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Abstract

Multiparty computation approaches to secure neural network inference commonly rely on
garbled circuits for securely executing nonlinear activation functions. However, garbled
circuits require excessive communication between server and client, impose significant storage
overheads, and incur large runtime penalties; for example, securely evaluating ResNet-32
using standard approaches requires more than 300MB of communication, over 10s of runtime,
and around 5 GB of preprocessing storage. To reduce these costs, we propose an alternative
to garbled circuits: Tabula, an algorithm based on secure lookup tables. Our approach
precomputes lookup tables during an offline phase that contains the result of all possible
nonlinear function calls. Because these tables incur exponential storage costs in the number
of operands and the precision of the input values, we use quantization to reduce these
storage costs to make this approach practical. This enables an online phase where securely
computing the result of a nonlinear function requires just a single round of communication,
with communication cost equal to twice the number of bits of the input to the nonlinear
function. In practice our approach costs around 2 bytes of communication per nonlinear
function call in the online phase. Compared to garbled circuits with quantized inputs, when
computing individual nonlinear functions during the online phase, experiments show Tabula
uses between 280×-560× less communication, is over 100× faster, and uses a comparable
amount of storage; compared against other state-of-the-art protocols Tabula achieves > 40×
communication reduction. This leads to significant performance gains over garbled circuits
with quantized inputs during the online phase of secure inference of neural networks: Tabula
reduces end-to-end inference communication by up to 9× and achieves an end-to-end inference
speedup of up to 50×, while imposing comparable storage and offline preprocessing costs.

1 Introduction

Secure neural network inference seeks to allow a server to perform neural network inference on a client’s
inputs while minimizing the data leakage between the two parties. Concretely, the server holds a neural
network model M while the client holds an input x. The objective of a secure inference protocol is for the
client to compute M(x) without revealing any additional information about the client’s input x to the server,
and without revealing any information about the server’s model M to the client. A protocol for secure neural
network inference brings significant value to both the server and the clients. The clients’ sensitive input data
is kept secret from the server, shielding the user from malicious data collection. Additionally, the client does
not learn anything about the server’s model, which prevents the model from being stolen by competitors.

Current state-of-the-art multiparty computation approaches to secure neural network inference require
significant communication between client and server, lead to excessive runtime slowdowns, and incur large
storage penalties (Mishra et al., 2020a; Ghodsi et al., 2021; Jha et al., 2021; Rathee et al., 2020; Juvekar
et al., 2018; Cho et al., 2021). The source of these expenses is computing nonlinear activation functions with
garbled circuits (Yao, 1986). Garbled circuits are costly in terms of computation, communication and storage.
Concretely, executing ReLU activation functions using garbled circuits requires over 2 KB of communication
per scalar element of the input (Mishra et al., 2020a) and imposes over 17 KB of preprocessing storage per
scalar element of the input (Mishra et al., 2020a; Ghodsi et al., 2021). These costs make state-of-the-art neural
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Figure 1: The Tabula approach to computing nonlinear functions for secure neural network inference.
Tabula precomputes lookup tables containing the result of all possible nonlinear function calls to an
activation function in a preprocessing phase. These lookup tables map secret shares of the inputs to the
nonlinear function directly to secret shares of the output of the activation function. During the online phase,
these lookup tables enable extremely efficient nonlinear activation function execution. Our code is released at
https://github.com/tabulainference/tabula.

network models prohibitively expensive to deploy: on ResNet-32, state-of-the-art multiparty computation
approaches for a single secure inference require more than 300 MB of data communication (Mishra et al.,
2020a), take more than 10 seconds for an individual inference (Mishra et al., 2020a), and impose over 5 GB of
preprocessing storage per inference (Ghodsi et al., 2021). These communication, runtime, and storage costs
pose a significant barrier to deployment, as they degrade user experience, drain clients’ batteries, induce high
network expenses, and eliminate applications that require sustained real time inference.

To replace garbled circuits and other methods (Rathee et al., 2020; Huang et al., 2022) for privately computing
nonlinear functions, we propose Tabula, a two-party secure protocol to efficiently evaluate neural network
nonlinear activation functions. During an offline preprocessing phase, Tabula generates tables that contain
the encrypted result of evaluating a nonlinear activation function over a range of all possible quantized inputs.
New tables are precomputed for each nonlinear function performed during inference, and these tables are
split across client and server. Then, at inference time, Tabula performs two steps to evaluate a nonlinear
activation function: 1) securely quantize neural network activation inputs down to the precision of the range
of the inputs to the precomputed tables and 2) securely lookup the result of the activation function using a
two-party secure table lookup procedure (Ishai et al.; Keller et al., 2017; Damgård & Zakarias, 2016). By
heavily quantizing neural network activations and reducing the space of inputs to the nonlinear activation
function, Tabula enables storing all possible results of the activation function in a table without requiring
an infeasibly large amount of memory. This allows the application of the subsequent two-party secure table
lookup protocol, which is efficient and has low storage, communication, and computation overhead.

Tabula achieves significant improvements over garbled circuits and other (Rathee et al., 2020; Huang
et al., 2022) approaches for securely computing nonlinear functions, on important system metrics such as
communication and runtime, while maintaining or even improving storage costs.

• Runtime
Tabula offers significant runtime improvements over garbled circuits with quantized inputs due
to the simplicity of the online phase of the secure table lookup protocol (Keller et al., 2017; Ishai
et al.; Damgård & Zakarias, 2016). Tabula’s runtime for an individual activation function is the
cost of transferring a single secretly shared value between parties, and performing a single memory
access on the subsequent value. Our results show that when computing individual functions, Tabula
is over 100× faster than garbled circuits with quantized inputs. This leads to significant overall
runtime improvements when performing secure neural network inference: our results show that across
various standard networks (LeNet, ResNet-32, ResNet-34, VGG) Tabula achieves up to 50× runtime
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speedup compared to garbled circuits with quantized inputs. Additionally, during the online phase,
the Tabula protocol requires just one table lookup; this is significantly less computation compared
to schemes that use function secret sharing (FSS), which require computing PRGs like AES-128
(Wagh, 2022; Gupta et al., 2022; Agarwal et al., 2022; Boyle et al., 2019; 2020; Ryffel et al., 2021).

• Communication
Tabula requires significantly less communication than garbled circuits with quantized inputs and also
significantly less communication versus other state-of-the-art approaches like (Rathee et al., 2020).
Tabula’s communication cost for a single activation function is the cost of communicating a single
secretly shared element between parties. This significantly is independent of the complexity of the
nonlinear function. Our experiments show that, compared to garbled circuits with quantized inputs,
communication required for a single nonlinear function call is reduced by a factor of over 280×−560×
leading to an overall communication reduction of up to 9× on various standard neural networks.
Additionally, compared to other state-of-the-art protocols for computing nonlinear functions like
(Rathee et al., 2020), we show Tabula reduces communication by up to 40× on a per-operation basis,
leading to up to 10× reduction in communication when performing end-to-end private inference on
various neural networks.

• Storage and Memory
Tabula utilizes comparable storage and memory as garbled circuits with quantized inputs. Tabula’s
table sizes are dictated by how heavily quantized the activations are and increases exponentially with
the precision of the activations. Notably, Tabula’s table sizes affect the precision of the activation
function and hence affect neural network accuracy. However, as neural network activations may
be significantly quantized without significantly affecting neural network quality (Ni et al., 2020;
de Bruin et al., 2020; Zhao et al., 2020; McKinstry et al., 2019), the sizes of these individual tables
may be reduced enough to require a comparable or smaller amount of storage to garbled circuits
with quantized inputs. Generally, across different models, Tabula uses between .25 × −2× as much
memory as garbled circuits while maintaining similar model quality. Like garbled circuits, Tabula
requires a new table for each individual nonlinear operation to maintain security.

A comparison of our work against others across some of these axes is shown in Table 1.
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Table 1: Comparison of our work against other approaches for securely computing nonlinear activation
functions across selected axes. Unless specified costs refer to the cost of the online phase. Compared to
garbled circuits, the most widely used state-of-the-art protocol for securely computing nonlinear functions,
our approach sees significant improvements in communication and runtime at comparable storage costs.
We also compare our approach against less generic protocols for non-linear function computation (tree-
based comparator, limited to only ReLU) on the basis of communication where we again see considerable
improvements. Finally, compared to function secret sharing (FSS) schemes, our approach is comparable in
attaining low communication cost while being computationally more efficient.

3



Under review as submission to TMLR

2 Related Work

2.1 Multiparty Computation Approaches to Secure Neural Network Inference

Multiparty computation approaches to secure neural network inference have been limited by the costs of
computing both the linear and nonlinear portions of the network (Mohassel & Zhang, 2017; Rouhani et al.,
2017; Rathee et al., 2020; Keller, 2020). Recent works like Minionn, Gazelle and Delphi (Liu et al., 2017;
Juvekar et al., 2018; Mishra et al., 2020a; Lehmkuhl et al., 2021; Rathee et al., 2020; Jha et al., 2021; Cho
et al., 2021; Ghodsi et al., 2021) have optimized the linear operations of secure neural network inference via
techniques like preprocessing to the point they are no longer a major system bottleneck (Mishra et al., 2020a).
Hence, current state-of-the-art approaches to secure inference like Minionn, Gazelle, Delphi, and CrypTFlow2
are primarily bottlenecked by nonlinear operations. Specifically, these approaches rely on garbled circuits, or
a circuit-based protocol, to compute nonlinear activation functions (e.g: ReLU) (Liu et al., 2017; Juvekar
et al., 2018; Mishra et al., 2020a; Keller & Sun, 2021; Dalskov et al., 2020), resulting in notable drawbacks
including high communication, runtime and storage costs.

Our approach addresses the problems posed by garbled circuits by eliminating them altogether. Our method
is centered around precomputing lookup tables containing the encrypted results of nonlinear activation
functions, and using quantization to reduce the size of these tables to make them practical.

2.2 Lookup Tables for Secure Computation

Lookup tables have been used to speed up computation for applications in both secure multiparty computation
(Launchbury et al., 2012; Damgård et al., 2017; Keller et al., 2017; Rass et al., 2015; Dessouky et al., 2017)
and homomorphic encryption (Li et al., 2019; Crawford et al., 2018). These works have demonstrated that
lookup tables may be used as an efficient alternative to garbled circuits, provided that the input space is
small. Prior works have primarily focused on using lookup tables to speed up traditional applications like
computing AES (Keller et al., 2017; Damgård et al., 2017; Launchbury et al., 2012; Dessouky et al., 2017)
and data aggregation (Rass et al., 2015). Notable exceptions include (Crawford et al., 2018) which focuses on
linear regression, and (Rathee et al., 2021) which applies variants of a lookup table as part of the protocol to
secure machine learning inference.

To the best of our knowledge, there exists little prior work which applies secure lookup tables to the execution
of relatively large neural networks. Most current state-of-the-art secure inference systems like (Mishra
et al., 2020a; Mohassel & Zhang, 2017; Ghodsi et al., 2021; Jha et al., 2021) use garbled circuits. Two
exceptions to this include (Rathee et al., 2020; Huang et al., 2022), which use a tree-based secure comparator.
However, the tree-based secure comparator used in (Rathee et al., 2020; Huang et al., 2022) is significantly
limited to only the ReLU activation function, and still requires significant computation and communication
overhead. Another work, (Rathee et al., 2021), does indeed use lookup tables as part of their protocol
for evaluating activation functions, but crucially focuses on ensuring numerical precision, leading to lower
system performance. We highlight that a key distinction in our use of lookup tables is that we store all
possible results of the nonlinear function in these tables, which uses exponential storage. This storage is
made manageable by heavily quantizing the neural network. This strategy of securely evaluating a function
through lookup tables, although known theoretically (Ishai et al.; Damgård & Zakarias, 2016), to the best of
our knowledge has not been applied practically until now, due to its exponential storage costs. The secure
lookup table approach of "storing everything in a table" is remarkably well suited to securely and efficiently
computing neural network nonlinear activation functions for two reasons: 1) neural network activations may
be quantized to extremely low precision with little degradation to accuracy and 2) neural network activation
functions are single operand. These two factors allow us to limit the size of the lookup table to be sufficiently
small to be practical, and consequently we can achieve the significant performance benefits of secure lookup
tables at runtime (i.e two orders of magnitude less communication). Note that while work on quantization
applied to secure inference exists (Dalskov et al., 2020; Keller & Sun, 2021), these works do not combine this
property with lookup tables for evaluating nonlinear functions. In summary, we emphasize that prior works
that use secure lookup tables have either applied them towards non-ML applications (i.e: MPC for AES-128),
or have not leveraged exponential-sized secure lookup tables in combination with neural network quantization
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to make them practical; although the exponential-sized secure lookup table approach for securely computing
functions is known, the unique combination of this technique with neural network quantization has not been
previously explored. In this work, we demonstrate that this unique combination of techniques can be applied
to dramatically reduce the costs of secure neural network inference.

2.3 Function Secret Sharing

The secure lookup table approach (Ishai et al.) employed by Tabula is related to function secret sharing
(FSS) approaches used in various private neural network inference approaches like Wagh (2022); Gupta et al.
(2022); Agarwal et al. (2022). The secure lookup table approach of "storing all function inputs/outputs in a
secure lookup table" can be theoretically categorized as a FSS approach. But there are several concrete
differences between the secure table lookup approach Tabula uses compared to traditional FSS approaches.
These distinctions lead to significant runtime differences. Concretely, our secure lookup table approach incurs
exponential storage costs which necessitates aggressive activation quantization to make storage costs practical.
However, this approach also enables a highly efficient online phase which requires just one 8-bit memory
access (in addition to the 2B communication between parties). FSS approaches, on the other hand, rely on
using distributed point functions (DPFs) or distributed comparison functions (DCFs), (Boyle et al., 2019;
2020) which in turn require evaluating PRGs (i.e: AES-128). Specifically, a table lookup using FSS requires
at least log(N) PRG or AES-128 evaluations, where N is the number of entries in the table, leading to 8-16
AES-128 evaluations per activation function call. This cost increases for more complex nonlinear functions
(Boyle et al., 2019; 2020). Evaluating PRGs like AES-128 are comparatively more expensive than Tabula
which requires just 1 8-bit memory access, as a modern processor even with hardware acceleration computes
only around 100M AES-128 operations (aes), whereas a modern processor has a memory bandwidth in the
100GB/s range. As such, Tabula is much more computationally efficient compared to FSS schemes, though
as a drawback requires aggressive quantization to make practical. Another benefit to Tabula is that its
communication cost is always 2B regardless of the nonlinear function being securely computed. This is
not the case for function secret sharing where more complicated nonlinear functions may cost more than
2B Boyle et al. (2019; 2020). Furthermore, a third advantage is that Tabula exhibits perfect security in
the malicious adversary threat model in the online phase, while function secret sharing schemes are only
computational secure up to a factor of the security parameter (Boyle et al., 2020). A final and notable
advantage is that, Tabula is much simpler than FSS schemes that rely on computing distributed point
functions or distributed comparison functions, which are complex cryptographic primitives.

Tabula’s main observation is that neural network activations can be aggressively quantized to 8-
bits and below with acceptable accuracy degradation and thus enable the use of exponential-sized lookup
tables, thereby avoiding the need for evaluating PRGs like AES-128 during online inference.

3 Tabula: Efficient Nonlinear Activation Functions for Secure Neural Network
Inference

3.1 Background

Secure Inference Objectives, Threat Model
Secure neural network inference seeks to compute a sequence of linear and nonlinear operations parameterized
by the server’s model over a client’s input while revealing as little information to either party beyond the
model’s final prediction. Formally, given the server’s model’s weights Wi ∈ FMi×Li

p and the client’s private
input x, the goal of secure neural network inference is to compute ai = A(Wiai−1) where a0 = x and A is a
nonlinear activation function, typically ReLU. Wi ∈ FMi×Li

p are the weights of the neural network represented
as a fixed point number in the finite field of modulus p. The dimensions Mi and Li correspond to the output
and input dimensions to the linear layer at i. Note that convolutions may be cast as a matrix multiply and
fits within this framework.

State-of-the-art secure neural network inference protocols like Delphi operate under a two-party semi-honest
setting (Mishra et al., 2020a; Lehmkuhl et al., 2021), where only one of the parties is corrupted and the
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corrupted party follows the protocol. Importantly, these secure inference protocols do not protect the
architecture of the neural network being executed, only its weights, and furthermore do not secure any
information leaked by the predictions themselves (Mishra et al., 2020a). As we follow Delphi’s protocol for
the overall secure execution of the neural network these security assumptions are implicitly assumed.

Cryptographic Primitives, Notations, Definitions
Tabula utilizes standard tools in secure multiparty computation. Our protocols operate over additively
shared secrets in finite fields. We denote Fp as a finite field over n-bit prime p. We use [x] to denote a two
party additive secret sharing of the scalar x ∈ Fp such that x = [x]0 + [x]1, where party i holds additive share
[x]i but knows no information about the other share.

Delphi Secure Inference Protocol
To understand how Tabula fits into standard secure neural network inference protocols like Delphi (Mishra
et al., 2020b), we briefly outline how these protocols operate. Broadly, state-of-the-art secure inference
protocols are divided into a per-input preprocessing phase and an online inference phase. In our work, we
build on top of the Delphi secure inference framework (Mishra et al., 2020a), which operates as following.

• Per-Input Preprocessing Phase
This phase prepares for the secure execution of a single input. The purpose of the preprocessing
phase is to initialize the parties with correlated randomness that enables efficient online inference.
This phase furthermore requires the use of linearly homomorphic encryption. For each linear layer
Wi ∈ FMi×Li

p , the client generates a random vector Rc ∈ FLi
p where Li is the length of the inputs to

the current linear layer. The client encrypts Rc with their linearly homomorphic public encryption
key k to Enck(Rc) and sends this value to the server. The server, upon receiving Enck(Rc), generates
their own secret vector Rs ∈ FMi

p where Mi is the length of the outputs of the current linear layer.
The server then encrypts Rs with the client’s public key k to obtain Enck(Rs). The server then
computes and returns to the client Enck(WiRc + Rs). The client decrypts this value to obtain
WiRc + Rs which is then stored in preparation for the online inference phase.

• Online Inference Phase
This phase performs inference on the client’s input. For linear layers, the client and server begin
with additive secret shares of the linear layer’s input x. That is the client and server hold [x]0
and [x]1 respectively, such that [x]0 + [x]1 = x. As the initial step, the client adds [x]0 with that
layer’s Rc to obtain [x]0 + Rc. Then the client sends this vector to the server who adds their own
share of the layer input [x]1 to obtain x + Rc. The server, upon calculating x + Rc, then computes
Wi(x + Rc) + Rs = Wix + WiRc + Rs (recall that Rs was the secret vector that the server generated
for this particular layer). At this point, the client holds WiRc + Rs from the preprocessing phase
and the server has computed Wix + WiRc + Rs. The difference between these two values is Wix.
Thus the two parties have obtained a secret sharing of Wix. Given that the parties hold [Wix] after
performing the previous steps, the subsequent nonlinear operations must operate over secret shares
[a] = [Wix].

As stated, after performing the protocol for the linear phase, the client and server hold secret shares of the
input to the nonlinear activation function. Hence, we need to construct a secure protocol for performing
nonlinear activation functions. This protocol must operate such that the client and server, each holding a
secret share of x, may perform to obtain secret shares of F (x), without leaking any information about x itself.
As a note, we emphasize that details on the homomorphic preprocessing phase can be found in the Delphi
paper (Mishra et al., 2020a).

3.2 Tabula for Securely and Efficiently Evaluating Neural Network Nonlinear Activation Functions

Tabula is divided into a preprocessing phase that initializes a lookup table for each individual nonlinear
function call used in the neural network, and an online phase which securely quantizes the activation inputs
and looks up the result of the function in the previously initialized tables. An overall figure for our protocol
is shown in Figure 1. We emphasize that our paper primarily focuses on the online phase of execution, which
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Figure 2: Tabula online protocol. Initially, the client and server hold secret shares of the input [x]. Both
parties begin by executing the secure truncation protocol to obtain shares of [xtrunc]. Then, the client and
server perform the secure table lookup protocol, where they exchange blinded secrets [xtrunc]i + si to compute
xtrunc + s. Finally, they use this value as an index into local lookup tables to compute Ti[xtrunc + s] which
are secret shares of the result of the nonlinear function evaluation.

determines the system’s real time response speed after knowing a client’s input, rather than the preprocessing
phase which may be done offline without knowing the client’s input data. However, we also develop an
efficient and secure algorithm for the preprocessing phase of Tabula which we demonstrate is simple, correct,
secure and efficient to perform, and conduct thorough experiments in the results section to demonstrate its
viability and effectiveness. We leave further innovations to the preprocessing algorithm to future research.

Below we describe the core building blocks that Tabula utilizes, namely, the secure lookup table procedure
(Ishai et al.; Keller et al., 2017) and secure truncation protocol (Mohassel & Zhang, 2017). We then describe
Tabula’s online and preprocessing execution phase, and detail its security, communication, and storage
properties.

Secure Lookup Table Procedure
We employ the concepts of (Ishai et al.) to enable the computation of a nonlinear function call through a
table lookup. By using an exponential amount of preprocessing storage, we obtain a secure protocol under the
semi-honest threat model where communication complexity depends only on the size of its input operands,
regardless of the complexity of the function being computed. Concretely, we precompute all possible results
of a nonlinear function and store them in a table, and utilize these secure tables during the online phase
of secure inference. This approach is similar to that described in (Keller et al., 2017; Ishai et al.). Like in
garbled circuits, Tabula requires new circuits per operation to maintain security.

Given a table T [x] = F (x), where F : Fp → Fp is the target nonlinear function operating over scalars, we
initialize a shared table [T ] across the parties, so the client holds [T ]0 ∈ Fp

p and server holds [T ]1 ∈ Fp
p. A secret

scalar s ∈ Fp unknown to both parties is generated and shared between the client and the server, with the client
and server holding [s]0 and [s]1 respectively. The shared table T is constructed such that [T ][s + x] = [F (x)]
for all values of x ∈ Fp for some modulus p that determines the precision to compute the nonlinear function.
Concretely, this means two tables are generated, [T ]0 and [T ]1 such that [T ]0[s + x] + [T ]1[s + x] = F (x).
Note that both client and server coordinate to initialize their local [T ]i in an offline preprocessing phase. The
online phase, given such a shared table, is then straightforward. Initially, the client holds x0 and the server
holds x1. The client sends to the server x0 + s0 while the server sends to the client x1 + s1. This allows both
parties to obtain the true value of x + s. Both parties then look up this value in their corresponding tables:
client looks up [T ]0[x + s], server looks up [T ]1[x + s], the sum of which is F (x). Security is maintained in
the online phase as a new table [T ] and secret s are used per function call, with s being unknown to either
party, perfectly blinding the secret value x.

Securely initializing shared table [T ] from T in the offline preprocessing phase is based on the fact that given an
index into a table, a table lookup can be cast as a dot product between the entire table with an indicator vector
containing a one in the position of the table index (e.g: the one hot vector encoding of the index). Subsequently,
a secure two party demux procedure (Keller et al., 2017) transforms secret shares of [s] into secret shared
vectors [s′] which sum to an indicator vector with a one at the s’th position. Finally, a dot product for each
entry of the table can be performed to compute [T ]: T [x]× [s′

0]+T [x+1]× [s′
1]+ ...+T [x+n]× [s′

n] = [T [s+x]].
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We develop an efficient and secure protocol for initializing Tabula tables based on these concepts later in
the text.

Secure Truncation
As the size of [T ] increases linearly with the size of the field Fp it becomes necessary to truncate or quantize
[x] to prevent [T ] from being impracticably large. Note that linear layers are required to use larger finite
fields to ensure that their dot products are computed correctly without overflow. Thus, the input to Tabula
is a value secret shared in a larger field, and a secure truncation method is required to switch to a smaller
field so that the encoded value may be used to index into a feasibly sized table. We use the secure truncation
method in (Mohassel & Zhang, 2017) to achieve this. Given a truncation factor d which specifies the precision
of the activation inputs, the client and server perform the secure truncation protocol: the client computes
⌊[x]0/d⌋ and the server computes p − ⌊(p − [x]1)/d⌋. After the truncation protocol is performed, the resulting
expressions the client and server hold sum to either [⌊[x]/d⌋ + 1] or [⌊[x]/d⌋] with probability proportional to
1 − k

p where k is the maximum value x may take, and p is the maximum value of the finite field of the previous
linear layer (Mohassel & Zhang, 2017). These small off by one errors, like quantization error, have little
impact on model quality due to neural networks’ resilience to noise. However, with probability proportional
to k

p , a large error occurs that is pessimistically assumed to ruin correctness. To reduce the probability of
these catastrophic errors, it is necessary to use a large finite field modulus for linear layers. In practice, we
use a 64-bit finite field modulus to reduce the chance that a secure truncation operation catastrophically fails
to < 1000

264 . Hence, by configuring the modulus appropriately, with high probability, the secure truncation
protocol computes the correctly truncated value with a small off by one error which may be tolerated by
neural networks (Ni et al., 2020; Reagan et al., 2018). Note that requiring 64-bits for the field increases the
communication cost required by the linear portions of the protocol over other approaches that commonly
use 32-bits; however, the reduction in communication cost by using Tabula tables more than makes up for
this communication penalty, as we will show in the results. We refer to (Mohassel & Zhang, 2017) for more
details and note that developing more effective secure truncation techniques is an important topic for further
research.

Tabula Online Phase
Given these fundamental building blocks, we describe the Tabula protocol. In the preprocessing phase,
Tabula generates multiple shared tables [T ] as described above for each nonlinear function call that is
performed when executing the neural network. How much to truncate/quantize the network’ activations is
chosen offline to maximize network accuracy. In the online execution phase, Tabula quantizes the inputs to
the activation function and uses this input to securely lookup up the result of the function. The full protocol
is shown in Figure 2. The security of Tabula is ensured by the security of the secure truncation protocol
(Mohassel & Zhang, 2017) and the secure table lookup protocol (Keller et al., 2017; Damgård & Zakarias,
2016; Ishai et al.).

Tabula Online Phase Communication and Storage Cost
Tabula achieves significant communication benefits during the online phase at comparable storage costs. As
shown in Figure 2, Tabula requires just one round of communication to compute any arbitrary function,
unlike garbled circuits, which may require multiple rounds for more complex functions. As an example,
ReLU implemented using garbled circuits takes two rounds, whereas Tabula requires just one. Additionally,
communication complexity is independent of the complexity of the nonlinear function being computed.
Specifically, revealing sx requires both parties to send their local shares, each nonlinear activation call
incurs communication cost corresponding to the number of bits in Fp. Since we use 64-bit Fp, this results
in 16 bytes of communication per activation function, the cost of transferring 8-byte field values back
and forth. However, we can apply an optimization to reduce this down to twice the cost of transferring
the size of the input to the table, rather than the field size. If the size of the table is 2b entries, and
if finite field size p is also power of two, then we can have party i first mod their secret shares by 2b

before exchanging them. Hence, the two parties hold [xtrunc]i mod 2b before adding their secret shares
of the table secret [s]i to the value and exchanging it; this brings down the total cost of the protocol to
2 × b bits. Modding by 2b yields the correct answer as xtrunc mod p = [xtrunc]0 + [xtrunc]1 + pl for some l,
and then (xtrunc mod p) mod 2b = ([xtrunc]0 + [xtrunc]1 + pl) mod 2b = ([xtrunc]0 + [xtrunc]1) mod 2b =
([xtrunc]0 mod 2b) + ([xtrunc]1 mod 2b). This equivalence shows that the two parties can first perform a
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s1
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Q
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s1:

[P]

[Q]
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T1[x]=

[P]

[Q] F(s0+s1+x)

[F(x+s)]

Generate Indicator 
Vector & Share Beaver Triple Outer Product

Figure 3: Tabula preprocessing protocol. Client and server generate secrets s0, s1 and encode them as an
indicator vector, secret sharing this indicator vector with the other party. Then, to obtain the entry for Ti[x],
the parties compute an outer product with between the shared indicator vectors and a 2-dimensional table
containing F (m + n + x) (where m, n span the dimensions of the table), which obtains [F (x + s)] where
s = s0 + s1.

modulus of their shares with 2b, and that their shares would still sum up to the original sum with the correct
modulus. With this optimization, communication is now 2 × b bits per nonlinear function call; if we use 8-bit
activations, then b = 8, and we use 2 bytes of communication total per call during the online phase, an 8×
improvement over the 16 bytes as previously stated.

Storage and memory, as mentioned previously, grow exponentially with the precision that is used for activations
and linearly with the number of activations in the neural network. Storage costs are thus n × 2k × Na bits
where n is the number of bits to use for the the output of the activation function, k is the number of bits
to the input of the activation function, and Na is the total number of activations that are performed by
the neural network. The majority of the storage cost comes from the 2k factor, the size of the individual
tables, which grows exponentially with input space / precision of the activations. However, as neural network
activations may be heavily quantized down without significantly affecting model quality (Ni et al., 2020;
de Bruin et al., 2020; Zhao et al., 2020), we can reduce this factor enough to be practical; we also note that
more advanced techniques like using a variable number of bits per layer of the network can be employed for
better performance (Dong et al., 2019). We verify that quantization has negligible impact on model quality
in our results. We highlight that every bit of precision that is trimmed from the activation yields a two fold
reduction in storage and memory costs, and hence more advanced quantization techniques (Ni et al., 2020;
de Bruin et al., 2020; Zhao et al., 2020) to reduce precision yields significant benefits. As storage and memory
varies with the precision of activations that is used, there is a natural tradeoff between the accuracy of the
model and the achieved memory/storage requirement. We examine these tradeoffs in the results.

3.3 Tabula Preprocessing Phase

Similar to garbled cicuits, Tabula tables require a preprocessing phase that initializes the client and server
with a single-use table that is used once per activation function call during the inference phase. We develop a
secure and efficient protocol for initializing Tabula tables, detailed below.

Preprocessing Phase Problem Statement
Given a nonlinear function F : Fp → Fp, we wish to securely initialize the client and server with tables
that map any possible input in Fp to secret shares of the result of the nonlinear function F . Specifically,
we wish to initialize on the client a table [T ]0 ∈ Fp

p, and on the server a table [T ]1 ∈ Fp
p, such that

[T ]0[s + x] + [T ]1[s + x] = F (x), where s ∈ Fp is a secret unknown to both client and server. Additionally, at
the end of the protocol, we additionally want the client to hold s1 ∈ Fp and server to hold s2 ∈ Fp such that
s1 + s2 = s.

Tabula Secure Preprocessing Protocol
To achieve this preprocessing step securely, the client and server first randomly generate s0 and s1 respectively,
and s is implicitly defined as s0 +s1 (though, as the parties do not know each others’ secrets, they hence do not
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know what s is). Then, the client generates a random indicator vector P ∈ Fp
p such that P [x] =

{
1 x = s0

0 x ̸= s0
;

the server similarly initializes Q ∈ Fp
p with s1. Client and server exchange shares of P and Q respectively,

hence, both parties hold secret shares [P ] and [Q] while leaking no information about s0 or s1 to either party.
Finally, client and server jointly initialize their table Ti[x] =

∑p
m=0

∑p
n=0 F (m + n + x)([P ]m × [Q]n), where

i = 0 for client and i = 1 for server, and secret shares [P ]m, [Q]n ∈ Fp are multiplied using beaver triple
multiplication (Beaver, 1991).

Intuitively, through this protocol the client and server specify the coordinate of s through an outer product
of their indicator vectors P, Q, which sets Ti[x] = [F (s + x)]. Formally, we see that this protocol achieves our
initialization goal as

Ti[x] =
p∑

m=0

p∑
n=0

F (m + n + x)([P ]m × [Q]n)

=
p∑

m=0

p∑
n=0

F (m + n + x)([Pm × Qn]) (beaver triple multiplication)

=
p∑

m=0

p∑
n=0

F (m + n + x) ×

{
[1] m = s0 and n = s1

[0] otherwise

= [F (s0 + s1 + x)]

= [F (s + x)]

Security and privacy is preserved as each step of the protocol consists entirely of secure steps: secret sharing
P and Q leaks no information about the vectors (hence leaks no information about either s0, s1, and s), and
beaver triple multiplication is likewise secure (Beaver, 1991). The full protocol is depicted in Figure 3.

Preprocessing Phase Communication and Computation Cost
The bulk of the preprocessing phase lies in computing an outer product between P, Q. We perform this outer
product just once and reuse it across i, x in Ti[x]. Hence, the protocol requires performing just a single outer
product between vectors ∈ Fp

p. This incurs O(p2) beaver triple multiplication operations, and assuming that
a sufficient number of beaver triples were generated before the preprocessing phase, communication cost is
naively O(p2log(p)) bits assuming that the values of the vectors are each log(p) bits. This naive O(p2log(p))
communication cost can be significantly reduced to O(p2) by having P, Q be secret shared binary vectors,
rather than be shared in Fp, then doing a conversion back to Fp after the final inner product. This can be
done as the true values of the vectors P , Q are either 0 or 1. Concretely, upon reception of the binary shares
of P or Q the current party computes [Ti(x)] =

∑p
m=0

∑p
n=0 F (m + n + x) ∗ [PQT ][m, n], and observe that

[Ti(x)]1 − [Ti(x)]2, is either F (s + x) or −F (s + x) (in the case that the first party has the 1 and the second
party has the 0 in the selected index, and the reverse). We perform an extra beaver triple multiplication
by the correction factor to eliminate this potential negation (by multiplying it by the parity of the sum of
[PQT ]), which costs an extra O(log(p)) bits of communication per inner-product. Since there are only p
inner products, these correction factors cost a negligible O(plog(p)) communication. With this optimization,
preprocessing communication cost is now O(p2) bits. As p, the quantized field size of the activation domain,
is set to be extremely small (i.e.: less than or equal to 256 for 8-bit quantized activations), preprocessing
communication tangibly incurs 2(256)2 = 216 = 131072 bits = 16 KB per table (the factor of two at the front
is because beaver triple multiplication requires both parties exchange secret shared values, and we have 2562

beaver triple multiplication operations). This is comparable to the 17.5 KB cost that garbled circuits with
full precision requires (Mishra et al., 2020a). We emphasize that the prior analysis assumed that beaver
triples were obtained beforehand in a pre-preprocessing phase; we think this is reasonable that in a practical
scenario parties would obtain sufficient amounts of beaver triples for any protocol due to their importance.
However, accounting for beaver triple preprocessing, communication cost is still an asymptotic O(p2) bits
assuming that beaver triples were generated using oblivious transfer e.g: Nielsen et al. (2012), which requires
just 2 OT calls to generate 1-bit beaver triples. Using the OT procedure proposed in Huang et al. (2022) the
concrete cost of a single OT is 3 bits for 1-bit values. Hence, pre-preprocessing costs for the beaver triples
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would still be O(p2) bits, with a higher constant factor burden. On a concrete example of 8-bit activations,
the cost for preprocessing the beaver triples would amount to 6 × 2562 bits = 48 KB of communication.
While this exceeds the 17.5 KB cost of garbled circuits, we believe that the online benefits of Tabula more
than make up for this detriment.

In terms of computation, we see that for precomputing a single table, we require summing across p2 values
(each entry of the outer product) for every entry of the table. Since there are p entries in the table, computation
costs scale as O(p3). However, these operations may be efficiently vectorized and parallelized as they are
standard matrix operations. For 8-bit tables, this is around 16 million field operations.

3.4 Note on Tabula Security

Although the Tabula protocol assumes a semi-honest threat model as inherited from the Delphi (Mishra
et al., 2020a) framework, more generally Tabula’s online phase which consists of utilizing a secure lookup
procedure is maliciously secure (Ishai et al.). This is intuitive as all communication between parties are
randomly blinded by an additive factor. This is another advantage that Tabula holds over garbled circuits
implementations many of which are only secure in the semi-honest setting (mpc). Hence, to extend the online
protocol to a full malicious-security setting, only the remaining portions of the Delphi online phase need
to be modified, which can be done using an existing solution lie (Lehmkuhl et al., 2021). Security for the
proposed Tabula offline preprocessing phase assumes semi-honest threat model, and extending the offline
preprocessing phase involves securing beaver triple generation as this is the main computational operation.

4 Results

We present results showing the benefits of Tabula over garbled circuits for secure neural network inference.
We evaluate our method on neural networks including a large variant of LeNet for MNIST, ResNet-32 for
Cifar10, and ResNet-34 / VGG-16 for Cifar-100, which are relatively large image recognition neural networks
that prior secure inference works benchmark (Ghodsi et al., 2021; Mishra et al., 2020a; Jha et al., 2021; van der
Hagen & Lucia, 2021). Unless otherwise stated, we compare against an implementation of the Delphi protocol
(Mishra et al., 2020a) using garbled circuits for nonlinear activation functions, without neural architecture
changes, during the online inference phase. Experiments are run on AWS c5.4x large machines (US-West1
(N. California) and US-West2 (Oregon)) which have 8 physical Intel Xeon Platinum @ 3 GHz CPUs and 32
GiB RAM; network bandwidth between these two machines achieves a maximum of 5-10 Gbit/sec, according
to AWS. We use the same machine/region specs as detailed in (Mishra et al., 2020a), but with 2x more
cores/memory (c5.4xlarge vs c5.2xlarge).

To ensure fair comparison, we compare Tabula against garbled circuits with quantized inputs, specifically
garbled circuits with 32-bit, 16-bit, and 8-bit inputs, which are commonly used precisions, but we also show
more detailed results on a more granular level by fixing accuracy/precision and comparing systems costs
between our methods. Note that with the same activation precision, both Tabula and garbled circuits
compute the same result. Like other works we benchmark using a batch size of 1 (Mishra et al., 2020a;
Rathee et al., 2020; Huang et al., 2022; Ghodsi et al., 2021).

Tabula CrypTFlow2
(OT preproc. method)

Cheetah
32-bit

Cheetah
8-bit

FSS
(8-bit;

ReLU op)

Comm.
Reduction

2B 96B 44B 11B 2B 48 × / 22 × / 5.5 × / 1 ×

Table 2: Tabula (8-bit activations) vs CrypTFlow2 (Rathee et al., 2020) and Cheetah (Huang et al., 2022)
and FSS (Boyle et al., 2019; 2020) online communication cost for performing a single ReLU operation during
the online phase. For CryptFlow2 the communication is based on an OT method that uses preprocessing
which achieves better online communication cost than what is described in Rathee et al. (2020). Note FSS,
Cheetah, CrypTFlow2 costs are specific to the ReLU op, while Tabula communication cost is the same for
any function provided they are quantized down to a sufficiently small table size.
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Tabula FSS
Computational

Efficiency
8-bit memory access

per op
>= 1 PRG (i.e: AES-128)

operation per op

Generality
2B comm. cost for

any nonlinear function
(must fit in table)

Comm. cost increases
for more complex nonlinear ops

Security Malicious Security Computational Security
(up to security parameters λ)

Complexity Table lookup DPF / DCF (Boyle et al., 2020)

Table 3: Qualitative comparison between Tabula and FSS schemes.

Network ReLUs Tabula CrypTFlow2 Comm. Reduction
MinioNN 176K 25MB 280MB 11.2 ×
ResNet-34 1.47M 59.5 MB 590MB 9.9 ×

Table 4: Tabula vs CrypTFlow2 (Rathee et al., 2020) end-to-end communication cost for performing secure
neural network inference on selected networks (Minionn (Liu et al., 2017) CIFAR10 architecture, and ResNet34
CIFAR100).

Network ReLUs
Garbled
Circuits
(32-bit)

Garbled
Circuits
(16-bit)

Garbled
Circuits
(8-bit)

Tabula Comm. Reduction
(vs 32/16/8 bit GC)

LeNet 58K 124 MB 62 MB 31 MB 3.5 MB 35.4× 17.7× 8.8×
ResNet-32 303K 311 MB 155 MB 77 MB 14 MB 22.2× 11.1× 5.6×
VGG-16 276K 286 MB 143 MB 72 MB 12.1 MB 23.6× 11.8× 5.6×

ResNet-34 1.47M 1.5 GB .75 GB 370 MB 59.5 MB 24.7× 12.4× 6.2×

Table 5: Tabula vs garbled circuits total online communication cost during secure inference for different
network architectures.

4 6 8 10 12
Communication Reduction

0.976
0.978
0.980
0.982
0.984
0.986
0.988
0.990

Ac
cu

ra
cy

A4

A5

A6
A7 A8 A9 A10A11A12

Baseline Acc

(a) MNIST LeNet

3 4 5 6 7 8
Communication Reduction

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

A4 A5 A6

A7

A8
A9 A10 A11 A12

Baseline Acc

(b) CIFAR10 ResNet32

3 4 5 6 7 8 9
Communication Reduction

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

A4 A5

A6

A7

A8 A9 A10 A11 A12

Baseline Acc

(c) CIFAR100 VGG16

3 4 5 6 7 8 9 10
Communication Reduction

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

A4 A5

A6

A7

A8 A9 A10 A11 A12

Baseline Acc

(d) CIFAR100 ResNet34

Figure 4: Tabula communication reduction over garbled circuits when garbled circuits uses An bit inputs vs
accuracy (%). Tabula incurs a fixed 16 byte communication cost regardless of the precision of activation
inputs, achieving up to 8 × −9× communication reduction over garbled circuits across tasks when requiring
within 1-2% of baseline accuracy. Baseline precision shown as the dashed blue line.

4.1 Communication Reduction

ReLU Communication Reduction
We benchmark the amount of communication required to perform a single ReLU with Tabula vs garbled
circuits. Table 6 shows the amount of communication required by both protocols during online inference.
Tabula achieves significant (> 280×) communication reduction compared to garbled circuits. Note our
implementation of garbled circuits on 32-bit inputs achieves the same communication cost as reported by
(Mishra et al., 2020a) (2KB communication for 32-bit integers).

12



Under review as submission to TMLR

Garbled
Circuits
(32-bit)

Garbled
Circuits
(16-bit)

Garbled
Circuits
(8-bit)

Tabula
Comm.

Reduction
(vs 32/16/8 bit GC)

2.17KB 1.1KB .562KB 2B 1112× 560× 280×

Table 6: Tabula with 8-bit activations vs garbled circuits communication cost for one ReLU.

We additionally compare ReLU communication of our protocol against recent works like CrypTflow2 (Rathee
et al., 2020) and Cheetah (Huang et al., 2022). CrypTflow2 and Cheetah similarly utilize a tree-based secure
comparison protocol dependent on oblivious transfer (Rathee et al., 2020; Huang et al., 2022). However
unlike CrypTflow2, Cheetah swaps out the underlying oblivious transfer implementation for a more efficient
version Huang et al. (2022). Our following analysis assumes that CrypTFlow2 uses a more efficient OT
protocol based on preprocessing which reduces the online communication costs beyond what they present in
their paper; broadly, the tree-based comparison method that CrypTflow2 utilizes requires at least 6 calls
to 1-out-of-128 oblivious transfer for optimal communication complexity (Rathee et al., 2020), which, with
preprocessing, takes at least 6 × 128 = 768 bits or 96 bytes, as oblivious transfer with preprocessing requires
sending all n bits to the original sender at the end (Beaver, 1995; Naor & Pinkas, 1999). Tabula requires just
16 bits of communication regardless of the nonlinear function being computed, obtaining a 48× improvement
in communication over the tree based comparison method of CrypTflow2 / Cheetah assuming the use of
this preprocessing-based OT method. Cheetah’s approach on the other hand uses the same tree-based
comparison approach (Huang et al., 2022) but swaps out the underlying OT method for a more efficient
version; specifically, Cheetah’s communication cost is 11 × L where L is the bitlength of the field element,
which results in 88 bits of communication for 8-bit values and 352 bits for 32-bit values. Tabula requires just
16 bits of communication, which represents a 5.5× and 22× reduction respectively. Note that SiRNN (Rathee
et al., 2021), another paper which utilizes an OT based protocol, uses more communication than that of ReLU
of CrypTflow (Rathee et al., 2020), hence our method would see > 48× communication improvement when
compared to their approach. We also compare communication cost against FSS approaches (Boyle et al., 2019;
Gupta et al., 2022; Agarwal et al., 2022; Ryffel et al., 2021). Generally, for the ReLU op Tabula obtains the
same 2B communication cost as FSS, however Tabula obtains several notable qualitative advantages over
FSS, and a table comparison is shown in Table 4. We summarize these communication cost comparisons in
Table 2, which compares the online communication cost of a single ReLU operation for Tabula, CryptFlow2
and Cheetah.
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Figure 5: Tabula overall storage/memory usage for a single inference versus accuracy for different tasks
and neural networks. Each point is annotated with An, specifying the precision of activations for that run.
With activation precisions above 10 Tabula uses more storage than garbled circuits due to the exponential
increase in the size of its tables; however, below a precision of 8, Tabula achieves notable storage savings
(> 2×) over garbled circuits. Baseline precision shown as the dashed blue line.

Total Online Communication Reduction
We benchmark the total amount of online communication required during the online phase of a single private
inference for various network architectures including LeNet, Resnet-32, ResNet-34 and VGG (batch size 1).
Table 5 shows the number of ReLUs per network, as well as the communication costs of using garbled circuits

13



Under review as submission to TMLR

Garbled Circuits
32-bit

Runtime
(us)

Garbled Circuits
16-bit

Runtime
(us)

Garbled Circuits
8-bit

Runtime
(us)

Tabula
Runtime

(us)

Tabula Speedup
(vs 32/16/8 bit GC)

184 111 69 .55 334 × 202 × 105 ×

Table 7: Tabula runtime speedup vs garbled circuits on a single ReLU operation. Tabula is orders of
magnitude faster than garbled circuits.

Network ReLUs

32-bit
Garbled
Circuits
Runtime

(s)

16-bit
Garbled
Circuits
Runtime

(s)

8-bit
Garbled
Circuits
Runtime

(s)

Tabula
Runtime

(s)

Speedup
(vs 32/16/8 bit GC)

LeNet 58K 11.1 6.3 3.9 .29 38.3× 21.7× 13.4×
ResNet-32 303K 69.7 43.4 30.6 .97 71.8× 44.7× 31.5×
VGG-16 284.7K 55.9 32.1 19.9 .67 83.4× 47.9× 29.7×

ResNet-34 1.47M 284.3 159.9 95.9 1.85 153.7× 86.4× 51.8×

Table 8: Tabula total online runtime speedup compared with garbled circuits. Compared to garbled circuits,
Tabula achieves significant runtime speedup during neural network execution by reducing code complexity,
communication costs, and memory/storage overheads.

(for 32/16/8 bit inputs) vs Tabula. Tabula reduces communication significantly (> 20×, > 10×, > 5× vs
32,16,8 bit garbled circuits) across various network architectures.

We additionally compare end-to-end communication costs against Rathee et al. (2020), the current state-of-
the-art for neural network inference, on various networks Minionn and ResNet34(Liu et al., 2017). Tabula’s
compact tables enable much lower communication costs during the online phase of secure neural network
inference, leading to an order of magnitude reduction in communication costs.

Finally, Figure 4 shows the communication reduction Tabula achieves compared to garbled circuits with An-
bit quantized inputs at a fixed accuracy threshold, and shows Tabula achieves over 8 × −9× communication
reduction across networks to maintain close to full precision accuracy. Note that these values reflect total online
communication costs, not just ReLU communication costs, and hence we find we are primarily bottlenecked
by the communication for the linear layers rather than nonlinear layers. Further note that we do not make
any architectural changes to the neural network (e.g: replace any ReLU operations with quadratic operations,
retrain, etc).

4.2 Storage/Memory Costs

We compare the storage/memory savings Tabula achieves against garbled circuits. Recall that Tabula
storage/memory usage grows exponentially with the size of its tables, which dictates the precision of the
activations. Using less storage/memory means reducing the precision for the activations of the neural network
and incurs some amount of error into the function call. This creates a tradeoff between storage/memory and
network accuracy. Further note that Tabula tables must be stored on both client and server. Below we
show both the storage/memory savings for a single ReLU operation disregarding the accuracy impact from
the quantization, and additionally the storage/memory vs accuracy tradeoffs for various networks (LeNet,
ResNet32/34, VGG).

ReLU Storage/Memory Savings vs Precision
We compare the storage/memory use between Tabula and garbled circuits for a single ReLU operation.
Tabula’s storage/memory use is the the size of its table multiplied by the number of bits of elements in the
original field, which we default to 64-bit numbers. Garbled circuits, on the other hand, uses 17KB, 8.5KB,
and 4.25KB for each 32-bit, 16-bit, and 8-bit ReLU operation respectively (Mishra et al., 2020a).
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Figure 6: Tabula overall runtime for a single inference versus accuracy for different tasks and neural networks.
Each point is annotated with An, specifying the precision of activations for that run. At activation precisions
10-12 (achieving within 1-2% of baseline accuracy), Tabula achieves significant runtime speedup (> 10×)
over garbled circuits.
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Figure 7: Runtime breakdown across linear and nonlinear (ReLU) layers comparing Tabula with 8-bit inputs
and garbled circuits with 32,16,and 8-bit inputs. Tabula achieves significant performance gains on nonlinear
layers, leading to major runtime speedups.

Figure 8 presents the storage usage of both Tabula and garbled circuits for a single ReLU operation, and
shows that Tabula achieves comparable storage/memory use to garbled circuits at precisions 8-10, and lower
storage/memory use with precisions below 8. Specifically, with 8 bits of precision for activation Tabula
achieves an 8.25×, 4.1× and 2× savings vs 32-bit, 16-bit and 8-bit garbled circuits; with ultra low precision
Tabula achieves even more gains (4 bits yields around 136× storage/memory reduction vs 32-bit garbled
circuits and 17× reduction vs 8-bit garbled circuits). These results imply that standard techniques to quantize
activations down below 8 bits and advanced techniques to quantize below 4 bits (Ni et al., 2020; de Bruin
et al., 2020; Zhao et al., 2020) can be applied with Tabula to achieve significant storage/memory savings.
Notably, Tabula achieves storage savings at ultra low precision activations as a 1-bit reduction in activation
precision yields a 2× storage reduction, unlike for garbled circuits where storage is reduced linearly.

Storage/Memory Savings and Accuracy Tradeoff
We present Tabula’s total storage/memory usage versus accuracy tradeoff in Figure 5. In this experiment,
we directly quantize the network’s activations during execution time uniformly across layers, recording the
achieved accuracy and memory/storage requirements for a single inference. As shown in Figure 5, across
various tasks and network architectures, activations may be quantized to 9 bits or below while maintaining
within 1-3% accuracy. This allows Tabula to achieve comparable or even less storage use than garbled
circuits at a fixed accuracy threshold. We emphasize that future work may apply more advanced quantization
techniques (Ni et al., 2020; de Bruin et al., 2020) to reduce activation precision below 8-bits and achieve even
better storage/memory savings. Our results here show that even with very basic quantization techniques,
Tabula achieves comparable storage/memory usage versus garbled circuits, and indicate that Tabula is
more storage efficient as fewer bits of precision for the activations are used.

4.3 Runtime Speedup
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Figure 8: Tabula and garbled circuits stor-
age/memory use for a single ReLU operation.

We compare the runtime speedup Tabula achieves over
garbled circuits. As noted in various secure neural network
inference works (Mishra et al., 2020a; Ghodsi et al., 2021;
Cho et al., 2021), executing nonlinear activation functions
via garbled circuits takes up the majority of secure neural
network execution time, hence, replacing garbled circuits
with an efficient alternative has a major impact on runtime.
Below we present the Tabula’s runtime benefits when
executing individual ReLU operations and when executing
relatively large state-of-the-art neural networks.

ReLU Runtime Speedup
Table 7 shows the runtime speedup Tabula achieves over
garbled circuits when executing a single ReLU operation.
Tabula achieves over 100× runtime speedup due to its
simplicity: the cost of transferring 16 bytes of data and a single access to RAM is orders of magnitude faster
than garbled circuits. Note that our implementation of garbled circuits on 32-bit inputs is slower than as
reported in Delphi (Mishra et al., 2020a): our implementation of garbled circuits takes around 184 us per
ReLU, whereas the reported is 84 us (Mishra et al., 2020a); however, even if the implementation in Delphi
achieves an optimal 4× speedup with 8-bit quantization, Tabula is still 38× faster.

Neural Network Runtime Speedup
We present Tabula’s overall speedup gains over garbled circuits across various neural networks including
LeNet, ResNet32/34 and VGG16. Table 8 and Figure 6 shows that Tabula reduces runtime by up to 50×
across different neural networks, bringing execution time below 1 second per inference for the majority of the
networks. Note that bigger networks are increasingly bottlenecked by ReLU operations, and hence Tabula’s
runtime reduction increases in magnitude with the size of the neural network under consideration. Figure
7 shows a breakdown of where execution time is being spent, for both Tabula and garbled circuits. As
shown, Tabula reduces the runtime spent on computing activation functions by up to orders of magnitudes.
With bigger networks, the impact of executing nonlinear activation functions is larger. Hence, Tabula sees
greater runtime improvement on larger networks. We further note that, in the runtime breakdown chart,
cache effects in Tabula negatively impact the runtime of linear layers. However, this has negligible impact
on runtime due to non-linear layers being the dominant cost.

Metric
Tabula

Preprocessing
(8-bit)

Garbled Circuits
Preprocessing

(32-bit)

Garbled Circuits
Preprocessing

(16-bit)

Garbled Circuits
Preprocessing

(8-bit)
Runtime (ms) 6 .155 .092 .053

Communication (b) 16384 17920 8960 4480

Table 9: Tabula vs Garbled Circuits runtime and communication preprocessing costs for a single ReLU
operation. Note: Tabula preprocessing costs, like runtime costs, stay constant regardless of activation function,
unlike garbled circuits.

4.4 Preprocessing Costs

We benchmark our proposed algorithm for preprocessing Tabula tables against garbled circuits preprocessing
times to demonstrate that Tabula preprocessing costs are comparable to garbled circuits.

Preprocessing Runtime & Communication Costs

We compare runtime and communication costs for initializing a single ReLU operation. Table 9 shows the
cost of preprocessing a single ReLU operation for Tabula with 8-bit inputs, and garbled circuits. In terms
of communication costs, Tabula is comparable to GC with 32-bit inputs; however, Tabula requires more
communication than GC with 16/8 bit inputs. In terms of runtime, Tabula generally requires significantly
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more computation than garbled circuits, leading to higher runtime. The majority of Tabula preprocessing
runtime is spent towards computing field operations for performing the multiply-add-accumulate operation
between the outer product and the nonlinear function (recall that computation costs for an 8-bit input scales
as O(2563)). These computation costs can be significantly decreased through further parallelization and
vectorization.
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Figure 9: Tabula preprocessing com-
munication cost vs Garbled Circuits
for different number of bits.

We further show the effect of number of bits used for the activation
function on preprocessing communication costs. As each bit that
is eliminated reduces the size of the table by a factor of 2, saving
a single bit exponentially decreases runtime and communication
costs. As seen in Figure 9, at around 5 bits Tabula preprocessing
communication costs become lower than communication cost for
garbled circuit at the same bitwidth.

4.5 End-to-end Preprocessing Communication Costs

We additionally compare end-to-end preprocessing communication
costs across various models (LetNet, ResNet, VGG) between Tabula
and Garbled Circuits. Table 10 shows a comparison of the commu-
nication costs between different models. Again, Tabula requires
more communication than GC with 8/16-bit inputs but less than GC
with 32-bit inputs, due to the need for computing outer products
using beaver triples that scale with the cardinality of the field. Although this is costly, results show that
preprocessing can be feasibly performed at similar cost to GC with 32-bit inputs. Further research and
algorithmic developments may drive down the preprocessing cost of initializing Tabula tables.

Network ReLUs
Tabula

Preprocessing
(8-bit)

Garbled Circuits
Preprocessing

(32-bit)

Garbled Circuits
Preprocessing

(16-bit)

Garbled Circuits
Preprocessing

(8-bit)
LeNet 58K 906 MB 991 MB 496 MB 248 MB

ResNet-32 303K 4.6 GB 5.05 GB 2.53 GB 1.27 GB
VGG-16 284.7K 4.3 GB 4.75 GB 2.37 GB 1.19 GB
ResNet-34 1.47M 22.4 GB 24.5 GB 12.25 GB 6.13 GB

Table 10: Preprocessing communication cost comparison between Tabula and garbled circuits for various
neural network models. Tabula has comparable preprocessing costs compared to garbled circuits.

5 Conclusion

Tabula is a secure and efficient protocol for computing nonlinear activation functions in secure neural
network inference. To conclude, we point out the following observation: quantization, as applied to improve
standard neural network performance, typically obtains sublinear runtime improvements (as low bitwidth
ops typically do not scale linearly in perf. with bits due to hardware inefficiencies), and linear memory
improvements. Through our method, quantization as applied to secure neural network inference, obtains
super-linear runtime/communication improvements that scale with the complexity of the underlying nonlinear
operation, and exponential memory improvements. We believe that, quantization, an already important
performance improvement technique for neural networks, will be even more crucial for secure neural network
inference, and that our method Tabula is a key approach towards realizing this fact. Tabula is a step
towards sustained, low latency, low energy, low bandwidth real time secure inference applications.

References
Aes performance. https://openwrt.org/docs/guide-user/perf_and_log/benchmark.openssl.

17

https://openwrt.org/docs/guide-user/perf_and_log/benchmark.openssl


Under review as submission to TMLR

Fundamental mpc protocols. https://securecomputation.org/docs/ch3-fundamentalprotocols.pdf.

AmirAli Abdolrashidi, Lisa Wang, Shivani Agrawal, Jonathan Malmaud, Oleg Rybakov, Chas Leichner, and
Lukasz Lew. Pareto-optimal quantized resnet is mostly 4-bit. 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 3085–3093, 2021.

Amit Agarwal, Stanislav Peceny, Mariana Raykova, Phillipp Schoppmann, and Karn Seth. Communication-
efficient secure logistic regression. Cryptology ePrint Archive, Paper 2022/866, 2022. URL https:
//eprint.iacr.org/2022/866. https://eprint.iacr.org/2022/866.

Donald Beaver. Efficient multiparty protocols using circuit randomization. volume 576, pp. 420–432, 08 1991.
ISBN 978-3-540-55188-1. doi: 10.1007/3-540-46766-1_34.

Donald Beaver. Precomputing oblivious transfer. volume 963, pp. 97–109, 08 1995. ISBN 978-3-540-60221-7.
doi: 10.1007/3-540-44750-4_8.

Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with preprocessing via function secret
sharing. Cryptology ePrint Archive, Paper 2019/1095, 2019. URL https://eprint.iacr.org/2019/1095.
https://eprint.iacr.org/2019/1095.

Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant Kumar, and Mayank
Rathee. Function secret sharing for mixed-mode and fixed-point secure computation. Cryptology ePrint
Archive, Paper 2020/1392, 2020. URL https://eprint.iacr.org/2020/1392. https://eprint.iacr.
org/2020/1392.

Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Sphynx: Relu-efficient
network design for private inference, 2021.

Jungwook Choi, Swagath Venkataramani, Vijayalakshmi Srinivasan, K. Gopalakrishnan, Zhuo Wang, and
Pierce I-Jen Chuang. Accurate and efficient 2-bit quantized neural networks. In MLSys, 2019.

Jack L. H. Crawford, Craig Gentry, Shai Halevi, Daniel Platt, and Victor Shoup. Doing real work with
fhe: The case of logistic regression. In Proceedings of the 6th Workshop on Encrypted Computing; Applied
Homomorphic Cryptography, 2018.

Anders Dalskov, Daniel Escudero, and Marcel Keller. Secure evaluation of quantized neural networks.
Proceedings on Privacy Enhancing Technologies, 2020.

Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. The tinytable protocol for
2-party secure computation, or: Gate-scrambling revisited. In CRYPTO, 2017.

Ivan Damgård and Rasmus Zakarias. Fast oblivious aes a dedicated application of the minimac protocol.
In Proceedings of the 8th International Conference on Progress in Cryptology — AFRICACRYPT 2016
- Volume 9646, pp. 245–264, Berlin, Heidelberg, 2016. Springer-Verlag. ISBN 9783319315164. doi:
10.1007/978-3-319-31517-1_13. URL https://doi.org/10.1007/978-3-319-31517-1_13.

Barry de Bruin, Zoran Zivkovic, and Henk Corporaal. Quantization of deep neural networks for accumulator-
constrained processors. Microprocessors and Microsystems, 2020.

G. Dessouky, F. Koushanfar, A. Sadeghi, T. Schneider, Shaza Zeitouni, and Michael Zohner. Pushing the
communication barrier in secure computation using lookup tables. IACR Cryptol. ePrint Arch., 2017.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael Mahoney, and Kurt Keutzer. Hawq: Hessian aware
quantization of neural networks with mixed-precision. 2019. doi: 10.48550/ARXIV.1905.03696. URL
https://arxiv.org/abs/1905.03696.

Karthik Garimella, Nandan Kumar Jha, and Brandon Reagen. Sisyphus: A cautionary tale of using low-degree
polynomial activations in privacy-preserving deep learning, 2021. URL https://arxiv.org/abs/2107.
12342.

18

https://securecomputation.org/docs/ch3-fundamentalprotocols.pdf
https://eprint.iacr.org/2022/866
https://eprint.iacr.org/2022/866
https://eprint.iacr.org/2022/866
https://eprint.iacr.org/2019/1095
https://eprint.iacr.org/2019/1095
https://eprint.iacr.org/2020/1392
https://eprint.iacr.org/2020/1392
https://eprint.iacr.org/2020/1392
https://doi.org/10.1007/978-3-319-31517-1_13
https://arxiv.org/abs/1905.03696
https://arxiv.org/abs/2107.12342
https://arxiv.org/abs/2107.12342


Under review as submission to TMLR

Zahra Ghodsi, Nandan Kumar Jha, Brandon Reagen, and Siddharth Garg. Circa: Stochastic relus for private
deep learning. In Advances in Neural Information Processing Systems, 2021.

Kanav Gupta, Deepak Kumaraswamy, Nishanth Chandran, and Divya Gupta. Llama: A low latency
math library for secure inference. Cryptology ePrint Archive, Paper 2022/793, 2022. URL https:
//eprint.iacr.org/2022/793. https://eprint.iacr.org/2022/793.

Tuan Hoang, Thanh-Toan Do, Tam V. Nguyen, and Ngai-Man Cheung. Direct quantization for training
highly accurate low bit-width deep neural networks. In Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI-20. International Joint Conferences on Artificial Intelligence
Organization, 2020. URL https://doi.org/10.24963/ijcai.2020/292.

Zhicong Huang, Wen jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure Two-
Party deep neural network inference. In 31st USENIX Security Symposium (USENIX Security 22),
pp. 809–826, Boston, MA, August 2022. USENIX Association. ISBN 978-1-939133-31-1. URL https:
//www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong.

Yuval Ishai, Eyal Kushilevitz, and Sigurd Meldgaard. On the power of correlated randomness in secure
computation. In In Proc. TCC 2013, pp. 600–620.

Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. Deepreduce: Relu reduction for
fast private inference. In Proceedings of the 38th International Conference on Machine Learning, 2021.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. Gazelle: A low latency framework for
secure neural network inference. In 27th USENIX Security Symposium (USENIX Security 18), 2018.

Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, 2020.

Marcel Keller and Ke Sun. Secure quantized training for deep learning. CoRR, abs/2107.00501, 2021.

Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Eduardo Soria-Vazquez, and Srinivas Vivek.
Faster secure multi-party computation of aes and des using lookup tables. In International Conference on
Applied Cryptography and Network Security, 2017.

John Launchbury, Iavor S. Diatchki, Thomas DuBuisson, and Andy Adams-Moran. Efficient lookup-table
protocol in secure multiparty computation. SIGPLAN Not., 2012.

Ryan Lehmkuhl, Pratyush Mishra, Akshayaram Srinivasan, and Raluca Ada Popa. Muse: Secure inference
resilient to malicious clients. In 30th USENIX Security Symposium (USENIX Security 21), 2021.

Ruixiao Li, Yu Ishimaki, and Hayato Yamana. Fully homomorphic encryption with table lookup for privacy-
preserving smart grid. In 2019 IEEE International Conference on Smart Computing (SMARTCOMP),
2019.

Jian Liu, Mika Juuti, Yao Lu, and Asokan N. Oblivious Neural Network Predictions via MiniONN Transfor-
mations. 2017.

Hoi-Kwong Lo. Insecurity of quantum secure computations. Phys. Rev. A, 1997.

Jeffrey L. McKinstry, Steven K. Esser, Rathinakumar Appuswamy, Deepika Bablani, John V. Arthur, Izzet B.
Yildiz, and Dharmendra S. Modha. Discovering low-precision networks close to full-precision networks for
efficient embedded inference, 2019.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa. Delphi:
A cryptographic inference service for neural networks. In 29th USENIX Security Symposium (USENIX
Security 20), 2020a.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa. Delphi
codebase. https://github.com/mc2-project/delphi, 2020b.

19

https://eprint.iacr.org/2022/793
https://eprint.iacr.org/2022/793
https://eprint.iacr.org/2022/793
https://doi.org/10.24963/ijcai.2020/292
https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
https://github.com/mc2-project/delphi


Under review as submission to TMLR

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine learning.
In 2017 IEEE Symposium on Security and Privacy (SP), 2017.

Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In Proceedings of the Thirty-
First Annual ACM Symposium on Theory of Computing, STOC ’99, pp. 245–254, New York, NY, USA,
1999. Association for Computing Machinery. ISBN 1581130678. doi: 10.1145/301250.301312. URL
https://doi.org/10.1145/301250.301312.

Renkun Ni, Hong min Chu, Oscar Castañeda, Ping yeh Chiang, Christoph Studer, and Tom Goldstein.
Wrapnet: Neural net inference with ultra-low-resolution arithmetic, 2020.

Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new approach
to practical active-secure two-party computation. IACR Cryptol. ePrint Arch., 2011:91, 2012.

Stefan Rass, Peter Schartner, and Monika Brodbeck. Private function evaluation by local two-party
computation. EURASIP Journal on Information Security, 2015.

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta, Aseem Rastogi,
and Rahul Sharma. Cryptflow2: Practical 2-party secure inference. Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020.

Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta, Rahul Sharma, Nishanth
Chandran, and Aseem Rastogi. Sirnn: A math library for secure rnn inference, 2021. URL https:
//arxiv.org/abs/2105.04236.

Brandon Reagan, Udit Gupta, Bob Adolf, Michael Mitzenmacher, Alexander Rush, Gu-Yeon Wei, and David
Brooks. Weightless: Lossy weight encoding for deep neural network compression. In Proceedings of the
35th International Conference on Machine Learning, 2018.

Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. Deepsecure: Scalable provably-secure deep
learning, 2017.

Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach. Ariann: Low-interaction privacy-
preserving deep learning via function secret sharing, 2021.

McKenzie van der Hagen and Brandon Lucia. Practical encrypted computing for iot clients, 2021.

Sameer Wagh. Pika: Secure computation using function secret sharing over rings. Cryptology ePrint Archive,
Paper 2022/826, 2022. URL https://eprint.iacr.org/2022/826. https://eprint.iacr.org/2022/
826.

Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Symposium on Foundations of
Computer Science (sfcs 1986), 1986.

Xiandong Zhao, Ying Wang, Xuyi Cai, Cheng Liu, and Lei Zhang. Linear symmetric quantization of neural
networks for low-precision integer hardware. In International Conference on Learning Representations,
2020.

A Appendix

Polynomial approximation vs quantization
Ample research has been dedicated towards exploring how to make polynomial approximations more amenable
to neural networks (as enabling polynomial activations eliminates system bottlenecks imposed by nonlinear
functions). However a significant body of evidence demonstrates that polynomial activations face remarkable
barriers to achieving high accuracy, especially for deep networks; on the other hand, research indicates that
large and deep neural networks (including networks like VGG, ResNet, LSTMs and transformers on tasks
like Cifar100 and ImageNet) may be quantized to 8 bits and below (oftentimes to 4 or even 2 or 1 bit) with
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little loss of accuracy. Hence, rather than use polynomial activations, our work suggests that quantization
is the more preferred approach. This is a significant observation driving our approach. Below, we show a
comparison of the accuracy performance of quantization vs polynomial activation.

Method Baseline Polynomial 2-bit Activations
Accuracy 93.29% 71.81% 91.5%

Table 11: Comparison of polynomial activations vs quantization on ResNet32 Cifar10.

Method Baseline Polynomial 3-bit Activations
Accuracy 74.39% 65.17% 73%

Table 12: Comparison of polynomial activations vs quantization on ResNet18 Cifar100.

Tables 11 and 12 compares the final test accuracy achieved by polynomial activations vs quantization for
ResNet32 Cifar10 and ResNet18 Cifar100 respectively. These results were obtained from Garimella et al.
(2021); Choi et al. (2019); Hoang et al. (2020). As seen, polynomial approximations significantly harm
accuracy, while activation quantization, even at very low precision (2-bit / 3-bit) results in near lossless
accuracy. This phenomenon extends to large datasets such as ImageNet where 4-bit ResNet50 achieves
lossless performance Abdolrashidi et al. (2021), whereas polynomial activations incur significant accuracy
loss on tiny imagenet Garimella et al. (2021). Note that in many of these quantization works, accuracy
performance includes the quantization of the weights as well as the activations; as our approach requires
only activation quantization, it may be inferred that even better accuracies may be attained than what these
numbers indicate.

Note that, in the experiments shown in the main text, we do not do quantized retraining as in the results
immediately above (and instead directly apply quantization to pretrained weights; this is known as post-
training quantization), hence, there is room for accuracy improvement over what was demonstrated in the
main text. This reaffirms the potential of our approach in achieving efficient and accurate secure neural
network inference.

Note on truncation errors
All accuracies reported in our paper are obtained by running the protocols in full and account for truncation
error resulting from the secure truncation protocol. Notably, in our implementation, we maintain a single
separate static scale parameter per layer that is known to both client and server (leaking negligible model
information), ensuring that the underlying integer values of secretly shared activations are maintained between
[0, 214] (this is a common technique when performing quantized inference with limited bitwidth datatypes for
acceleration on hardware). As P(catastrophic truncation error) is proportional to the chance that the secret
blinding factor is less than the secret value, the probability of catastrophic error for one truncation is 214−64.
This means, there is a 99.98% chance that all 1,000,000 calls to a network with 300,000 ReLUs succeeds.
With just 80 bits, P(catastrophic error) is 214−80, leading to a 99.99959% prob. that 1,000,000,000 calls to a
300,000 ReLU network all succeed. The common off by one errors, like quantization error, has negligible
impact on model quality (a similar finding by Huang et al. (2022)). This is a key detail and difference from
prior works (which do not maintain a separate scale, significantly inflating catastrophic truncation error
probability). Detecting truncation error and retrying them is a topic for future work.
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