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ABSTRACT

Multi-scale features are essential for dense prediction tasks, such as object detec-
tion, instance segmentation, and semantic segmentation. The prevailing methods
usually utilize a classification backbone to extract multi-scale features and then
fuse these features using a lightweight module (e.g., the fusion module in FPN and
BiFPN, two typical object detection methods). However, as these methods allo-
cate most computational resources to the classification backbone, the multi-scale
feature fusion in these methods is delayed, which may lead to inadequate fea-
ture fusion. While some methods perform feature fusion from early stages, they
either fail to fully leverage high-level features to guide low-level feature learn-
ing or have complex structures, resulting in sub-optimal performance. We pro-
pose a streamlined cascade encoder-decoder network, dubbed CEDNet, tailored
for dense prediction tasks. All stages in CEDNet share the same encoder-decoder
structure and perform multi-scale feature fusion within the decoder. A hallmark of
CEDNet is its ability to incorporate high-level features from early stages to guide
low-level feature learning in subsequent stages, thereby enhancing the effective-
ness of multi-scale feature fusion. We explored three well-known encoder-decoder
structures: Hourglass, UNet, and FPN. When integrated into CEDNet, they per-
formed much better than traditional methods that use a pre-designed classification
backbone combined with a lightweight fusion module. Extensive experiments on
object detection, instance segmentation, and semantic segmentation demonstrated
the effectiveness of our method. The code will be made publicly available.

1 INTRODUCTION

In recent years, both convolutional neural networks (CNNs) and transformer-based networks have
achieved remarkable results in various computer vision tasks, including image classification, object
detection, and semantic segmentation. In image classification, the widely-used CNNs (Krizhevsky
et al., 2012; Simonyan & Zisserman, 2015; Szegedy et al., 2015; He et al., 2016; Liu et al., 2022) as
well as the recently developed transformer-based networks (Liu et al., 2021; Yang et al., 2021; Dong
et al., 2022; Zhang et al., 2023b) generally follow a sequential architectural design. They progres-
sively reduce the spatial size of feature maps and make predictions based on the coarsest scale of
features. However, in dense prediction tasks, such as object detection and instance segmentation, the
need for multi-scale features arises to accommodate objects of diverse sizes. Therefore, effectively
extracting and fusing multi-scale features becomes essential for the success of these tasks (He et al.,
2017; Lin et al., 2017b; Tian et al., 2019; Xiao et al., 2018; Zhang et al., 2021; Hu et al., 2022).

Many methods have been proposed for multi-scale feature extraction and fusion (Lin et al., 2017a;
Liu et al., 2018; Ghiasi et al., 2019; Tan et al., 2020). One widely-used model is the feature pyramid
network (FPN) (Lin et al., 2017a) (Figure 1 (a)). FPN consists of a pre-designed classification back-
bone for extracting multi-scale features and a lightweight fusion module for fusing these features.
Moving beyond the FPN, some cascade fusion strategies have been developed and showcased effi-
cacy in multi-scale feature fusion (Liu et al., 2018; Ghiasi et al., 2019; Tan et al., 2020). Figure 1 (b)
shows the structure of the representative BiFPN (Tan et al., 2020). It iteratively fuses multi-scale
features using repeated bottom-up and top-down pathways. However, the time for feature fusion in
these networks is relatively late, because they allocate most computational resources to the classifi-
cation backbone to extract the initial multi-scale features. We define the time for feature fusion as
the ratio of the parameters of the sub-network before the first fusion module to the whole network. A
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Figure 1: Comparison among FPN, BiFPN, HRNet, and our CEDNet. H×W denotes the spatial size
of the input image. At the top of each panel, the percentage indicates the time to perform the first
multi-scale feature fusion, while the number in bracket is the number of parameters of the selected
part. For these calculations, we take ConvNeXt-S as the backbone of FPN and BiFPN. While we
illustrate a CEDNet of four scales here for a clearer comparison, it’s noteworthy that in our actual
implementation, feature maps with a resolution of H

4 × W
4 are not included in the CEDNet stages.

smaller ratio indicates an earlier time. For instance, considering an FPN built based on the classifi-
cation model ConvNeXt-S (Liu et al., 2022), the time for feature fusion is the ratio of the parameters
of the backbone ConvNeXt-S to the entire FPN (91.7%). Given the complexity of dense prediction
tasks where models are required to handle objects of diverse sizes, we expect that integrating early
multi-scale feature fusion within the backbone could enhance model performance.

Some methods have transitioned from using pre-designed classification networks to designing task-
specific backbones for dense prediction tasks (Wang et al., 2019; Du et al., 2020; Jiang et al., 2022;
Cai et al., 2023). In these methods, some incorporate early multi-scale feature fusion. For example,
HRNet (Wang et al., 2019), one of the representative works (Figure 1 (c)), aims to learn semanti-
cally rich and spatially precise features. Although HRNet performs the first feature fusion very early
(2.7%), it generates high-level (low-resolution) features with strong semantic information quite late.
This limits their role in guiding the learning of low-level (high-resolution) features that are impor-
tant for dense prediction tasks. In contrast, SpineNet (Du et al., 2020) employs neural architecture
search (NAS) (Zoph & Le, 2017) to learn a scale-permuted backbone with early feature fusion.
Nevertheless, the resulting network is complex and exhibits limited performance when transferred
to different detectors (Du et al., 2020). GiraffeDet (Jiang et al., 2022) integrates a lightweight back-
bone with a heavy fusion module for object detection, aiming to enhance the information exchange
between high-level and low-level features. Yet, it fuses multi-scale features in a fully connected way,
which inevitably increases runtime latency. A detailed discussion of related works can be found in
Section 2.2. Clearly, an appropriate structure for effective early multi-scale feature fusion is lacking.

In this paper, we present CEDNet, a cascade encoder-decoder network tailored for dense prediction
tasks. CEDNet begins with a stem module to extract initial high-resolution features. Following this,
CEDNet incorporates several cascade stages to generate multi-scale features, with all stages sharing
the same encoder-decoder structure. The encoder-decoder structure can be realized in various ways.
Figure 1 (d) illustrates a three-stage CEDNet built on the FPN-style design. CEDNet evenly allo-
cates its computational resources across stages and fuses multi-scale features within each decoder.
As a result, CEDNet performs multi-scale feature fusion from the early stages of the network. This
strategy ensures that high-level features from the early stages are integrated to guide the learning of
low-level features in subsequent stages. Moreover, CEDNet possesses a more streamlined and effi-
cient structure, making it suitable for a wide variety of models and tasks.

We investigated three well-known methods, i.e., Hourglass (Newell et al., 2016), UNet (Ronneberger
et al., 2015), and FPN (Ghiasi et al., 2019), as the encoder-decoder structure in experiments and
found that they all performed well. Due to the slightly better results of the FPN, it is adopted as the
default encoder-decoder structure in CEDNet for further analysis on object detection, instance seg-
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mentation and semantic segmentation. On the COCO val 2017 for object detection and instance seg-
mentation, the CEDNet variants outperformed their counterparts, i.e., the ConvNeXt variants (Liu
et al., 2022), achieving an increase of 1.9-2.9 % in box AP and 1.2-1.8% in mask AP based on the
popular framework RetinaNet (He et al., 2016) and Mask R-CNN (He et al., 2017). On the ADE20k
for semantic segmentation, the CEDNet variants outperformed their counterparts by 0.8-2.2% mIoU
based on the renowned framework UperNet (Xiao et al., 2018). These results demonstrate the excel-
lent performance of CEDNet and encourage the community to rethink the prevalent model design
principle for dense prediction tasks.

2 RELATED WORK

2.1 MULTI-SCALE FEATURE FUSION

Many methods adopt pre-designed classification backbones to extract multi-scale features. However,
the low-level features produced by traditional classification networks are semantically weak and ill-
suited for downstream dense prediction tasks. To tackle this limitation, many strategies (Lin et al.,
2017a; Liu et al., 2018; Tan et al., 2020; Chen et al., 2018; Ghiasi et al., 2019) have been proposed
for multi-scale feature fusion. In semantic segmentation, DeeplabV3+ (Chen et al., 2018) fuses
low-level features with semantically strong high-level features produced by atrous spatial pyramid
pooling. In object detection, FPN (Lin et al., 2017a) introduces a top-down pathway to sequentially
combine high-level features with low-level features. NAS-FPN (Ghiasi et al., 2019) fuses multi-
scale features by repeated fusion stages searched by neural architecture search (Zoph & Le, 2017).
EfficientDet (Tan et al., 2020) adopts a weighted bi-directional feature pyramid network in conjunc-
tion with a compound scaling rule to achieve efficient feature fusion. A common drawback of these
methods is that they allocate most computational resources to the classification backbone, delaying
feature fusion and potentially undermining fusion effectiveness. In contrast, our approach evenly
allocates computational resources to multiple stages and perform feature fusion within each stage.

2.2 BACKBONE DESIGNS FOR DENSE PREDICTION

Instead of fusing multi-scale features from pre-designed classification networks, some studies have
attempted to design task-specific backbones for dense prediction tasks (Ronneberger et al., 2015;
Newell et al., 2016; Wang et al., 2019; Du et al., 2020; Jiang et al., 2022; Liu et al., 2020; Qiao
et al., 2021; Cai et al., 2023). For instance, UNet (Ronneberger et al., 2015) employs a U-shape
structure to acquire high-resolution and semantically strong features in medical image segmentation.
Hourglass (Newell et al., 2016) introduces a convolutional network consisting of repeated bottom-
up and top-down pathways for human pose estimation. HRNet (Wang et al., 2019) retains high-
resolution features throughout the whole network and performs well in semantic segmentation and
human pose estimation. In object detection, SpineNet (Du et al., 2020) leverages neural architecture
search (Zoph & Le, 2017) to learn scale-permuted backbones. GiraffeDet (Jiang et al., 2022) pairs a
lightweight backbone with a heavy fusion module to encourage dense information exchange among
multi-scale features. RevCol (Cai et al., 2023) feeds the input image to several identical subnetworks
simultaneously and connects them through reversible transformations.

While the aforementioned methods incorporate early multi-scale feature fusion, they either exhibit
effectiveness solely on specific models and tasks (Ronneberger et al., 2015; Newell et al., 2016; Du
et al., 2020), or do not fully harness the potential of high-level features to guide the learning of low-
level features (Wang et al., 2019; Cai et al., 2023). In contrast, our method incorporates multiple
cascade stages to iteratively extract and fuse multi-scale features. Therefore, the high-level features
from early stages can be integrated to instruct the learning of low-level features in subsequent stages.
Moreover, CEDNet showcases excellent performance across a broad spectrum of models and tasks.

3 CEDNET

3.1 OVERALL ARCHITECTURE

Figure 2 illustrates the overall architecture of CEDNet. The input RGB image with a spatial size
of H×W is fed into a stem module to extract high-resolution feature maps of size H

8 ×
W
8 . The
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Figure 2: Three implementations of CEDNet. The input image with a spatial size of H×W is fed
into a lightweight stem module to extract high-resolution features of size H

8 ×
W
8 . These features are

then processed through m cascade stages to extract multi-scale features. Block denotes CED block,
and LR Block denotes long-range (LR) CED block. The down-sampling layers (2×2 convolution
with stride 2) and the up-sampling layers (bilinear interpolation) are omitted for clarity.

stem module comprises two sequential 3×3 convolutional layers (each with a stride of 2), n0 CED
blocks, and a 2×2 convolutional layer with a stride of 2. Each 3×3 convolutional layer is followed
by a LayerNorm (Ba et al., 2016) layer and a GELU (Hendrycks & Gimpel, 2016) unit. The further
details about the CED block can be found in Section 3.3. Subsequently, m cascade stages, each
with the same encoder-decoder structure, are utilized to extract multi-scale features. The multi-scale
features from the final decoder are then fed into downstream dense prediction tasks. Unlike in FPN
and BiFPN, no extra feature fusion modules are required after the CEDNet backbone. We discuss
three implementations of the encoder-decoder structure in Section 3.2.

3.2 THREE ENCODER-DECODER STRUCTURES

In CEDNet, each stage employs an encoder-decoder structure. The encoder extracts multi-scale fea-
tures, while the decoder integrates these features into single-scale, highest-resolution ones. Conse-
quently, the high-level (low-resolution) features from early stages are integrated to guide the learning
of low-level features in subsequent stages. While many methods can be used to realize the encoder-
decoder structure, we adopt three well-known methods for our purposes in this study.

Hourglass-style. The Hourglass network (Newell et al., 2016) is a deep learning architecture specif-
ically designed for human pose estimation. It resembles an encoder-decoder design but stands out
with its symmetrical hourglass shape, from which its name is derived. In this study, we draw inspi-
ration from the Hourglass architecture to devise an hourglass-style encoder-decoder (Figure 2 (a)).
In alignment with the original design, a CED block is employed to transform the feature maps from
the encoder before integrating them into the symmetrical feature maps in the decoder.
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UNet-style. UNet is a prominent network primarily employed in medical image segmentation (Ron-
neberger et al., 2015). Recent advancements have also shown its successful application in diffusion
models (Zhang et al., 2023a). As illustrated in Figure 2 (b), the UNet-style encoder-decoder has
a symmetrical shape. Unlike the hourglass-style design, identity skip connections are harnessed to
bridge the symmetrical feature maps between the encoder and the decoder.

FPN-style. FPN (Lin et al., 2017a) is initially designed for object detection and instance segmenta-
tion, aiming to fuse multi-scale features from pre-designed classification networks. In this work, we
incorporate the FPN-style encoder-decoder as a separate stage in CEDNet, as shown in Figure 2 (c).
Different from the standard FPN implementation, we eliminate the 3×3 convolutions responsible
for transforming the merged symmetrical feature maps. As a result, most computational resources
are allocated to the encoders, with only two 1×1 convolutions in each decoder for feature channel
alignment.

3.3 BLOCK DESIGNS

CED block. The solid elements in Figure 3 illustrate the general struc-
ture of the CED block. This block comprises a token mixer for spatial
feature interactions and a multi-layer perceptron (MLP) with two layers
for channel feature interactions. The token mixer can be various existing
designs, such as the 3×3 convolution in ResNet (He et al., 2016), the
7×7 depth-wise convolution in ConvNeXt (Liu et al., 2022), and the lo-
cal window attention in Swin transformer (Liu et al., 2021). In CEDNet,
we take the lightweight 7×7 depth-wise convolution from ConvNeXt as
the default token mixer. Please note that a more powerful token mixer
may yield enhanced performance, but that is not the focus of this work.

LR CED block. To increase the receptive field of neurons, we introduce
the LR CED block. Beyond the CED block, this block incorporates a 7×7
dilated depth-wise convolution accompanied by two skip connections, as
highlighted by the dashed elements. By integrating the dilated depth-
wise convolution, the LR CED block is capable of capturing long-range
dependencies among spatial features with only a marginal increase in
parameters and computational overhead. The LR CED blocks are utilized
to transform the lowest-resolution features in each CEDNet stage.

MLP

Token Mixer

Dilated DW Conv

Figure 3: Structure of the
CED block and the LR CED
block. The CED block con-
sists solely of solid elements,
while the LR CED block in-
cludes both solid and dashed
elements. DW Conv is short
for depth-wise convolution.

3.4 ARCHITECTURE SPECIFIACTIONS

We have constructed three CEDNet variants based on the FPN-style encoder-decoder, i.e., CEDNet-
NeXt-T/S/B, where the suffixes T/S/B indicate the model size tiny/small/base. We take the 7×7
depth-wise convolution from ConvNeXt as the default token mixer for all (LR) CED blocks. For
all LR CED blocks, we set the dilation rate r of the dilated convolution to 3. These variants adopt
different channel dimensions C, different numbers of blocks B = (n0, n1, n2, n3), and different
numbers of stages m. The configuration hyper-parameters for these variants are presented below:

• CEDNet-NeXt-T: C=(96, 192, 352, 512), B=(3, 2, 4, 2), m=3

• CEDNet-NeXt-S: C=(96, 192, 352, 512), B=(3, 2, 7, 2), m=4

• CEDNet-NeXt-B: C=(128, 256, 448, 704), B=(3, 2, 7, 2), m=4

4 EXPERIMENTS

4.1 THREE ENCODER-DECODER STRUCTURES

We conducted experiments to compare the three encoder-decoder structures.

Pre-training settings. Following common practice (Liu et al., 2021; 2022), we pre-trained CED-
Net on the ImageNet-1K dataset (Deng et al., 2009). The ImageNet-1K dataset consists of 1000
object classes with 1.2M training images. To perform classification, we removed the last decoder
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Table 1: Comparison among three encoder-decoder structures. AP b is the overall detection accuracy
on COCO val2017. The model inference speed FPS was measured on a single RTX 3090 GPU.

Method Param FLOPs APb APb
50 APb

75 FPS↑
ConvNeXt-T w/ FPN (Lin et al., 2017a) 39M 243G 45.4 66.5 48.7 20.0
ConvNeXt-T w/ NAS-FPN (Ghiasi et al., 2019) 47M 289G 46.6 66.8 49.9 18.1
ConvNeXt-T w/ BiFPN Tan et al. (2020) 39M 248G 46.7 67.1 50.2 16.8

HRNet-w32 (Wang et al., 2019) 39M 320G 45.7 66.5 49.2 15.9
SpineNet-96 (Du et al., 2020) 43M 265G 47.1 67.1 51.1 16.3
GiraffeDet-D11 (Jiang et al., 2022) 69M 275G 46.6 65.0 51.1 12.4

CEDNet-NeXt-T (Hourglass-style) 39M 255M 47.4 68.5 50.7 15.9
CEDNet-NeXt-T (UNet-style) 39M 255M 47.9 68.9 51.4 16.7
CEDNet-NeXt-T (FPN-style) 39M 255M 48.3 69.1 51.6 17.1

and attached a classification head on the lowest-resolution features from the last stage. The hyper-
parameters, augmentation and regularization strategies strictly follows (Liu et al., 2022).

Pre-training results. We built the CEDNet models using three different encoder-decoder structures.
Appendix A presents the results of the CEDNet models on ImageNet-1K in comparison with some
recent methods in image classification. We report the top-1 accuracy on the validation set. Table A1
shows that the CEDNet models slightly outperformed their counterparts, i.e., the ConvNeXt variants.
Please note that the CEDNet is specifically designed for dense prediction tasks, and surpassing
state-of-the-art methods in image classification is not our goal.

Fine-tuning settings. We fine-tuned models on object detection with COCO 2017 (Lin et al., 2014)
based on the well-known detection framework RetinaNet (Lin et al., 2017b) using the MMDetection
toolboxes (Chen et al., 2019). For training settings, we mainly followed (Liu et al., 2022). Addi-
tionally, we found that the proposed CEDNet models were easy to overfit the training data. To fully
explore the potential of CEDNet models, we used large scale jittering and copy-and-paste data aug-
mentation following (Ghiasi et al., 2021), but only with box annotations. We re-trained all baseline
models with the same data augmentation for a fair comparison.

Fine-tuning results. Table 1 shows that all three CEDNet models yielded significant gains over the
models with FPN, NAS-FPN, and BiFPN, all of which utilize the classification network ConvNeXt-
T to extract initial multi-scale features. This result validates the effectiveness of the cascade encoder-
decoder network that performs multi-scale feature fusion from early stages. In addition, the CED-
Net models surpassed other early feature fusion methods: HRNet, SpineNet, and GiraffeDet. We
attempted to pre-train the entire BiFPN model by attaching a classification head to the coarsest fea-
ture maps of the last bottom-up pathway in the fusion module. However, we obtained poor results,
i.e., 76.8% top-1 accuracy on ImageNet and 39.4% box AP on COCO.

Since the model built on the FPN-style encoder-decoder slightly outperformed the models built on
the UNet-style and Hourglass-style encoder-decoder in both detection accuracy and model inference
speed, we adopted the FPN-style encoder-decoder for CEDNet by default in subsequent experiments.

4.2 OBJECT DETECTION ON COCO

Settings. We benchmark our models on object detection with COCO 2017 (Lin et al., 2014) based
on four representative frameworks, i.e., Deformable DETR (Zhu et al., 2021), RetinaNet (Lin et al.,
2017b), Mask R-CNN (He et al., 2017), and Cascade Mask R-CNN (Cai & Vasconcelos, 2018). All
training settings were same as the fine-tuning settings in Section 4.1.

Main results. Table 2 presents the object detection results of the CEDNet models to compare
with other methods. The CEDNet models yielded significant gains over the ConvNeXt models.
Specifically, CEDNet-NeXt-T achieved 2.2%, 2.9%, 2.8%, and 1.7% box AP improvements over its
counterpart ConvNeXt-T based on the Deformable DETR, RetinaNet, Mask R-CNN, and Cascade
Mask R-CNN, respectively. When scaled up to CEDNet-NeXt-S, CEDNet still outperformed its
baseline ConvNeXt-S by 1.3%, 2.2%, 1.9%, and 1.6% box AP based on the four detectors.
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Table 2: Results of object detection and instance segmentation on the COCO val2017. APb and APm

are the overall metrics for object detection and instance segmentation, respectively. If required, FPN
was adopted as the default fusion module for methods except CEDNet and the models marked by †

(a) Deformable DETR

Method Param FLOPs APb APb
50 APb

75 APb
S APb

M APb
L

ConvNeXt-T 42M 231G 47.1 66.7 51.8 28.8 50.5 62.3
ConvNeXt-S 64M 317G 49.0 68.6 53.7 31.2 52.4 64.5
CEDNet-NeXt-T 43M 223G 49.3 69.1 53.7 32.1 52.8 65.3
CEDNet-NeXt-S 65M 304G 50.3 70.2 55.2 32.3 54.6 65.2

(b) RetinaNet

Backbone Param FLOPs APb APb
50 APb

75 APb
S APb

M APb
L

SpineNet-143† (Du et al., 2020) 67M 524G 48.1 67.6 52.0 30.2 51.1 59.9
Swin-T (Liu et al., 2021) 39M 245G 45.0 65.9 48.4 29.7 48.9 58.1
Swin-S (Liu et al., 2021) 60M 335G 46.4 67.0 50.1 31.0 50.1 60.3
Swin-B (Liu et al., 2021) 98M 477G 45.8 66.4 49.1 29.9 49.4 60.3

ConvNeXt-T 39M 243G 45.4 67.0 48.7 29.5 49.9 59.9
ConvNeXt-S 60M 329G 47.4 68.3 51.2 32.0 51.5 61.6
CEDNet-NeXt-T 39M 255G 48.3 69.1 51.6 33.2 53.1 62.7
CEDNet-NeXt-S 61M 335G 49.6 70.8 53.2 34.8 54.0 63.5

(c) Mask R-CNN

Backbone Param FLOPs APb APb
50 APb

75 APm APm
50 APm

75

DetectoRS-50† (Qiao et al., 2021) 105M 432G 46.2 65.1 50.2 40.4 62.5 43.5
Swin-T (Liu et al., 2021) 48M 264G 46.0 68.1 50.3 41.6 65.1 44.9
Swin-S (Liu et al., 2021) 69M 354G 48.5 70.2 53.5 43.3 67.3 46.6
FocalNet-S (Yang et al., 2022) 72M 365G 49.3 50.9 54.6 44.1 67.9 47.4
Swin-B (Liu et al., 2021) 107M 496G 48.5 69.8 53.2 43.4 66.8 46.9
FocalNet-B (Yang et al., 2022) 114M 507G 49.8 70.7 54.2 43.8 68.2 47.2

ConvNeXt-T 48M 262G 46.4 68.1 51.3 42.3 65.2 45.9
ConvNeXt-S 70M 348G 48.5 70.0 53.3 43.8 67.2 47.7
CEDNet-NeXt-T 49M 274G 49.2 70.3 53.7 44.1 67.8 47.5
CEDNet-NeXt-S 72M 355G 50.4 71.7 55.1 45.0 68.9 48.6

(d) Cascade Mask R-CNN

Backbone Param FLOPs APb APb
50 APb

75 APm APm
50 APm

75

CBNet-X152 (Liu et al., 2020) 238M 1358G 50.7 69.8 55.5 43.3 66.9 46.8
Swin-T (Liu et al., 2021) 86M 745G 50.5 69.3 54.9 43.7 66.6 47.1
RovCol-T (Cai et al., 2023) 88M 741G 50.6 68.9 54.9 43.8 66.7 47.4
Swin-S (Liu et al., 2021) 107M 838G 51.8 70.4 56.3 44.7 67.9 48.5
RovCol-S (Cai et al., 2023) 118M 833G 52.6 71.1 56.8 45.5 68.8 49.0
Swin-B (Liu et al., 2021) 145M 982G 51.9 70.5 56.4 45.0 68.1 48.9
RovCol-B (Cai et al., 2023) 196M 988G 53.0 71.4 57.3 45.9 69.1 50.1

ConvNeXt-T 86M 741G 50.8 69.4 55.2 44.5 66.9 48.5
ConvNeXt-S 108M 827G 51.9 71.0 56.6 45.4 68.6 49.5
ConvNeXt-B 146M 964G 52.7 71.3 57.2 45.6 68.9 49.5
CEDNet-NeXt-T 87M 753G 52.5 71.4 56.8 45.9 69.0 49.7
CEDNet-NeXt-S 110M 833G 53.5 72.4 58.1 46.7 69.9 50.6
CEDNet-NeXt-B 148M 968G 53.6 72.6 57.8 46.9 70.2 51.0

4.3 INSTANCE SEGMENTATION ON COCO

Settings. We conducted experiments on instance segmentation with COCO 2017 (Lin et al., 2014)
based on the commonly used Mask R-CNN (He et al., 2017) and Cascade Mask R-CNN (Cai & Vas-
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Table 3: Results of semantic segmentation on the ADE20K validation set. The superscripts ss and
ms denote single-scale and multi-scale testing. FPN was adopted as the default fusion module for
methods except CEDNet. No extra fusion modules were required after the CEDNet backbone.

Method Param. FLOPs Input size mIoUss mIoUms

Focal-T (Yang et al., 2021) 62M 998G 5122 45.5 47.0
RovCol-T (Cai et al., 2023) 60M 937G 5122 47.4 47.6
Swin-S (Liu et al., 2021) 81M 1038G 5122 47.6 49.5
Focal-S (Yang et al., 2021) 85M 1130G 5122 48.0 50.0
RovCol-S (Cai et al., 2023) 90M 1031G 5122 47.9 49.0
Swin-B (Liu et al., 2021) 121M 1188G 5122 48.1 49.7
Focal-B (Yang et al., 2021) 126M 1354G 5122 49.0 50.5
RovCol-B (Cai et al., 2023) 122M 1169G 5122 49.0 50.1

ConvNeXt-T (Liu et al., 2022) 60M 939G 5122 46.0 46.7
ConvNeXt-S (Liu et al., 2022) 82M 1027G 5122 48.7 49.6
ConvNeXt-B (Liu et al., 2022) 122M 1170G 5122 49.1 49.9
CEDNet-NeXt-T 61M 962G 5122 48.3 48.9
CEDNet-NeXt-S 83M 1045G 5122 49.8 50.4
CEDNet-NeXt-B 123M 1184G 5122 49.9 51.0

concelos, 2018) following (Liu et al., 2022; 2021). These two frameworks perform object detection
and instance segmentation in a multi-task manner. All training settings were same as Section 4.1.

Main results. Table 2 presents the instance segmentation results (see the columns for metrics APm,
APm

50, and APm
75). Based on Mask R-CNN, the models CEDNet-NeXt-T and CEDNet-NeXt-S out-

performed their counterparts ConvNeXt-T and ConvNeXt-S by 1.8% and 1.2% mask AP, respec-
tively. When applied to the more powerful Cascade Mask R-CNN, the proposed CEDNet models
still yielded 1.3-1.4% mask AP gains over the baseline models. These improvements were consis-
tent with those in object detection. When scaled up to the larger model CEDNet-NeXt-B, CEDNet
achieved 46.9% mask AP based on the Cascade Mask R-CNN.

4.4 SEMANTIC SEGMENTATION ON ADE20K

Settings. We conducted experiments on semantic segmentation with the ADE20k (Zhou et al.,
2017) dataset based on UperNet (Xiao et al., 2018) using the MMSegmentation (Contributors, 2020)
toolboxes, and report the results on the validation set. The training settings strictly follow (Liu et al.,
2022). As the data augmentation strategies used for semantic segmentation were strong enough to
train the proposed CEDNet models, no extra data augmentation was introduced.

Main results. Table 3 presents the semantic segmentation results. Compared with the ConvNeXt
models, CEDNet achieved 0.8-2.2% mIoU gains in the multi-scale test setting with different model
variants, which demonstrates the effectiveness of our method in semantic segmentation.

4.5 ABLATION STUDIES

To better understand CEDNet, we ablated some key components and evaluated the performance in
object detection based on CEDNet-NeXt-T and RetinaNet. Models in Tables 4 and 6 were pre-
trained on ImageNet for 100 epochs and fine-tuned on COCO for 12 epochs. The other models were
trained under the same settings as Section 4.1.

Effectiveness of early feature fusion. To explore the effectiveness of early feature fusion, we
constructed several two-stage CEDNet-NeXt-T models varying in fusion time. We modulated the
fusion time of each model by adjusting the computational resources allocated to each stage. All
models have a similar size. Table 4 shows that the detection accuracy (APb) gradually improved as
the time for multi-scale feature fusion becomes earlier, which demonstrates that early feature fusion
is beneficial for dense prediction tasks. Although the two-stage CEDNet models which allocate a
proper proportion of computational resources to each stage performed well, we adopted the same

8
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Table 4: Early feature fusion. ni
1, ni

2, ni
3 are the

number of blocks in the i-th stage.

Time #Stage n1
1, n1

2, n1
3 n2

1, n2
2, n2

3 Param APb

6/6 2 6, 9, 3 - 38M 40.6
5/6 2 5, 10,5 1, 2, 1 38M 42.2
4/6 2 4, 8, 4 2, 4, 2 38M 42.4
3/6 2 3, 6, 3 3, 6, 3 38M 42.9
2/6 2 2, 4, 2 4, 8, 4 38M 43.3
1/6 2 1, 2, 1 5,10, 5 38M 43.3
2/6 3 2, 4, 2 2, 4, 2 39M 43.3

Table 5: Different token mixers. WA and DW
are short for window attention and depth-wise.

Backbone Token mixer Param APb

ResNet-50 Vanilla conv 3×3 38M 41.7
CEDNet-R50-T 39M 45.3
Swin-T Local WA 39M 44.9
CEDNet-Swin-T 37M 47.4
ConvNeXt-T DW conv 7×7 39M 45.4
CEDNet-NeXt-T 39M 48.3
CSwin-T Cross WA 32M 48.0
CEDNet-CSwin-T 33M 49.5

Table 6: Number of stages.

m n1, n2, n3 Param APb

1 6, 9, 3 38M 40.6
2 3, 6, 3 38M 42.9
3 2, 4, 2 39M 43.3
4 1, 4, 1 39M 43.1

Table 7: Data augmentation.

Backbone Aug. APb

ConvNeXt-T Existing 45.2
ConvNeXt-T Ours 45.4
CEDNet-NeXt-T Existing 47.0
CEDNet-NeXt-T Ours 48.3

Table 8: LR CED block.

LR block Param APb

38.5M 47.9
✓ 38.6M 48.3

configuration for all stages by default to simplify the structure design and employed three stages to
achieve early feature fusion instead (the last row in Table 4).

Effectiveness on different token mixers. We constructed the CEDNet models with various token
mixers and compared the resulting models with their counterparts (Table 5). The CEDNet models
consistently surpassed their counterparts by 1.5-3.6% mAP, which underscores the generality of our
CEDNet. While CEDNet yielded better performance when utilizing the more powerful cross-window
attention introduced in CSwin Transformer (Dong et al., 2022), we opted for the more representative
ConvNeXt as our baseline in this work and took the 7×7 depth-wise convolution from ConvNeXt as
the default token mixer for CEDNet.

Different numbers of stages. We built the CEDNet-NeXt-T models with different numbers of
stages while maintaining the same configurations across stages. A model with more stages performs
multi-scale feature fusion earlier. Table 6 shows that the CEDNet-NeXt-T model with three stages
achieved the best detection accuracy. Intuitively, a model with more stages can fuse features more
sufficiently, but more network connections may make it harder to optimize.

Influence of data augmentation. We compared the data augmentation strategy used by (Liu et al.,
2022) and the enhanced data augmentation strategy we adopted for detection fine-tuning. Table 7
shows that the ConvNeXt models achieved similar results under both settings, but our CEDNet
model exhibited notable improvements with the enhanced data augmentation. This may be because
that CEDNet has a higher capacity than ConvNeXt, and the data augmentation strategy for training
the ConvNeXt models are not sufficient to harness the full potential of the CEDNet models.

Effectiveness of the LR CED block. Table 8 shows the results of ablation experiments about the LR
CED block. The model with LR CED block achieved 0.4% box AP gains over the model without LR
CED block. Since the LR CED block only incorporates a lightweight dilated depth-wise convolution
beyond the standard CED block, it introduces negligible increase in parameters (less than 1%).

5 CONCLUSION

We present a universal network named CEDNet for dense prediction tasks. Unlike the widely-used
FPN and its variants that usually employ a lightweight fusion module to fuse multi-scale features
from pre-designed classification networks, CEDNet introduces several cascade stages to learn multi-
scale features. By integrating multi-scale features in the early stages, CEDNet achieves more effec-
tive feature fusion. We conducted extensive experiments on several popular dense prediction tasks.
The excellent performance demonstrates the effectiveness of our method.
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