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Abstract
A multitude of metrics for learning and evaluating
disentangled representations has been proposed.
However, it remains unclear what these metrics
truly quantify and how to compare them. To solve
this problem, we introduce a systematic approach
for transforming an equational definition into a
quantitative metric via enriched category theory.
We show how to replace (i) equality with metric,
(ii) logical connectives with order operations, (iii)
universal quantifier with aggregation, and (iv)
existential quantifier with the best approximation.
Using this approach, we can derive useful metrics
for measuring the modularity and informativeness
of a disentangled representation extractor.

1. Introduction
In supervised learning, we often use a real-valued function
ℓ : Y × Y → R to measure how close a predicted output
f(x) of a function f : X → Y is to a target label y, i.e.,
ℓ(f(x), y), to quantify the cost of inaccurate prediction.
Then, we can use the total cost over a collection of input-
output pairs to measure the performance of a function. From
a functional perspective, this operation induces a “metric”
L : [X,Y ]× [X,Y ] → R between functions:

L(f, g) :=
∑

x ℓ(f(x), g(x)), (1)
where g is a “ground-truth function” that maps each input x
to its target label y. Measurements of this form can be used
as both learning objectives and evaluation metrics. What
does Eq. (1) measure? It measures how much two functions
f and g are equal:

(f = g) := ∀x. (f(x) = g(x)). (2)
However, as the learning problem becomes more complex,
measuring how good a function is becomes a non-trivial
task. The quality of a function cannot always be measured
by how close it is to a fixed ground truth.
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For example, in representation learning (Bengio et al.,
2013), we may want a function to preserve informative
factors in the data (Eastwood & Williams, 2018). Only
when a representation extractor is informative, its output
can be used in downstream tasks without any loss of
distinguishability. This criterion could be formulated as
follows: if two inputs x1 and x2 have different factors,
x1 ̸= x2, then their representations extracted by a function
f : X → Z should be different too, f(x1) ̸= f(x2). This
means that the representation extractor f should be injective,
with regard to certain equality (Mazur, 2008) defined on the
domain X and codomain Z.

There are a few equivalent ways to check if a function is
injective. For example, an injective function f : X → Z is
left-cancellable:
∀g1, g2 : W → X. (f ◦ g1 = f ◦ g2)→ (g1 = g2). (3)

Moreover, an injective function has a left-inverse:
∃g : Z → X. g ◦ f = idX . (4)

To characterize an injective function f , we need to use
(a) other functions g with different domain and codomain,
(b) equality = of functions, (c) function composition ◦,
(d) identity functions id, (e) implication →, (f) universal
quantification ∀, and (g) existential quantification ∃.

Note that unlike the real-valued measurement given by
Eq. (1), Eqs. (2) to (4) are based on predicate logic and
can provide only binary “yes or no” answers. Since the total
cost can be seen as a real-valued measurement for function
equality, it raises the question of whether we can derive
similar real-valued measurements for properties like left-
cancellability, left-invertibility, and injectivity. Measuring
the degree of injectivity of a function enables us to assess
the informativeness of a representation extractor in a more
fine-grained way.

In order to derive real-valued measurements for injectivity
and other properties of a function, (A) we need a systematic
way to enrich an equational definition of a desired property
to a quantitative metric for this property such that the
metric is compatible with the definition; (B) we need a
consistent approach to incorporate composition, implication,
quantification, and other operators; and (C) we also need to
consider whether equivalent definitions lead to consistent
metrics and how to compare and transform different metrics.
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Disentangled representation learning (Bengio et al., 2013)
is such a field where defining the desired properties of
a function and measuring its performance quantitatively
are not straightforward tasks (Zhang & Sugiyama, 2023).
Existing approaches are based on various algebraic or
statistical concepts, such as invariance (Higgins et al., 2017),
independence (Chen et al., 2018), modularity (Ridgeway
& Mozer, 2018), and equivariance (Cohen & Welling,
2014; Higgins et al., 2018). However, comparing different
approaches theoretically has been a challenging task.

To address this, a recent work Zhang & Sugiyama (2023)
proposed to use category theory to unify existing definitions
and shed light on the essence of disentanglement. It was
shown that the cartesian/monoidal product underlies many
different approaches to disentanglement. In this paper, we
further explore this direction and propose to use enriched
category theory (Lawvere, 1973; Kelly, 1982) to study
the relationship between the definitions and metrics of
disentanglement.

Concretely, in this paper, we introduce a systematic method
for quantifying the degree to which a function satisfies a
first-order equational predicate based on quantale-enriched
and metric-enriched categories (Section 2). Then, we apply
this method to derive metrics for measuring two desired
properties — modularity (Section 3) and informativeness
(Section 4) — of a disentangled representation extractor. A
demonstration of the proposed metrics is given in the end.

2. Enrichment: from equality to measurement
In this section, we briefly explain the proposed technique
based on the following definition:

Definition 1 (Compatible functional metrics). Let Q be a
quantale, and V be the category of Q-valued premetrics.
Then, a collection of compatible functional metrics C is
a V-enriched category. If C has a monoidal structure, C
should be a V-enriched monoidal category.

2.1. Quantale

A quantale is a preorder with specified order operations.
Let us explain this concept with two examples: binary truth
values ({⊥,⊤}, ⊢ ) and non-negative extended real-values
([0,∞],≥). The order operations that a quantale support
are listed in Table 1.

Let us explain why these operations are important. Consider
the conjunction a ∧ b of two logical values a and b, which
has the property that c ⊢ a ∧ b if and only if c ⊢ a and
c ⊢ b. We can see its similarity with the maximum because
c ≥ max{a, b} if and only if c ≥ a and c ≥ b. Also, as true
⊤ is the unit of the conjunction, a ∧ ⊤ ≡ a ≡ ⊤ ∧ a, zero
is the unit of the maximum, max{a, 0} = a = max{0, a}.

Table 1: Quantale

(Q,⪯) ({⊥,⊤}, ⊢ ) ([0,∞],≥)

top ⊤ true ⊤ zero 0
bottom ⊥ false ⊥ infinity ∞
meet ∧ conjunction ∧ maximum max
join ∨ disjunction ∨ minimum min
monoidal product ⊕ conjunction ∧ addition +
internal hom ⊸ implication → subtraction −

Moreover, in logic, the implication introduction (deduction
theorem) and elimination (modus ponens) rules ensure that
q ∧ s ⊢ t and q ⊢ s → t are equivalent (Abramsky &
Tzevelekos, 2011). Then, we can find an operation similar
to the implication for the addition of real-values as well: the
(truncated) subtraction satisfies that q + s ≥ t if and only if
q ≥ max{t− s, 0}.

These facts indicate that the concept of quantale can
accommodate both logical and real-valued quantification,
making it possible to analyze the relationship between
equational definitions and quantitative metrics.

2.2. Premetric

Next, we can consider a real-valued premetric between
functions from domain A to codomain B, which is a binary
function d[A,B] : [A,B] × [A,B] → [0,∞] satisfying
d[A,B](f, f) = 0. We only consider premetrics because
some distances commonly used in machine learning such
as the relative entropy (Perrone, 2022) do not satisfy the
symmetry nor the triangle inequality, but we still intend to
incorporate them into the theoretical framework.

2.3. Enrichment

Since we need to consider functions with different domains
and codomains to characterize properties like injectivity,
we have some requirements on the premetrics based on the
properties of the enriched monoidal category. For example:

The composition ◦, which combines functions in series,
satisfies the following inequality:
d[B,C](g, g

′) + d[A,B](f, f
′) ≥ d[A,C](g ◦ f, g

′ ◦ f ′). (5)

The monoidal product ⊗, which combines functions in
parallel, satisfies the following inequality:
d[A,B](f, f

′)+d[C,D](h, h
′) ≥ d[A⊗C,B⊗D](f⊗h, f ′⊗h′).

(6)

3. Measuring modularity
We apply the theory above to derive metrics for measuring
modularity (Ridgeway & Mozer, 2018), a desired property
of a disentangled representation extractor.
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First, we need to define modularity equationally. Zhang
& Sugiyama (2023) revealed that this property can be
defined via the product morphisms in a category. Concretely,
given a data generator g : Y → X that maps a tuple
(y1, . . . , yN ) =: y ∈ Y := Y1 × · · · × YN of factors
to an observation x ∈ X (images, texts, etc.), a good
representation extractor f : X → Z should encode each
factor separately using codes Z := Z1 × · · · × ZN , such
that the composition m = f ◦ g is a product function.

Then, we can derive a real-valued metric from this definition
by replacing the equality = with a (pre)metric d:

Metric 1. A function m : Y → Z is a product function
m =

∏
i mi,i if

∀i ∈ [1..N ]. ∃mi,i : Yi → Zi.

mi : Y → Zi := pi ◦m = mi,i ◦ pi,
(7)

where pi is the projection (pi : Y → Yi or pi : Z → Zi).

The degree to which a function m is a product function
can be measured by the distance between m and its
product function approximation:

max
i∈[1..N ]

min
mi,i:Yi→Zi

max
y∈Y

dZi
(mi(y),mi,i(yi))︸ ︷︷ ︸

d[Y,Zi]
(mi,mi,i◦pi)

. (8)

The corresponding algorithm can be described as follows:

Algorithm 1: Measuring product via approximation

for i ∈ [1..N ] do
Collect a set of instances with the i-th factor yi
fixed and other factors y\i varying;

Calculate their i-th codes mi(yi, y\i);
Construct an approximation mi,i : yi 7→
argminzi∈Zi

maxy\i∈Y\i
dZi

(mi(yi, y\i), zi);

Calculate the distance between the function m and its
product function approximation

∏
i mi,i.

If the codomain metric dZi
is the Euclidean distance, then

the best approximation mi,i maps a factor yi to the center of
the smallest bounding sphere (Welzl, 1991) of the outputs
{mi(yi, y\i) | y\i ∈ Y\i}, and the induced metric is the
maximal radius.

If we do not strictly follow the theory, we may change
the maximization to summation/mean and choose different
distances. Then, we can obtain different approximations.
For example, the (geometric) median minimizes the mean
distance, and the induced metric is the mean absolute
deviation around the median (Weiszfeld, 1937). The mean
minimizes the mean squared distance, and the induced
metric is the variance.

Alternatively, we can determine if a function is a product
by examining whether its exponential transpose is constant
(Zhang & Sugiyama, 2023):

Metric 2. A function m : Y → Z is a product function
if the exponential transpose m̂i : Y\i → [Yi, Zi] of its
i-th component mi : Y → Zi is constant for all i in
[1..N ].

The degree to which a function m is a product function
can be measured by the maximal pairwise distance
between the i-th outputs when the i-th input is fixed:
max

i∈[1..N ]
max

y\i,y
′
\i∈Y\i

max
yi∈Yi

dZi
(mi(yi, y\i),mi(yi, y

′
\i))︸ ︷︷ ︸

d[Yi,Zi]
(m̂i(y\i),m̂i(y

′
\i))

.

(9)

The corresponding algorithm can be described as follows:

Algorithm 2: Measuring product via constancy

for i ∈ [1..N ] do
Collect a set of pairs of instances with the i-th
factor yi fixed and other factors y\i varying;

Calculate their i-th codes mi(yi, y\i) and
mi(yi, y

′
\i);

Calculate all pairwise distances
dZi

(mi(yi, y\i),mi(yi, y
′
\i)) as a constancy

measurement;
Aggregate all constancy measurements.

4. Measuring informativeness
We point out that another desired property of a disentangled
representation extractor — informativeness (Eastwood &
Williams, 2018) — is related to the (split) monomorphisms
in a category (Zhang & Sugiyama, 2023). Using the same
technique, we can derive the following metrics based on
two equivalent definitions:

Metric 3. A function m : Y → Z is left-invertible if
∃h : Z → Y. h ◦m = idY . (10)

The degree of left-invertibility of a function m can be
measured by approximating its left-inverse:

min
h:Z→Y

max
y∈Y

dY (h(m(y)), y)︸ ︷︷ ︸
d[Y,Y ](h◦m,idY )

. (11)

Metric 4. A function m : Y → Z is injective if
∀y, y′ ∈ Y. (m(y) = m(y′))→ (y = y′). (12)

The degree of injectivity of a function m can be
measured by the degree to which m contracts pairs of
inputs:

max
y,y

′∈Y
max{dY (y, y

′)− dZ(m(y),m(y′)), 0}. (13)

A demonstration of the proposed metrics is shown in Fig. 1.
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(a) true factors Y
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approximation

contraction

(b) entangled codes Z (c) product approximation of an
encoder m : Y → Z

(d) linear approximation of its
left-inverse h : Z → Y

Figure 1: (a) a set of factors Y represented by the RGB color model; (b) a set of entangled codes Z extracted by an
encoder m : Y → Z; (c) a product function approximation (m ≈

∏
i mi,i, Metric 1); and (d) a linear approximation of its

left-inverse (h ◦m ≈ idY , Metric 3). Without approximation, we can still measure the modularity of an encoder by using
a set of factors {(y1, y2,3) | y2,3 ∈ Y2 × Y3} with one factor y1 fixed and other factors y2,3 varying (black-edged dots in
Fig. 1a) and their codes {m(y1, y2,3) | y2,3 ∈ Y2×Y3} (dots and their bounding box in Fig. 1b) and measuring the deviation
dZi

(mi(y1, y2,3),mi(y1, y
′
2,3)) (the height of the bounding box, Metric 2). We can also measure the informativeness of an

encoder by measuring how much it contracts pairs of inputs (double-headed arrows in Figs. 1a and 1b, Metric 4).
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