

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 KNOWMT-BENCH: BENCHMARKING KNOWLEDGE-INTENSIVE LONG-FORM QUESTION ANSWERING IN MULTI-TURN DIALOGUES

Anonymous authors

Paper under double-blind review

ABSTRACT

Multi-Turn Long-Form Question Answering (MT-LFQA) is a key application paradigm of Large Language Models (LLMs) in knowledge-intensive domains. However, existing benchmarks are limited to single-turn dialogue, while multi-turn dialogue benchmarks typically assess other orthogonal capabilities rather than knowledge-intensive factuality. To bridge this critical gap, we introduce **KnowMT-Bench**, the *first* benchmark designed to systematically evaluate MT-LFQA for LLMs across knowledge-intensive fields, including medicine, finance, and law. To faithfully assess the model’s real-world performance, KnowMT-Bench employs a dynamic evaluation setting where models generate their own multi-turn dialogue histories given logically progressive question sequences. The factual capability and information delivery efficiency of the *final-turn* answer are then evaluated via a human-validated automated pipeline. Our experiments on a diverse suite of LLMs show a clear degradation in both factual capability and information delivery efficiency within multi-turn contexts. We further probe the underlying causes and find that contextual noise, particularly relevant misinformation, along with increasing context length and the structure of the dialogues, substantially contributes to this degradation. In addition, experimental results in mitigation strategies demonstrate that structural context refinement and RAG can effectively alleviate these issues, with RAG notably capable of reversing this performance degradation. These findings underscore the importance of our benchmark for evaluating and enhancing LLMs’ conversational factual capabilities in real-world applications. Code and data is available at [KnowMT-Bench](#).

1 INTRODUCTION

Large Language Models (LLMs) are increasingly being used in highly specialized domains such as medicine, finance, and law, partially replacing costly expert consultations and significantly lowering the barrier to accessing professional knowledge (Wu et al., 2023; Huang et al., 2023; Singhal et al., 2025). In particular, real-world consultations are often progressive and complex, requiring multi-turn dialogues to pinpoint a user’s core needs and then delivering a detailed long-form answer that synthesizes information across multiple key points (Kurtz & Silverman, 1996; CFP Board, 2020). Building on these observations, we formalize such a challenge as Multi-Turn Long-Form Question Answering (MT-LFQA): an open-domain QA task that requires the model to synthesize multiple facts into a paragraph-level answer for the final-turn question, given the context of dialogue history.

As these specialized domains are inherently knowledge-intensive and often high-stakes, the answers provided must be factually comprehensive and accurate, while exhibiting minimal factual hallucination. While numerous single-turn Long-Form Question Answering (LFQA) benchmarks have emerged, such as K-QA in medicine (Manes et al., 2024), FinTextQA in finance (Chen et al., 2024b), and cLegal-QA in law (Wang et al., 2025), the challenges are substantially amplified in a multi-turn context. In MT-LFQA, the dialogue history can introduce redundant information, which acts as noise to compromise the model’s ability to generate a long-form answer adhering to these standards (Laban et al., 2025). As demonstrated in Figure 1, the model that produces factually sound answers in the single-turn setting generates a significant factual error within the multi-turn context. Concurrently, the volume of non-factual content increases, obscuring key information, which degrades the overall utility of the answer (Zhou & Shen, 2024; Hackenburg et al., 2025). Therefore, the single-turn setup of existing LFQA benchmarks cannot faithfully assess a model’s performance in the more challenging MT-LFQA scenario.

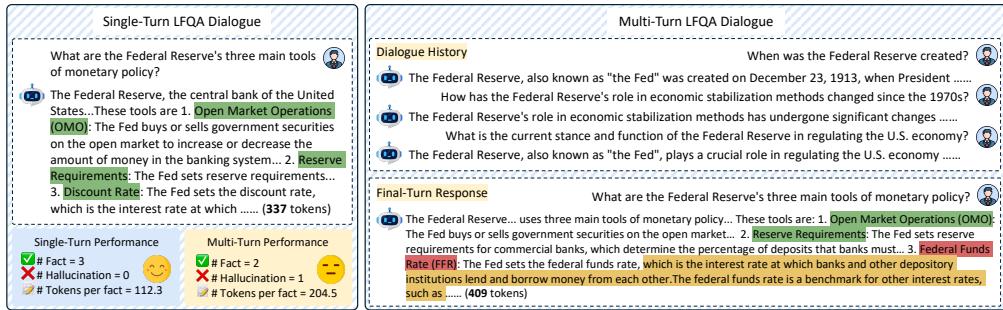


Figure 1: Illustration of Single-Turn vs. Multi-Turn LFQA on Llama-3.3-70B-Instruct, with correct facts, irrelevant statements, and factual hallucinations.

Existing multi-turn benchmarks are also misaligned with the specific challenges of MT-LFQA. First, conventional conversational QA benchmarks such as QuAC (Choi et al., 2018), CoQA (Reddy et al., 2019) are designed for short, often extractive, answers, making them unable to effectively assess the integration of multiple facts into a paragraph-level answer (see Table 1 for a detailed comparison of the QA benchmark). Second, contemporary dialogue benchmarks for LLMs also prove unsuitable, as they either adopt evaluation paradigms like LLM-as-a-judge (Zheng et al., 2023; Bai et al., 2024), which are inadequate for rigorous factuality assessment by relying on the judge’s own fallible parametric knowledge (Fu et al., 2023; Chen et al., 2024a), or they prioritize orthogonal capabilities like instruction-following (He et al., 2024), fairness (Fan et al., 2024), thereby diluting the focus on core LFQA competences. This clear gap necessitates a purpose-built benchmark to systematically measure fact capability and information delivery efficiency within MT-LFQA.

To bridge this critical gap, we introduce **KnowMT-Bench**, the first benchmark designed to conduct a systematic study of MT-LFQA. We ground our research in medicine, finance, and law, which are the common domains for specialized consultation. Our benchmark is thus founded on 801 evidence-grounded LFQA instances from these domains. To simulate a realistic human-LLMs interaction, the benchmark requires models to generate their own dialogue history following logically progressive human-authored question sequences. The final-turn answers are assessed using a comprehensive framework that leverages an automated fine-grained, Natural Language Inference (NLI)-based pipeline inspired by previous works (Manes et al., 2024; Jeong et al., 2024), to analyze factual capability and information delivery efficiency. The reliability of the automated pipeline is supported by validating each step with human experts.

Our experiments on a diverse suite of LLMs reveal that multi-turn contexts pose a severe challenge: model factual capability shows a pronounced degradation when shifting from single-turn to multi-turn LFQA, accompanied by a significant increase in verbosity that reduces information delivery efficiency (Section 4.2). Our analysis further reveals that this decline is driven by the contextual noise, particularly relevant misinformation, along with increasing context length and the structure of the dialogues (Section 4.3). In addition, we explore some mitigation strategies and demonstrate that structural context refinement and RAG can effectively alleviate these issues, with RAG notably capable of reversing this performance degradation (Section 5). These findings highlight the limitations of single-turn evaluations and underscore the necessity of our benchmark for assessing and improving the conversational robustness of LLMs under real-world knowledge-intensive applications.

In summary, our main contributions are as follows: (1) We introduce **KnowMT-Bench**, the first benchmark designed for the systematic evaluation of LLMs in MT-LFQA. (2) We design and validate a comprehensive **evaluation framework** for MT-LFQA, employing a human-validated, automated pipeline to assess both **factual capability** and **information delivery efficiency**. (3) Our experimental results reveal a pronounced degradation in both model factual capability and information delivery efficiency within the multi-turn contexts. Crucially, we identify that the decline is primarily attributable to the combination of contextual noise, context length and the structure of the dialogues, and demonstrate that structural context refinement and RAG can serve as effective methods of mitigating this performance degradation.

2 TASK DEFINITION

As an early systematic study of MT-LFQA, we begin by formalizing this task, introducing notation to facilitate our analysis, and delimiting the scope of evaluation. We first formalize the single-turn LFQA task and then extend it to the multi-turn setting, which is central to this work.

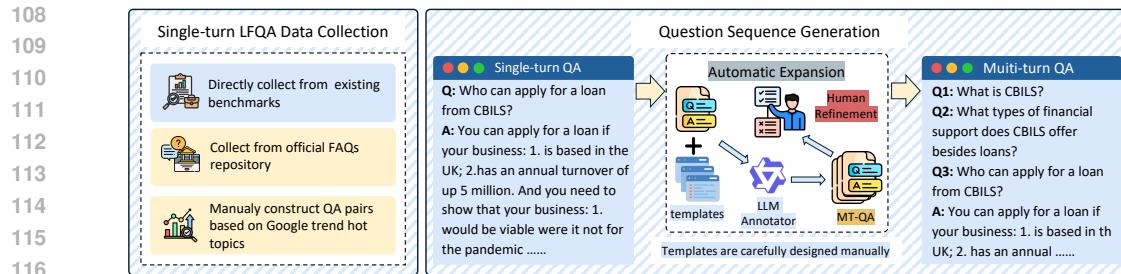


Figure 2: Overview of the data construction pipeline: including collecting single-trun LFQA pairs and expanding them into MT-LFQA instances.

LFQA is an open-domain QA task where a model is required to synthesize multiple facts into a paragraph-level answer. We formalize this setting as follows: the input is a set of knowledge-intensive questions $\mathcal{Q} = \{q_1, q_2, \dots, q_N\}$. For each question $q_i \in \mathcal{Q}$, the ground-truth consists of a set of must-have facts $\mathcal{F}_i = \{f_{i1}, f_{i2}, \dots, f_{iM_i}\}$, with the collection of all fact sets denoted by $\mathbb{F} = \{\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_N\}$. These facts are composed into free-form ground-truth answers $\mathcal{G} = \{g_1, g_2, \dots, g_N\}$, where each g_i provides a complete and non-redundant representation of \mathcal{F}_i . To evaluate this task, a QA model \mathcal{M} is applied to the question set \mathcal{Q} to generate answers $\mathcal{A} = \{a_1, a_2, \dots, a_N\}$, where each $a_i = \mathcal{M}(q_i)$. The generated answers \mathcal{A} are then compared against the ground-truth answers \mathcal{G} , or equivalently against the supporting facts \mathbb{F} .

MT-LFQA is defined as the task that performs LFQA where the model is conditioned on the preceding conversational histories, and its definition naturally extends the single-turn setting formalized above. To formalize this task, we consider a set of K dialogues $\mathcal{D} = \{d_1, \dots, d_K\}$. Each dialogue $d_k \in \mathcal{D}$ consists of a sequence of N_k turns, where N_k is the total number of turns in dialogue d_k . The conversational context for the final turn is the preceding history, denoted as $H_k = (q_1^{(k)}, a_1^{(k)}, \dots, q_{N_k-1}^{(k)}, a_{N_k-1}^{(k)})$. The final-turn question $q_{N_k}^{(k)}$ is a single-turn LFQA question from the set \mathcal{Q} . For a given $q_{N_k}^{(k)}$, we denote its corresponding ground-truth fact set and reference answer as \mathcal{F}_j and g_j respectively, where $q_{N_k}^{(k)} = q_j$ for some index $j \in \{1, \dots, N\}$.

In task MT-LFQA, a model \mathcal{M} is required to generate a factual and complete long-form answer for the final-turn question $q_{N_k}^{(k)}$, conditioned on the context $H_{N_k-1}^{(k)}$. The model’s output is $a_{N_k}^{(k)} = \mathcal{M}(H_k, q_{N_k}^{(k)})$, where H_k can be provided under two settings. In a *static context* setting, the history is pre-defined, composed of question-answer pairs authored by humans or generated by a model. In a *dynamic context* setting, which simulates an interactive session, the history is constructed on-the-fly by having the model \mathcal{M} generate each answer in response to a pre-defined sequence of questions. Finally, the generated answer $a_{N_k}^{(k)}$ is then evaluated against its ground-truth (\mathcal{F}_j and/or g_j), following the same assessment protocol as in single-turn LFQA.

3 KNOWMT-BENCH

Based on the task definition, this section introduces our benchmark, **KnowMT-Bench**, along with its data creation and evaluation pipeline, as illustrated in Figures 2 and Figures 3. We first curate high-quality, evidence-grounded single-turn LFQA instances and then expand them with multi-turn question sequences designed for dynamic evaluation. For assessment, we employ an automated, NLI-based pipeline, inspired by previous LFQA benchmarks (Manes et al., 2024), to score the final-turn answer. This human-validated pipeline allows us to evaluate model performance through a suite of metrics capturing both fact capability and information delivery efficiency.

3.1 SINGLE-TURN LFQA DATA COLLECTION

We first curate a high-quality set of single-turn LFQA instances. Each instance is a QA pair (q_i, g_i) , where $q_i \in \mathcal{Q}$ is a knowledge-intensive question and $g_i \in \mathcal{G}$ is its ground-truth answer. To ensure reliability, each g_i is supported by an authoritative evidence set $\mathcal{E}_i = \{e_{i1}, \dots, e_{iK_i}\}$ extracted from trusted sources such as official websites or expert-curated documents.

Our benchmark focuses on three representative specialized domains: medicine, finance, and law, and draws data from three sources: (i) prior LFQA benchmarks, (ii) authoritative financial-legal FAQs,

162 Table 1: Comparison between KnowMT-Bench with existing QA benchmarks. # Avg. Tokens
 163 refer to the token counts of the ground truth answer, computed by the GPT-4o tokenizer. *: Since
 164 FintextQA is partially open-sourced, we directly report the result in their paper, which is 75 **words**.
 165

Benchmark	# Avg. Turns	# Avg. Tokens	Multi-Turn	Open-Domain	Across-Domain
CoQA (Reddy et al., 2019)	15.97	2.52	✓	✗	✓
QASA (Lee et al., 2023)	1	50	✗	✗	✗
K-QA (Manes et al., 2024)	1	119.89	✗	✓	✗
MedLFQA (Jeong et al., 2024)	1	132.86	✗	✓	✗
FintextQA (Chen et al., 2024b)	1	75*	✗	✓	✗
KnowMT-Bench (ours)	2.98	95.85	✓	✓	✓

172 and (iii) finance-related trending topics. In the medical domain, we include all 201 labeled QA pairs
 173 from the K-QA benchmark (Manes et al., 2024), after removing redundant content to align with our
 174 task definition. For the financial-legal domain, we collect 116 QA pairs from the SEC FAQ reposi-
 175 tory¹ and the policy-focused subset of FinTextQA (Chen et al., 2024b), while filtering out trivial
 176 single-point answers and repairing missing jurisdictional context, resulting in 184 pairs. To broaden
 177 coverage, we further sample finance-related trending topics from Google Trends², categorize them,
 178 and construct 300 QA pairs through manual annotation with authoritative references, including their
 179 official website or encyclopedia verified by human experts.

180 In total, this process yields **801 high-quality single-turn LFQA instances** spanning three domains:
 181 finance (579), law (278), and medicine (209). Notably, 33.1% of instances are multi-domain, with
 182 261 cases primarily located at the finance-legal intersection. Detailed annotation procedures and
 183 additional statistics are provided in Appendix D.1.

3.2 QUESTION SEQUENCE GENERATION

186 To mirror real conversational patterns, we analyze the ShareGPT-Chinese-English-90k
 187 dataset (shareAI, 2023) and find the following distribution for knowledge-intensive dialogues up
 188 to five turns: 2-turn (38.5%), 3-turn (38.2%), 4-turn (14.0%), and 5-turn (5.4%). Since dialogues
 189 longer than 5 turns occur at a negligible rate ($\leq 5\%$), we merge them into 5 turns and set the
 190 maximum dialogue length to $N_{\max} = 5$. In our benchmark, dialogue lengths are drawn from this
 191 empirical distribution of 2–5 turns (37.45%, 37.45%, 14.98%, and 10.11%, respectively).

192 For each single-turn question $q_j \in \mathcal{Q}$, we generate a multi-turn question sequence $\mathbf{q}^{(d)} =$
 193 $(q_1^{(d)}, \dots, q_{N_d}^{(d)})$ of a sampled length $N_d \in \{2, \dots, 5\}$, with the final question $q_{N_d}^{(d)} = q_j$. The pre-
 194 ceding questions $q_{1:N_d-1}^{(d)}$ are created under a human-in-the-loop paradigm where combining LLM-
 195 based generation with manual review ensured that each sequence adheres to three key principles: (1)
 196 **Progressive Context Building**: Questions gradually establish background or narrow the scope. (2)
 197 **Intent Preservation**: The sequence naturally leads to the final question q_j without semantic drift.
 198 (3) **No Answer Leakage**: Preceding questions do not reveal or hint at the answer to q_j . In total, the
 199 procedure produced 801 question sequences. We provide more details in Appendix D.2.

200 During evaluation, we evaluate models using a dynamic setting where the model self-generates its
 201 own dialogue history. Specifically, for a given question sequence $\mathbf{q}^{(d)}$, the history for the final turn,
 202 $H_{N_d}^{(d)}$, is constructed by recursively generating each intermediate answer:

$$a_t^{(d)} = \mathcal{M}(q_1^{(d)}, a_1^{(d)}, \dots, q_{t-1}^{(d)}, a_{t-1}^{(d)}, q_t^{(d)}), \quad \text{for } t = 1, \dots, N_d - 1. \quad (1)$$

203 Finally, the model generates the targeted answers $a_{N_d}^{(d)} = \mathcal{M}(H_{N_d}^{(d)}, q_{N_d}^{(d)})$ for MT-LFQA.

3.3 EVALUATION FRAMEWORK

204 To systematically evaluate model performance in MT-LFQA, we introduce a comprehensive eval-
 205 uation framework, which has two components: a two-stage automated pipeline to assess factual
 206 alignment, and a three-dimensional metric suite to quantify performance from the pipeline’s out-
 207 puts. The evaluation focuses on the final-turn response (a_j) in a dialogue, measuring it against the
 208 ground-truth answer (g_j) and the ground-truth must-have facts set \mathcal{F}_j .

215 ¹<https://www.sec.gov/answers/faqs.htm>

²<https://trends.google.com/trends/>

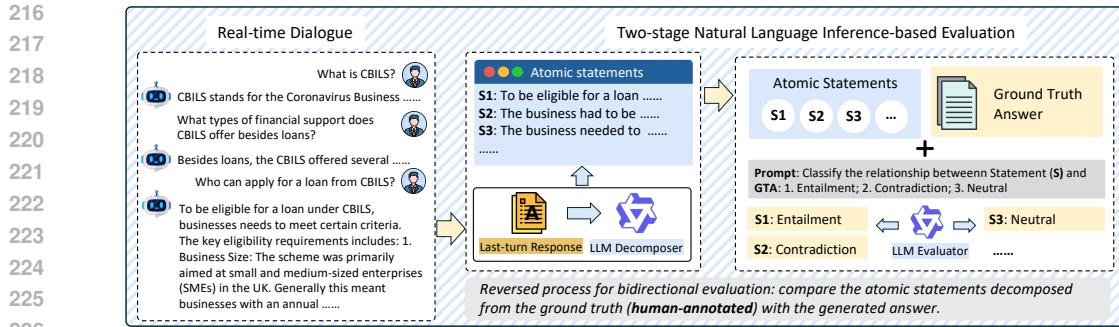


Figure 3: Overview of the two-stage natural language inference-based evaluation. Here, **GTA** refers to **Ground Truth Answer**, and the detailed prompts for evaluation are provided in Appendix J.

3.3.1 TWO-STAGE EVALUATION PIPELINE

The core of our framework is a two-stage, NLI-based evaluation pipeline, which is designed to assess factual consistency at a fine-grained level. In the first stage, we employ **Qwen2.5-32B-Instruct** (Team, 2024) as a **decomposer** to break down long-form answers into minimal, self-contained factual units. For the ground-truth answers (g_j), this process yields a set of atomic facts (\mathcal{F}_j), which subsequently undergoes manual verification and refinement to establish the gold standard. During testing, the model-generated answer (a_j) is dynamically decomposed into a corresponding set of atomic statements (\mathcal{S}_j). In the second stage, we use **Qwen2.5-14B-Instruct** as the **NLI-based evaluator** to assess the factual consistency between ground-truth and generated answers. To avoid the quadratic computational complexity, $O(|\mathcal{S}_j| \cdot |\mathcal{F}_j|)$, of an exhaustive comparison between atomic statement sets, we adopt an efficient symmetric approach. Completeness is measured by judging each gold-standard fact $f \in \mathcal{F}_j$ against the full model-generated answer a_j . Conversely, correctness is measured by judging each generated statement $s \in \mathcal{S}_j$ against the full ground-truth answer g_j . The evaluator classifies each relationship as **Entailment**, **Contradiction**, or **Neutral**.

To ensure the reliability of our pipeline, we conduct a human validation on a sample of 100 generated answers, randomly drawn from representative LLMs across single-turn or multi-turn settings. For the **decomposition stage**, we compare the decomposer’s output against human decomposition on these 100 answers. The process demonstrates high fidelity, with a Symmetric Mean Absolute Percentage Error (SMAPE) of **18.1%** in statement counts and an omission rate of **5.9%**. Errors mainly arose from under-segmentation rather than semantic distortion. For the **judgment stage**, these dialogues were used to construct 1,687 evaluation NLI-pairs. The agreement between our NLI-based evaluator and the resulting gold annotations from majority voting among three annotators reached an F1-score of **83.6%**, confirming that our pipeline provides a reliable measure of factual consistency. Further details on the human annotation process, including the models sampled and the prompts utilized, are available in Appendix D.3 and Appendix J, respectively.

3.3.2 THREE-DIMENSIONAL METRIC FRAMEWORK

The NLI judgments are aggregated into a suite of metrics organized under three distinct dimensions.

Factuality This dimension quantifies the correctness and completeness of the must-have fact provided. It is based on **Factual Precision** (P_f), the fraction of generated statements that are entailed, and **Factual Recall** (R_f), the fraction of ground-truth facts covered. These are combined into the **Factual F1** (S_f) score for a comprehensive assessment.

$$R_f = \frac{1}{|\mathcal{D}|} \sum_{j \in \mathcal{D}} \frac{|\mathcal{F}_j^+|}{|\mathcal{F}_j|}, \quad P_f = \frac{1}{|\mathcal{D}|} \sum_{j \in \mathcal{D}} \frac{|\mathcal{S}_j^+|}{|\mathcal{S}_j|}, \quad S_f = \frac{2P_f R_f}{P_f + R_f} \quad (2)$$

Reliability (Factual Hallucination) This dimension measures the extent of factual hallucination. Analogous to factuality, it is quantified using the **False Claim Rate** (P_{fc}), the fraction of generated statements that are contradicted, and the **Misrepresentation Rate** (R_m), the fraction of ground-truth facts contradicted by the (a_j). These are unified into the **Hallucination F1** (S_h) score.

$$R_m = \frac{1}{|\mathcal{D}|} \sum_{j \in \mathcal{D}} \frac{|\mathcal{F}_j^-|}{|\mathcal{F}_j|}, \quad P_{fc} = \frac{1}{|\mathcal{D}|} \sum_{j \in \mathcal{D}} \frac{|\mathcal{S}_j^-|}{|\mathcal{S}_j|}, \quad S_h = \frac{2P_{fc} R_m}{P_{fc} + R_m} \quad (3)$$

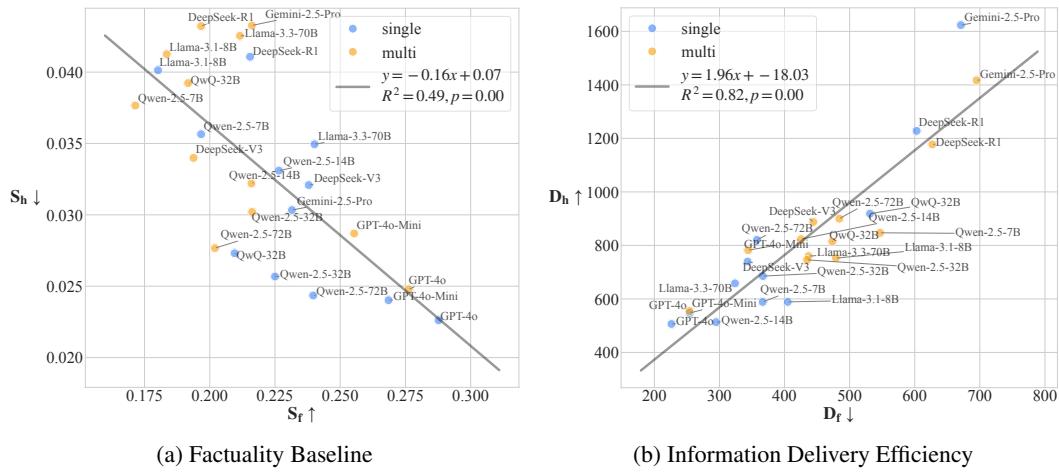


Figure 4: Results for LLMs Performance on Factuality and Information Delivery Efficiency.

Information Delivery Efficiency This dimension assesses the utility of the model’s response by measuring the token cost of conveying information. This provides an intuitive measure of efficiency, as users directly interact with the token count. We report D_f , the average tokens per correctly entailed fact, D_h , the average tokens per contradicted fact, and D_R , the average tokens per to cover the entire set of ground-truth facts. Lower values indicate higher efficiency.

$$D_f = \frac{1}{|\mathcal{D}|} \sum_{j \in \mathcal{D}} \frac{T(a_j)}{|\mathcal{F}_j^+|}, \quad D_h = \frac{1}{|\mathcal{D}|} \sum_{j \in \mathcal{D}} \frac{T(a_j)}{|\mathcal{F}_j^-|}, \quad D_R = \frac{1}{|\mathcal{D}|} \sum_{j \in \mathcal{D}} \frac{T(a_j)}{r_f(j)}, \quad (4)$$

where $T(a_j)$ is the token length of a_j , and $r_f(j) = \frac{|\mathcal{F}_j^+|}{|\mathcal{F}_j|}$ is the factual recall for a_j . If the denominator of any term equals zero, i.e. $|\mathcal{F}_j^+| = 0$, $|\mathcal{F}_j^-| = 0$, or $r_f(j) = 0$, that term is estimated by $\max_{k \in \mathcal{D}} \frac{T(a_k)}{|\mathcal{F}_k|}$ of the corresponding metric.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate a broad set of popular LLMs, including the DeepSeek series: DeepSeek-V3-0324, denoted as **DeepSeek-V3** (Liu et al., 2024) and DeepSeek-R1-0528, denoted as **DeepSeek-R1** (Guo et al., 2025), OpenAIs GPT models (Achiam et al., 2023): gpt-4o-mini-2024-07-18, denoted as **GPT-4o mini**, and gpt-4o-2024-08-06, denoted as **GPT-4o**, Metas Llama family (Touvron et al., 2023): Llama-3.1-8B-Instruct, denoted as **Llama-3.1-8B** and Llama-3.3-70B-Instruct, denoted as **Llama-3.3-70B**, the Qwen family (Team, 2024): Qwen-2.5-7B/14B/32B/72B-Instruct, denoted collectively as **Qwen-2.5-7B/14B/32B/72B**, as well as **QwQ-32B**, and **Gemini-2.5-Pro** (Comanici et al., 2025). Token counts are computed using tiktoken’s gpt-4o tokenizer.³ All experiments are conducted on NVIDIA A800 GPUs. See detailed experiment settings in Appendix G.

4.2 MAIN RESULTS

To reveal the relations between different performance dimensions, we map all model performances into scatter plots (Figure 4). We present four primary metrics (also used in the experiments that follow); detailed numerical results and additional metric values are provided in Appendix H. A clear observation from the plots is a systematic shift in performance when moving from single-turn to multi-turn settings. Specifically, in Figure 4a, most models exhibit a top-left shift from their single-turn to multi-turn counterparts, indicating a decrease in the Factual F1 score (S_f) and an increase in the Hallucination F1 score (S_h). Similarly, in Figure 4b, the points generally shift to the top-right, which means that models require more tokens to convey correct facts (higher D_f), while their generated factual errors also become sparser (higher D_h). This pronounced degradation in factuality, coupled with the challenge of efficiently delivering correct information in multi-turn

³<https://github.com/openai/tiktoken>

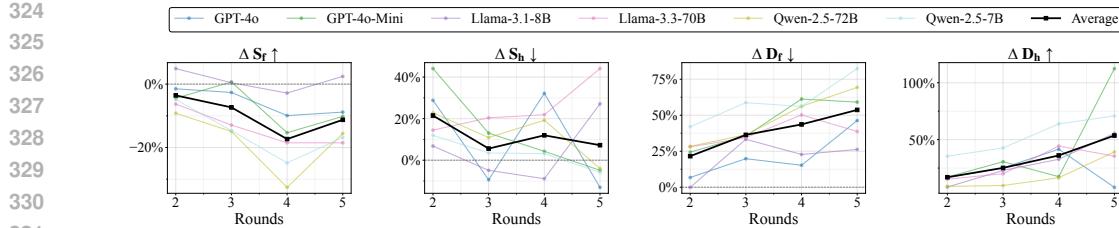


Figure 5: Relative difference between multi-turn and single-turn across models.

dialogues, highlights the unique challenges posed by the MT-LFQA task. Within this general trend, several other patterns are also apparent: proprietary models such as GPT-4o define the performance frontier, and larger models generally outperform smaller ones within the same family. However, it is noteworthy that models optimized for Chain-of-Thought (e.g., DeepSeek-R1 to DeepSeek-V3, QWQ-32B to Qwen-2.5-32B) show no advantage in fact capability, suggesting that current CoT mechanisms may not directly translate to more factual answers.

In addition, the relationships between data points also reveal two underlying correlations. First, Figure 4a illustrates a moderate negative correlation between the Factual F1 score (S_f) and the Hallucination F1 score (S_h) ($R^2 = 0.49$, t-test $p < 0.001$), which suggests that as a model’s factuality improves, its tendency to factual hallucinate generally decreases. This points to a potential strategy for mitigating hallucinations: enhancing a model’s intrinsic knowledge may be an effective path to reducing false claims. Second, Figure 4b reveals a strong positive correlation between the token cost per correct fact (D_f) and per contradicted fact (D_h) ($R^2 = 0.82$, t-test $p < 0.001$). This indicates that most models tend to be uniformly concise or verbose, rather than dynamically adjusting their efficiency based on the correctness of the information. For instance, the GPT-4o family is characterized by low costs on both metrics, demonstrating high efficiency. An interesting outlier in the single-turn setting is Gemini-2.5-Pro, which deviates significantly from the regression line; its D_h is exceptionally high for its given D_f , successfully pushing this trade-off boundary. Notably, this desirable characteristic disappears in the multi-turn dialogue setting, where its performance aligns with the general trend. Therefore, a key direction for future research is to design models or strategies that can break this trade-off by achieving a low D_f while simultaneously increasing D_h within the multi-turn dialogue. A detailed, holistic four-quadrant analysis is provided in Appendix H.2.

4.3 THE SOURCE OF MULTI-TURN PERFORMANCE DEGRADATION

In the main experiment, we observed a systematic performance degradation in MT-LFQA. To disentangle the root causes, we analyze three different properties of the dialogue context: the contextual length, the multi-turn template structure, and the noise level within the history.

Effect of dialogue length. To isolate the impact of length, we conduct two controlled experiments. **(i) Number of Rounds.** We vary the turn count and report the relative change of each metric $m \in \{S_f, S_h, D_f, D_h\}$ against the single-turn baseline, calculated as $\Delta m = (m_{\text{multi}} - m_{\text{single}})/m_{\text{single}}$ (Figure 5). **(ii) Context Length.** For each multi-turn instance, we constrain the dialogue history preceding the final question to varying token budgets. We then regenerate the final-turn answer based on each truncated context (Figure 6). A consistent trend emerges: the information delivery efficiency degrades monotonically as the context lengthens. This suggests that longer contexts induce a dilution effect, making models increasingly verbose. However, factual capability (S_f) shows a slight overall decrease, and hallucination (S_h) exhibits no clear length dependence. Thus, **dialogue length primarily dictates the information delivery efficiency rather than the factual capability.**

Effect of multi-turn structure. To examine the effect of the conversational format, we compare the standard multi-turn setting against a *concatenated-history* variant. Specifically, for each dialogue, we integrate all previous turns and the final-turn question into a single long prompt, instructing the model to regenerate the final-turn answer. As shown in Figure 7, this variant exhibits a distinct behavioural shift: it achieves the highest factual performance, surpassing even the single-

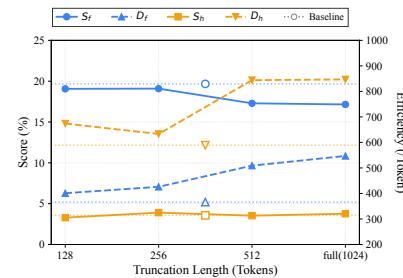


Figure 6: Impact of context length on Qwen-2.5-7B performance.

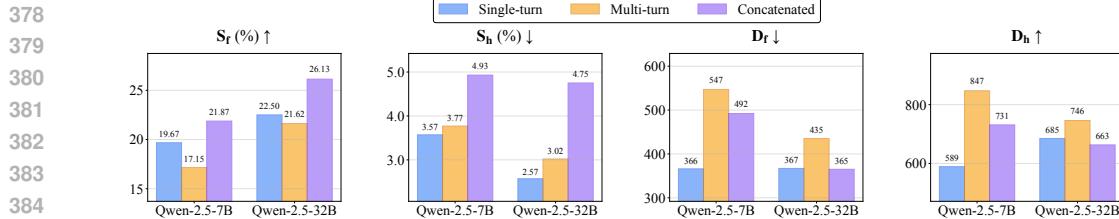


Figure 7: Comparison between standard multi-turn and a concatenated history setting.

turn baseline, and significantly improves efficiency. However, this comes at the cost of increased hallucination. This suggests that the multi-turn template imposes a conservative constraint, making the model more cautious and verbose. Removing this structure yields more efficient fact delivery but at a higher error risk, indicating that the format primarily shapes generation strategy.

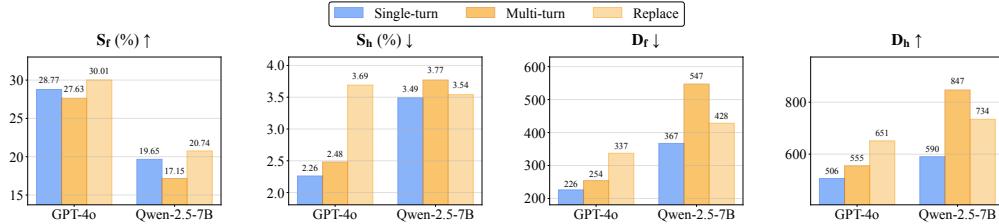


Figure 8: Wapping experiment between strong model (GPT-4o) and weaker model (Qwen-2.5-7B). It also underscores our dynamic evaluation setting more faithfully captures real model performance.

Noise in dialogue history. Finally, we investigate the intrinsic quality of the context. We approach this via two complementary analyses focusing on natural variations and synthetic perturbations. First, utilizing natural variations in history quality, we conduct a bidirectional substitution experiment (Figure 8). In the upgrading direction, conditioning weaker models on histories generated by a stronger model (GPT-4o) significantly improves factuality and reliability, while also increasing information density. This confirms that a cleaner context directly boosts performance. In the downgrading direction, where GPT-4o is conditioned on weaker histories (Qwen-2.5-7B), we observe a distinct “disruption” effect. The strong model, faced with noisy context, loses its calibration: it becomes unconstrained and verbose, leading to higher factuality but at the severe cost of significantly increased hallucinations. This demonstrates that high-quality history acts as a necessary guardrail for reliability; without it, even strong models degrade into aggressive but ungrounded generation. For more results of interpretability experiments, see Appendix H.7.

Second, we employ a controlled noise-injection protocol (Figure 9). To examine how noise affects known facts, we first curate a “knowledge-verified” baseline by filtering for 85 instances where GPT-4o exhibits perfect factual mastery in the single-turn setting ($S_f \geq 60\%$, $S_h = 0$). Keeping the final question fixed, we manipulate *only the content of the previous turn* to construct three distinct history types: *Irrelevant Noise* (correct but unrelated), *Irrelevant Error* (incorrect and unrelated), and *Relevant Error* (incorrect and related). We evaluate these perturbations under both standard multi-turn and concatenated-history settings and observe a **universal degradation pattern**: as noise severity increases, factuality drops monotonically while hallucinations rise sharply. Notably, *relevant errors* induce the most catastrophic degradation, which is accompanied by a significant deterioration in information delivery efficiency, suggesting that models become confused and verbose when struggling to reconcile conflicting context with their internal knowledge. This trend persists regardless of the

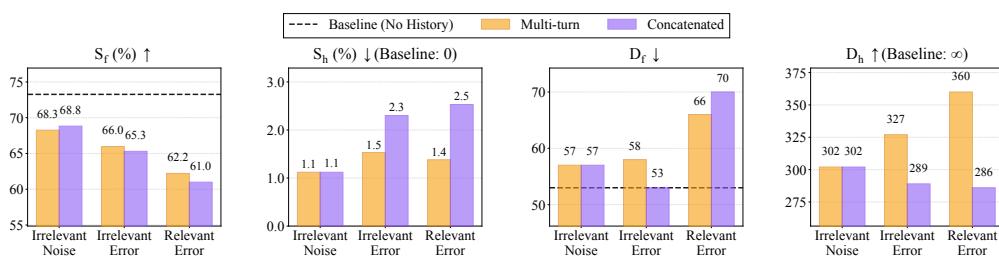


Figure 9: Performance degradation under controlled injections of noise

432 Table 2: Results across different domains. Blocks are ordered as **non-domain** (base) followed
 433 by a consolidated **domain-specific** block. Headers annotate the applicable domain-specific model:
 434 Finance (Fin-R1) and Medical (HuatuGPT). Underlined values denote improvements over the base
 435 model under the same domain and turn setting. White rows indicate single-turn results, while gray
 436 rows indicate multi-turn results.

Finance				Non-finance				Medical				Non-medical			
S_f (%) \uparrow	S_h (%) \downarrow	D_f \downarrow	D_h \uparrow	S_f (%) \uparrow	S_h (%) \downarrow	D_f \downarrow	D_h \uparrow	S_f (%) \uparrow	S_h (%) \downarrow	D_f \downarrow	D_h \uparrow	S_f (%) \uparrow	S_h (%) \downarrow	D_f \downarrow	D_h \uparrow
Open-2.5-7B															
16.61	4.22	402.95	576.60	21.73	1.40	302.15	421.90	22.02	1.41	291.35	421.31	16.62	4.15	402.20	578.08
14.44	4.38	604.55	831.75	19.58	1.30	438.16	718.07	20.29	1.31	392.80	710.41	14.30	4.31	606.08	833.95
Domain-specific: Fin-R1								Domain-specific: HuatuGPT							
15.74	<u>4.18</u>	588.71	841.60	21.90	1.73	472.22	918.13	26.67	1.74	431.49	655.61	<u>17.91</u>	4.41	538.26	<u>725.75</u>
14.32	4.94	<u>555.13</u>	785.13	18.95	1.60	<u>306.43</u>	<u>729.56</u>	<u>25.65</u>	<u>1.07</u>	413.10	624.44	<u>17.67</u>	<u>4.08</u>	<u>571.21</u>	<u>757.99</u>

437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 input structure, confirming that contextual noise, specifically relevant misinformation, operates as the primary determinant of knowledge grounding, overriding the effects of template or length.

5 MITIGATION STRATEGIES

447 To address the performance degradation in MT-LFQA, we investigate mitigation strategies along
 448 two directions. The first direction focuses on **Knowledge Fortification**, aiming to enhance the
 449 model’s factual grounding to make it more robust against hallucination and noise. We explore this
 450 via leveraging **extrinsic knowledge** through Retrieval-Augmented Generation (RAG) (Section 5.1)
 451 and strengthening **intrinsic knowledge** through domain-specific finetuning (Section 5.2). The sec-
 452 ond direction targets **Contextual Denoising**, where we move beyond passive context consumption.
 453 Instead, we employ **inference-time interventions** to actively filter, refine, or restructure the dialogue
 454 history, thereby directly attenuating the interference from noisy contexts (Section 5.3).

5.1 EFFECT OF RAG STRATEGIES

455 To evaluate the effect of extrinsic knowl-
 456 edge, we test four RAG strategies: **Base**
 457 (retrieval at the final turn using the last-
 458 turn query), **Last** (retrieval at the final turn
 459 using the full dialogue), **Rounds** (retrieval
 460 at each turn using the current query), and
 461 **All** (retrieval at each turn using the full
 462 previous history as the query). In the
 463 single-turn setting, since there are no other
 464 turns and dialogue history, only the Base
 465 settings are available. Detailed settings are
 466 provided in Appendix G.

467 As shown in Table 3, the baseline model
 468 without RAG confirms the performance
 469 degradation in its factual capacity (S_f and
 470 S_h) from single-turn to multi-turn set-
 471 tings. The introduction of RAG provides a substantial improvement in factual capacity for both
 472 settings. Among these strategies, **Rounds** is the best strategy in the multi-turn setting, achieving
 473 the highest factuality (S_f), the fewest hallucinations (S_h), and the best correct information delivery
 474 efficiency (D_f). Notably, this strategy is so effective that it reverses the performance degradation on
 475 some dimension: it enables the model to achieve a higher factuality score in the multi-turn setting
 476 than even the RAG-enhanced single-turn baseline. This highlights RAG’s capacity not merely to
 477 mitigate noise, but to actively leverage the multi-turn structure by grounding each step with factual
 478 evidence, thus preventing the accumulation of noise that characterizes the non-RAG setting. In con-
 479 trast, the **Last** and **All** strategies, which use the full dialogue history as the queries, are more likely
 480 to accumulate noise and therefore underperform.

5.2 EFFECT OF DOMAIN-SPECIFIC FINETUNING

481 First, we evaluate the effect of intrinsic knowledge by examining the effect of domain-specific fine-
 482 tuning. Accordingly, we evaluate two Qwen-2.5-7B derivatives: **Fin-R1**⁴ (Liu et al., 2025) for

483
 484
 485
 Table 3: Comparison of With versus Without RAG
 on **Qwen-2.5-7B**. Gray and white rows indicate as
 above. **Bold** numbers highlight the best results un-
 der the multi-turn RAG setting. Underlined values
 denote improvements over the baseline under the
 same turn setting (single-turn or multi-turn).

Setting	S_f (%) \uparrow	S_h (%) \downarrow	D_f \downarrow	D_h \uparrow
w/o RAG				
Original	19.67	3.57	366.41	588.70
Original	17.15	3.77	546.79	847.17
w/ RAG				
Base	<u>42.92</u>	<u>1.98</u>	<u>193.42</u>	451.58
Base	<u>42.55</u>	<u>2.43</u>	<u>269.65</u>	882.00
Last	<u>41.59</u>	<u>2.78</u>	<u>231.50</u>	601.78
Rounds	43.15	2.14	215.84	677.44
All	<u>39.97</u>	<u>2.48</u>	<u>245.53</u>	561.50

⁴<https://huggingface.co/SUFE-AIFLM-Lab/Fin-R1>

486 finance and **HuatuoGPT**⁵ (Chen et al., 2024c) for medicine. Table 2 indicates that HuatuoGPT
 487 outperforms the baseline in both single- and multi-turn settings, with the improvement being more
 488 pronounced in the multi-turn context. It suggests that injecting domain knowledge not only improves
 489 factuality but also suppresses noise accumulated in the dialogue history, leading to substantially bet-
 490 ter multi-turn performance. In particular, the improvement is stronger for the medical domain than
 491 the non-medical domain. In contrast, the Fin-R1 model’s performance in the *finance domain* does
 492 not show consistent superiority over the generalist baseline. In summary, these results indicate that
 493 domain specialization can be an effective strategy for enhancing factual capability to suppress noise
 494 accumulated in multi-turn dialogues, as demonstrated by HuatuoGPT. However, the case of Fin-R1
 495 highlights that such benefits are not guaranteed.

496 5.3 PROMPT-BASED STRATEGIES

497 Building on our previous analysis, we ex-
 498 plored various prompt-based mitigation strate-
 499 gies to address the identified drivers of degra-
 500 dation. We began with a straightforward in-
 501 tervention, explicitly instructing the model:
 502 “You may refer to the previous conversa-
 503 tion for context, but rely primarily on your in-
 504 ternal knowledge.” This *Simple Prompt* yielded
 505 only slight improvements in factuality and ef-
 506 ficiency while leaving hallucination levels vir-
 507 tually unchanged, suggesting that explicit in-
 508 structions alone are insufficient to filter out
 509 noise. Moving to a structural intervention, *Self-
 510 Refinement* Madaan et al. (2023) successfully
 511 reduced hallucinations; however, it induced ex-
 512 cessive conservatism, resulting in a significant trade-off where factual recall notably declined.

513 In contrast, strategies that fundamentally restructure the context proved significantly more effec-
 514 tive. In both *Summarization* and *Context Selection*, the model processes the preceding dialogue
 515 history, either by compressing or filtering it, and concatenates the refined context with the current
 516 question to generate the response. These approaches successfully counteract the negative impacts
 517 of excessive context length and rigid dialogue templates. By presenting a concise and focused con-
 518 text, both strategies alleviate the model’s “conservative” constraint, thereby restoring information
 519 delivery efficiency and fostering the generation of more factual content. *Context Selection*, however,
 520 demonstrates a distinct advantage; by actively excluding noise rather than merely compressing it, it
 521 emerges as the most effective strategy, delivering the strongest recovery in factual capability.

522 6 CONCLUSION

523 In this work, we addressed the critical gap in evaluating LLMs for knowledge-intensive, MT-LFQA
 524 by introducing **KnowMT-Bench**, a new benchmark featuring a dynamic evaluation protocol and a
 525 fine-grained, NLI-based assessment framework. Our experiments across a diverse suite of LLMs
 526 reveal a consistent multi-turn decline in both *information-delivery efficiency* and *factual capability*.
 527 Probing analyses trace this degradation to contextual noise, especially relevant misinformation accu-
 528 mulated from self-generated history, together with increasing context length and dialogue structure.
 529 Mitigation studies further show that structural context refinement and RAG alleviate these failures.
 530 These findings motivate three concrete avenues for future model development: (1) **Intrinsic Con-
 531 textual Denoising** equip models with inference-time evidence triage to actively select, compress,
 532 and discard irrelevant or self-generated context rather than consuming it passively; (2) **Decoupling
 533 Verbosity from Reasoning** design objectives, training signals, and decoding controls that preserve
 534 factual density and calibration while constraining length, thereby breaking the empirical trade-off
 535 between concision and correctness; and (3) **Robustness to Error Propagation** integrate uncer-
 536 tainty estimation, conflict detection, and self-correction/rollback to contain early-turn hallucinations
 537 before they cascade downstream. **KnowMT-Bench** paves the way for developing more sophisti-
 538 cated models and intervention strategies to improve reliability in real-world, knowledge-intensive
 539 dialogues.

Table 4: Performance comparison of **Qwen2.5-32B** with prompt-based mitigation strate-
 539 gies. Gray rows indicate multi-turn settings. Underlined values denote improvements relative
 to the multi-turn baseline.

Strategy	S_f (%) ↑	S_h (%) ↓	D_f ↓	D_h ↑
Baselines				
Original (Single)	22.50	2.57	367	685
Original (Multi)	21.62	3.02	435	746
Interventions				
+ Simple Prompt	<u>21.89</u>	3.05	417	764
+ Summarization	<u>24.05</u>	3.28	<u>259</u>	419
+ Selection	<u>24.10</u>	3.19	<u>319</u>	590
+ Self-Refine	19.84	<u>2.90</u>	525	899

⁵<https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B>

540 ETHICS STATEMENT
541

542 This research complies with ethical standards. It utilizes datasets that are either synthetic or publicly
543 available, and contains no sensitive or personally identifiable information. The study involves no
544 direct human subjects, nor does it pose any privacy or security concerns. All methodologies and
545 experiments are conducted in accordance with applicable laws and established research integrity
546 practices. There are no conflicts of interest, no undue influence from external sponsorship, and no
547 concerns related to discrimination, bias, or fairness. Moreover, this research does not lead to any
548 harmful insights or applications.

549
550 REPRODUCIBILITY STATEMENT
551

552 We have taken steps to ensure the reproducibility of the results presented in this paper. The ex-
553 perimental settings, including datasets and models, are thoroughly described in Section 4.1 and
554 Appendix G. Source code will be made publicly available upon acceptance.

555 REFERENCES
556

558 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
559 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
560 report. *arXiv preprint arXiv:2303.08774*, 2023.

561 Vaibhav Adlakha, Shehzaad Dhuliawala, Kaheer Suleman, Harm de Vries, and Siva Reddy. Topi-
562 ocka: Open-domain conversational question answering with topic switching. *Transactions of the*
563 *Association for Computational Linguistics*, 10:468–483, 2022.

565 Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo Su,
566 Tiezheng Ge, Bo Zheng, et al. Mt-bench-101: A fine-grained benchmark for evaluating large
567 language models in multi-turn dialogues. In *Proceedings of the 62nd Annual Meeting of the*
568 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7421–7454, 2024.

569 Eryk Banatt, Jonathan Cheng, Skanda Vaidyanath, and Tiffany Hwu. Wilt: A multi-turn,
570 memorization-robust inductive logic benchmark for llms. *arXiv preprint arXiv:2410.10998*, 2024.

572 Jon Ander Campos, Arantxa Otegi, Aitor Soroa, Jan Deriu, Mark Cieliebak, and Eneko Agirre.
573 Doqa-accessing domain-specific faqs via conversational qa. *arXiv preprint arXiv:2005.01328*,
574 2020.

575 CFP Board. Practice standards reference guide. <https://www.cfp.net/ethics/compliance-resources/2020/11/practice-standards-reference-guide>,
576 2020. Certified Financial Planner Board of Standards, Inc.

579 Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. Humans or llms as
580 the judge? a study on judgement biases. *arXiv preprint arXiv:2402.10669*, 2024a.

581 Jian Chen, Peilin Zhou, Yining Hua, Loh Xin, Kehui Chen, Ziyuan Li, Bing Zhu, and Junwei Liang.
582 Fintextqa: A dataset for long-form financial question answering. In *Proceedings of the 62nd*
583 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
584 6025–6047, 2024b.

586 Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou,
587 and Benyou Wang. Huatuogpt-01, towards medical complex reasoning with llms. *arXiv preprint*
588 *arXiv:2412.18925*, 2024c.

589 Zhiyu Chen, Shiyang Li, Charese Smiley, Zhiqiang Ma, Sameena Shah, and William Yang Wang.
590 Convfinqa: Exploring the chain of numerical reasoning in conversational finance question an-
591 swering. *arXiv preprint arXiv:2210.03849*, 2022.

593 Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, and Luke
Zettlemoyer. Quac: Question answering in context. *arXiv preprint arXiv:1808.07036*, 2018.

594 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 595 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 596 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 597 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

598 Haodong Duan, Jueqi Wei, Chonghua Wang, Hongwei Liu, Yixiao Fang, Songyang Zhang, Dahua
 599 Lin, and Kai Chen. Botchat: Evaluating llms capabilities of having multi-turn dialogues. In
 600 *Findings of the Association for Computational Linguistics: NAACL 2024*, pp. 3184–3200, 2024.

601

602 Yu Fan, Jingwei Ni, Jakob Merane, Etienne Salimbeni, Yang Tian, Yoan Hermstrüwer, Yinya Huang,
 603 Mubashara Akhtar, Florian Geering, Oliver Dreyer, et al. Lexam: Benchmarking legal reasoning
 604 on 340 law exams. *arXiv preprint arXiv:2505.12864*, 2025.

605

606 Zhiting Fan, Ruizhe Chen, Tianxiang Hu, and Zuozhu Liu. Fairmt-bench: Benchmarking fairness
 607 for multi-turn dialogue in conversational llms. *arXiv preprint arXiv:2410.19317*, 2024.

608

609 Song Feng, Hui Wan, Chulaka Gunasekara, Siva Sankalp Patel, Sachindra Joshi, and Luis A
 610 Lastras. doc2dial: A goal-oriented document-grounded dialogue dataset. *arXiv preprint
 611 arXiv:2011.06623*, 2020.

612

613 Song Feng, Siva Sankalp Patel, Hui Wan, and Sachindra Joshi. Multidoc2dial: Modeling dialogues
 614 grounded in multiple documents. *arXiv preprint arXiv:2109.12595*, 2021.

615

616 Xue-Yong Fu, Md Tahmid Rahman Laskar, Cheng Chen, and Shashi Bhushan TN. Are large lan-
 617 guage models reliable judges? a study on the factuality evaluation capabilities of llms. *arXiv
 618 preprint arXiv:2311.00681*, 2023.

619

620 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 621 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 622 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

623

624 Kobi Hackenburg, Ben M Tappin, Luke Hewitt, Ed Saunders, Sid Black, Hause Lin, Catherine Fist,
 625 Helen Margetts, David G Rand, and Christopher Summerfield. The levers of political persuasion
 626 with conversational ai. *arXiv preprint arXiv:2507.13919*, 2025.

627

628 Yun He, Di Jin, Chaoqi Wang, Chloe Bi, Karishma Mandyam, Hejia Zhang, Chen Zhu, Ning Li,
 629 Tengyu Xu, Hongjiang Lv, et al. Multi-if: Benchmarking llms on multi-turn and multilingual
 630 instructions following. *arXiv preprint arXiv:2410.15553*, 2024.

631

632 Quzhe Huang, Mingxu Tao, Chen Zhang, Zhenwei An, Cong Jiang, Zhibin Chen, Zirui Wu, and
 633 Yansong Feng. Lawyer llama technical report. *arXiv preprint arXiv:2305.15062*, 2023.

634

635 Minbyul Jeong, Hyeon Hwang, Chanwoong Yoon, Taewhoo Lee, and Jaewoo Kang. Olaph: Im-
 636 proving factuality in biomedical long-form question answering, 2024.

637

638 Suzanne M Kurtz and Jonathan D Silverman. The calgarycambridge referenced observation guides:
 639 an aid to defining the curriculum and organizing the teaching in communication training pro-
 640 grammes. *Medical education*, 30(2):83–89, 1996.

641

642 Wai-Chung Kwan, Xingshan Zeng, Yuxin Jiang, Yufei Wang, Liangyou Li, Lifeng Shang, Xin Jiang,
 643 Qun Liu, and Kam-Fai Wong. Mt-eval: A multi-turn capabilities evaluation benchmark for large
 644 language models. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Lan-
 645 guage Processing*, pp. 20153–20177, 2024.

646

647 Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and Jennifer Neville. Llms get lost in multi-turn
 648 conversation. *arXiv preprint arXiv:2505.06120*, 2025.

649

650 Yoonjoo Lee, Kyungjae Lee, Sunghyun Park, Dasol Hwang, Jaehyeon Kim, Hong-in Lee, and
 651 Moontae Lee. Qasa: advanced question answering on scientific articles. In *International Confer-
 652 ence on Machine Learning*, pp. 19036–19052. PMLR, 2023.

653

654 Jinnan Li, Jinzhe Li, Yue Wang, Yi Chang, and Yuan Wu. Structflowbench: A structured flow
 655 benchmark for multi-turn instruction following. *arXiv preprint arXiv:2502.14494*, 2025.

648 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization*
 649 *branches out*, pp. 74–81, 2004.

650

651 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 652 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 653 *arXiv:2412.19437*, 2024.

654 Zhaowei Liu, Xin Guo, Fangqi Lou, Lingfeng Zeng, Jinyi Niu, Zixuan Wang, Jiajie Xu, Weige Cai,
 655 Ziwei Yang, Xueqian Zhao, et al. Fin-r1: A large language model for financial reasoning through
 656 reinforcement learning. *arXiv preprint arXiv:2503.16252*, 2025.

657

658 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 659 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 660 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.

661 Itay Manes, Naama Ronn, David Cohen, Ran Ilan Ber, Zehavi Horowitz-Kugler, and Gabriel
 662 Stanovsky. K-qa: A real-world medical q&a benchmark. In *Proceedings of the 23rd Workshop*
 663 *on Biomedical Natural Language Processing*, pp. 277–294, 2024.

664 Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question answering
 665 challenge. *Transactions of the Association for Computational Linguistics*, 7:249–266, 2019.

666

667 shareAI. Sharegpt-chinese-english-90k bilingual human-machine qa dataset. <https://huggingface.co/datasets/shareAI/ShareGPT-Chinese-English-90k>,
 668 2023.

669

670 Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Mohamed Amin, Le Hou,
 671 Kevin Clark, Stephen R Pfahl, Heather Cole-Lewis, et al. Toward expert-level medical question
 672 answering with large language models. *Nature Medicine*, 31(3):943–950, 2025.

673

674 Yuchong Sun, Che Liu, Kun Zhou, Jinwen Huang, Ruihua Song, Wayne Xin Zhao, Fuzheng Zhang,
 675 Di Zhang, and Kun Gai. Parrot: Enhancing multi-turn instruction following for large language
 676 models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-*
677 guistics (Volume 1: Long Papers), pp. 9729–9750, 2024.

678

Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

679

680 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 681 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 682 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

683

684 Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
 685 Mint: Evaluating llms in multi-turn interaction with tools and language feedback. *arXiv preprint*
arXiv:2309.10691, 2023.

686

687 Yizhen Wang, Xueying Shen, Zixian Huang, Lihui Niu, and Shiyan Ou. clegal-qa: a chinese legal
 688 question answering with natural language generation methods. *Complex & Intelligent Systems*,
 11(1):77, 2025.

689

690 Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabrowski, Mark Dredze, Sebastian Gehrmann, Prab-
 691 hanjan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model
 692 for finance. *arXiv preprint arXiv:2303.17564*, 2023.

693

694 Shiwei Wu, Chen Zhang, Yan Gao, Qimeng Wang, Tong Xu, Yao Hu, and Enhong Chen. Bench-
 695 marking large language models for conversational question answering in multi-instructional doc-
 696 uments. *arXiv preprint arXiv:2410.00526*, 2024.

697

Fangyuan Xu, Yixiao Song, Mohit Iyyer, and Eunsol Choi. A critical evaluation of evaluations for
 698 long-form question answering. *arXiv preprint arXiv:2305.18201*, 2023.

699

700 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
 701 An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advanc-
 702 ing text embedding and reranking through foundation models. *arXiv preprint arXiv:2506.05176*,
 703 2025a.

702 Yiran Zhang, Mo Wang, Xiaoyang Li, Kaixuan Ren, Chencheng Zhu, and Usman Naseem.
703 Turnbench-ms: A benchmark for evaluating multi-turn, multi-step reasoning in large language
704 models. *arXiv preprint arXiv:2506.01341*, 2025b.
705
706 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
707 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
708 chatbot arena. *Advances in neural information processing systems*, 36:46595–46623, 2023.
709
710 Yanmengqian Zhou and Lijiang Shen. Processing of misinformation as motivational and cognitive
711 biases. *Frontiers in Psychology*, 15:1430953, 2024.
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 Table 5: Conversational QA and LFQA benchmark. Columns show average ground-truth length,
 757 average number of turns, and whether dialogs are multi-turn, answers are long-form, and the task
 758 is open-domain (\checkmark =yes, \times =no). Notation: t = tokens, w = words, c = Chinese characters, --=not
 759 provided in the original paper.

Benchmark	# Avg. Length	# Avg. Turns	Multi-turn	Long-Form	Open-Domain
QuAC (Choi et al., 2018)	14.6 t	7.2	\checkmark	\times	\times
CoQA (Reddy et al., 2019)	2.52 t	15.97	\checkmark	\times	\times
DoQA (Campos et al., 2020)	12.99 t	4.48	\checkmark	\times	\times
Doc2Dial (Feng et al., 2020)	21 t	12	\checkmark	\times	\times
MultiDoc2Dial (Feng et al., 2021)	21.6 t	6.36	\checkmark	\times	\times
ConvFinQA (Chen et al., 2022)	-	3.67	\checkmark	\times	\times
TopiOCQA (Adlakha et al., 2022)	11.75 w	12	\checkmark	\times	\checkmark
InsCoQA (Wu et al., 2024)	-	3.11	\checkmark	\times	\times
QASA (Lee et al., 2023)	50 t	1	\times	\checkmark	\times
FinTextQA (Chen et al., 2024b)	75 w	1	\times	\checkmark	\checkmark
K-QA (Manes et al., 2024)	119.89 t	1	\times	\checkmark	\checkmark
MedLFQA (Jeong et al., 2024)	132.86 t	1	\times	\checkmark	\checkmark
cLegal-QA (Wang et al., 2025)	93 c	1	\times	\checkmark	\checkmark
KnowMT-Bench (ours)	75.75 w / 95.85 t	2.98	\checkmark	\checkmark	\checkmark

APPENDIX

A LLM USAGE STATEMENT

779 LLMs were used for prose refinement (grammar, phrasing) and code edits (formatting). The authors
 780 reviewed all LLM suggestions and take full responsibility for the paper.

B RELATED WORK

B.1 MULTI-TURN DIALOGUES BENCHMARKS FOR LLMs

786 Evaluating LLMs in multi-turn dialogues is a critical and active area of research. Early bench-
 787 marks such as MT-Bench (Zheng et al., 2023) and MT-Bench++(Sun et al., 2024) assess general
 788 conversational quality using an LLM-as-judge approach. Subsequent works have introduced more
 789 diverse evaluation paradigms. For instance, BotChat Duan et al. (2024) evaluates alignment with hu-
 790 man conversational patterns, while others, including MT-Eval (Kwan et al., 2024) and MT-Bench-
 791 101 (Bai et al., 2024), propose multi-dimensional frameworks to assess specific capabilities like
 792 instruction adherence and context utilization.

793 Beyond general benchmarks, a range of specialized benchmarks have been proposed to probe dis-
 794 tinct abilities within multi-turn dialogue. TurnBench-MS (Zhang et al., 2025b) and WIL (Banatt
 795 et al., 2024) are designed to assess iterative multi-step reasoning, while Multi-IF (He et al., 2024) and
 796 StructFlowBench (Li et al., 2025) focus on the instruction-following ability of LLMs. MINT (Wang
 797 et al., 2023) explicitly evaluates LLMs ability to incorporate external tools and language feedback
 798 during multi-turn interactions. Additionally, some benchmarks evaluate critical risks in multi-turn
 799 dialogues, with FairMT-Bench (Fan et al., 2024) measuring fairness and bias propagation. While
 800 comprehensive, these benchmarks do not specifically focus on the factual capability of LLMs within
 801 multi-turn, knowledge-grounded dialogues. Our work addresses this critical gap by systematically
 802 assessing factual capability in such contexts.

B.2 LONG-FORM QUESTION ANSWERING BENCHMARKS FOR LLMs

805 LFQA is a knowledge-base open-domain question answering task, particularly in specialized do-
 806 mains like medicine, finance, and law. Evaluation paradigms for LFQA have evolved over time.
 807 Some benchmarks in LFQA, such as FinTextQA (Chen et al., 2024b) and cLegal-QA (Wang et al.,
 808 2025) rely on surface-level similarity metrics like ROUGE (Lin, 2004), which may not correlate
 809 well with human evaluation (Xu et al., 2023). To improve reliability, subsequent works such as
 LEXam (Fan et al., 2025) adopted an LLM-as-judge paradigm.

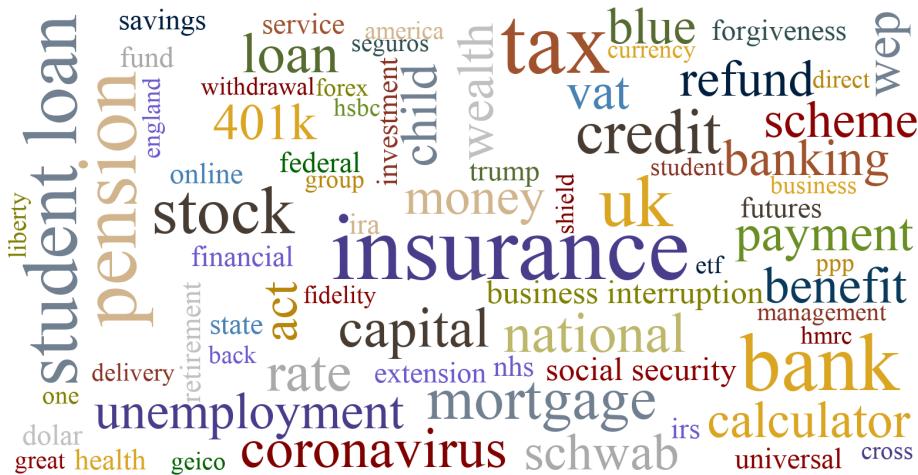


Figure 10: Financial Topics on Google Trends.

A more fine-grained and interpretable approach was introduced by K-QA and MedLFQA (Manes et al., 2024; Jeong et al., 2024), which first decomposes reference answers into atomic facts and then uses NLI-based methods to check for entailment and contradiction at the fact level. This paradigm offers enhanced interpretability by assessing factuality on explicit, human-understandable statements. Our benchmark builds on this NLI-based paradigm but makes some key advancements. We introduce a new dimension for **information delivery efficiency** to evaluate content effectiveness, and we extend the LFQA task to a multi-turn dialogue setting for the first time to make it more closely resemble professional consultation scenarios.

C DETAILED COMPARISON TO MORE QA BENCHMARK

Table 5 summarizes widely used conversational QA and long-form QA benchmarks in terms of average answer length, number of turns, and task characteristics. Most conversational QA datasets emphasize multi-turn interaction but contain relatively short answers, while long-form QA benchmarks are typically single-turn and open-domain with longer responses. Our KnowMT-Bench bridges these two directions by combining multi-turn dialogue with long-form, open-domain answers, reflecting more realistic information-seeking scenarios.

D ANNOTATION DETAILS

D.1 ADDITIONAL DETAILS OF SINGLE-TURN LFQA DATA COLLECTION

For the medical domain, we included all 201 QA pairs from the K-QA benchmark (Manes et al., 2024). Since the original answers often contained both *must-to-have* supporting facts and *nice-to-have* details, we manually removed the redundant segments beyond the must-have facts while ensuring that the resulting ground-truth answers remained coherent and fluent. The supporting evidence was derived from authoritative sources such as institutional websites used during K-QA annotation.

For the financial-legal domain, we collect 116 QA pairs from the official FAQ repository maintained by the U.S. Securities and Exchange Commission (SEC)⁶ and 184 QA pairs from the policy-focused subset of FinTextQA (Chen et al., 2024b). Several quality-control steps were applied, including the removal of trivial answers consisting only of affirmation, negation, or phrase-level responses, as well as the manual addition of missing jurisdictional context (e.g., “Hong Kong” in entries from HKMA) to resolve ambiguities. The resulting curated subset thus covers major financial jurisdictions, including Hong Kong, the European Union, and the United States.

⁶<https://www.sec.gov/answers/faqs.htm>

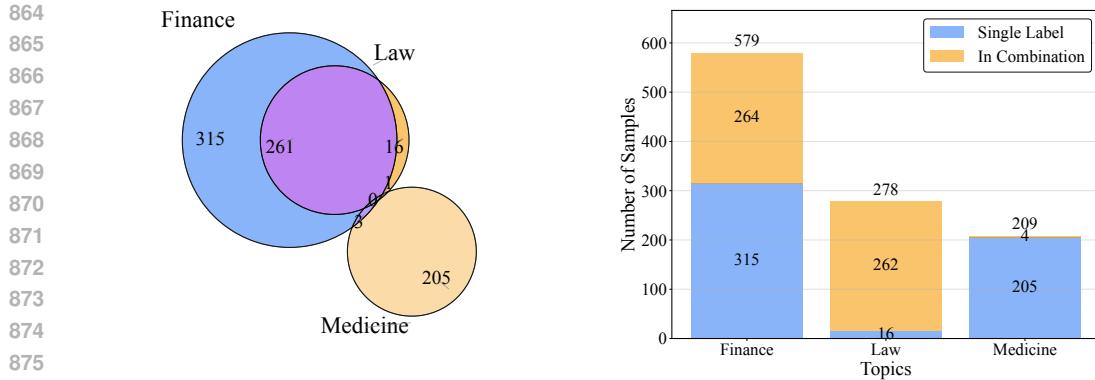


Figure 11: Topic Distribution.

To align the benchmark with topics of broad public interest, we further collect “trending” and “rising” terms from Google Trends⁷, focusing on the “Finance” category and its subcategories in the United States and the United Kingdom over the five years preceding February 26, 2025. After deduplication and filtering, this process yielded 272 unique finance-related topics. We manually classified these topics into three categories: institutions and products, policies and events, and concepts (for more detail, see Appendix I.1), and then constructed QA pairs through annotation. Eighteen topics were randomly selected to receive two QA pairs, yielding a total of 300 QA pairs.

We recruited six annotators, all graduate students in either Finance or Computer Science, and instructed them to formulate complete, non-redundant questions and answers for each topic by referring to authoritative sources such as official institutional websites, Encyclopædia Britannica, and Investopedia, and to record the source URL as supporting evidence. A rigorous verification process was then conducted to ensure accuracy, clarity, and consistency across all QA pairs, including spot-checking answers against their cited references.

D.2 ADDITIONAL DETAILS FOR MULTI-TURN DIALOGUE GENERATION

To reduce annotation effort, we designed a set of expansion templates: \mathcal{T}_2 for two-turn dialogues ($|\mathcal{T}_2| = 8$) and \mathcal{T}_3 for three-turn dialogues ($|\mathcal{T}_3| = 10$). (for more detail, see Appendix J.1, all templates are displayed in the prompt) Using these templates, **Qwen2.5-32B-Instruct** was applied to automatically expand single-turn questions into two- and three-turn sequences. Prompts are provided in Appendix J.1. A subset of these expansions was then manually extended into four- and five-turn dialogues, ensuring natural progression and quality.

All generated question sequences were manually reviewed to avoid answer leakage, preserve the intent of the final question, and ensure cross-turn consistency. We also identified and revised cases where multiple questions corresponded to substantially overlapping supporting-fact sets, thereby maintaining diversity and factual coverage. Figure 12 reports the realized distribution.

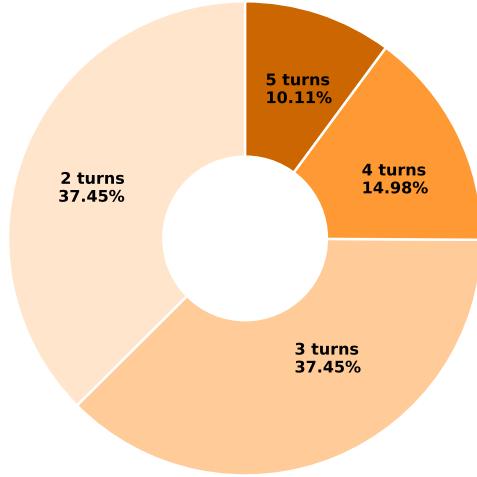


Figure 12: Distribution of turn count

⁷<https://trends.google.com/trends/>

918 Example of Multi-Turn Questions With Answer and Reference
919
920
921 {
922 "sample_id": "9461cce2",
923 "domain": ["finance"],
924 "single-turn question": "Compared to living in other parts of the UK, what two additional documents are required when taxing a vehicle in Northern Ireland?",
925 "multi-turn questions": [
926 "How has vehicle taxation evolved in the United Kingdom over the past century?",
927 "What are the current vehicle taxation policies in place in the UK today?",
928 "Compared to living in other parts of the UK, what two additional documents are required when taxing a vehicle in Northern Ireland?"
929],
930 "answer": "When taxing a vehicle at a Post Office in Northern Ireland, you need to provide two additional documents: a paper copy of your insurance certificate or cover note, and an original MOT test certificate or evidence of a Temporary Exemption Certificate (TEC).",
931 "must_have": [
932 "When taxing a vehicle at a Post Office in Northern Ireland, a paper copy of your insurance certificate is required",
933 "When taxing a vehicle at a Post Office in Northern Ireland, a cover note is required as an alternative to an insurance certificate",
934 "When taxing a vehicle at a Post Office in Northern Ireland, an original MOT test certificate is required",
935 "When taxing a vehicle at a Post Office in Northern Ireland, evidence of a Temporary Exemption Certificate (TEC) is required as an alternative to an MOT test certificate"
936],
937 "source": "HOT-FINANCE-TOPIC",
938 "url": [
939 "https://www.gov.uk/vehicle-tax"
940]
941 }

D.3 ADDITIONAL DETAILS FOR AUTOMATIC EVALUATIONS

D.3.1 VALIDATION OF THE EVALUATION PIPELINE

To validate our two-stage evaluation pipeline, we conducted a human annotation study, illustrated in Fig. 13. For the Atomic Decomposition stage, we sampled 100 model answers drawn from four representative LLMs of varying scales (Qwen2.5-14B-Instruct, Llama-3.1-8B-Instruct, DeepSeek-V3-0324, and GPT-4o-2024-08-06), covering single-turn or multi-turn settings. Each answer was decomposed into atomic statements by our decomposer model (Qwen2.5-32B-Instruct) and compared against human annotations. As shown in the top part of Fig. 13, the decomposition achieved high fidelity, with an SMAPE of **18.1%** in statement counts and an omission rate of only **5.9%**, indicating that discrepancies were mainly due to under-segmentation rather than semantic distortion.

For the Factual Consistency Judgment stage, the same 100 dialogues were decomposed into 1,687 evaluation items, consisting of atomic statements paired with the opposing full-text answers. These were labeled by our evaluator (Qwen2.5-14B-Instruct) and independently annotated by three human experts. As shown in the bottom part of Fig. 13, human annotators achieved substantial agreement (pairwise Cohens κ values of 0.60, 0.62, and 0.63; Fleiss $\kappa = 0.62$). Furthermore, we constructed a gold standard by majority voting over the three human annotations. The agreement between this gold standard and individual annotators was consistently high, with Cohens κ values of 0.80, 0.79, and 0.81, indicating strong alignment between the aggregated ground truth and expert annotations.

Table 6: Performance comparison on the Factual Consistency Judgment stage.

Model	Accuracy	F1	Precision	Recall
Qwen-2.5-14B	0.83	0.84	0.84	0.83
GPT-4o	0.81	0.82	0.84	0.81
DeepSeek-V3	0.76	0.78	0.84	0.76

Table 6: Performance comparison on the Factual Consistency Judgment stage.

Model	Accuracy	F1	Precision	Recall
Qwen-2.5-14B	0.83	0.84	0.84	0.83
GPT-4o	0.81	0.82	0.84	0.81
DeepSeek-V3	0.76	0.78	0.84	0.76

We then assessed the performance of various models against this gold standard, as detailed in Table 6. The results show that Qwen-2.5-14B achieves the most favorable performance among the candidates, leading in both accuracy and F1-score. Consequently, considering its strong performance and computational efficiency, we selected Qwen-2.5-14B as the designated evaluator for our

972 pipeline. We conjecture that this outcome may be attributed to the nature of the task; while larger
 973 models possess more powerful general reasoning abilities, they might be prone to overly complex in-
 974 ference paths for a constrained judgment task, potentially introducing instability. A well-calibrated,
 975 medium-sized model, such as Qwen-2.5-14B, may follow a more direct and consistent reasoning
 976 process, rendering it more reliable for this specific application.

978 D.3.2 INVESTIGATING BIAS OF DECOMPOSER AND EVALUATOR

980 A critical consideration for our pipeline is whether the chosen evaluator, Qwen-2.5-14B, exhibits
 981 any bias, particularly a self-preference for models within its own family. To investigate this, we
 982 conducted a detailed analysis of the evaluation outcomes for each target model, with performance
 983 metrics presented in Table 7a. The metrics are tightly clustered across all models, with F1-scores
 984 ranging from 0.81 to 0.85. Notably, the model from the evaluator’s own family, Qwen2.5-14B, does
 985 not receive a disproportionately high score.

986 Table 7: Analysis of Evaluator Impartiality. We find no evidence of bias, as confirmed by non-
 987 parametric tests showing statistically insignificant performance differences between the models.

988 (a) Performance breakdown per model, as judged by
 989 the Qwen-2.5-14B evaluator. OR refers to Ommision
 990 Rate.

Model	Acc.	F1	Prec.	Rec.	SMAPE(%)	OR(%)
DeepSeek-V3	0.85	0.85	0.87	0.85	13.12	6.34
LLaMA3-8B	0.84	0.85	0.86	0.84	20.66	2.54
GPT-4o	0.83	0.83	0.83	0.83	19.70	7.52
Qwen2.5-14B	0.81	0.81	0.81	0.81	18.10	5.90

988 (b) Pairwise significance tests (p-values from Mann-
 989 Whitney U tests) on model accuracy for Evaluator.

Model	DS-V3	L3-8B	GPT-4o	Q2.5-14B
DS-V3	-	.761 ns	.445 ns	.183 ns
L3-8B	.761 ns	-	.674 ns	.347 ns
GPT-4o	.445 ns	.674 ns	-	.602 ns
Q2.5-14B	.183 ns	.347 ns	.602 ns	-

995 Note: ns denotes $p \geq 0.01$.

996 To further validate this observation with a method robust to non-normal data distributions, we per-
 997 formed pairwise non-parametric Mann-Whitney U tests on the models’ accuracy scores. As the an-
 998 swers for each question were generated by a single, randomly assigned model, the groups of scores
 999 for each model are independent, making this test appropriate. The results, summarized in Tab. 7b,
 1000 show that all comparisons yield p-values well above the 0.01 threshold. Furthermore, the calculated
 1001 effect sizes for all pairs were negligible ($r < 0.03$), indicating that the observed differences lack
 1002 practical importance. In addition, a Kruskal-Wallis test yields $H = 1.9552, p = 5.82 \times 10^{-1}$, indi-
 1003 cating no significant overall difference among models. These statistical evidences strongly support
 1004 the conclusion that our evaluation pipeline operates impartially and does not systematically favor
 1005 any specific model architecture or family.

1006 Analogous to the evaluator check, we test
 1007 whether the Qwen-based Decomposer system-
 1008 atically favors or penalizes some models when
 1009 extracting atomic facts from generated answers.
 1010 For each model, we compute decomposition
 1011 count error against human gold using SMAPE,
 1012 then perform (1) a KruskalWallis test across
 1013 models and (2) pairwise Mann-Whitney U tests
 1014 (see the results in Table 8). The Kruskal-Wallis
 1015 test yields $H = 6.1147, p = 1.062 \times 10^{-1}$,
 1016 showing no significant global difference across
 1017 model families. Pairwise tests again indicate
 1018 that no pair is significant at the stricter 0.01
 1019 level, and only one pair reaches 0.05 with a small effect size. This suggests that any between-model
 1020 variation in decomposition error is minor, and we find no strong evidence that the Decomposer
 1021 systematically favors or penalizes specific model families.

1022 D.3.3 INVESTIGATING ROBUSTNESS OF DECOMPOSER AND EVALUATOR

1023 To test the robustness of our evaluation pipeline. We conduct cross-model validation by replacing
 1024 the original LLM with GPT-4o at two different stages of the pipeline, the decomposer and the eval-
 1025 uator, and then re-evaluate four representative LLMs (GPT-4o, DeepSeek-V3, Llama-3.3-70B, and

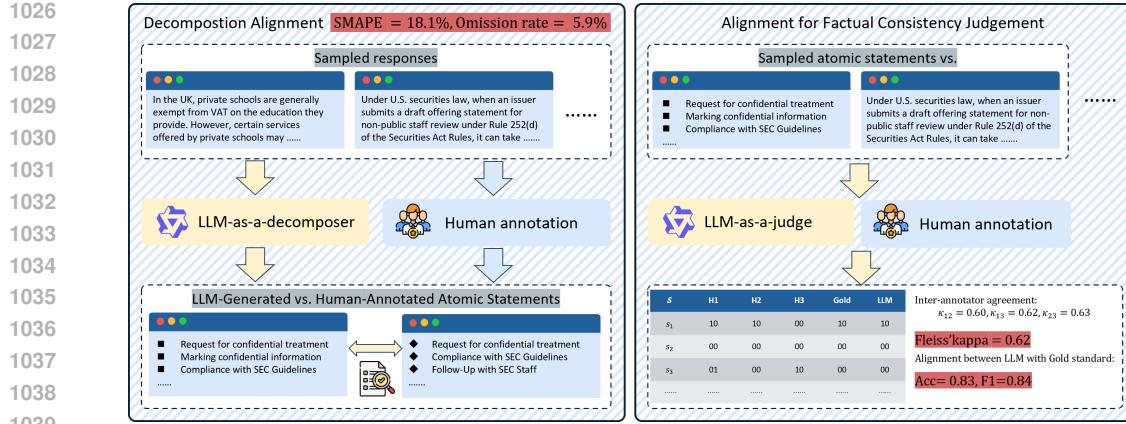


Figure 13: Human validation of our evaluation pipeline. **(left)** Alignment between LLM-based and human-annotated atomic decompositions. **(right)** Alignment between LLM-based and human annotations for factual consistency judgments.

Table 9: Model Ranking (S_f) Consistency across Evaluators and Decomposer Variants. OR refers to Original Rank.

OR	Model (Mode)	S_f	GPT-4o Eval (Rank)	GPT-4o Decomp (Rank)
1	GPT-4o (Single)	28.77%	38.06% (1)	29.54% (1)
2	GPT-4o (Multi)	27.63%	37.86% (2)	29.24% (2)
3	Llama-3.3-70B (Single)	24.02%	32.95% (4)	24.41% (5)
4	Qwen-2.5-72B (Single)	23.97%	32.37% (5)	24.47% (4)
5	DeepSeek-V3 (Single)	23.80%	33.82% (3)	24.51% (3)
6	Llama-3.3-70B (Multi)	21.16%	29.26% (6)	21.50% (6)
7	Qwen-2.5-72B (Multi)	20.20%	28.54% (8)	20.97% (7)
8	DeepSeek-V3 (Multi)	19.38%	29.19% (7)	19.54% (8)

Qwen-2.5-72B) under both single-turn and multi-turn settings. The results are shown in Table 9 and Table 10.

Stability of the Decomposer We first test the stability of the Atomic Fact Decomposition stage by replacing the original Qwen-2.5-32B Decomposer with GPT-4o, while keeping the Evaluator fixed. we find near-perfect agreement: (i) Pearson correlation $r = 0.996$, this extremely high value indicates that the atomic facts extracted by the Qwen-based decomposer are highly aligned with those extracted by GPT-4o, and that the choice of decomposer explains almost all variance in the final scores. (ii) Spearman rank correlation $\rho = 0.905$, which confirms that changing the Decomposer does not significant alter the relative comparison between models.

Robustness of the Evaluator We further replace the original Qwen-2.5-14B Evaluator with GPT-4o, while keeping the Decomposer fixed, and compare the resulting factual F1 scores (S_f) We observe strong statistical consistency between the two Evaluators: (i) Pearson correlation $r = 0.984$, which indicates an strong linear relationship between the two sets of scores. (ii) Spearman rank correlation $\rho = 0.905$, shows that the **relative ranking** of models is almost identical under the two Evaluators. Specifically, as shown in Table R1, both Evaluators (Qwen-based and GPT-4o-based) consistently agree that GPT-4o is the top-tier model, and they preserve the overall separation between the proprietary model and the open-source models in both single-turn and multi-turn evaluation. The rankings of the open-source models only exhibit minor permutations, without changing our qualitative conclusions.

In summray, our main conclusion, that models factual ability degrades in multi-turn dialogue, remains stable under all validation configurations. As shown in Table R2, regardless of whether we

1080 Table 10: Cross-Model Validation Detailed Metrics for Evaluator and Decomposer Variants.
1081

1082 Model	1083 Setting	1084 Configuration	1085 S_f (%)	1086 S_h (%)	1087 D_f	1088 D_h
GPT-4o	Single	Original	28.77	2.26	226	506
GPT-4o	Single	w/ GPT-4o Eval	38.06	3.36	179	434
GPT-4o	Single	w/ GPT-4o Decomp	29.54	2.55	226	507
GPT-4o	Multi	Original	27.63	2.48	254	555
GPT-4o	Multi	w/ GPT-4o Eval	37.86	3.11	214	532
GPT-4o	Multi	w/ GPT-4o Decomp	29.24	2.26	253	495
DeepSeek-V3	Single	Original	23.80	3.21	343	740
DeepSeek-V3	Single	w/ GPT-4o Eval	33.82	4.19	285	722
DeepSeek-V3	Single	w/ GPT-4o Decomp	24.51	3.32	340	739
DeepSeek-V3	Multi	Original	19.38	3.40	444	888
DeepSeek-V3	Multi	w/ GPT-4o Eval	29.19	4.32	373	837
DeepSeek-V3	Multi	w/ GPT-4o Decomp	19.54	3.40	445	877
Llama-3.3-70B	Single	Original	24.02	3.49	324	628
Llama-3.3-70B	Single	w/ GPT-4o Eval	32.95	5.12	272	628
Llama-3.3-70B	Single	w/ GPT-4o Decomp	24.41	3.58	326	653
Llama-3.3-70B	Multi	Original	21.16	4.25	437	760
Llama-3.3-70B	Multi	w/ GPT-4o Eval	29.26	6.00	383	732
Llama-3.3-70B	Multi	w/ GPT-4o Decomp	21.50	4.16	435	775
Qwen-2.5-72B	Single	Original	23.97	2.44	358	821
Qwen-2.5-72B	Single	w/ GPT-4o Eval	32.37	3.92	334	791
Qwen-2.5-72B	Single	w/ GPT-4o Decomp	24.47	2.49	366	822
Qwen-2.5-72B	Multi	Original	20.20	2.77	484	900
Qwen-2.5-72B	Multi	w/ GPT-4o Eval	28.54	4.05	434	872
Qwen-2.5-72B	Multi	w/ GPT-4o Decomp	20.97	2.86	484	900

1111 replace the Evaluator, the Decomposer, or both, all models (including GPT-4o) exhibit a consistent
 1112 drop in factual metrics (R_f , P_f , S_f) when moving from the single-turn to the multi-turn setting. Fur-
 1113 thermore, the evaluation framework of KnowMT-Bench is not tied to a specific architecture. While
 1114 we chose the Qwen family primarily for reproducibility and computational efficiency, our cross-
 1115 model validation demonstrates that using a stronger proprietary model (GPT-4o) in place of Qwen
 1116 leads to the same qualitative conclusions.

1118 E QUALITY ASSURANCE AND ANNOTATION WORKLOAD

1119 We designed a workflow to ensure data usability and reliability. The workflow covered construction,
 1120 alignment, and evaluation for both single-turn and multi-turn data, and we recorded human effort
 1121 and time cost at each stage. Clear guidelines were enforced at each stage: single-turn data required
 1122 “complete, non-redundant and multi-point” answers; multi-turn data required “no leakage, intent
 1123 preservation, and cross-turn consistency”; atomic-level fact decomposition required “no omission,
 1124 no over-bundling, no fabrication.” Across all stages, annotation and verification were performed by
 1125 independent individuals, with results cross-checked to ensure reliability. All annotators and checkers
 1126 had backgrounds in finance or computer science.

1129 E.1 SINGLE-TURN LFQA ANNOTATION (300 FINANCE TOPICS)

1130 We collected 300 new daily financial QA pairs (1-2 per topic) based on Google Trends topics.
 1131 First, annotators retrieved authoritative sources (through official websites related to these topics or
 1132 expert-verified encyclopedic sites such as Investopedia or the Encyclopedia Britannica) and wrote
 1133 complete, non-redundant multi-point LFQA pairs based on these sources. Each QA pair required

1134 10-20 minutes on average. A few difficult items took more than 30 minutes. Six graduate annotators
 1135 participated. The total effort was about **80 person-hours**. All 300 pairs were manually checked
 1136 against authoritative sources in the final review.

1137 For items from SEC FAQ or FinTextQA, we performed consistency checks: removing trivial yes/no
 1138 or phrase-level answers; adding necessary jurisdictional context (e.g., “Hong Kong”). These edits
 1139 ensure alignment with the task definition of “complete, non-redundant and multi-point”
 1140

1141 E.2 MULTI-TURN DIALOGUE GENERATION AND REVIEW

1143 We expanded single-turn questions into 2-3 turns question sequences using templates $\mathcal{T}_2, \mathcal{T}_3$ with
 1144 **Qwen2.5-32B-Instruct**. Part of the question sequences were manually extended to 4-5 turns. All
 1145 dialogues were reviewed to ensure no leakage, intent preservation, and cross-turn consistency. Three
 1146 annotators participated in this stage, and their results were cross-checked to ensure consistency.
 1147

1148 E.3 ATOMIC FACT CONSTRUCTION AND ALIGNMENT

1150 We decomposed ground-truth answers into *atomic* factual statements (facts) with **Qwen2.5-32B-**
 1151 **Instruct**, followed by manual alignment in two rounds: **Round 1**: three annotators checked for
 1152 missing information, under-decomposition (multiple claims in one), or extraneous content (unsup-
 1153 ported). Average 10-20 minutes per item; about **200 person-hours** total. **Round 2**: the same three
 1154 annotators cross-reviewed each other’s annotations. They examined one another’s outputs, discussed
 1155 any disagreements to reach consensus, and updated the annotations accordingly, taking about **100**
 1156 **person-hours**.
 1157

1158 E.4 HUMAN BENCHMARK FOR CONSISTENCY EVALUATION

1159 Three annotators independently labeled atomic statement pairs (atomic statement vs. free-form an-
 1160 swer). From 100 dialogues, we obtained 1,687 atomic evaluation items (Fig. 13). Inter-annotator
 1161 agreement was substantial: pairwise Cohen’s κ of **0.60, 0.62, and 0.63**; Fleiss’ $\kappa = 0.62$. Gold labels
 1162 were created by majority vote. Agreement between individual annotators and the gold labels was
 1163 higher: Cohen’s κ of **0.80, 0.79, and 0.81** (mean **0.80**), showing the gold labels are *highly consistent*
 1164 with each expert judgment.
 1165

1166 E.5 SUMMARY

1168 Across the multi-stage annotation workflow, we enforced actionable guidelines at every step and
 1169 adopted an “annotation, independent review, and cross-check” loop to control bias and leakage risks.
 1170 Concretely: single-turn LFQA required “complete, non-redundant, multi-point” answers; multi-turn
 1171 dialogues emphasized “no leakage, intent preservation, and cross-turn consistency”; atomic fact
 1172 decomposition enforced “no omission, no over-bundling, no fabrication.” All stages were carried
 1173 out by individuals with finance or computer science backgrounds, with independent annotators and
 1174 checkers mutually validating each others work. Taken together, these procedures yield a high-quality
 1175 benchmark dataset, covering single- and multi-turn settings with atomic fact alignments and human
 1176 gold labels. The dataset is suitable for automated factuality evaluation and conducive to repro-
 1177 ducibility and extension.
 1178

1179 F EMPIRICAL VALIDATION OF DIALOGUE NATURALNESS

1181 While our data construction pipeline incorporates rigorous human-in-the-loop review (as detailed
 1182 in Appendix D), relying on LLM-assisted expansion for multi-turn sequences entails a potential
 1183 risk of introducing synthetic artifacts or stylistic biases. To assess the naturalness of our generated
 1184 dialogues and ensure they align with real-world interaction patterns, we conducted a **Complex Sce-**
 1185 **nario Suitability Study** following the protocol established by StructFlowBench (Li et al., 2025).

1186 To ensure an equitable comparison, we aligned our evaluation protocol with established baselines.
 1187 Given that the reference benchmark, StructFlowBench (Li et al., 2025) and MT-Bench-101 (Bai
 1188 et al., 2024), utilize GPT-4o for dialogue generation, we similarly selected the dialogue generated

1188 by GPT-4o within KNOWMT-BENCH for this assessment. Following the experimental setup of
 1189 StructFlowBench, we randomly sampled 50 dialogues from each benchmark and employed GPT-4o
 1190 as an impartial evaluator. The assessment was conducted across three distinct dimensions derived
 1191 from the StructFlowBench rubric, rated on a Likert scale of 1–5:
 1192
 1193

- 1194 • **Logical Coherence:** Measures whether the dialogue maintains semantic consistency and
 1195 logical progression without abrupt or unjustified contextual shifts.
- 1196 • **Goal Clarity:** Assesses the transparency of the user’s intent and the system’s adherence to
 1197 the task objective throughout the interaction.
- 1198 • **Transition Naturalness:** Evaluates the fluidity of inter-turn transitions, specifically detecting
 1199 mechanical or forced phrasings typical of synthetic text.

1200 Furthermore, to quantify the distributional alignment with high-quality data, we also introduce the
 1201 **Confusion Factor (CF)** from StructFlowBench. This composite indicator is defined as the proportion
 1202 of dialogue samples that achieve an average score of ≥ 4.0 across the three dimensions, serving
 1203 as a robust proxy for the density of high-fidelity interactions.
 1204

1205 The comparative results are presented in Table 11. KNOWMT-BENCH achieves an overall mean
 1206 score of 4.43, which is comparable to StructFlowBench (4.47) and MT-Bench-101 (4.51). Crucially,
 1207 in terms of the Confusion Factor, our benchmark scores **0.78**, surpassing MT-Bench-101 (0.74) and
 1208 approaching the specialized StructFlowBench (0.82).
 1209

1210 These findings substantiate that the multi-turn sequences in KNOWMT-BENCH, despite utilizing
 1211 model-assisted expansion, possess high logical coherence and transition fluidity. The high CF score
 1212 further confirms that our human verification protocols effectively filtered out low-quality synthetic
 1213 artifacts, yielding a benchmark that faithfully reflects the complexity and naturalness of real-world
 1214 knowledge-intensive interaction between humans and LLMs.
 1215

1216 Table 11: Results of the Complex Scenario Suitability Study. We compare KNOWMT-BENCH
 1217 against StructFlowBench and MT-Bench-101 across three qualitative dimensions and the composite
 1218 Confusion Factor (CF). All scores are on a 1–5 scale except for CF, which is a ratio.
 1219

1220 Dataset	1221 Logical	1222 Goal	1223 Transition	1224 Overall	1225 Confusion
	1226 Coherence	1227 Clarity	1228 Naturalness	1229 Mean	1230 Factor (CF)
1226 StructFlowBench (Li et al., 2025)	4.78	4.46	4.18	4.47	0.82
1227 MT-Bench-101 (Bai et al., 2024)	4.50	4.52	4.50	4.51	0.74
1228 KnowMT-Bench (Ours)	4.72	4.46	4.12	4.43	0.78

1229 **G DETAILED EXPERIMENT SETTING**

1230 **Basic Settings** Based on the dataset construction process outlined in the previous section, we
 1231 generate both multi-turn and single-turn dialogues based on questions. For multi-turn experiments,
 1232 we use each model’s *chat template* to format dialogue history and we set *max new tokens* to **1024**
 1233 for each round. For Gemini, we restricted the chain-of-thought (CoT) output length to **256**. To
 1234 ensure reproducibility, we applied **greedy decoding** (temperature=0, top_p=1), disabling sampling
 1235 and beam search. For models with CoT reasoning, we standardized answer extraction: (i) if a
 1236 clear final answer is present, only that answer is retained for evaluation; (ii) if no explicit answer is
 1237 generated (for example, due to truncation), the entire reasoning output is treated as the answer. This
 1238 policy was applied uniformly in both multi-turn and single-turn settings.
 1239

1240 **RAG Settings** For retrieval-augmented generation tasks, we adopt a two-stage retrieve-then-
 1241 rerank pipeline. Each QA instance was associated with its own reference, which served as the
 1242 *retrieval candidate pool*. Texts in this pool were segmented using the **SentenceSplitter** from llama-
 1243 index⁸ with a chunk size of 512 and an overlap of 128, ensuring consistent coverage of context across
 1244

⁸https://github.com/run-llama/llama_index

Table 12: Results for all models. Sections explicitly indicate **Single-turn**, **Multi-turn**, and the separate **Diff** block (Multi vs. Single). **Bold** values mark, *within each block*, the best score per column (for \uparrow higher is better; for \downarrow lower is better). Green in **Diff** indicates improvement and red indicates degradation.

Model	Factuality			Hallucination			Efficiency		
	R_f (%) \uparrow	P_f (%) \uparrow	S_f (%) \uparrow	R_m (%) \downarrow	P_{fc} (%) \downarrow	S_h (%) \downarrow	D_f \downarrow	D_h \uparrow	D_R \downarrow
Single-turn									
Gemini-2.5-Pro	57.32	17.79	23.15	3.30	10.96	3.03	671	1623	4267
GPT-4o	42.08	31.81	28.77	3.40	6.87	2.26	226	506	1992
GPT-4o-mini	39.50	30.60	26.85	4.00	6.55	2.40	254	548	1684
DeepSeek-R1	52.02	17.48	21.55	4.34	13.93	4.11	603	1228	5890
DeepSeek-V3	48.51	20.68	23.80	3.79	9.58	3.21	343	740	3065
Qwen-2.5-72B	43.21	22.50	23.97	3.45	8.20	2.44	358	821	3163
Llama-3.3-70B	41.59	23.85	24.02	4.87	8.99	3.49	324	658	2548
Qwen-2.5-32B	37.72	23.30	22.50	3.40	8.58	2.57	367	685	2832
QwQ-32B	38.35	23.83	20.96	5.37	6.54	2.73	531	919	7673
Qwen-2.5-14B	36.77	24.05	22.65	4.14	9.33	3.31	295	513	2674
Llama-3.1-8B	32.98	20.17	18.02	11.94	8.52	4.01	405	589	3609
Qwen-2.5-7B	34.38	20.55	19.67	4.67	9.09	3.57	366	589	3171
Multi-turn									
Gemini-2.5-Pro	51.59	17.23	21.62	4.77	12.34	4.33	695	1417	5109
GPT-4o	42.68	28.51	27.63	3.55	7.05	2.48	254	555	2439
GPT-4o-mini	41.10	26.53	25.54	4.08	8.04	2.87	344	782	2702
DeepSeek-R1	50.67	15.17	19.67	4.51	13.97	4.32	627	1177	4445
DeepSeek-V3	49.06	15.65	19.38	3.96	10.12	3.40	444	888	5213
Qwen-2.5-72B	44.51	17.59	20.20	3.33	9.28	2.77	484	900	3749
Llama-3.3-70B	41.34	20.15	21.16	5.46	10.41	4.25	437	760	3170
Qwen-2.5-32B	40.80	20.34	21.62	3.53	9.14	3.02	435	746	2968
QwQ-32B	39.00	19.78	19.17	5.38	10.03	3.92	473	815	5250
Qwen-2.5-14B	39.17	21.11	21.60	4.03	10.07	3.22	425	824	3672
Llama-3.1-8B	34.67	18.85	18.35	7.25	9.39	4.13	479	753	4105
Qwen-2.5-7B	36.21	15.68	17.15	4.33	10.65	3.77	547	847	4476
Diff (Multi vs. Single)									
Gemini-2.5-Pro	-10.0%	-3.2%	-6.6%	+44.8%	+12.5%	+42.6%	+3.6%	-12.7%	+19.7%
GPT-4o	+1.4%	-10.4%	-4.0%	+4.2%	+2.6%	+9.6%	+12.2%	+9.6%	+22.4%
GPT-4o-mini	+4.1%	-13.3%	-4.9%	+1.9%	+22.8%	+19.5%	+35.3%	+42.9%	+60.4%
DeepSeek-R1	-2.6%	-13.2%	-8.7%	+3.9%	+0.3%	+5.2%	+4.0%	-4.1%	-24.5%
DeepSeek-V3	+1.1%	-24.3%	-18.6%	+4.7%	+5.6%	+5.9%	+29.4%	+20.0%	+70.1%
Qwen-2.5-72B	+3.0%	-21.8%	-15.7%	-3.4%	+13.3%	+13.6%	+35.4%	+9.7%	+18.5%
Llama-3.3-70B	-0.6%	-15.5%	-11.9%	+12.1%	+15.7%	+21.8%	+34.9%	+15.4%	+24.4%
Qwen-2.5-32B	+8.2%	-12.7%	-3.9%	+3.8%	+6.5%	+17.6%	+18.6%	+8.8%	+4.8%
QwQ-32B	+1.7%	-17.0%	-8.5%	+0.2%	+53.4%	+43.7%	-10.9%	-11.3%	-31.6%
Qwen-2.5-14B	+6.5%	-12.2%	-4.6%	-2.6%	+8.0%	-2.7%	+44.2%	+60.5%	+37.3%
Llama-3.1-8B	+5.1%	-6.5%	+1.8%	-39.3%	+10.2%	+2.8%	+18.2%	+27.8%	+13.7%
Qwen-2.5-7B	+5.3%	-23.7%	-12.8%	-7.4%	+17.1%	+5.6%	+49.2%	+43.9%	+41.1%

segments. We use Qwen3-Embedding-0.6B⁹ as the embedding model, and Qwen3-Reranker-0.6B¹⁰ as the reranker (Zhang et al., 2025a). We chose these two models because some of our experimental setups require the entire dialogue history as the query, which imposes relatively high GPU memory demands, hence, we opted for smaller but more recent models that strike a strong balance between efficiency and performance. We first retrieve **15** candidate chunks from this pool using FAISSs IndexFlatL2 over L2-normalized embeddings, then reranked and selected the top **5** chunks for prompt construction. Retrieved chunks were formatted as numbered triple-quoted blocks and concatenated with the user query, and the models were instructed to answer strictly based on this context.

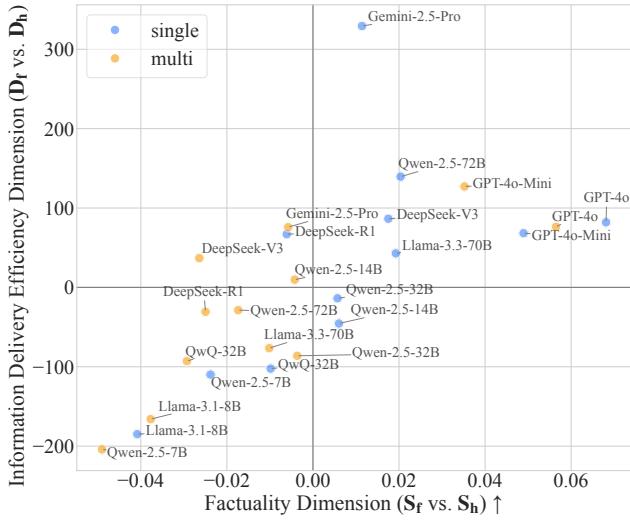


Figure 14: Model performance mapped onto the four-quadrant framework. The x-axis captures overall factuality, derived from the correlation between S_f and S_h . The y-axis measures performance against the efficiency trade-off baseline, derived from the correlation between D_f and D_h .

H ADDITIONAL EXPERIMENTS

H.1 NUMERICAL RESULTS IN MAIN EXPERIMENT

Table 12 presents the detailed numerical results for all models across the three evaluation dimensions. A general trend observed is a decline in performance for most models across a majority of metrics when transitioning from single-turn to multi-turn conversations. Notably, Factual Recall (R_f) and the token cost per hallucinated fact (D_h) are exceptions, showing improvements for most models. This may suggest that while multi-turn interactions prompt models to be more comprehensive and cover more ground-truth facts, this often comes at the cost of reduced precision and greater verbosity, which in turn dilutes the density of factual errors.

H.2 FOUR-QUADRANT ANALYSIS

While the main text analyzes performance through separate scatter plots (Figure 4), the four-quadrant framework in Figure 14 offers a synthesized, holistic view. This framework is constructed from the two empirically established regression baselines discussed in Section 4.2.

The framework defines two new orthogonal dimensions based on these trends. The **Factuality Dimension (x-axis)** is derived from the synergistic relationship between S_f and S_h (Figure 4a). The goal is to create a single score where movement towards the plot's bottom-right region (higher S_f , lower S_h) is considered an improvement. Since the data's primary trend, captured by the top-left-to-bottom-right regression line, aligns with this desired trajectory, we use it as a directional basis. To quantify progress along this trajectory, we construct a baseline that is **perpendicular** to the regression line and passes through the data centroid. The 'Factuality Dimension' score is then the signed distance of each data point **to** this perpendicular baseline, with points on the bottom-right side receiving higher scores. This metric thus holistically captures a model's overall factuality.

The **Information Delivery Efficiency Dimension (y-axis)** is derived from the relationship between D_f and D_h (Figure 4b). Its value is the vertical residual: the signed distance from a data point to the regression line along the D_h axis. Points above the line have positive values. A positive score thus quantifies the degree to which a model's token cost per contradicted fact (D_h) exceeds the

⁹<https://huggingface.co/Qwen/Qwen3-Embedding-0.6B>

¹⁰<https://huggingface.co/Qwen/Qwen3-Reranker-0.6B>

1350 expectation set by its cost per correct fact (D_f), measuring its ability to push the efficiency trade-off
 1351 boundary. The detailed mathematical derivation of these dimensions is provided in Appendix H.3.
 1352

1353 This synthesized view crystallizes the model behaviors discussed previously. For instance, **GPT-4o**
 1354 occupies the right-hand side of the plot, confirming its strong factuality profile (high x-axis value)
 1355 and its adherence to the established efficiency trade-off (y-axis value near zero). In stark contrast,
 1356 **Gemini-2.5-Pro** (in the single-turn setting) is distinguished by a high positive y-axis value, visually
 1357 confirming its status as a significant outlier that pushes the boundary, as its D_h is exceptionally
 1358 high for its given D_f . The **Qwen family** exhibits clear scaling effects, with larger models generally
 1359 moving towards the upper-right. The transition to the more demanding multi-turn dialogue setting,
 1360 however, challenges the models, causing a noticeable shift for most towards the lower-left, under-
 1361 scoring a degradation in both their overall factuality and their performance relative to the efficiency
 1362 baseline.

1362

1363 H.3 ON THE NON-TRIVIALITY OF OBSERVED METRIC CORRELATIONS

1364

1365 We demonstrate that the empirically observed correlations specifically, the negative correlation be-
 1366 tween factuality (S_f) and hallucination (S_h), and the positive correlation between efficiency metrics
 1367 (D_f and D_h) are non-trivial findings about model behavior, not mathematical artifacts of the metric
 1368 definitions.

1369

1370 **Factuality vs. Hallucination (S_f vs. S_h)** Consider $S_f = \text{HM}(\mathbf{P}_f, \mathbf{R}_f)$ and $S_h = \text{HM}(\mathbf{P}_{fc}, \mathbf{R}_m)$.
 1371 At the instance level, their components are constrained because a ground-truth fact cannot be si-
 1372 multaneously supported and contradicted ($\mathcal{F}_j^+ \cap \mathcal{F}_j^- = \emptyset$), and a generated statement cannot be
 1373 simultaneously correct and false ($\mathcal{S}_j^+ \cap \mathcal{S}_j^- = \emptyset$). This imposes constraints such as $\mathbf{R}_f + \mathbf{R}_m \leq 1$
 1374 and $\mathbf{P}_f + \mathbf{P}_{fc} \leq 1$.

1375

1376 However, these "sum-to-at-most-one" constraints on the components do not enforce a necessary
 1377 monotonic relationship between the final F1 scores, S_f and S_h . We demonstrate this with a minimal
 1378 counterexample. Consider a dataset with one instance ($|\mathcal{D}| = 1$), 10 ground-truth facts ($|\mathcal{F}| = 10$),
 1379 and a model generating 10 statements ($|\mathcal{S}| = 10$).

1380

- **Case A:** The model correctly covers 5 facts with 5 statements and makes no contradictions ($|\mathcal{F}^+| = 5, |\mathcal{S}^+| = 5, |\mathcal{F}^-| = 0, |\mathcal{S}^-| = 0$). This yields $\mathbf{R}_f = 0.5, \mathbf{P}_f = 0.5 \implies S_f = 0.5$, and $\mathbf{R}_m = 0, \mathbf{P}_{fc} = 0 \implies S_h = 0$.
- **Case B:** The model's factuality remains the same ($|\mathcal{F}^+| = 5, |\mathcal{S}^+| = 5 \implies S_f = 0.5$), but its other 5 statements are now false and contradict 5 distinct ground-truth facts ($|\mathcal{F}^-| = 5, |\mathcal{S}^-| = 5$). This yields $\mathbf{R}_m = 0.5, \mathbf{P}_{fc} = 0.5 \implies S_h = 0.5$.

1386

1387 Since S_f can remain constant while S_h varies, no deterministic relationship (e.g., $S_h = f(S_f)$) is
 1388 imposed by the metric design. Therefore, the empirically observed negative correlation reflects a
 1389 genuine behavioral pattern of current models, not an algebraic necessity.

1390

1391 **Information Delivery Efficiency (D_f vs. D_h)** A similar analysis applies to the efficiency metrics,
 1392 $D_f(j) = \frac{T(a_j)}{|\mathcal{F}_j^+|}$ and $D_h(j) = \frac{T(a_j)}{|\mathcal{F}_j^-|}$. While they share the same numerator (token count $T(a_j)$),
 1393 their denominators are controlled by disjoint sets of ground-truth facts, $|\mathcal{F}_j^+|$ and $|\mathcal{F}_j^-|$, which are
 1394 only loosely constrained by $|\mathcal{F}_j^+| + |\mathcal{F}_j^-| \leq |\mathcal{F}_j|$. A necessary positive correlation can be falsified
 1395 by demonstrating that one metric can be held constant while the other varies.

1396

1397 Consider a fixed-length response with $T(a) = 100$ tokens and a context of $|\mathcal{F}| = 10$ facts.

1398

- Let's fix the number of correctly covered facts at $|\mathcal{F}^+| = 5$. This fixes $D_f = 100/5 = 20$.
 The number of contradicted facts, $|\mathcal{F}^-|$, can still vary from 0 to 5. As $|\mathcal{F}^-|$ changes, D_h takes values from ∞ (or the smoothed maximum) down to $100/5 = 20$. Thus, D_f is constant while D_h varies.
- Conversely, let's fix the number of contradicted facts at $|\mathcal{F}^-| = 2$. This fixes $D_h = 100/2 = 50$. The number of correct facts, $|\mathcal{F}^+|$, can still vary from 0 to 8. As $|\mathcal{F}^+|$ changes, D_f varies from ∞ down to $100/8 = 12.5$. Thus, D_h is constant while D_f varies.

1404 Table 13: Comparison of model performance using traditional n-gram-based metrics and our pro-
 1405 posed core metrics. This table provides the detailed numerical results that complement the scatter
 1406 plot analysis. **Green** indicates improvement, while **red** indicates degradation.

1407

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457	N-gram Based Metrics				Our Proposed Core Metrics			
	Model	BLEU – 4 ↑	R – 1 ↑	R – 2 ↑	R – L ↑	S _f (%) ↑	S _h (%) ↓	D _f ↓
Single-turn								
Gemini-2.5-Pro	1.51	13.37	3.73	12.46	23.15	3.03	671	1623
GPT-4o	5.43	26.13	8.71	23.64	28.77	2.26	226	506
GPT-4o-mini	4.79	25.03	7.89	22.57	26.85	2.40	254	548
DeepSeek-R1	1.55	14.21	3.75	13.25	21.55	4.11	603	1228
DeepSeek-V3	2.29	17.94	4.64	16.52	23.80	3.21	343	740
Qwen-2.5-72B	3.52	21.88	6.77	19.95	23.97	2.44	358	821
Llama-3.3-70B	4.19	23.19	7.54	21.02	24.02	3.49	324	658
Qwen-2.5-32B	3.47	21.82	6.21	19.66	22.50	2.57	367	685
QwQ-32B	2.16	17.43	4.39	16.09	20.96	2.73	531	919
Qwen-2.5-14B	3.74	22.45	6.42	20.24	22.65	3.31	295	513
Llama-3.1-8B	3.72	23.57	7.74	21.24	18.02	4.01	405	589
Qwen-2.5-7B	3.24	21.33	6.08	19.35	19.67	3.57	366	589
Multi-turn								
Gemini-2.5-Pro	1.38	13.27	3.45	12.34	21.62	4.33	695	1417
GPT-4o	4.12	23.22	7.18	21.10	27.63	2.48	254	555
GPT-4o-mini	3.34	21.49	6.40	19.57	25.54	2.87	344	782
DeepSeek-R1	1.28	12.88	3.08	12.04	19.67	4.32	627	1177
DeepSeek-V3	1.39	14.10	3.01	13.11	19.38	3.40	444	888
Qwen-2.5-72B	2.18	18.05	5.25	16.63	20.20	2.77	484	900
Llama-3.3-70B	3.06	21.09	6.46	19.28	21.16	4.25	437	760
Qwen-2.5-32B	2.57	18.97	5.41	17.36	21.62	3.02	435	746
QwQ-32B	2.10	17.25	4.04	15.74	19.17	3.92	473	815
Qwen-2.5-14B	2.91	19.75	5.75	18.04	21.60	3.22	425	824
Llama-3.1-8B	2.86	21.76	6.64	19.85	18.35	4.13	479	753
Qwen-2.5-7B	2.18	17.89	4.97	16.57	17.15	3.77	547	847
Diff (Multi vs. Single)								
Gemini-2.5-Pro	-8.6%	-0.7%	-7.4%	-1.0%	-6.6%	+42.6%	+3.6%	-12.7%
GPT-4o	-24.1%	-11.1%	-17.6%	-10.7%	-4.0%	+9.6%	+12.4%	+9.7%
GPT-4o-mini	-30.3%	-14.2%	-18.8%	-13.3%	-4.9%	+19.5%	+35.4%	+42.7%
DeepSeek-R1	-17.7%	-9.3%	-17.9%	-9.1%	-8.7%	+5.2%	+4.0%	-4.2%
DeepSeek-V3	-39.3%	-21.4%	-35.1%	-20.6%	-18.6%	+5.9%	+29.4%	+20.0%
Qwen-2.5-72B	-38.0%	-17.5%	-22.5%	-16.7%	-15.7%	+13.6%	+35.2%	+9.6%
Llama-3.3-70B	-27.1%	-9.1%	-14.4%	-8.3%	-11.9%	+21.8%	+34.9%	+15.5%
Qwen-2.5-32B	-25.9%	-13.1%	-12.9%	-11.7%	-3.9%	+17.6%	+18.5%	+8.9%
QwQ-32B	-2.8%	-1.0%	-7.9%	-2.1%	-8.5%	+43.7%	-10.9%	-11.3%
Qwen-2.5-14B	-22.1%	-12.0%	-10.5%	-10.9%	-4.6%	-2.7%	+44.1%	+60.6%
Llama-3.1-8B	-23.1%	-7.7%	-14.2%	-6.5%	+1.8%	+2.8%	+18.3%	+27.8%
Qwen-2.5-7B	-32.7%	-16.1%	-18.2%	-14.4%	-12.8%	+5.6%	+49.5%	+43.8%

This independence shows that the shared numerator $T(a_j)$ is a potential confounding variable but does not create a deterministic relationship. The observed strong positive correlation between D_f and D_h is therefore an empirical finding about models’ tendency towards uniform verbosity, not a mathematical artifact.

Effect of Smoothing Our smoothing procedure for zero-denominator cases (e.g., when $|\mathcal{F}_j^+| = 0$) replaces the undefined value with a dataset-level maximum. This imputes a constant for the metric on that specific instance, which does not establish a functional link between metrics. In summary, any observed systematic correlation between (S_f, S_h) or (D_f, D_h) should be interpreted as an empirical pattern reflecting inherent trade-offs in model behavior, not as a mechanical coupling arising from the metric design.

H.4 SIGNIFICANCE IN MAIN EXPERIMENT

To formally test the directional changes observed in the multi-turn setting (Section 4.2), we conduct a series of one-sided Wilcoxon signed-rank tests across all evaluation metrics. For each metric, we pre-specify an expected direction that reflects the qualitative trends discussed in the main text: a degradation in factuality (S_f), hallucination (S_h), and efficiency for correct facts (D_f), and a potential *improvement* in the sparsity of hallucinated facts (D_h). Concretely, the null hypothesis (H_0)

1458 Table 14: Overall results of the Wilcoxon signed-rank tests for Figure 4. Here, “Correct” means that
 1459 the observed difference between Multi-turn and Single-turn is aligned with the pre-defined expected
 1460 direction: Multi-turn < Single-turn for S_f (degradation in factuality) and Multi-turn > Single-turn
 1461 for S_h and D_f (degradation in hallucination and efficiency for correct facts) as well as for D_h (an
 1462 improvement, i.e., larger token cost per hallucinated fact). “Significant” means one-sided $p < 0.05$.
 1463 Most models move in the expected direction and are significant on S_f , D_f , and D_h , whereas for S_h
 1464 the direction is usually correct but the significance is weaker, mainly because S_h values are close to
 1465 0 for many models under both settings.

Metric	Correct & significant	Correct & not significant	Opposite & significant	Opposite & not significant
S_f	10/12	1/12	0/12	1/12
S_h	3/12	8/12	0/12	1/12
D_f	10/12	1/12	0/12	1/12
D_h	9/12	0/12	0/12	3/12

1472 Table 15: Wilcoxon signed-rank test results for S_f (one-sided). The expected direction is Multi-
 1473 turn < Single-turn. The column “Aligned with expectation?” indicates whether the mean difference
 1474 between Multi-turn and Single-turn follows this expected direction. The “Significance” column uses
 1475 *, ** and *** to denote one-sided $p < 0.05$, $p < 0.01$ and $p < 0.001$, respectively.

Model	Multi-turn mean	Single-turn mean	Diff (M-S)	Aligned with expectation?	p-value (one-sided)	Significance
DeepSeek-V3	0.19	0.24	-0.05	Yes	0.00	***
Qwen-2.5-72B	0.20	0.24	-0.04	Yes	0.00	***
Llama-3.3-70B	0.21	0.24	-0.03	Yes	0.00	***
Qwen-2.5-7B	0.17	0.20	-0.02	Yes	0.00	***
DeepSeek-R1	0.19	0.22	-0.02	Yes	0.00	***
QwQ-32B	0.19	0.21	-0.02	Yes	0.00	**
GPT-4o-mini	0.26	0.27	-0.01	Yes	0.02	*
Qwen-2.5-14B	0.22	0.23	-0.01	Yes	0.03	*
Gemini-2.5-Pro	0.22	0.23	-0.01	Yes	0.03	*
GPT-4o	0.28	0.29	-0.01	Yes	0.04	*
Qwen-2.5-32B	0.22	0.23	-0.01	Yes	0.06	
Llama-3.1-8B	0.19	0.18	0.01	No	0.89	

1486
 1487 states that there is no systematic difference between single-turn and multi-turn interactions, whereas
 1488 the alternative hypothesis (H_1) specifies that the median paired difference follows a given direction:
 1489 Multi-turn < Single-turn for S_f , and Multi-turn > Single-turn for S_h , D_f , and D_h . From an ef-
 1490 ficiency perspective, larger D_f means that the model spends more tokens per *correct* fact (worse
 1491 efficiency), whereas larger D_h means that each *hallucinated* fact is more token-expensive and thus
 1492 sparser per token, which is preferable from a safety/robustness standpoint. Table 14 summarizes
 1493 the alignment of each model with these metric-specific hypotheses. At a high level, degradation in
 1494 S_f and D_f is statistically significant for almost all models; for hallucination, we observe a consis-
 1495 tent tendency for S_h to increase and for D_h to increase as well (hallucinations becoming sparser),
 1496 although the strength of statistical evidence differs across metrics, as detailed below.

1497
 1498 **Factuality (S_f)** The detailed results in Table 15 confirm a statistically significant decline in fac-
 1499 tual coverage. Among the 12 models, 11 show lower S_f in the multi-turn setting, and this drop
 1500 is significant at one-sided $p < 0.05$ for 10 of them. Models such as DeepSeek-V3, Qwen-2.5-
 1501 72B, and Llama-3.3-70B exhibit highly significant declines ($p < 0.001$), reinforcing the conclusion
 1502 that maintaining comprehensive factual recall becomes increasingly difficult as conversation depth
 1503 grows.

1504
 1505 **Hallucination (S_h): Zero-Inflation and Directional Consistency** The analysis of S_h (Table 16)
 1506 requires a more nuanced interpretation. Eleven out of twelve models exhibit changes that are aligned
 1507 with the expected degradation direction (Multi-turn > Single-turn) or remain unchanged, but only
 1508 three models reach one-sided $p < 0.05$. This pattern is primarily driven by the sparsity and zero-
 1509 inflation of hallucination events: many instances satisfy $S_h = 0$, so the majority of paired differ-
 1510 ences satisfy $S_h^{\text{multi}} - S_h^{\text{single}} = 0$. In non-parametric rank tests like Wilcoxon, such ties substantially
 1511 reduce the effective sample size and thus statistical power. Importantly, among the non-tied pairs

1512 Table 16: Wilcoxon signed-rank test results for S_h (one-sided). The expected direction is Multi-
 1513 turn > Single-turn. The column “Aligned with expectation?” indicates whether the mean difference
 1514 between Multi-turn and Single-turn follows this expected direction. The “Significance” column uses
 1515 *, ** and *** to denote one-sided $p < 0.05$, $p < 0.01$ and $p < 0.001$, respectively.

Model	Multi-turn mean	Single-turn mean	Diff (M-S)	Aligned with expectation?	p-value (one-sided)	Significance
Gemini-2.5-Pro	0.04	0.03	0.01	Yes	0.00	***
QwQ-32B	0.04	0.03	0.01	Yes	0.00	**
Llama-3.3-70B	0.04	0.04	0.01	Yes	0.02	*
GPT-4o-mini	0.03	0.02	0.00	Yes	0.09	
Qwen-2.5-32B	0.03	0.03	0.00	Yes	0.11	
DeepSeek-R1	0.04	0.04	0.00	Yes	0.11	
Qwen-2.5-72B	0.03	0.02	0.00	Yes	0.25	
DeepSeek-V3	0.03	0.03	0.00	Yes	0.26	
GPT-4o	0.02	0.02	0.00	Yes	0.27	
Qwen-2.5-7B	0.04	0.03	0.00	Yes	0.39	
Llama-3.1-8B	0.04	0.04	0.00	Yes	0.41	
Qwen-2.5-14B	0.03	0.03	-0.00	No	0.75	

1516
 1517
 1518 Table 17: Wilcoxon signed-rank test results for D_f (one-sided). The expected direction is Multi-turn
 1519 > Single-turn, corresponding to a degradation in efficiency for correct facts (more tokens per correct
 1520 fact). The column “Aligned with expectation?” indicates whether the mean difference between
 1521 Multi-turn and Single-turn follows this expected direction. The “Significance” column uses *, **
 1522 and *** to denote one-sided $p < 0.05$, $p < 0.01$ and $p < 0.001$, respectively.

Model	Multi-turn mean	Single-turn mean	Diff (M-S)	Aligned with expectation?	p-value (one-sided)	Significance
Qwen-2.5-7B	545.91	366.78	179.13	Yes	0.00	***
Qwen-2.5-72B	486.41	357.49	128.92	Yes	0.00	***
GPT-4o-mini	343.10	255.10	88.00	Yes	0.00	***
Qwen-2.5-14B	426.54	295.47	131.07	Yes	0.00	***
DeepSeek-V3	443.71	340.33	103.38	Yes	0.00	***
Llama-3.3-70B	439.03	323.99	115.04	Yes	0.00	***
Qwen-2.5-32B	433.50	365.82	67.68	Yes	0.00	***
Llama-3.1-8B	475.33	403.98	71.35	Yes	0.00	***
GPT-4o	255.83	226.63	29.20	Yes	0.00	***
DeepSeek-R1	628.00	601.90	26.10	Yes	0.00	**
Gemini-2.5-Pro	694.77	674.93	19.84	Yes	1.00	
QwQ-32B	468.97	527.21	-58.23	No	1.00	

1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 where a change does occur, the shift is consistently towards higher hallucination. Consequently, the
 large one-sided p -values mainly reflect a floor effect caused by rare hallucination events, rather than
 evidence against a degradation trend.

Information Delivery Efficiency (D_f) and Hallucination Sparsity (D_h) The clearest degradation
 appears in D_f (Table 17): 11 of the 12 models require more tokens per correct fact in the
 multi-turn setting, and this increase is statistically significant for 10 models ($p < 0.05$). This con-
 firms that, as conversations become multi-turn, models systematically become less efficient in how
 they allocate tokens to correct factual content. In contrast, the pattern for D_h (Table 18) reflects an
 improvement in hallucination sparsity. For 9 models, the token cost per contradicted fact is signifi-
 cantly larger in the multi-turn setting (one-sided $p < 0.05$), meaning that hallucinated facts become
 more token-expensive and thus sparser per token. In other words, when hallucinations do occur,
 they tend to be more diluted within longer responses.

H.5 VALIDATION OF THE MAXIMUM GENERATION LENGTH

Our evaluation includes models specifically designed for long Chain-of-Thought (CoT) reasoning,
 such as QwQ-32B, Gemini-2.5-pro and DeepSeek-R1. For these models, a methodological concern
 is that their inherently verbose reasoning might consume a disproportionate share of the 1024-token
 generation limit, leaving insufficient space for the final answer. To investigate this, we conduct a
 validation experiment in both single-turn and multi-turn settings.

1566 Table 18: Wilcoxon signed-rank test results for D_h (one-sided). The expected direction is Multi-
 1567 turn > Single-turn, which corresponds to a larger token cost per contradicted fact and hence sparser
 1568 hallucinations per token (an improvement from a robustness perspective). The column “Aligned with
 1569 expectation?” indicates whether the mean difference between Multi-turn and Single-turn follows this
 1570 expected direction. The “Significance” column uses *, ** and *** to denote one-sided $p < 0.05$,
 1571 $p < 0.01$ and $p < 0.001$, respectively.

1572	Model	Multi-turn mean	Single-turn mean	Diff (M-S)	Aligned with expectation?	p-value (one-sided)	Significance
1573	Qwen-2.5-14B	825.72	512.69	313.03	Yes	0.00	***
1574	GPT-4o-mini	783.58	545.69	237.89	Yes	0.00	***
1575	Qwen-2.5-7B	846.97	590.12	256.85	Yes	0.00	***
1576	DeepSeek-V3	880.05	738.83	141.22	Yes	0.00	***
1577	Llama-3.1-8B	751.98	588.04	163.93	Yes	0.00	***
1578	GPT-4o	553.90	506.10	47.80	Yes	0.00	***
1579	Qwen-2.5-72B	902.65	822.77	79.88	Yes	0.00	***
1580	Qwen-2.5-32B	744.19	683.73	60.46	Yes	0.00	***
1581	Llama-3.3-70B	758.66	655.91	102.75	Yes	0.00	***
1582	DeepSeek-R1	1176.21	1231.31	-55.10	No	1.00	
1583	Gemini-2.5-Pro	1414.47	1620.22	-205.75	No	1.00	
1584	QwQ-32B	815.24	918.85	-103.61	No	1.00	

1585 We compare the standard 1024-token
 1586 limit QwQ-32B against QwQ-32B-
 1587 2048, a variant with an 2048-token
 1588 limit. The results, presented in Ta-
 1589 ble 19, demonstrate a consistent trend
 1590 across both settings: the extended
 1591 generation capacity fails to provide a
 1592 clear advantage. In both single-turn
 1593 and multi-turn scenarios, increasing
 1594 the token limit led to a degradation in the S_f and offered no substantive improvement in S_h . Fur-
 1595 thermore, the token efficiency per correct fact (D_f) consistently worsened with the larger budget.
 1596 This consistent pattern strongly suggests that the model’s performance is not primarily constrained
 1597 by its reasoning crowding out the answer space. The analysis thus validates our use of 1024 tokens
 1598 as a sufficient and robust setting for the main experiments, regardless of the conversational context.

1600 H.6 COMPARISON TO TRADITIONAL N-GRAM-BASED METRICS

1601 To provide further context for our proposed metrics, we analyze the relationship between S_f and two
 1602 prevalent n-gram-based metrics: ROUGE-L and BLEU-4. The scatter plots in Figure 15 map the
 1603 performance of evaluated models across these metrics. The numerical results are listed in Table 13
 1604 The analysis reveals a positive correlation between S_f and both ROUGE-L and BLEU-4. This
 1605 alignment is expected, as higher factual accuracy often coincides with greater lexical overlap with
 1606 reference texts. This finding suggests that our metric is directionally consistent with established
 1607 evaluation paradigms.

1608 A closer inspection of the plots, however, reveals a systematic deviation. We find that a cluster of
 1609 models, particularly those optimized for CoT reasoning, are consistently undervalued by ROUGE-L
 1610 and BLEU-4 relative to their S_f scores. Notably, this occurs even after programmatically removing
 1611 the CoT reasoning steps, with all metrics assessing only the final answer. We hypothesize this
 1612 discrepancy stems not from the reasoning text itself, but from subtle stylistic artifacts in the final
 1613 synthesized answer. It is plausible that the CoT generation process implicitly influences the model’s
 1614 final output style, leading to differences in sentence structure or lexical choice compared to the
 1615 reference. While these stylistic variations may not compromise the underlying facts which our metric
 1616 is designed to capture by operating on decomposed statements, they can penalize scores for metrics
 1617 sensitive to surface-level matching. This observation highlights the value of evaluation frameworks
 1618 that can disentangle factual correctness from surface-level stylistic choices.

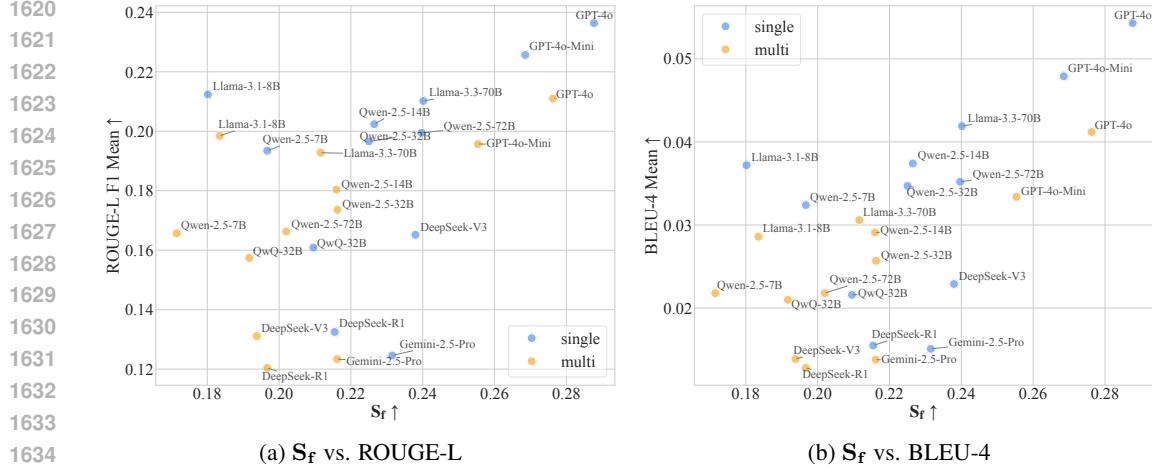


Figure 15: Correlation between S_f and traditional lexical metrics. While a positive trend is observed, models optimized for CoT reasoning tend to be undervalued by n-gram metrics, potentially due to subtle stylistic differences in their final answers.

H.7 INTERPRETABILITY ANALYSIS

To analyze how models use dialogue context in the final response, we attribute token-level importance by coupling attention weights with gradients computed only with respect to the last-turn answer. For a dialogue d_k , let the input token sequence for the final turn be $X^{(k)} = (x_1, \dots, x_L)$, obtained by concatenating the history H_k , the final-turn question $q_{N_k}^{(k)}$, and the model's last-turn answer $a_{N_k}^{(k)}$. We denote the index sets of context, question, and answer tokens by \mathcal{T}_{ctx} , \mathcal{T}_q , and \mathcal{T}_{ans} , respectively, forming a partition of $\{1, \dots, L\}$.

Let θ be model parameters. We define the target for attribution as the (token-averaged) log-likelihood of the last-turn answer:

$$s^{(k)} = \sum_{t \in \mathcal{T}_{\text{ans}}} \log p_{\theta}(x_t \mid x_{<t}, H_k, q_{N_k}^{(k)}). \quad (5)$$

All gradients below are taken with respect to this $s^{(k)}$, so they reflect how changing attention would affect the probability of the *last-turn answer only*.

For each transformer layer $l \in \{1, \dots, L_\ell\}$ and head $h \in \{1, \dots, H\}$, let $A^{(l,h)} \in \mathbb{R}^{L \times L}$ be the row-stochastic attention matrix from the final forward pass (rows: query positions; columns: key positions). We compute its gradient

$$G^{(l,h)} = \frac{\partial s^{(k)}}{\partial A^{(l,h)}} \in \mathbb{R}^{L \times L}. \quad (6)$$

We then attribute a *source-side* importance to each token j by aggregating, over layers, heads, and answer query positions $t \in \mathcal{T}_{\text{ans}}$, the signed gradient-weighted attention received by j :

$$I_j = \frac{1}{Z} \sum_{l=1}^{L_\ell} \sum_{h=1}^H \sum_{t \in \mathcal{T}_{\text{ans}}} A_{tj}^{(l,h)} \text{sign}(G_{tj}^{(l,h)}), \quad Z = L_\ell \cdot H \cdot |\mathcal{T}_{\text{ans}}|. \quad (7)$$

A positive I_j indicates that attending to token j increases the likelihood of the last-turn answer, while a negative value indicates an inhibitory effect. (As a magnitude-sensitive variant, one may replace $\text{sign}(\cdot)$ with $\tanh(\alpha|G_{tj}^{(l,h)}|)$ or simply $|G_{tj}^{(l,h)}|$; we use the signed version in Eq. equation 7.)

In our final reporting, we aggregate only over the answer tokens that realize the useful atomic statement in the last-turn answer. From $a_{N_k}^{(k)}$ we extract a set of useful atomic statements \mathcal{S}_k^+ and use Qwen2.5-7B-Instruct to align each $s \in \mathcal{S}_k^+$ back to its minimal supporting span(s) in $a_{N_k}^{(k)}$, yielding

$$\mathcal{T}_{\text{ans}}^+ \subseteq \mathcal{T}_{\text{ans}}. \quad (8)$$

Figure 16: Visualization of contextual token importance. Green indicates tokens that positively contribute to the model’s response, while red indicates tokens with a negative influence.

All gradients are still taken with respect to $s^{(k)}$ (Eq. 5), but the aggregation over query positions t is restricted to $t \in \mathcal{T}_{\text{ans}}^+$. We define the useful-span source-side importance as

$$I_j^{(+)} = \frac{1}{Z^{(+)}} \sum_{l=1}^{L_\ell} \sum_{h=1}^H \sum_{t \in \mathcal{T}_{\text{ans}}^+} A_{tj}^{(l,h)} \text{sign}(G_{tj}^{(l,h)}), \quad (9)$$

with the normalization

$$Z^{(+)} = L_\ell \cdot H \cdot |\mathcal{T}_{\text{ens}}^+|. \quad (10)$$

We quantify the net contribution of the dialogue context to producing the useful statement(s) via

$$\bar{I}_{\text{ctx}}^{(+)} = \frac{1}{|\mathcal{T}_{\text{ctx}}|} \sum_{j \in \mathcal{T}_{\text{ctx}}} I_j^{(+)}, \quad (11)$$

and analogously define $\bar{I}_q^{(+)}$ and $\bar{I}_{\text{ans}}^{(+)}$ if needed. Empirically, under this useful-span restriction, the contextual averages for **Qwen2.5-7B-Instruct** and **LLaMA3.1-8B-Instruct** are -0.0025 and -0.0029 , indicating that context tokens exert a net negative (noise-like) influence on the helpful parts of the final answer. See Figure 16 for a visualization.

H.8 ROBUSTNESS TO TOPIC DRIFT

While KNOWMT-BENCH primarily targets domain-focused, progressive expert consultations, real-world interactions sometimes involve spontaneous topic switching or "drift." To probe the impact

of such disjointed contexts and ensure our evaluation does not overestimate model robustness, we conducted a controlled experiment simulating topic drift.

Experimental Setup. We prepended a logically unrelated question (randomly sampled from a disjoint domain) before each question sequence in our standard evaluation set. This setup introduces irrelevant contextual noise, forcing the model to discern the current intent amidst a drifted history. We evaluate Qwen-2.5-7B under this setting compared to the original baseline.

Results and Analysis. The results are presented in Table 20. First, in the single-turn setting, performance remains essentially invariant, suggesting that unrelated prefixes have a negligible impact on the model’s immediate instruction following. Second, in the multi-turn scenario, we observe a nuanced trade-off: topic drift leads to a simultaneous increase in both Factual Score (S_f : 17.15% \rightarrow 20.51%) and Hallucination Score (S_h : 3.77% \rightarrow 4.88%). This indicates that irrelevant context disrupts the model’s generation pattern, potentially breaking the “conservative” constraint observed in standard multi-turn dialogues, thereby yielding more facts but at the cost of higher hallucination risk.

Crucially, these findings align with our core analysis in Section 4.3, confirming that the detrimental impact of *relevant misinformation* outweighs that of irrelevant noise or errors. Consequently, the exclusion of spontaneous topic drift does not substantially compromise the validity of our evaluation in knowledge-intensive scenarios, where robustness against relevant hallucinations is the primary concern.

Table 20: Impact of Topic Drift on Qwen-2.5-7B. We compare the standard setting against a “Topic Drift” setting where an unrelated question is prepended to the context.

Setting	Mode	S_f (%)	S_h (%)	D_f	D_h
Original	Single-turn	19.67	3.57	366	589
Topic Drift	Single-turn	19.65	3.49	367	590
Original	Multi-turn	17.15	3.77	547	847
Topic Drift	Multi-turn	20.51	4.88	537	833

I TOPIC TAXONOMY

We manually classified these topics into three categories: *institutions and products, policies and events*, and *concepts*. Below we formalize the category descriptions (kept from the original, translated to English) and provide filled examples in a unified **T/Q/A/R** format.

I.1 ORGANIZATIONS & THEIR PRODUCTS/TOOLS

Category Descriptions This category covers various types of organizations and their products or services. For *insurance institutions*, the focus is on product details such as claim standards, premium/payment flows, and required documents, as well as the scope of the institution from official “About us” pages. For *banks*, examples include the materials required to handle services, the types of deposits, deposit safety in case of failure, and application conditions for specific credit cards. For *government departments*, the emphasis lies in service-handling procedures and official responsibilities. *Financial institutions (non-bank)* are described through their products and company details, while *other companies* are captured by their main businesses and notable events.

FILLED EXAMPLES ORGANIZATIONS & THEIR PRODUCTS/TOOLS

Insurance Institutions

T: AXA

Q: What are the main businesses of AXA?

A: AXA’s main businesses include property-casualty insurance business, life & savings business

1782 and asset management business.

1783 **R:** <https://www.axa.com/en/about-us/what-we-do>

1784

1785 **T:** Allstate

1786 **Q:** What information do I need to provide to purchase auto insurance with Allstate?

1787 **A:** When purchasing auto insurance with Allstate, you will need to provide the following information: 1. Vehicle Information: the make, model, and vehicle identification number for each car you want to insure. 2. Covered Drivers Information: the names of all drivers covered by the policy. 3. Current Insurance Information: your existing coverage and limits. 4. Personal Information: dates of birth, Social Security numbers, and driver's license numbers for each family member to be included in the policy. 5. Driving History: an overview of any past tickets or auto accidents incurred by family members you want to cover on the policy. 6. Background Information: whether you own or rent your home, and some details about your assets and income. 7. Coverage Types and Limits: the types of coverage you want.

1795 **R:** <https://www.allstate.com/resources/information-needed-for-insurance-quote>

1796

1797 **Banks**

1798 **T:** Bank of America

1799 **Q:** What are the cash rewards like on this credit card, Bank of America Customized Cash Rewards?

1800 **A:** The Bank of America Customized Cash Rewards credit card offers cashback as follows: 1. 1% base cashback on all eligible net purchases, meaning you earn \$0.01 for every \$1 spent. 2. 2% cashback on eligible purchases at grocery stores, wholesale clubs, supermarkets, meat and seafood markets, candy, nut, and confectionery stores, dairy stores, and bakeries, which includes the 1% base cashback plus an additional 1% bonus, but excludes supermarkets and small stores that sell groceries like drugstores. 3. 3% cashback on purchases in one chosen "Choice" category, which includes gas and EV charging stations (default), online shopping, dining, travel, drug stores, or home improvement/furnishings, with the 3% consisting of the 1% base cashback plus an additional 2% bonus. 4. Transactions such as balance transfers, cash advances, fees, interest charges, fraudulent transactions, and certain other fees do not earn cashback.

1809 **R:** https://www.bankofamerica.com/credit-cards/terms-and-conditions/?campaignid=4071205&productoffercode=UN&locale=en_US

1810

1811 **T:** NatWest Bank

1812 **Q:** What types of personal savings accounts are available at NatWest Bank?

1813 **A:** NatWest Bank's Individual Savings Accounts include the Digital Regular Saver, Digital Regular Saver, Fixed Rate ISA, Fixed Term Savings, Flexible Saver, Stocks & Shares ISA and First Saver.

1815 **R:** <https://www.natwest.com/savings.html?intcam=HP-TTB-DEF-Default#productFilter>

1816

1817 **T:** Silicon Valley Bank

1818 **Q:** Is my deposit safe if Silicon Valley Bank fails?

1819 **A:** If your deposits are with Silicon Valley Bank and meet the requirements of the Federal Deposit Insurance Corporation (FDIC), your deposits are safe. The FDIC provides insurance coverage of up to \$250,000 per depositor, including principal and interest. If your deposits exceed this amount, additional coverage may apply based on different account ownership categories. You can use the FDIC's Electronic Deposit Insurance Estimator (EDIE) to verify if your deposits are fully covered. Please note, FDIC insurance does not cover investments such as stocks, bonds, or mutual funds.

1825 **R:** <https://www.svb.com/fdic/>

1826

1827 **T:** Wells Fargo

1828 **Q:** When I can't earn Rewards Points Bonus on my Wells Fargo travel rewards credit card

1829 **A:** You will not earn Rewards Points on the following types of transactions with your travel rewards credit card: 1. Cash Advances and Equivalents: This includes ATM transactions, cash advances, money orders, prepaid gift cards, traveler's checks, wire transfers, and balance transfers. 2. Disputed or Illegal Transactions: Any purchases that are disputed, illegal, or violate the terms of the Credit Card Account agreement. 3. Fees and Interest: Any fees or interest charges that post to your Credit Card Account, such as annual fees, monthly fees, late fees, and returned payment fees. 4. Gambling Transactions: This includes any gambling-related transactions, such as online bets or wagers, casino gaming chips, lottery tickets, and off-track wagers.

1835 **R:** <https://www.wellsfargo.com/credit-cards/autograph-journey-visa/terms/>

1836 **Government Departments**
 1837 **T: IRS**
 1838 **Q: What is the mission of the IRS?**
 1839 **A: The IRS mission is to provide America's taxpayers top quality service by helping them under-**
 1840 **stand and meet their tax responsibilities and to enforce the law with integrity and fairness to all.**
 1841 **R: <https://www.irs.gov/about-irs>**

1842
 1843 **T: DWP**
 1844 **Q: I am dissatisfied with my service at DWP, how do I make a complaint?**
 1845 **A: 1. If you'd like to complain about any aspect of the service you've received, let the office you have**
 1846 **been dealing with know as soon as possible. You can contact them by phone, in person or in writing.**
 1847 **Universal Credit claimants can also use their journal. 2. You need to provide the necessary details,**
 1848 **including your National Insurance number (unless you are an employer), your full name, address**
 1849 **and contact details, the benefit you are complaining about, what happened, when it happened, and**
 1850 **how it affected you, and what you want to happen to resolve the issue. 3. You can use the contact**
 1851 **details on any recent letters we've sent you or use the contact information below. If you live in**
 1852 **Northern Ireland, visit the Department for Communities website for more information.**
 1853 **R: <https://www.gov.uk/government/organisations/department-for-work-pensions/about/complaints-procedure#contact-the-office-you've-been-dealing%20with>**

1854 **Financial Institutions (non-bank)**
 1855 **T: S&P 500**
 1856 **Q: What are the key components of Fidelity's iShares Core S&P 500 ETF?**
 1857 **A: The fund typically invests at least 80% of its assets in the component securities of the S&P 500**
 1858 **index or in investments that have economic characteristics substantially identical to those compo-**
 1859 **nent securities. The remaining 20% of its assets may be invested in certain futures, options, swap**
 1860 **contracts, cash, and cash equivalents.**
 1861 **R: <https://digital.fidelity.com/prgw/digital/research/quote/dashboard/summary?symbol=IVV>**

1862 **Other Companies**
 1863 **T: TMTG**
 1864 **Q: What is the main business of Trump Media & Technology Group Corp.**
 1865 **A: TMTG's main businesses include Truth Social, a social media platform established as a safe**
 1866 **harbor for free expression amid increasingly harsh censorship by Big Tech corporations, as well**
 1867 **as Truth+, a TV streaming platform focusing on family-friendly live TV channels and on-demand**
 1868 **content. TMTG is also launching Truth.Fi, a financial services and FinTech brand incorporating**
 1869 **America First investment vehicles.**
 1870 **R: <https://s3.amazonaws.com/sec.irpass.cc/2660/0001140361-25-004822.html>**

1871 I.2 POLICIES, LAWS, OR EVENTS
 1872
 1873 **Category Description** What is it? What does it include? Key details and clauses to note.
 1874
 1875 FILLED EXAMPLES POLICIES, LAWS, OR EVENTS
 1876
 1877 **T: Bitcoin legal**
 1878 **Q: What was the first country to make Bitcoin legal tender?**
 1879 **A: El Salvador is the first country in the world to make Bitcoin legal tender. On June 9, 2021, El**
 1880 **Salvador's Congress passed the Bitcoin Law, making Bitcoin legal tender alongside the U.S. dollar,**
 1881 **which went into effect on September 7 of the same year.**
 1882 **R: <https://legaljournal.princeton.edu/el-salvadors-bitcoin-law-contemporary-implications-of-forced-tender-legislation/>**

1883
 1884 **T: PPP Loan Forgiveness**
 1885 **Q: How can I qualify for the Full Forgiveness Terms of the First Draw PPP Loans based on the**
 1886 **information provided?**
 1887 **A: To qualify for the Full Forgiveness Terms of the First Draw PPP Loans, the following conditions**
 1888 **must be met: 1. Employee and compensation levels are maintained: During the 8- to 24-week**
 1889 **period following loan disbursement, the business must maintain the same number of employees and**
 compensation levels. 2. Loan proceeds are spent on eligible expenses: The loan funds must be spent

1890 on payroll costs and other eligible expenses, such as rent, interest, and utilities. 3. At least 60% of
 1891 the proceeds are spent on payroll costs: At least 60% of the loan amount must be used for payroll
 1892 costs. By meeting these conditions, the loan may be fully forgiven.

1893 **R:** <https://home.treasury.gov/system/files/136/Top-line-Overview-of-First-Draw-PPP.pdf>

1894

1895 I.3 CONCEPTS

1896

1897 **Category Description**

1898 **Currency**

1899

- Exchange-rate history.
- Anchor/peg history and regimes.

1902 **Other Concepts**

1903

- What (definition)
- Why (motivation, use cases)
- Features (key characteristics)
- Concept explanation (intuition + precise definition)

1909 FILLED EXAMPLES CONCEPTS

1910

T: British pound

1911

Q: What is the anchor of the British pound?

1912

A: The pound's anchor has changed many times throughout history and can be divided into three main stages. The first stage was the gold standard, where the value of the pound was directly linked to gold reserves, ensuring its stability due to gold's intrinsic value. The second stage was the Bretton Woods system, established after World War II, where the pound was pegged to the US dollar, and the dollar itself was pegged to gold. The third stage began with the collapse of the Bretton Woods system, and since then, the value of the pound has been based on the economic strength and creditworthiness of the UK rather than any physical commodity like gold or silver.

1919

R: <https://www.britannica.com/money/money/The-decline-of-gold#ref1089594>,
<https://www.britannica.com/story/how-are-currency-exchange-rates-determined>

1921

T: interest rate

1923

Q: What do the nominal interest rate and real interest rate refer to in the Fisher Effect?

1924

A: In the Fisher Effect, the nominal interest rate refers to the interest rate that does not account for inflation, which is the stated rate provided by financial institutions, reflecting how the amount of deposits or loans grows over time. The real interest rate, on the other hand, is the interest rate that takes inflation into account, indicating how the purchasing power of deposits or loans changes over time. The relationship between the two can be expressed by the Fisher equation, which states that the nominal interest rate is approximately equal to the real interest rate plus the expected inflation rate.

1930

R: <https://www.investopedia.com/terms/f/fishereffect.asp>

1931

1932

1933 J PROMPTS

1934

1935 J.1 BUILD QUESTIONS LIST PROMPTS

1936

1937 Seed Question Expansion Prompt (2-Turn)

1938

1939 Task:

1940 You will be given an original question (Q0).

1941 Please choose an random appropriate template from the 8 predefined types below, and
 1942 extend the original question to two-turn questions (Q1 and Q2), where:

- Q1 is a new question that introduces a different but related aspect of the topic
- Q2 is completely identical to Q0
- Questions can be relatively natural and colloquial

1944
 1945 Q1 and Q2 must seek completely non-overlapping information - they should cover distinct
 1946 aspects of the topic without any duplication.
 1947 Available Template Types:
 1948 1. Existence + Details
 1949 Q1: Does X have Y?
 1950 Q2: Specific details about Y within X.
 1951 2. Definition/Concept + Details
 1952 Q1: What is X or Y?
 1953 Q2: A follow-up question about X or Y.
 1954 3. Introductory Question + Details
 1955 Q1: A background question that introduces X.(not include X)
 1956 Q2: A detailed question about X.
 1957 4. Comparison + Focus on One
 1958 Q1: A comparison involving X.
 1959 Q2: A deeper question about X specifically.
 1960 5. Different Angles on the Same Topic
 1961 Q1: One common question about X.
 1962 Q2: Another question about X from a different perspective.
 1963 6. Cause + Details
 1964 Q1: Why did X happen?
 1965 Q2: A detailed question about X.
 1966 7. Evolution + Current State
 1967 Q1: How did X develop or evolve?
 1968 Q2: What is the current status of X?
 1969 8. Conditional Trigger + Consequence
 1970 Q1: What happens if X occurs?
 1971 Q2: In that case, how would X affect Y?
 1972 Examples:
 1973 Input:
 1974 Q0: What are the main businesses of AXA?
 1975 Action:
 1976 Choose template type: 2. Definition/Concept + Details
 1977 Output:
 1978 Q1: What kind of company is AXA?
 1979 Q2: What are the main businesses of AXA?
 1980 ---
 1981 Input:
 1982 Q0: How did the 2008 financial crisis affect AIG?
 1983 Action:
 1984 Choose template type: 6. Cause + Details
 1985 Output:
 1986 Q1: Why did the 2008 financial crisis happen?
 1987 Q2: How did the 2008 financial crisis affect AIG?
 1988 ---
 1989 Input:
 1990 Q0: How would a recession impact small businesses?
 1991 Action:
 1992 Choose template type: 8. Conditional Trigger + Consequence
 1993 Output:
 1994 Q1: What happens to the economy during a recession?
 1995 Q2: How would a recession impact small businesses?
 1996 ---
 1997 Input:
 1998 Q0: What is the mission of the IRS?

```

1998
1999 Action:
2000 Choose template type: 3. Introductory Question + Details
2001
2002 Output:
2003 Q1: What is the U.S. federal government's tax agency?
2004 Q2: What is the mission of the IRS?
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

```

Action:
 Choose template type: 3. Introductory Question + Details

Output:
 Q1: What is the U.S. federal government's tax agency?
 Q2: What is the mission of the IRS?

Input:
 Q0: What information do I need to provide to purchase auto insurance with Allstate?

Action:
 Choose template type: 1. Existence + Details

Output:
 Q1: Does Allstate have auto insurance?
 Q2: What information do I need to provide to purchase auto insurance with Allstate?

Input:
 Q0: What are the key components of Fidelity's iShares Core S&P 500 ETF?

Action:
 Choose template type: 4. Comparison + Focus on One

Output:
 Q1: Of Fidelity's ETF products, is the iShares Core S&P 500 ETF less risky or the ETP Fidelity Wise Origin Bitcoin Fund less risky.
 Q2: What are the key components of Fidelity's iShares Core S&P 500 ETF?

Input:
 Q0: What is the current status of ChatGPT technology?

Action:
 Choose template type: 7. Evolution + Current State

Output:
 Q1: How has ChatGPT evolved since its initial release?
 Q2: What is the current status of ChatGPT technology?

Input:
 Q0: How did the 2008 financial crisis affect AIG?

Action:
 Choose template type: 6. Cause + Specific Impact

Incorrect Output:
 Q1: Why did the 2008 financial crisis happen?
 Q2: How did the 2008 financial crisis affect AIG?

Now, based on the input Q0, choose the most suitable template and generate corresponding Q1 and Q2 that seek completely non-overlapping information, where Q2 is completely identical to Q0.

Input:
 Q0: {{Q0_PLACEHOLDER}}

Seed Question Expansion Prompt (3-Turn)

Task:
 You will be given an original question (Q0).
 Please choose a random appropriate template from the 10 predefined types below, and extend the original question into a three-turn sequence (Q1, Q2, Q3), where:
 - Q1 is a new question that introduces a different but related aspect of the topic

2052

2053 - Q2 is a follow-up that brings the conversation closer to the original question

2054 - Q3 is completely identical to Q0

2055 - Questions can be relatively natural and colloquial

2056 - Q1, Q2, and Q3 must seek completely non-overlapping information they should cover distinct aspects of the topic without duplication

2057 Available Template Types:

2058 1. Lead-in Question + Lead-in Question + Specific Detail

2059 Q1: A question that leads to Y

2060 Q2: A question that leads from Y to X

2061 Q3: A detailed question about X

2062 2. Evolution + Current State + Specific Detail

2063 Q1: How did X develop or evolve?

2064 Q2: What is the current status or key traits of X?

2065 Q3: A specific question about X

2066 3. Different Angles on the Same Topic

2067 Q1: One question about X

2068 Q2: Another question about X

2069 Q3: A third question about X

2070 4. Definition + Existence + Specific Detail

2071 Q1: What is X?

2072 Q2: Does X have Y?

2073 Q3: Specific details about Y in X

2074 5. Lead-in + Existence + Specific Detail

2075 Q1: A question that introduces X

2076 Q2: Does X have Y?

2077 Q3: Specific details about Y in X

2078 6. Definition + Lead-in + Specific Detail

2079 Q1: A question about Y

2080 Q2: A related question that introduces X

2081 Q3: Specific details about X

2082 7. Definition + Cause + Specific Detail

2083 Q1: What is X?

2084 Q2: Why did X happen?

2085 Q3: A specific consequence or detail about X

2086 8. Different Angles + Existence + Specific Detail

2087 Q1: A general question about X

2088 Q2: Does X have a specific attribute Y?

2089 Q3: Detailed information about Y in X

2090 9. Lead-in + Comparison + Specific Detail

2091 Q1: A question that introduces X

2092 Q2: Comparison between X and Y

2093 Q3: Specific detail about X

2094 Examples:

2095 Input:

2096 Q0: What is the mission of the IRS?

2097 Action:

2098 Choose template type: 1. Lead-in + Lead-in + Specific Detail

2099 Output:

2100 Q1: How does the U.S. government fund its public services and programs?

2101 Q2: What is the U.S. federal government's tax agency?

2102 Q3: What is the mission of the IRS?

2103 ---

2104 Input:

2105 Q0: What does ChatGPT charge?

2106 Action:

2107 Choose template type: 2. Evolution + Current State + Specific Detail

```

2106
2107
2108     Output:
2109     Q1: How has ChatGPT evolved since its initial release?
2110     Q2: What is the current status of ChatGPT technology?
2111     Q3: What does ChatGPT charge?
2112
2113     ---
2114     Input:
2115     Q0: Will taking allopurinol affect my fertility?
2116
2117     Action:
2118     Choose template type: 3. Different Angles on the Same Topic
2119
2120     Output:
2121     Q1: What is allopurinol used for?
2122     Q2: Will taking allopurinol help me prevent gout?
2123     Q3: Will taking allopurinol affect my fertility?
2124
2125     ---
2126     Input:
2127     Q0: What information do I need to provide to purchase auto insurance with Allstate?
2128
2129     Action:
2130     Choose template type: 4. Definition + Existence + Specific Detail
2131
2132     Output:
2133     Q1: Can you introduce me to Allstate?
2134     Q2: Does Allstate have auto insurance?
2135     Q3: What information do I need to provide to purchase auto insurance with Allstate?
2136
2137     ---
2138     Input:
2139     Q0: What information do I need to provide to open a bank account at Chase?
2140
2141     Action:
2142     Choose template type: 5. Lead-in + Existence + Specific Detail
2143
2144     Output:
2145     Q1: What is the largest commercial bank in the United States?
2146     Q2: Does Chase offer personal bank accounts?
2147     Q3: What information do I need to provide to open a bank account at Chase?
2148
2149     ---
2150     Input:
2151     Q0: What are the main responsibilities of the World Health Organization (WHO)?
2152
2153     Action:
2154     Choose template type: 6. Definition + Lead-in + Specific Detail
2155
2156     Output:
2157     Q1: What is the United Nations?
2158     Q2: What are the branches of the United Nations?
2159     Q3: What are the main responsibilities of the World Health Organization (WHO)?
2160
2161     ---
2162     Input:
2163     Q0: How does climate change affect the insurance industry?
2164
2165     Action:
2166     Choose template type: 7. Definition + Cause + Specific Detail
2167
2168     Output:
2169     Q1: What is climate change?
2170     Q2: Why is climate change becoming a global concern?
2171     Q3: How does climate change affect the insurance industry?
2172
2173     ---
2174     Input:
2175     Q0: What privacy features does WhatsApp offer?
2176
2177     Action:
2178     Choose template type: 8. Different Angles + Existence + Specific Detail
2179

```

```

2160
2161
2162     Output:
2163     Q1: Can I use WhatsApp for international calls?
2164     Q2: Does WhatsApp have built-in privacy protection?
2165     Q3: What privacy features does WhatsApp offer?
2166
2167     ---
2168
2169     Input:
2170     Q0: What is AWS's pricing model like?
2171
2172     Action:
2173     Choose template type: 9. Lead-in + Comparison + Specific Detail
2174
2175     Output:
2176     Q1: How do companies choose a cloud provider?
2177     Q2: Which is bigger, Google Cloud or AWS?
2178     Q3: What is AWS's pricing model like?
2179
2180     ---
2181
2182     Input:
2183     Q0: What is the role of smart contracts in blockchain platforms?
2184
2185     Action:
2186     Choose template type: 10. Definition + Definition + Specific Detail
2187
2188     Output:
2189     Q1: What is a blockchain platform?
2190     Q2: What is a smart contract?
2191     Q3: What is the role of smart contracts in blockchain platforms?
2192
2193     ---
2194
2195     Input:
2196     Q0: {{Q0_PLACEHOLDER}}
2197
2198

```

Detect Information Overlap Prompt

```

2189
2190     Q1: {question_1}
2191     A1: {answer_1}
2192
2193     Q2: {question_2}
2194     A2: {answer_2}
2195
2196     Do A1 and A2 contain more than 10% of the overlapping information? If yes, answer 'Yes'.
2197     '.
2198     If not, answer 'No'.
2199
2200     Purpose:
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

```

J.2 DECOMPOSE PROMPT

Decompose Prompt

```

2201
2202
2203
2204     # OVERALL INSTRUCTIONS
2205     You are an expert in understanding logical relationships. This is a Semantic Content
2206     Unit (SCU) extraction task. Given a pair of Question and Answer, your goal is to
2207     create a list of self-contained and concise claims. Each claim should be able to
2208     stand alone and be independent of other claims. Your claims should encompass all
2209     the information present in the answer.
2210
2211     # TASK INSTRUCTIONS
2212     - List of Possible Causes: For scenarios involving multiple entities like red flags,
2213     vaccines, symptoms, etc., generate separate claims for each entity. This increases
2214     the number of claims.
2215     - OR Claims: When entities are presented in an "OR" context, treat them as distinct
2216     claims.
2217     - IF Claims: When an "if statement" is present, preserve the "if statement" context
2218     while creating the claim.
2219
2220
2221
2222
2223

```

```

2214
2215     - XOR Claims: When entities have an XOR logical relationship (e.g., treatment options),
2216         create separate claims for each option.
2217     - Try your best to list all the information. Do not miss any information.
2218     - Instead of summarizing the original answer, break it down.
2219
2220     # EXAMPLE CLAIM FORMAT
2221     - List Format: "Possible cause for [CONDITION] in [DEMOGRAPHIC] can be [ENTITY]."
2222     - OR Format: "Possible causes include: [ENTITY X], [ENTITY Y], and [ENTITY Z]."
2223     - OR Format: "The [CONTEXT] of treatments such as [TREATMENT X], [TREATMENT Y], and [
2224         TREATMENT Z], is not well established."
2225     - IF Format: "[CONTEXT], please seek medical attention if [CONDITIONS]."
2226     - XOR Format: "Either take [TREATMENT X] or [TREATMENT Y], but not both."
2227
2228
2229     # TASK EXAMPLE
2230     Question: I am a 33-year-old female with right lower abdominal pain, what could it be?
2231     Answer: Possible causes for right lower abdominal pain in a young female are
2232         Appendicitis, Inflammatory bowel disease, Diverticulitis, Kidney stone, urinary
2233         tract infection, Ovarian cyst or torsion, Ectopic pregnancy, Pelvic inflammatory
2234         disease, endometriosis. Please seek medical attention if the pain is sudden and
2235         severe, does not go away, or gets worse, is accompanied by fever, nausea and
2236         vomiting, or if you have noticed blood in urine or in stool.
2237     Claims:
2238     [
2239         Possible cause for right lower abdominal pain in a young female: Appendicitis,
2240         Possible cause for right lower abdominal pain in a young female: Ovarian cyst or
2241         torsion,
2242         Possible cause for right lower abdominal pain in a young female: Ectopic pregnancy,
2243         Possible cause for right lower abdominal pain in a young female: Pelvic inflammatory
2244         disease,
2245         Possible cause for right lower abdominal pain in a young female: Kidney stone,
2246         Possible cause for right lower abdominal pain in a young female: Urinary tract
2247         infection,
2248         Possible cause for right lower abdominal pain in a young female: Diverticulitis,
2249         Possible cause for right lower abdominal pain in a young female: Inflammatory bowel
2250         disease,
2251         Possible cause for right lower abdominal pain in a young female: Endometriosis,
2252         Please seek medical attention if the pain is sudden and severe,
2253         Please seek medical attention if the pain is accompanied by fever,
2254         Please seek medical attention if the pain is accompanied by nausea and vomiting,
2255         Please seek medical attention if the pain is accompanied by blood in urine,
2256         Please seek medical attention if the pain is accompanied by blood in stool,
2257         Possible cause for right lower abdominal pain in a young female: Emotional stress
2258     ]
2259
2260     # TASK EXAMPLE
2261     Question: So what does the non reactive mean for the hep a igm
2262     Answer: Hep A IgM refers to a specific type of antibody called Immunoglobulin M (IgM)
2263         against the virus hepatitis A. When infected with hepatitis A, these antibodies
2264         are detectable at symptom onset and remain detectable for approximately three to
2265         six months. These antibodies might also be detectable in the first month after
2266         hepatitis A vaccination. A negative or non-reactive result means no IgM antibodies
2267         against hepatitis A found in your serum, meaning the absence of an acute or
2268         recent hepatitis A virus infection.
2269     Claims:
2270     [
2271         A negative or non-reactive result means that there were no IgM antibodies against
2272         hepatitis A found in your serum,
2273         The absence of IgM antibodies against hepatitis A in your serum indicates the absence
2274         of an acute or recent hepatitis A virus infection,
2275         Hep A IgM refers to a specific type of antibodies called Immunoglobulin M (IgM) against
2276         the virus hepatitis A,
2277         These antibodies might also be detectable in the first month after hepatitis A
2278         vaccination,
2279         These antibodies remain detectable for approximately three to six months after
2280         infection,
2281         When infected with hepatitis A, these antibodies are detectable at the time of symptom
2282         onset
2283     ]
2284
2285     # TASK EXAMPLE
2286     Question: What medications are contraindicated for a pregnant woman with ulcerative
2287         colitis?
2288     Answer: methotrexate (Otrexup, Rasuvo, RediTrex) and thalidomide (Contergan, Thalomid)
2289         are both considered contraindicated for treatment of UC in pregnancy. Possible
2290         treatment for UC during pregnancy include low-risk drugs such as aminosalicylates
2291         (sulfasalazine and mesalamine), immunomodulators (azathioprine, cyclosporine A, 6-
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4
```

2268

2269 mercaptopurine) and corticosteroids. Biological agents such as Infliximab,
 2270 Adalimumab, Vedolizumab and Ustekinumab are generally avoided during pregnancy as
 2271 their safety in pregnancy is not well established yet.

2272 Claims:

2273 [
 2274 Methotrexate (Otrexup, Rasuvo, RediTrex) is contraindicated for treatment of ulcerative
 2275 colitis in pregnancy,
 2276 Thalidomide (Contergan, Thalomid) is contraindicated for treatment of ulcerative
 2277 colitis in pregnancy,
 2278 Aminosalicylates (sulfasalazine and mesalamine) are considered low-risk drugs for
 2279 treatment of ulcerative colitis during pregnancy,
 2280 Immunomodulators (azathioprine, cyclosporine A, 6-mercaptopurine) are considered low-
 2281 risk drugs for treatment of ulcerative colitis during pregnancy,
 2282 Corticosteroids are considered low-risk drugs for treatment of ulcerative colitis
 2283 during pregnancy,
 2284 Treatment for ulcerative colitis during pregnancy with biological agents such as
 2285 Adalimumab is generally avoided during pregnancy as their safety in pregnancy is
 2286 not well established yet,
 2287 Treatment for ulcerative colitis during pregnancy with biological agents such as
 2288 Vedolizumab is generally avoided during pregnancy as their safety in pregnancy is
 2289 not well established yet,
 2290 Treatment for ulcerative colitis during pregnancy with biological agents such as
 2291 Infliximab is generally avoided during pregnancy as their safety in pregnancy is
 2292 not well established yet,
 2293 Treatment for ulcerative colitis during pregnancy with biological agents such as
 2294 Ustekinumab is generally avoided during pregnancy as their safety in pregnancy is
 2295 not well established yet
 2296]

2297 Question: What is the most safe amount of Advil to take at one time

2298 Answer: The safe amount of Advil (ibuprofen) to take at one time depends on various
 2299 factors, including your age, weight, and overall health condition. Here are
 2300 general guidelines for adults:
 2301 - **Standard Dosage**: The typical adult dose
 2302 for pain relief is 200 mg to 400 mg every 4 to 6 hours as needed.
 2303 - **Maximum Daily Dose**: The maximum daily dose for adults is usually 1200 mg to 3200 mg,
 2304 depending on the formulation and the manufacturer's recommendations. However, it's
 2305 important to stay within the lower end of this range unless specifically advised
 2306 otherwise by a healthcare provider.
 2307 For example:
 2308 - For mild to moderate pain, you might start with 200 mg every 4 to 6 hours.
 2309 - For more severe pain, you might take 400 mg every 4 to 6 hours.
 2310 It's crucial to follow the specific
 2311 instructions on the package or those provided by your healthcare provider. Overuse
 2312 can lead to serious side effects, including stomach ulcers, bleeding, and kidney
 2313 problems.
 2314 If you have any underlying health conditions or are taking other
 2315 medications, it's best to consult with a healthcare provider to determine the
 2316 safest dosage for you. Always read the label and follow the recommended dosages
 2317 carefully.

2318 Claims:

2319 [
 2320 The safe amount of Advil (ibuprofen) to take at one time depends on various factors,
 2321 including your age, weight, and overall health condition.
 2322 The safe amount of Advil (ibuprofen) to take at one time for an adult typically ranges
 2323 from 200 mg to 400 mg,
 2324 Adults should take the standard dosage of Advil every 4 to 6 hours as needed for pain
 2325 relief,
 2326 The maximum daily dose of Advil for adults usually ranges from 1200 mg to 3200 mg,
 2327 depending on the formulation and manufacturer's recommendations,
 2328 It's important to stay within the lower end of ranges from 1200 mg to 3200 mg unless
 2329 specifically advised otherwise by a healthcare provider,
 2330 For mild to moderate pain, the initial dosage of Advil for adults is 200 mg every 4 to
 2331 6 hours,
 2332 For more severe pain, the dosage of Advil for adults can be increased to 400 mg every 4
 2333 to 6 hours,
 2334 Overuse of Advil can lead to serious side effects such as stomach ulcers, bleeding, and
 2335 kidney problems,
 2336 It is crucial to follow the specific instructions on the package or those provided by a
 2337 healthcare provider when taking Advil,
 2338 Consulting a healthcare provider is advisable if you have underlying health conditions
 2339 or are taking other medications before determining the safest dosage of Advil,
 2340 Always read the label and follow the recommended dosages carefully when taking Advil.
 2341]

2342 # YOUR TASK

2343 Question: {question}

2344 Answer: {answer}

2345 Claims:

2346

2347

2348

2349

2350

2351

2322 J.3 DETECT CONTRADICT PROMPT

2323

2324

2325

Detect Contradict Prompt

2326

2327

OVERALL INSTRUCTIONS

- You have a deep understanding of logical relationships, such as entailment and contradiction, to evaluate given triplets of (question, premise, hypothesis).

2330

2331

2332

TASK INSTRUCTIONS

Your goal is to determine whether the Premise effectively contradicts the corresponding Hypothesis. Carefully analyze each triplet, focusing on details, not introducing knowledge.

2333

- If the premise and the hypothesis are unrelated or lack sufficient evidence to ascertain their truthfulness, label your answer as False.

2334

- be vigilant in identifying cases where the premise doesn't rule out the possibility of an entity (e.g., vaccine, symptom) appearing in the hypothesis. In such cases, classify the answer as False.

2335

- If the answer is true, the answer should include "The answer is True". If the answer is false, the answer should include "The answer is False".

2336

- Approach each question methodically, considering the step-by-step process outlined below.

2337

INPUT DATA

Question: What does trich test for? Let's think step by step.

Premise: The term "trich test" can refer to two different medical tests, depending on the context. Here are the two possibilities:

Trichomoniasis Test: Trichomoniasis is a sexually transmitted infection (STI) caused by the parasite Trichomonas vaginalis.

The trichomoniasis test, also known as a trich test or trichomonas test, is used to detect the presence of this parasite in the body. The test is typically performed on a sample of vaginal discharge in women or urine in men.

Trichogram: A trichogram is a diagnostic test used to evaluate hair loss and assess the health and condition of hair follicles. It involves plucking a small number of hairs from the scalp and examining them under a microscope.

It's important to note that without additional context, it's difficult to determine which specific test you are referring to.

Hypothesis: Trichomoniasis- a parasitic infection that can cause your symptoms.

Answer: According to the premise "trich test" refer to two different medical tests. A Trichomoniasis test is one of them, which is used to detect this parasite's presence.

As stated in the hypothesis, the trich test is used to diagnose parasitic infections. Ths premise entails the hypothesis. The answer is False.

###

Question: Can diabetics eat sweets? Let's think step by step.

Premise: Individuals with diabetes are recommended to limit their consumption of sweets to one or two times per week.

It is also suggested being selective with desserts and to focus on foods with a low glycemic index, such as high fiber foods like whole grains and legumes, as well as certain lower sugar fruits like berries, melons, and apples.

Hypothesis: It is recommended that diabetics avoid sweets.

Answer: The premise suggests that diabetics can eat sweets but limit their consumption. According to the hypothesis diabetics should avoid sweets.

Diabetics are allowed to consume sweets according to the premise, but they are prohibited according to the hypothesis. There is a contradiction between the premise and the hypothesis. The answer is True.

###

Question: 25 yo female with right lower abdominal pain, what might be causing it? Let's think step by step.

Premise: Right lower abdominal pain in a 25-year-old female could be caused by a variety of medical conditions.

Some potential causes include: Ovarian cyst: a fluid-filled sac on the ovary - Ectopic pregnancy: a pregnancy that occurs outside the uterus.

Hypothesis: possible cause for right lower abdominal pain in a young female can be Appendicitis.

Answer: The premise lists several potential causes of right lower abdominal pain in a 25-year-old female, not including appendicitis. The hypothesis states that Appendicitis could be a cause of right lower abdominal pain in a young female.

There is no direct contradiction between the premise and the hypothesis, as the premise does not exclude the possibility of appendicitis as the cause of the pain. The answer is False.

###

Question: Can a headache last longer than a few days? Let's think step by step.

Premise: Yes, it is possible. If you are experiencing a headache that lasts longer than a few days, it is important to see a doctor to get the appropriate treatment.

This will help to relieve the pain and prevent any further complications.

Hypothesis: It is not a cause for concern if a headache lasts longer than a few days.

2376
 2377 Answer: This premise acknowledges that a headache can last for several days, but
 2378 emphasizes that seeing a doctor to prevent further complications is important.
 2379 According to this hypothesis, headaches lasting longer than a few days are not
 2380 cause of concern.
 2381 There is a contradiction between the premise and hypothesis due to the premise
 2382 emphasizing the importance of seeking medical consultation, while the hypothesis
 2383 posits that there is no cause for concern. The answer is True.
 2384 ###
 2385 Question: {question} Let's think step by step.
 2386 Premise: {llm_answer}
 2387 Hypothesis: {answer}
 2388 Answer:
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429

J.4 DETECT ENTAIL PROMPT

2389 Detect Entail Prompt
 2390
 2391 # OVERALL INSTRUCTIONS
 2392 - You have a deep understanding of logical relationships, such as entailment and
 2393 contradiction, to evaluate given triplets of (question, premise, hypothesis).
 2394 # TASK INSTRUCTIONS
 2395 Your goal is to determine whether the Premise effectively entails the corresponding
 2396 Hypothesis. Carefully analyze each triplet, focusing on details, not introducing
 2397 knowledge.
 2398 - If the premise disagrees with, is unrelated to, or does not support the hypothesis,
 2399 there is not enough evidence to determine whether it is true, and so you answer
 2400 should be False.
 2401 - If the answer is true, the answer should include "The answer is True". If the answer
 2402 is false, the answer should include "The answer is False".
 2403 - Approach each question methodically, considering the step-by-step process outlined
 2404 below.
 2405 # INPUT DATA
 2406 Question: What does trich test for? Let's think step by step.
 2407 Premise: The term "trich test" can refer to two different medical tests, depending on
 2408 the context. Here are the two possibilities:
 2409 Trichomoniasis Test: Trichomoniasis is a sexually transmitted infection (STI) caused by
 2410 the parasite Trichomonas vaginalis.
 2411 The trichomoniasis test, also known as a trich test or trichomonas test, is used to
 2412 detect the presence of this parasite in the body. The test is typically performed
 2413 on a sample of vaginal discharge in women or urine in men.
 2414 Trichogram: A trichogram is a diagnostic test used to evaluate hair loss and assess the
 2415 health and condition of hair follicles. It involves plucking a small number of
 2416 hairs from the scalp and examining them under a microscope.
 2417 It's important to note that without additional context, it's difficult to determine
 2418 which specific test you are referring to.
 2419 Hypothesis: Trichomoniasis- a parasitic infection that can cause your symptoms.
 2420 Answer: According to the premise "trich test" refer to two different medical tests. A
 2421 Trichomoniasis test is one of them, which is used to detect this parasite's
 2422 presence.
 2423 As the hypothesis suggested, the trich test is used to diagnose parasitic infections.
 2424 The premise entails the hypothesis. The answer is True.
 2425 ###
 2426 Question: Can diabetics eat sweets? Let's think step by step.
 2427 Premise: Individuals with diabetes are recommended to limit their consumption of sweets
 2428 to one or two times per week.
 2429 It is also suggested to be selective with desserts and to focus on foods with a low
 2430 glycemic index, such as high fiber foods like whole grains and legumes, as well as
 2431 certain lower sugar fruits like berries, melons, and apples.
 2432 Hypothesis: After eating sweets, must monitor blood and sugar level
 2433 Answer: The premise suggests that diabetics can eat sweets but limit their consumption.
 2434 The hypothesis highlights the necessity of monitor blood and sugar after eating
 2435 sweets.
 2436 There is no relationship between the premise and hypothesis, therefore they do not
 2437 entail one another. The answer is False.
 2438 ###
 2439 Question: Can diabetics eat sweets? Let's think step by step.
 2440 Premise: Individuals with diabetes are recommended to limit their consumption of sweets
 2441 to one or two times per week.
 2442 It is also suggested being selective with desserts and to focus on foods with a low
 2443 glycemic index, such as high fiber foods like whole grains and legumes, as well as
 2444 certain lower sugar fruits like berries, melons, and apples.
 2445 Hypothesis: It is recommended that diabetics avoid sweets.

2430
 2431 Answer: The premise suggests that diabetics can eat sweets but limit their consumption.
 2432 According to the hypothesis diabetics should avoid sweets.
 2433 The premise allows diabetics to consume sweets in moderate consumption, while the
 2434 hypothesis prohibits them. There premise don't entail the hypothesis. The answer
 2435 is False.
 2436 ###
 2437 Question: What is the best hypertension treatment for patients who are also have Crohn'
 2438 s disease? Let's think step by step.
 2439 Premise: For patients with Crohn's disease and hypertension, the recommended treatment
 2440 is a combination of lifestyle changes and medication. The ACC/AHA recommends
 2441 initiation of antihypertensive drug therapy at a BP \u2265130/80 mm Hg for adults
 2442 with hypertension.
 2443 It is also important to monitor your blood pressure regularly to make sure that it is
 2444 under control.
 2445 Hypothesis: reducing sodium intake, are the first-line treatment for hypertension in
 2446 individuals with Crohn's disease
 2447 Answer: The premise suggests that the recommended treatment for patients with diabetes
 2448 and hypertension is a combination of lifestyle changes and medication, including
 2449 antihypertensive drug therapy. The hypothesis focuses on reducing sodium intake as
 2450 the first-line treatment.
 2451 A reduction in sodium intake could be a part of the lifestyle changes, but since it is
 2452 not mentioned in the premise, the premise do not entail the hypothesis. The answer
 2453 is False.
 2454 ###
 2455 Question: 25 yo female with right lower abdominal pain, what might be causing it? Let's
 2456 think step by step.
 2457 Premise: Right lower abdominal pain in a 25-year-old female could be caused by a
 2458 variety of medical conditions.
 2459 Some potential causes include: - Appendicitis: inflammation of the appendix -
 2460 Appendiceal abscess: a collection of pus in the appendix - Ovarian cyst: a fluid-
 2461 filled sac on the ovary - Ectopic pregnancy: a pregnancy that occurs outside the
 2462 uterus.
 2463 Hypothesis: possible cause for right lower abdominal pain in a young female can be
 2464 Appendicitis.
 2465 Answer: The premise lists several potential causes of right lower abdominal pain in a
 2466 25-year-old female, including appendicitis. The hypothesis states that
 2467 Appendicitis could be a cause of right lower abdominal pain in a 25-year-old
 2468 female.
 2469 Both the premise and hypothesis mention appendicitis as a possible cause of pain, so
 2470 the premise entails the hypothesis. The answer is True.
 2471 ###
 2472 Question: {question} Let's think step by step.
 2473 Premise: {llm_answer}
 2474 Hypothesis: {answer}
 2475 Answer:

K CASE STUDY

K.1 CASE STUDY 1: ENHANCEMENT OF FACT ACCURACY THROUGH RETRIEVAL

Case Study 1: Enhancement of Fact Accuracy Through Retrieval

2470 Q: How long would I be on Saxenda before I could move to the next dose?
 2471 GT: ''It is recommended that adult patients start with a dose of 0.6 mg per day for one
 2472 week. The dose is then increased by 0.6 mg each week over the following 4 weeks
 2473 until the daily maintenance dose of 3 mg is reached. If a patient does not
 2474 tolerate an increased dose during the dosing schedule, dose escalation can be
 2475 delayed by one extra week.''
 2476 base_answer: ''The dosing schedule for Saxenda (liraglutide) is designed to gradually
 2477 increase over time to achieve the desired therapeutic effect. Heres a general
 2478 outline of how the dosing progression works:\n\n1. Initial Dose: Saxenda is
 2479 typically started at a low dose, usually 0.6 mg once daily via subcutaneous
 2480 injection. This initial dose is often given for 2 weeks to allow the body to
 2481 adjust to the medication.\n\n2. First Increase: After the first 2 weeks, the dose
 2482 is increased to 1.2 mg once daily. This step is also typically maintained for 2
 2483 weeks to ensure the body continues to adapt.\n\n3. Second Increase: After another
 2484 2 weeks at 1.2 mg, the dose is increased to 1.8 mg once daily. This final dose is
 2485 then maintained for the duration of treatment unless otherwise directed by a
 2486 healthcare provider.\n\nThe exact timing and duration can vary based on individual
 2487 response and medical supervision. Some patients might stay on a particular dose

longer if they are experiencing side effects or if their healthcare provider decides it is necessary.\n\nIt's important to follow the specific instructions provided by your healthcare provider, as they will monitor your progress and adjust the dosing schedule as needed. Regular follow-up appointments are crucial to assess your response to the medication and make any necessary adjustments.\n\nIf you have any questions about your dosing schedule or if you experience any side effects, it's important to contact your healthcare provider for guidance.'

RAG_answer: ''For Saxenda, you would be on each dose for one week before moving to the next higher dose. Specifically, the dose escalation schedule is as follows:\n\n- Week 1: 0.6 mg daily\n- Week 2: 1.2 mg daily\n- Week 3: 1.8 mg daily\n- Week 4: 2.4 mg daily\n- Week 5 and onward: 3 mg daily\n\nAfter completing one week at each dose, you would then increase to the next higher dose. If you or a pediatric patient cannot tolerate the increased dose during the dose escalation process, you may delay the escalation for approximately one additional week.''

RAG_retrieved_chunks: "The following information has been retrieved and may be helpful :\n\nUse SAXENDA with a reduced-calorie diet and increased physical activity.\n\nSAXENDA is injected under the skin (subcutaneously) in your stomach area (abdomen), upper leg (thigh), or upper arm.\n\nDo not inject into a muscle (intramuscularly) or vein (intravenously).\n\nSAXENDA is injected 1 time each day, at any time during the day.\n\nStart SAXENDA with 0.6 mg per day in your first week. In your second week, increase your daily dose to 1.2 mg. In the third week, increase your daily dose to 1.8 mg. In the fourth week, increase your daily dose to 2.4 mg and in the fifth week onwards, increase your daily dose to the full dose of 3 mg. After that, do not change your dose unless your healthcare provider tells you to. Children may reduce their dose to 2.4 mg daily if the maximum dose is not tolerated.\n\nIf you miss your daily dose of SAXENDA, just take your next daily dose as usual on the following day. Do not take an extra dose of SAXENDA or increase your dose on the following day to make up for your missed dose. If you miss your dose of SAXENDA for 3 days or more, call your healthcare provider to talk about how to restart your treatment.\n\nSAXENDA may be taken with or without food.\n\nChange (rotate) your injection site with each injection.\n\nDo not use the same site for each injection.\n\nDo not share your SAXENDA pen with other people, even if the needle has been changed.\n\nYou may give other people a serious infection or get a serious infection from them.\n\nIf you take too much SAXENDA, call your healthcare provider or Poison Help line at 1-800-222-1222 or go to the nearest hospital emergency room right away.\n\nThrow away the used SAXENDA pen after 30 days.\n\nWhat are the possible side effects of SAXENDA?\n\nSAXENDA may cause serious side effects, including:\n\nWhat is the most important information I should know about SAXENDA?\n\nInflammation of the pancreas\n\nPancreatitis.\n\nTable 1. Dose Escalation Schedule\n\nWeek n Daily Dose\n\n0.6 mg\n\n1.2 mg\n\n1.8 mg\n\n2.4 mg\n\n3 mg and onward\n\nAdult Patients\n\nFor adults, the recommended dosage of SAXENDA is 3 mg daily, lower dosages are for titration only.\n\nDiscontinue SAXENDA if the patient cannot tolerate the 3 mg dosage.\n\nIf patients do not tolerate an increased dose during dosage escalation, consider delaying dosage escalation for approximately one additional week.\n\nEvaluate the change in body weight 16 weeks after initiating SAXENDA and discontinue SAXENDA if the patient has not lost at least 4% of baseline body weight, since it is unlikely that the patient will achieve and sustain clinically meaningful weight loss with continued treatment.\n\nIn adult patients with type 2 diabetes, monitor blood glucose prior to starting SAXENDA and during SAXENDA treatment.\n\nPediatric Patients\n\nFor pediatric patients, the recommended maintenance dosage of SAXENDA is 3 mg daily. Pediatric patients who do not tolerate 3 mg daily may have their maintenance dose reduced to 2.4 mg daily. Discontinue SAXENDA if the patient cannot tolerate the 2.4 mg dose.\n\nIf pediatric patients do not tolerate an increased dose during dosage escalation, the dose may also be lowered to the previous level. Dosage escalation for pediatric patients may take up to 8 weeks.\n\nEvaluate the change in BMI after 12 weeks on the maintenance dose and discontinue SAXENDA if the patient has not had a reduction in BMI of at least 1% from baseline, since it is unlikely that the patient will achieve and sustain clinically meaningful weight loss with continued treatment.\n\nDOSAGE FORMS AND STRENGTHS\n\nInjection: 6 mg/mL clear, colorless solution in a 3 mL prefilled, single-patient-use pen that delivers doses of 0.6 mg, 1.2 mg, 1.8 mg, 2.4 mg, or 3 mg.\n\nHome\n\nAbout Saxenda\n\nDosing Schedule\n\nSaxenda\n\nDosing Schedule\n\nGet help staying on track with Saxenda\n\nby connecting with your prescribing health care provider, reviewing the daily dosing schedule below, or calling the Saxenda\n\nHotline at 1-844-845-6913 Monday through Friday 8:30\n\nAM to 6:00\n\nPM\n\nET.\n\nReminders for when to take Saxenda\n\nTry setting an alarm on a smartphone or AI assistant (like Alexa or Siri).\n\nReview the Saxenda\n\ndosing schedule\n\nThe Saxenda\n\ndaily dosing schedule was designed to help patients get used to their new medicine while also minimizing gastrointestinal side effects. Review the schedule below, and be sure to schedule a 4-month follow-up with your prescribing health care provider. This visit can be sooner if there are questions or concerns about dosing or side effects. As a reminder, a Saxenda\n\nprescription contains enough medicine for 30 days.\n\nBelow is a dosing schedule to guide you through the starting dosage of 0.6 mg to the dosage of 3 mg.\n\nSaxenda\n\nshould be taken exactly as prescribed. After

2538
 2539 starting Saxenda\n\n, provided there are no issues with tolerating it, the dose
 2540 should be increased weekly until the 3 mg dose is reached. If you or your teen
 2541 have trouble tolerating an increased dose, or if you have any other questions, be
 2542 sure to call your (or your teen's) health care provider. The Saxenda\n\ndose
 2543 should only be changed if your (or your teen's) health care provider advises to do
 2544 so.\n\nNausea is the most common side effect when first starting Saxenda\n\n. Learn
 2545 more about ways to manage it\nhere\n. For additional side effects, please refer
 2546 to the\nMedication Guide\n.\n\nIf you (or your teen) miss your daily dose of Saxenda
 2547 \n\n, just take the next daily dose as usual on the following day. Do not take an
 2548 extra dose of Saxenda\n\nnor increase the dose on the following day to make up for
 2549 the missed dose. If Saxenda\n\nis not taken for 3 days or more, call your
 2550 respective health care provider to talk about how to restart treatment.\n\"\"\"\\n4
 2551 .\\n\"\"\"\\nHow long each pen lasts depends on the dose you take. There is a scale
 2552 on the pen that shows you about how much Saxenda is left inside.\n\nWhat is the
 2553 average weight loss with Saxenda?\nIn clinical studies, a greater number of people
 2554 who took Saxenda for 56 weeks lost 5 to 10% of their body weight, compared with
 2555 people who took a placebo. (A placebo is a substance that has no effect and is
 2556 used as a control when testing medications). This means participants lost 12 to 23
 2557 pounds. People in the studies were overweight (BMI 27-29.9 kg/m2) or obese (BMI
 2558 greater than or equal to 30 kg/m2) before taking Saxenda.\nCan you drink alcohol
 2559 with Saxenda?\nThere is no specific warning about drinking alcohol with Saxenda.
 2560 Keep in mind that alcohol can lower blood sugar. If you are taking other drugs for
 2561 diabetes, drinking alcohol increases your risk of hypoglycemia. In addition, many
 2562 alcoholic drinks contain high levels of carbohydrates and sugar. If you're trying
 2563 to lose weight, you may want to avoid alcohol.\nHow long does it take for Saxenda
 2564 to work?\nSaxenda reaches its maximum concentration in the body 11 hours after
 2565 injection. It's recommended to follow up with your doctor 2 to 8 weeks after
 2566 starting Saxenda to see if it's working.\nIf you have not lost 4% of your body
 2567 weight after 16 weeks, your doctor may tell you to stop taking it.\nIn children
 2568 ages 12 and up, Saxenda may be stopped after 12 weeks on the maintenance dose if
 2569 BMI has not decreased by 1%.\nWhy am I not losing weight on Saxenda?\nIt takes
 2570 time to lose weight with Saxenda. It may take about 8 weeks before you start to
 2571 see significant weight loss (about 5%) with Saxenda, but in the first 2 to 4 weeks
 2572 you may lose about 2% to 4% of your weight. You should also adhere to a long-term
 2573 reduced-calorie diet and exercise program as prescribed by your doctor for
 2574 maximum weight loss.\nContinue reading\nLiraglutide vs Semaglutide: How do they
 2575 compare?\n\"\"\"\\n5.\n\"\"\"\\nRefer to the accompanying Instructions for Use for
 2576 complete administration instructions with illustrations.\n\nInspect SAXENDA
 2577 visually prior to each injection. Only use if solution is clear, colorless, and
 2578 contains no particles.\n\nInject SAXENDA subcutaneously once daily at any time of
 2579 day, without regard to the timing of meals.\n\nInject SAXENDA subcutaneously in
 2580 the abdomen, thigh, or upper arm. No dose adjustment is needed if changing the
 2581 injection site and/or timing.\n\n\nRotate injection sites within the same region
 2582 in order to reduce the risk of cutaneous amyloidosis.\n\nIf a dose is missed,
 2583 resume the once-daily regimen as prescribed with the next scheduled dose. Do not
 2584 administer an extra dose or increase the dose to make up for the missed dose.\n\n
 2585 nIf more than 3 days have elapsed since the last SAXENDA dose, reinitiate SAXENDA
 2586 at 0.6 mg daily and follow the dose escalation schedule in Table 3, to reduce the
 2587 occurrence of gastrointestinal adverse reactions associated with reinitiation of
 2588 treatment.\n\nDosage in Adults and Pediatric Patients Aged 12 Years and Older\n\n
 2589 nInitiate SAXENDA with a dose of 0.6 mg daily for one week. Then follow the dose
 2590 escalation schedule in Table 3 to minimize gastrointestinal adverse reactions.\n\nTable 3: Dose Escalation Schedule\n\nWeek\n\nDaily Dose\n\n1\n0.6 mg\n\n2\n1.2 mg\n\n3\n1.8
 2591 mg\n\n4\n2.4 mg\n\n5\n3 mg\n\nAdult Patients\n\nFor adults, the recommended
 2592 dosage of SAXENDA is 3 mg daily; lower doses are for titration only.\n\n
 2593 nDiscontinue SAXENDA if the patient cannot tolerate the 3 mg dose.\n\nnIf patients
 2594 do not tolerate an increased dose during dose escalation, consider delaying dose
 2595 escalation for approximately one additional week.\n\nnEvaluate the change in body
 2596 weight 16 weeks after initiating SAXENDA and discontinue SAXENDA if the patient
 2597 has not lost at least 4% of baseline body weight, since it is unlikely that the
 2598 patient will achieve and sustain clinically meaningful weight loss with continued
 2599 treatment.\n\nnIn adult patients with type 2 diabetes, monitor blood glucose prior
 2600 to starting SAXENDA and during SAXENDA treatment.\n\nPediatric Patients\n\nFor
 2601 pediatric patients, the recommended maintenance dosage of SAXENDA is 3 mg daily.\n\n
 2602 \"\"\"\\n\nPlease answer the following question based only on the information above
 2603 :\nHow long would I be on Saxenda before I could move to the next dose?"\n

2585 The question concerns how long a patient typically stays on each dose of Saxenda (liraglutide) before
 2586 increasing to the next one. The gold-standard text clearly provides the recommended escalation
 2587 schedule: adults start at 0.6 mg per day for one week, and the dose is then increased by 0.6 mg
 2588 each week over the next four weeks until reaching the 3 mg daily maintenance dose. If a patient has
 2589 difficulty tolerating a specific dose, the escalation can be delayed by an extra week.

2590 The base model's answer performs poorly in terms of factual accuracy because it does not reproduce
 2591 this stepwise weekly schedule. Instead, it offers a generic description of how GLP-1 agonists are
 2592 usually titrated, using vague statements such as starting at a low dose and often given for 2 weeks,

2592 without providing the precise weekly increments or the fixed five-week escalation plan. Its statements focus on a general idea of gradual dose adjustment under medical supervision rather than the specific information contained in the official product guidelines, which explains why its factual score is essentially zero.

2596 In contrast, the RAG-enhanced answer closely matches the gold-standard dosing schedule. It explicitly lays out the weekly plan 0.6 mg in week one, followed by 1.2 mg, 1.8 mg, and 2.4 mg, and finally reaching 3 mg by week five. It also includes the key detail that dose escalation may be delayed by approximately one week if the patient does not tolerate the increase. This alignment with the official instructions results in a high factual score. The retrieval system appears to have pulled information directly from authoritative sources such as Drugs.com, enabling the model to provide a precise, accurate dose-escalation timeline rather than relying on general clinical intuition.

2603 This case illustrates how retrieval greatly improves performance for topics where the correct answer depends on exact, non-negotiable detailssuch as fixed titration schedules for prescription medications. Without retrieval, the model tends to generalize from patterns it has learned, but with retrieval, it can reproduce the precise regimen specified in official guidelines.

2608 K.2 CASE STUDY 2: PERFORMANCE DEGRADATION RESULTING FROM MISALIGNED 2609 RETRIEVAL FOCUS

2611 Case Study 2: Performance Degradation Resulting from Misaligned Retrieval Focus

2614 Q: What are the two most prevalent short-term debt instruments in the money market?

2615 GT: "Most Common Short-Term Bonds in Money Markets: T-Bills and Commercial Paper."

2616 base_answer: "The two most prevalent short-term debt instruments in the money market
2617 are typically:\n\n1. Treasury Bills (T-Bills): These are short-term debt
2618 obligations issued by the government with maturities ranging from a few days to
2619 one year. They are considered very safe due to the backing of the government and
2620 are widely used for short-term investments and liquidity management.\n\n2.
2621 Commercial Paper: This is an unsecured promissory note issued by corporations with
2622 maturities ranging from a few days to 270 days. Commercial paper is used for
2623 short-term financing and is often issued by large, creditworthy companies to raise
2624 funds quickly.\n\nThese two instruments are highly liquid and are commonly traded
2625 in the money market, making them essential components of short-term investment
2626 strategies."

2627 RAG_answer: "Based on the information provided, the two most prevalent short-term debt
2628 instruments in the money market are:\n\n1. Treasury Bills (T-bills) - Short-term
2629 debt obligations backed by the U.S. government, sold in denominations of \$1,000 up
2630 to a maximum of \$5 million, with maturities ranging from four to 52 weeks.\n\n2.
2631 Commercial Paper - Unsecured, short-term debt issued by large corporations to fund
2632 day-to-day operations, typically maturing within 270 days and issued at a
2633 discount to face value.\n\nThese instruments are widely recognized for their
2634 liquidity, low risk, and role in stabilizing interest rates and managing short-
2635 term funding needs."

2636 RAG_retrieved_chunks: "The following information has been retrieved and may be helpful
2637 :\n\n1.\n\nTreasury notes and bonds are not included here. Bonds and other
2638 fixed-income instruments with longer terms are considered part of the capital
2639 markets.\n\nRepurchase Agreements (Repos)\n\nThese assets involve the sale of
2640 securities with an agreement to repurchase them at a slightly higher price on a
2641 specific future dateoften the next day. They're essentially short-term loans,
2642 typically used by dealers in government securities. The securities serve as
2643 collateral, making repos relatively low-risk.\n\nCommercial Paper:\n\nCommercial paper
2644 consists of unsecured, short-term debt issued by large corporations to fund day-
2645 to-day operations. These instruments typically mature within 270 days and are
2646 issued at a discount to face value.\n\nWhile riskier than T-bills, commercial paper
2647 from top-rated companies often offers slightly higher yields.\n\nCDs:\n\nCDs have
2648 fixed terms ranging from a few weeks to several years and pay higher interest
2649 rates than standard savings accounts, though the depositor has to wait a period to
2650 obtain the funds back. Keep in mind that CDs that mature after one year aren't
2651 part of the money market.\n\nPrime funds typically invest in short-term obligations
2652 issued by banks and corporations. Two of the most common are listed below.\n\nnBankers' Acceptances:\n\nThese are short-term debt instruments guaranteed by a bank
2653 , often used for international trade. When a bank accepts a\nbankers' acceptance\n, it assumes responsibility for paying the holder when the instrument matures.
2654 This bank guarantee makes them relatively safe investments.\n\nShort-Term Corporate

2646
 2647 Bonds:\nFor inclusion in the money market, these corporate bonds have maturities
 2648 of one year or less. This is debt issued by companies that offer a way for
 2649 corporations to borrow money from investors for relatively brief periods, often to
 2650 fund operations, finance projects, or refinance existing debt.\nFast Fact\nThe
 2651 highest quality (and safest, lower yielding) bonds are commonly referred to as
 2652 Triple-A bonds, while the least creditworthy are termed junk.\nTax-exempt funds
 2653 are composed of short-term government-issued debt obligations. The interest income
 2654 earned on these investments is exempt from federal taxes. Some may also be exempt
 2655 from local and state taxes.\nMunicipal Bonds (Munis):\nTax-exempt money market
 2656 funds are primarily municipal bonds or notes, which are issued by state and local
 2657 governments. These are often tax-exempt at the federal level, making them
 2658 attractive to investors in high tax brackets. The chart below shows the \$6.57
 2659 trillion U.S.\n\n2.\n\nThey work through instruments like\ncommercial
 2660 paper\n, Treasury bills (T-bills), and\nCertificates of deposit (CDs)\n. These
 2661 instruments facilitate quick fund transfers and help to stabilize interest rates.
 2662 They are often regarded as a haven for investors to park their surplus cash and
 2663 keep the system liquid and stable.\nIn the money markets, banks, corporations, and
 2664 government entities buy and sell financial instruments to manage liquidity. These
 2665 transactions involve instruments like\nT-bills\nand commercial paper where terms
 2666 are shorter and settlement is quick. This fast-paced activity helps participants
 2667 to manage their short-term funding needs.\nMoney market operations are crucial for
 2668 the level of liquidity and interest rates in the economy. They provide quick
 2669 access to cash and stabilize interest rates so they are more predictable. The
 2670 quick turnaround of funds allows investors to park their money temporarily and
 2671 supports monetary stability.\nTypes and Examples of Money Markets\nMoney markets
 2672 play a crucial role in the financial system, providing a place for institutions
 2673 and individuals to park cash safely for short periods. These markets deal in
 2674 highly liquid, short-term debt instruments, typically with maturities of one year
 2675 or less. Let's explore the main types of money market instruments and how they
 2676 function.\nGovernment money market funds primarily invest in short-term securities
 2677 issued by the U.S. government, such as T-bills and other government-backed
 2678 instruments. They are considered very safe and liquid, offering a lower yield but
 2679 greater security compared with prime funds.\nT-Bills:\nThese are short-term debt
 2680 obligations backed by the U.S. government and sold in denominations of \$1,000 up
 2681 to a maximum of \$5 million. T-bills mature in four, eight, 13, 26, or 52 weeks.\n
 2682 Investors buy them at a discount and receive the full face value when they mature
 2683 with the difference representing the interest earned. Treasury notes and bonds
 2684 are not included here. Bonds and other fixed-income instruments with longer terms
 2685 are considered part of the capital markets.\nRepurchase Agreements (Repos)\n:\n
 2686 These assets involve the sale of securities with an agreement to repurchase them
 2687 at a slightly higher price on a specific future date often the next day. They're
 2688 essentially short-term loans, typically used by dealers in government securities.
 2689 The securities serve as collateral, making repos relatively low-risk.\nCommercial
 2690 Paper:\nCommercial paper consists of unsecured, short-term debt issued by large
 2691 corporations to fund day-to-day operations.\n\n3.\n\nMoney Markets vs.
 2692 Capital Markets: What's the Difference?\nTable of Contents\nExpand\nTable of
 2693 Contents\nAn Overview\nMoney Markets\nCapital Markets\nKey Differences\n
 2694 Alternatives\nRegulation & Oversight\nFAQs\nThe Bottom Line\nMoney Markets vs.
 2695 Capital Markets: An Overview\nMoney and capital markets are fundamental to the
 2696 economy, serving investors and businesses alike.\nMoney markets\ndeal in short-
 2697 term debt instruments, usually for one year or less. It's where governments, banks
 2698 , and large corporations go to manage their immediate cash needs.\nCapital markets
 2699 involve long-term securities, such as stocks and bonds, that mature in more than
 one year. This is where companies and governments raise funds for major projects
 and long-term growth.\nMoney markets are the lifeblood of day-to-day financial
 operations, while capital markets sustain long-term\neconomic growth\n. They
 differ in three ways: the types of financial instruments traded, the duration of
 investments, and the level of risk. While the money market prioritizes liquidity
 and safety, the capital market offers the potential for higher returns with
 increased risk. Below, we'll explore each market's characteristics and how they
 work.\nKey Takeaways\nMoney markets involve short-term lending that borrowers can
 tap into for cash for day-to-day operations\nCapital markets are geared toward
 long-term investing.\nMoney markets are less risky than capital markets, which can
 be more rewarding.\nBoth markets are subject to comprehensive regulation to
 ensure transparency, fairness, and stability.\nANGELA WEISS\n/ Contributor / Getty
 Images\nMoney Markets\nMoney markets are meant for short-term lending and
 borrowing, usually for a year or less. It's like a fast lane where businesses,
 governments, and\nfinancial institutions\ncan meet their quick funding needs. Thus
 , it is important for\nliquidity\nmanagement. These markets are known for their
 high liquidity, generally low risk, and ease of access to capital.\nThey work
 through instruments like\ncommercial paper\n, Treasury bills (T-bills), and\n
 Certificates of deposit (CDs)\n. These instruments facilitate quick fund
 transfers and help to stabilize interest rates. They are often regarded as a haven
 for investors to park their surplus cash and keep the system liquid and stable.\n
 In the money markets, banks, corporations, and government entities buy and sell
 financial instruments to manage liquidity. These transactions involve instruments
 like\nT-bills\nand commercial paper where terms are shorter and settlement is
 quick.\n\n4.\n\nTax-exempt funds are composed of short-term government

2700
 2701 -issued debt obligations. The interest income earned on these investments is
 2702 exempt from federal taxes. Some may also be exempt from local and state taxes.\nMunicipal Bonds (Munis):\nTax-exempt money market funds are primarily municipal
 2703 bonds or notes, which are issued by state and local governments. These are often
 2704 tax-exempt at the federal level, making them attractive to investors in high tax
 2705 brackets. The chart below shows the \$6.57 trillion U.S. money market broken down
 2706 under the main headings used here:\nTip\nThe money market is far broader than
 2707 money market funds or accounts available at banks and other financial institutions
 2708 . While related, the latter is a mutual fund that invests in high-quality, short-
 2709 term debt instruments and cash equivalents. Many are also insured by the\nFederal
 2710 Deposit Insurance Corporation (FDIC).\n.\nCapital Markets\nCapital markets play a
 2711 vital role in economic growth by channeling savings into productive investments.
 2712 They are where longer-term securities are bought and sold. Companies and
 2713 governments raise funds by issuing stocks (equities) and bonds (fixed-income
 2714 securities). Investors can earn returns via value\nappreciation\nor distributions
 2715 .\nTransactions enable individuals and institutions to tap into future
 2716 opportunities. Investors buy long-term instruments like\nstocks and bonds\nfrom
 2717 issuers in primary markets or trade them in secondary markets. This helps
 2718 companies and governments get the funds they need for various projects and
 2719 objectives. Investors hope to get returns through\ndividends\nor interest and
 2720 potential appreciation.\nBuyers and sellers are matched through exchanges or\nover
 2721 -the-counter (OTC)\nplatforms. Brokers and dealers play a key role in facilitating
 2722 transactions and keeping things smooth. Pricing in the capital markets is driven
 2723 by supply and demand, investor sentiment, and economic indicators.\nFacilitating
 2724 the trade of financial assets helps set asset prices and ensures a certain degree
 2725 of liquidity, allowing funds to move smoothly. Consequently, this market underpins
 2726 business\nexpansion\nand bolsters the overall economy.\nTypes and Examples of
 2727 Capital Markets\nCapital markets can be broken down into the primary and secondary
 2728 markets. The primary market is where new securities are sold for the first time,
 2729 such as when a company goes public with an\ninitial public offering (IPO)\n. This
 2730 allows companies to raise capital directly from investors who buy these new shares
 2731 .\n\n\n\n\n5.\n\n\n\n\nIf you want short-term, low-risk investments with quick
 2732 returns, the money market is probably the way to go. Instruments like Treasury
 2733 bills help you preserve capital and provide liquidity over shorter periods.\nMost
 2734 investors have a long-term time horizon and turn to capital markets. Investing in
 2735 stocks and/or bonds can build wealth and align with long-term financial goals
 2736 while riding out market fluctuations.\nHow Do Geopolitical Events Affect Money
 2737 Markets?\nGeopolitical events increase volatility and risk and cause a flight to
 2738 safety in money markets as investors seek safe havens.\nWhat Role Do Central Banks
 2739 Have in the Money Markets?\nCentral banks\ninfluence money markets by setting
 2740 interest rates and conducting open market operations to manage liquidity. The U.S.
 2741 Federal Reserve serves in this role in the U.S.\nWhy Are the Capital Markets
 2742 Important for Startups?\nCapital markets provide startups with access to funding
 2743 through IPOs and venture capital, fueling their growth.\nThe Bottom Line\nCapital
 2744 and money markets are the fundamental pillars of the modern financial system, each
 2745 serving distinct yet complementary roles. Capital markets, comprising stocks,
 2746 bonds, and other long-term securities, enable businesses and governments to raise
 2747 funds for long-term investments and expansion. These markets offer investors the
 2748 potential for higher returns, but often with increased risk and\nvolatility\n.\n
 2749 Money markets, meanwhile, focus on short-term, highly liquid instruments such as
 2750 Treasury bills and commercial paper. They serve as the economy's lubricant,
 2751 facilitating short-term borrowing and lending and providing a relatively safe
 2752 haven for cash management. While money market instruments typically offer lower
 2753 returns, they provide essential liquidity and stability to the financial system.\nArticle
 2754 Sources\nInvestopedia requires writers to use primary sources to support
 2755 their work. These include white papers, government data, original reporting, and
 2756 interviews with industry experts. We also reference original research from other
 2757 reputable publishers where appropriate. You can learn more about the standards we
 2758 follow in producing accurate, unbiased content in our\neditorial policy.\nStatista
 2759 .\n\nLargest stock exchange operators worldwide as of March 2024, by market
 2760 capitalization of listed companies.\n.\n\nBoard of Governors of the Federal Reserve
 2761 System.\n\nAbout Commercial Paper\n.\n\n\nCompare Accounts\nAdvertiser Disclosure
 2762\nThe offers that appear in this table are from partnerships from which
 2763 Investopedia receives compensation. This compensation may impact how and where
 2764 listings appear. Investopedia does not include all offers available in the
 2765 marketplace.\n\n\n\n\nPlease answer the following question based only on the
 2766 information above:\nWhat are the two most prevalent short-term debt instruments in
 2767 the money market?"
 2768

2748 This case looks at a situation where retrieval makes the answer worse. The question asks which two
 2749 short-term debt instruments are the most common in the money market. The gold-standard answer is
 2750 very short and simply states that the most prevalent instruments are Treasury Bills and Commercial
 2751 Paper.

2752 The base model, without retrieval, performs reasonably well and reaches a factual F1 score of about
 2753 0.62. It correctly identifies the two instruments and provides accurate explanations of their issuers,

2754 maturities, and uses. Its statements clearly match the key facts in the gold-standard answer. Although
 2755 the base answer contains more description and is longer than necessary, the evaluation system still
 2756 recognizes that it accurately covers the essential information. With retrieval, the factual score drops
 2757 dramatically to around 0.125. The answer produced with retrieval still names the correct
 2758 instruments. It also includes additional details such as typical denominations and precise maturity ranges.
 2759 The retrieved evidence itself even supports the idea that T-Bills and commercial paper are commonly
 2760 used in the money market.

2761 The problem comes from the answer's shift in emphasis. After incorporating retrieved content, the
 2762 model focuses more on technical characteristics, such as the structure and numerical parameters of
 2763 T-Bills. It focuses less on the central point that these two instruments are the most prevalent ones.
 2764 Since the evaluation places strong weight on that specific fact about prevalence, the retrieved answer
 2765 ends up covering the key point less directly. As a result, the factual match score becomes much
 2766 lower, even though the content is technically correct and more detailed.

2767 This case shows that retrieval does not always help. When the gold-standard answer highlights a
 2768 specific categorical fact about importance or ranking, too much detail from retrieval can distract
 2769 the model from stating that key fact clearly. The answer becomes more elaborate, but the essential
 2770 information becomes blurred, which leads to a decline in factual accuracy during evaluation.

2771

2772 K.3 CASE STUDY 3: NEUTRAL IMPACT OF RETRIEVAL ON REGULATORY INTERPRETATION

2773

2774

Case Study 3: Neutral Impact of Retrieval on Regulatory Interpretation

2775

2776

Q: "In producing the comprehensive cash flow projections for its U.S. operations, will
 2777 an FBO be required to consolidate cash flows of entities subject to Regulation W,
 2778 such as banks, with cash flows of entities not subject to Regulation W?"

2779

2780

2781

2782

GT: "Yes. As set forth in section 252.156(d) of Regulation YY, an FBO must produce
 2783 comprehensive cash-flow projections for its combined U.S. operations. The
 2784 comprehensive cash-flow projections must include the cash flows of all entities
 2785 included in the combined U.S. operations, regardless of whether the entities are
 2786 subject to Regulation W."

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

base_answer: "In preparing comprehensive cash flow projections for its U.S. operations,
 2803 an FBO (Financial Holding Company) is generally required to consolidate the cash
 2804 flows of all its subsidiaries, including those subject to Regulation W, with the
 2805 cash flows of entities not subject to Regulation W. This consolidation is
 2806 typically required under Generally Accepted Accounting Principles (GAAP) and the
 2807 rules governing financial reporting for holding companies.\n\nHere are some key
 2808 points to consider:\n\n1. Consolidation Requirements: Under GAAP, an FBO must
 2809 consolidate the financial statements of all its subsidiaries, including banks and
 2810 other financial institutions, into its own financial statements. This means that
 2811 the cash flows of all consolidated entities should be included in the FBO's cash
 2812 flow projections.\n\n2. Regulation W: Entities subject to Regulation W, such as
 2813 banks, are part of the FBO's consolidated financial statements. Therefore, their
 2814 cash flows must be included in the FBO's consolidated cash flow projections. This
 2815 includes any cash flows related to loans extended to insiders, which are subject
 2816 to the provisions of Regulation W.\n\n3. Comprehensive Cash Flow Projections: When
 2817 preparing comprehensive cash flow projections, the FBO should consider all
 2818 sources of cash inflows and outflows, including those from its banking
 2819 subsidiaries. This ensures a complete picture of the company's liquidity and
 2820 financial health.\n\n4. Regulatory Compliance: While Regulation W itself does not
 2821 specifically mandate the inclusion of cash flows in projections, the broader
 2822 regulatory framework and the need for accurate financial reporting under GAAP
 2823 require this consolidation.\n\n5. Disclosure Requirements: The FBO must ensure
 2824 that its financial reports and disclosures comply with all applicable regulations,
 2825 including those related to cash flow projections. This includes providing
 2826 transparent and accurate information about the cash flows of all consolidated
 2827 entities.\n\nIn summary, an FBO must consolidate the cash flows of all its
 2828 subsidiaries, including those subject to Regulation W, with the cash flows of
 2829 entities not subject to Regulation W, in order to produce comprehensive and
 2830 accurate cash flow projections for its U.S. operations."

2831

2832

2833

2834

2835

2836

2837

RAG_answer: "Based on the information provided, an FBO (Foreign Banking Organization)
 2838 will be required to consolidate cash flows of entities subject to Regulation W,
 2839 such as banks, with cash flows of entities not subject to Regulation W when
 2840 producing comprehensive cash flow projections for its U.S. operations. Here's the
 2841 reasoning:\n\n1. Regulation W Requirements: The regulations specify that an FBO
 2842 must produce comprehensive cash-flow projections for its combined U.S. operations.
 2843 This includes projecting cash flows arising from transactions with entities that

2808

2809 are not affiliates.
 2810 2. Cash Flow Projections Scope: The cash flow projections
 2811 must account for cash-flow needs and sources resulting from transactions between
 2812 the U.S. intermediate holding company and entities that are not its affiliates.
 2813 This implies that all relevant cash flows, regardless of whether the entities are
 2814 subject to Regulation W, must be included in these projections.
 2815 3. Net Internal
 2816 and External Cash Flow Needs: The calculations for net internal and external
 2817 stressed cash-flow needs involve detailed projections of cash flows from various
 2818 transactions, including those with non-affiliates. These calculations are integral
 2819 parts of the overall cash flow projection process.
 2820 Given these points, it is
 2821 clear that the FBO must consider and include the cash flows of all relevant
 2822 entities, whether or not they are subject to Regulation W, in its comprehensive
 2823 cash flow projections for its U.S. operations. Therefore, the FBO will be required
 2824 to consolidate cash flows of entities subject to Regulation W with those of
 2825 entities not subject to Regulation W."

2826

RAG_retrieved_chunks: "The following information has been retrieved and may be helpful
 2827 :\n1.\n\"\"\"(d) Cash-flow projections.\n(1) For a foreign banking organization
 2828 subject to this subpart must produce comprehensive cash-flow projections for
 2829 its combined U.S. The net external stressed cash-flow need for a U.S.
 2830 intermediate holding company equals the difference between:\n(A) The projected
 2831 amount of cash-flow needs that result from transactions between the U.S.\n(B)
 2832 intermediate holding company and entities that are not its affiliates; and\n(C) The
 2833 projected amount of cash-flow sources that result from transactions between the U.S.
 2834 intermediate holding company and entities that are not its
 2835 affiliates. (C) Net internal group cash flow. For any given day of the planning horizon,
 2836 the net internal group cash flow must equal the difference between:\n(1) The
 2837 amount of projected cash-flow needs resulting from transactions between a U.S.
 2838 branch or U.S. agency and the foreign bank's non-U.S. offices and its
 2839 affiliates; and\n(2) The amount of projected cash-flow sources resulting from
 2840 transactions between a U.S. 12 CFR Part 25.2 (up to date as of 12/14/2023)\nEnhanced Prudent Standards (Regulation Y) 12 CFR 25.2.156(b)(4)\n12
 2841 CF R 25.2.156(d)(1) (enhanced display) page 115 of 192\n(2) The foreign
 2842 banking organization must establish a methodology for making cash-flow projections
 2843 for its combined U.S. to the extent permitted by applicable law.\n(e) Cash-flow
 2844 projections.\n(1) A bank holding company subject to this subpart must
 2845 produce comprehensive cash-flow projections\nthat project cash flows arising
 2846 from assets, liabilities, and off-balance sheet exposures over, at a minimum,
 2847 short-term and long-term time horizons.\n2.\n(e) Cash-flow projections.\n(1) A bank holding company subject to this subpart must produce
 2848 comprehensive cash-flow projections\nthat project cash flows arising from
 2849 assets, liabilities, and off-balance sheet exposures over, at a minimum, short-
 2850 and long-term time horizons. The bank holding company must update short-term
 2851 cash-flow projections daily and must update longer-term cash-flow projections
 2852 at least monthly.\n(b) A branch or U.S. agency and the foreign bank's non-U.S. offices
 2853 and its affiliates.\n(D) Amounts secured by highly liquid assets. For the
 2854 purposes of calculating net internal group cash flow of the U.S. branches and
 2855 agencies under this paragraph, the amounts of\nintragroup cash-flow needs and
 2856 intragroup cash-flow sources that are secured by highly liquid assets (as
 2857 defined in paragraph (c)(7) of this section) must be excluded from the
 2858 calculation.\n3.\nFor purposes of this subpart, any company that
 2859 would be an affiliate of a U.S. branch, agency, or commercial lending company of a
 2860 foreign bank if such branch, agency, or commercial lending company were a member
 2861 bank is an affiliate of the branch, agency, or commercial lending company if the
 2862 company also is: (1) Directly engaged in the United States in any of the following
 2863 activities: \nVerDate Sep<11>2014 17:04 Jun 02, Any company that the Board
 2864 determines by regulation or order, or that the appropriate Federal banking agency
 2865 for the member bank determines by order, to have a relationship with the member
 2866 bank, or any affiliate of the member bank, such that covered transactions by the
 2867 member bank with that company may be affected by the relationship to the detriment
 2868 of the member bank. (b) Affiliate with respect to a member bank does not include
 2869 :\n(1) Subsidiaries. Any company that is a subsidiary of the member bank, unless
 2870 the company is: (i) A depository institution; [Reg. V, 72 FR 63758, Nov. 9, 2007,
 2871 as amended at 74 FR 22642, May 14, 2009; 79 FR 30711, May 29, 2014] PART 223
 2872 TRANSACTIONS BETWEEN MEMBER BANKS AND THEIR AFFILIATES (REGULATION W) Subpart
 2873 A Introduction and Definitions Sec. 223.1 Authority, purpose, and scope. 223.2 What
 2874 is an affiliate for purposes of sections 23A and 23B and this part? Provision of
 2875 Regulation W Application (1) 12 CFR 223.2(a)(8) Affiliate includes a financial
 2876 subsidiary. Does not apply. Savings association subsidiaries do not meet the
 2877 statutory definition of financial subsidiary.\n(a) In general. In some situations in
 2878 which a member bank purchases an asset from an affiliate, the asset purchase
 2879 qualifies for an exemption under this regulation, but the member banks resulting
 2880 ownership of the purchased asset also represents a covered transaction (which may
 2881 or may not qualify for an exemption under this part).\n4.\nAffiliate includes a
 2882 offices and its U.S. and non-U.S. affiliates; and\n(2) The projected amount of
 2883 cash-flow sources that result from transactions between the U.S. branches
 2884 and agencies and entities other than the foreign bank's non-U.S. offices and
 2885 its U.S. and non-U.S. affiliates.\n(iv) Net internal stressed cash-flow need
 2886 calculation\n(A) General. The net internal stressed cash-flow need of the U.S. br

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2999

2862
 2863 anches and agencies of the\foreign banking or ganization equals the gr eater of
 2864 :\n(1)The gr eatest daily cumulativ e net intr agroup cash-flow need o ver the
 2865 first 14 da ys of\nthe 30-da y planning horiz on, as calculated under paragraph (c)
 2866)(3)(iv)(B) of this\nsection; and\n(2)Zero.The net external str essed cash-flow
 2867 need for a\nU.S. intermediate holding company equals the diff erence between:\n(A)
 2868 The pr ojected amount of cash-flow needs that r esults fr om tr ansactions between
 2869 the U.S.\nintermediate holding company and entities that ar e not its affiliates;
 2870 and\n(B)The pr ojected amount of cash-flow sour ces that r esults fr om tr
 2871 ansactions between the\nU.S. intermediate holding company and entities that ar e
 2872 not its affiliates.br anch or U.S. agency and the for eign bank' s non-U.S.
 2873 offices and its affiliates.\n(D)Amounts secur ed b y highly liquid assets. For the
 2874 purposes of calculating net intr agrup\ncash flow of the U.S. br anches and
 2875 agencies under this par agraph, the amounts\nintragroup cash-flow needs and
 2876 intr agrup cash-flow sour ces that ar e secur ed b y highly\nliquid assets (as
 2877 defined in paragraph (c)(7) of this section) must be ex cluded fr om the\
 2878 ncalculation.(C)Net intr agrup cash flow .For any giv en da y of the planning
 2879 horiz on, the net intr agrup cash\nflow must equal the diff erence between:\n(1)
 2880 The amount of pr ojected cash-flow needs r esulting fr om tr ansactions between a
 2881 U.S.\nbranch or U.S.\n"\\"n5.\n"\\"n12, 2002, unless otherwise noted.
 2882 Subpart AIntroduction and Definitions 223.1 Authority, purpose, and scope. (a)
 2883 Authority. The Board of Governors of the Federal Reserve System (Board) has issued
 2884 this part (Regulation W) under the authority of sections 23A(f) and 23B(e) of the
 2885 Federal Reserve Act (FRA) (12 U.S.C. 371c(f), 371c1(e)) sec tion 11 of the Home
 2886 Owners Loan Act (12 U.S.C. [Reg. V, 72 FR 63758, Nov. 9, 2007, as amended at 74 FR
 2887 22642, May 14, 2009; 79 FR 30711, May 29, 2014]) PART 223TRANSACTIONS BE-TWEEN
 2888 MEMBER BANKS AND THEIR AFFILIATES (REGULATION W) Subpart AIntroduction and
 2889 Definitions Sec. 223.1 Authority, purpose, and scope. 223.2 What is an affiliate
 2890 for purposes of sections 23A and 23B and this part?(ii) If the Board determines
 2891 that a particular transaction is, in substance, a loan or extension of credit to
 2892 an affil-iate that is engaged in activities other than those described at 12 U.S.C
 2893 . 1467a(c)(2)(F)(i), as defined in 238.54 of Regulation LL (12 CFR 238.54), or the
 2894 Board has other supervisory concerns concerning the transaction, the Board may
 2895 inform the savings association that the transaction is prohibited under this
 2896 paragraph (c)(1), and require the savings association to divest the loan, unwind
 2897 the transaction, or take other appropriate action.12 and the collateral
 2898 requirements of 223.14, and is otherwise permitted under this regulation; or (2)
 2899 Making reference to such a guar-antee, acceptance, letter of credit, or cross-
 2900 affiliate netting arrangement if otherwise required by law. 223.55 What are the
 2901 standards under which the Board may grant exemp-tions from the requirements of sec
 2902 tion 23B?12, 2002, as amended at 73 FR 54308, Sept. 19, 2008; 73 FR 55709, Sept.
 2903 26, 2008; 74 FR 6226, 6227, Feb.\n"\\"n\nPlease answer the following question
 2904 based only on the information above:\nIn producing the comprehensive cash flow
 2905 projections for its U.S. operations, will an FBO be required to consolidate cash
 2906 flows of entities subject to Regulation W, such as banks, with cash flows of
 2907 entities not subject to Regulation W?"
 2908

2909 This question concerns whether a foreign banking organization must consolidate the cash flows of
 2910 entities that are subject to Regulation W with those that are not, when producing comprehensive
 2911 cash-flow projections for its U.S. operations. The gold-standard answer makes the requirement
 2912 clear. Under Regulation YY section 252.156(d), an FBO must generate comprehensive cash-flow
 2913 projections for its combined U.S. operations, and these projections must include all entities within
 2914 that scope, regardless of whether they fall under Regulation W.

2915 The base model, without retrieval, achieves a factual F1 score of about 0.44. Its answer relies mostly
 2916 on accounting logic and the general principle of consolidated reporting. It notes that an FBO, under
 2917 GAAP, consolidates the financial statements of its subsidiaries and therefore should include the cash
 2918 flows of banks subject to Regulation W. Although the answer does not reference Regulation YY
 2919 directly, it still captures part of the key idea in the gold-standard answer, namely that the cash flows
 2920 of these entities must be included.

2921 With retrieval, the factual score remains roughly the same at about 0.44. Retrieval brings in direct
 2922 references to Regulation YY, and the retrieved statements explicitly note that an FBO must produce
 2923 comprehensive projections for its combined U.S. operations and that these projections must include
 2924 both entities subject to Regulation W and entities that are not. However, from the perspective of
 2925 the evaluation metric, the base answer already covers the essential fact that these entities must be
 2926 included. The retrieval-supported answer restates this using more formal regulatory language but
 2927 does not introduce many new factual points that would increase coverage, so the score does not
 2928 improve.

2929 The retrieved source text confirms this pattern. In this case, retrieval mainly improves the clarity,
 2930 structure, and alignment of the answer with the regulatory text, rather than changing the factual

2916 content. As a result, while retrieval makes the answer more authoritative and closer to official
2917 wording, it does not provide a noticeable improvement under a fact-coverage evaluation framework.
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969