d1d2)
2(k1k2)

2c′(ρE)2 log2(2d1d2)
ω2S2

r∆
2 ⌉ we have a non-vacuous solution to the E-optimal design in1033

stage 2 (see Lemma A.26). Then we ensure in Lemma A.27 that the latent feature estimation is low1034
and in Lemma A.28 we ensure that the estimation error with the latent feature is low in stage 2. This1035
requires a different analysis than similar art in Du et al. (2023); Yang et al. (2020; 2022) as they only1036
study fixed confidence or regret minimization setting. In the second stage our technical novelty lies in1037
controlling the probability of error for the noisy latent features in low dimensional multi-task linear1038
bandits. This is shown in Lemma A.14, Lemma A.16, and Lemma A.17.1039
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In the second stage we also have to estimate the latent parameter Sm,∗ for each task m, and incorporate1040
the noisy latent features into this. This requires a different approach than prior bilinear bandit proofs1041
in Jun et al. (2019); Lu et al. (2021). We show this in Lemma A.31. Again we ensure for the1042
third stage that the latent feature estimation is low (after rotation of arms) in Lemma A.37 and in1043
Lemma A.38 we ensure that the estimation error with the latent feature is low in stage 3. Note that1044
this approach differs from the existing art of fixed budget linear bandit settings (Katz-Samuels et al.,1045
2020; Yang & Tan, 2021; Azizi et al., 2022) and significantly different than the fixed confidence1046
linear bandit proofs proofs in (Soare et al., 2014; Mason et al., 2021; Degenne & Koolen, 2019).1047

A.5 Additional Experimental Details1048

MTRL linear bandit setting: This experiment consists of a set of M ∈ {5, 10, 15, 20, 30, 40} tasks.1049
We first fix the total number of tasks M from {5, 10, 15, 20, 25, 40}. Then in each of these tasks1050
for this particular setting (for a particular M ) the arm set X is selected from a unit ball in R8, and1051
∥x∥ ≤ 1 for all x ∈ X . So the dimension is d = 8. Then we choose a random common feature1052
extractor B ∈ R8×2. So k = 2. Then we choose a wm ∈ Rk for m = 1, 2, . . . ,M . This gives1053
us the θ∗,m for each task m ∈ [M ]. We set n = 5000. We compare against OD-LinBAI (Yang &1054
Tan, 2021) which was shown to be minimax optimal and performs better than PEACE in (Fiez et al.,1055
2019). The OD-LinBAI treats the setting for each M ∈ {5, 10, 15, 20, 25, 40} as a d dimensional1056
linear bandit and suffers a probability of error that scales as Õ(M exp(−n∆2)/d log2 d).1057

MTRL bilinear bandit setting: This experiment consists of a set of M ∈ {30, 60, 90, 120, 150}1058
tasks. Then in each of these tasks for this particular setting (for a particular M ) the left arm set1059
X and the right arm set Z are selected from a unit ball in R8. Note that we ensure ∥x∥ ≤ 11060
and ∥z∥ ≤ 1 for all x ∈ X and z ∈ Z . So the dimension is d1 = d2 = 8. Then we choose1061
random common feature extractors B1 ∈ R8×2, B2 ∈ R8×2. So k1 = k2 = 2. Then we choose1062
a Sm,∗ ∈ Rk1×k2 for m = 1, 2, . . . ,M . This gives us the Θ∗,m for each task m ∈ [M ]. We1063
set n = 8000. Again we compare against OD-LinBAI (Yang & Tan, 2021) as there are no fixed1064
budget alternatives for the bilinear bandit setting. The OD-LinBAI treats the setting for each1065
{20, 30, 40, 60, 80, 100} as a d1d2 dimensional linear bandit and suffers a probability of error that1066
scales as Õ(M exp(−n∆2/d1d2 log2 d1d2)).1067

MTRL linear Nectar setting: This is a real-world semi-synthetic experiment on the Nectar dataset1068
(Zhu et al., 2023). This dataset consists of 100K prompts, where each prompt consists of 7 answers1069
by Large Language models which are then ranked by humans. We select 20 prompts randomly from1070
this dataset and obtain a 768 dimensional embedding using Instructor model (Su et al., 2022) which1071
we denote as q ∈ R768. Then we project this vector to R6 using a projection matrix. For each1072
prompt, we also obtain a 768 dimensional embedding for each of the 7 answers and we denote this as1073
a ∈ R768. Then again we project this vector to R6 using a projection matrix. Finally, we obtain an1074
arm x = vec(qa⊤) ∈ R36 and d = 36. So these 140 arms constitute the X . Next, we fit the model1075
θ∗ based on the original ranking in the dataset to these arms. Then for each task m ∈ [M ] we perturb1076
the θ∗ + ϵ with an ϵ ∼ N (0, 0.05 ∗ Id) to obtain θm,∗.1077

Then in this experiment, we consider a set of M ∈ {20, 30, 40, 60, 80, 100} tasks. We again first fix1078
the total number of tasks M from M ∈ {20, 30, 40, 60, 80, 100}. Then in each of these tasks for this1079
particular setting (for a particular M ) the arm set X is selected as above. Then we choose a random1080
common feature extractor B ∈ R8×2. So k = 2. Then we choose a wm ∈ Rk for m = 1, 2, . . . ,M1081
such that wm = B−1θm,∗. We set n = 5000. Again we compare against OD-LinBAI. The OD-1082
LinBAI treats the setting for each M ∈ {20, 30, 40, 60, 80, 100} as a d dimensional linear bandit and1083
suffers a probability of error that scales as Õ(M exp(−n∆2)/d log2 d).1084

B Table of Notations1085

47



Under review for RLC 2025, to be published in RLJ 2025

Notations Definition
M Number of tasks
X Left arm set
Z Right arm set
θm,∗ Hidden parameter for linear bandit in ambient di-

mension
wm Hidden low dimensional parameter for linear ban-

dit
ℓ Phase number
Θm,∗ Hidden parameter matrix for bilinear bandits in

ambient dimension
Sm,∗ Hidden low dimensional parameter matrix for bi-

linear bandits
bE
x E-optimal design

bG
m,ℓ G-optimal design at the ℓ-th phase for the m-th task

λ⊥
m n/24(k1 + k2)r log(1 +

n
3λ )

B1 Left feature extractor
B2 Right feature extractor
Sr r-th largest singular value of Θ∗
∆ = minm mini∈X ∆m,i Linear bandit minimum gap
H1,lin = minm∈[M ]

∑k
i=1

1
∆2

m,i
Linear bandit hardness parameter

H2, lin = maxm∈[M ] max2≤i≤k
i

∆2
m,i

. Linear bandit hardness parameter

∆ = minm mini∈X ,Z ∆m,i Bilinear bandit minimum gap
H2, bilin = maxm∈[M ] max2≤i≤(k1+k2)r

i
∆2

m,i
. Bilinear bandit hardness parameter

n Total budget

Table 1: Table of Notations
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