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Abstract
Preference-based reinforcement learning (PbRL)
provides a natural way to align RL agents’ be-
havior with human desired outcomes, but is often
restrained by costly human feedback. To improve
feedback efficiency, most existing PbRL meth-
ods focus on selecting queries to maximally im-
prove the overall quality of the reward model, but
counter-intuitively, we find that this may not nec-
essarily lead to improved performance. To unravel
this mystery, we identify a long-neglected issue
in the query selection schemes of existing PbRL
studies: Query-Policy Misalignment. We show
that the seemingly informative queries selected to
improve the overall quality of reward model actu-
ally may not align with RL agents’ interests, thus
offering little help on policy learning and even-
tually resulting in poor feedback efficiency. We
show that this issue can be effectively addressed
via near on-policy query and a specially designed
hybrid experience replay, which together enforce
the bidirectional query-policy alignment. Simple
yet elegant, our method can be easily incorporated
into existing approaches by changing only a few
lines of code. We showcase in comprehensive
experiments that our method achieves substan-
tial gains in both human feedback and RL sam-
ple efficiency, demonstrating the importance of
addressing query-policy misalignment in PbRL
tasks.

1. Introduction
Reward plays an imperative role in every reinforcement
learning (RL) problem. It specifies the learning objective
and incentivizes agents to acquire correct behaviors. With
well-designed rewards, RL has achieved remarkable suc-
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cess in solving many complex tasks (Mnih et al., 2015;
Silver et al., 2017; Degrave et al., 2022). However, de-
signing a suitable reward function remains a longstanding
challenge (Abel et al., 2021; Li et al., 2023; Singh et al.,
2009; Sorg, 2011). Due to human cognitive bias and system
complexity (Hadfield-Menell et al., 2017), it is difficult to
accurately convey complex behaviors through numerical
rewards, resulting in unsatisfactory or even hazardous agent
behaviors (Li et al., 2023).

Preference-based RL (PbRL), also known as RL from hu-
man feedback (RLHF), promises learning reward functions
autonomously without the need for tedious hand-engineered
reward design (Christiano et al., 2017; Lee et al., 2021a;b;
Park et al., 2022; Liang et al., 2022; Shin et al., 2023; Tien
et al., 2023). Instead of using provided rewards, PbRL
queries a (human) overseer to provide preferences between
a pair of agent’s behaviors, and the RL agent seeks to maxi-
mize a reward function that is trained to be consistent with
human preferences. This approach provides a more natural
way for humans to communicate their desired outcomes
to RL agents, enabling more desirable behaviors (Chris-
tiano et al., 2017). However, labeling a large number of
preference queries requires tremendous human effort, in-
hibiting its wide application in real-world scenarios (Lee
et al., 2021b; Park et al., 2022; Liang et al., 2022).

To enable feedback-efficient PbRL, it is crucial to care-
fully select which behaviors to query the overseer’s pref-
erence and which ones not to, in order to extract as much
information as possible from each preference labeling pro-
cess (Christiano et al., 2017; Lee et al., 2021b; Biyik &
Sadigh, 2018; Biyik et al., 2020). Motivated by this, ex-
isting works focus on querying the most “informative” be-
haviors for preferences that are likely to maximally rec-
tify the overall reward model, such as sampling according
to ensemble disagreements, mutual information, or behav-
ior entropy (Lee et al., 2021b; Shin et al., 2023). How-
ever, it is also observed that these carefully designed query
schemes often only marginally outperform the simplest
scheme that randomly selects behaviors to query human
preferences (Ibarz et al., 2018; Lee et al., 2021b). This
counter-intuitive phenomenon brings about a puzzling ques-
tion: Why are these seemingly informative queries actually
not effective in PbRL training?
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Figure 1: Illustration of query-policy misalignment.

In this paper, we identify a long-neglected issue in the query
schemes of existing approaches that is responsible for their
ineffectiveness: Query-Policy Misalignment. Take Figure 1
as an illustration, Bob is a robot currently attempting to pick
up some blocks, while Joe is a querier selecting the behav-
iors that he considers the most informative for the reward
model to query the overseer. However, the chosen behaviors
may not align with Bob’s current interests. So, even after
the query, Bob is still clueless about how to pick up blocks,
which means that a valuable query opportunity might be
wasted. In Section 4, we provide concrete experiments and
find that such misalignment is prevalent in previous query
schemes. Specifically, we observe that the queried behaviors
often fall outside the scope of the current policy’s visitation
distribution, indicating that they are less likely to be encoun-
tered by the current RL agent, and thus are not what the
current agent is really interested in. Therefore, the queried
behaviors bring little impact on the current policy learning
and result in poor feedback efficiency.

Interestingly, we find that the query-policy misalignment
issue can be easily addressed by near on-policy query se-
lection, which can be implemented by making a simple
modification to existing query schemes. This technique
ensures that the query scheme only selects the recent be-
haviors of RL agents, which in turn enables the overseer to
provide timely feedback on relevant behaviors for current
policy learning rather than some irrelevant experiences. By
making this minimalist modification to the query schemes
of existing methods, we showcase substantial improvements
in terms of both feedback and sample efficiency as com-
pared to the base schemes. Further leveraging the insight
from query-policy misalignment, we introduce a simple tech-
nique, called hybrid experience replay, that simply updates
RL agents using experiences uniformly sampled from not
only the entire replay buffer but also some recent experi-
ences. Intuitively, this technique ensures that the RL agent
updates more frequently on the region where human prefer-
ences have been recently labeled, thereby further aligning
the policy learning with the recent human preferences.

In summary, the combination of near on-policy query selec-
tion and hybrid experience replay establishes bidirectional
query-policy alignment, making every query accountable

for policy learning. Notably, these techniques can be eas-
ily incorporated into existing PbRL approaches (Lee et al.,
2021b; Park et al., 2022) with minimal modifications. We
evaluate our proposed method on benchmark environments
in DeepMind Control Suite (DMControl) (Tassa et al., 2018)
and MetaWorld (Yu et al., 2020). Simple yet elegant, exper-
imental results demonstrate significant feedback and sam-
ple efficiency gains, highlighting the effectiveness of our
proposed method and the importance of addressing query-
policy misalignment in PbRL.

2. Related Work
PbRL provides a natural approach for humans (oracle over-
seer) to communicate desired behaviors with RL agents
by making relative judgments between a pair of behav-
iors (Akrour et al., 2011; Pilarski et al., 2011; Christiano
et al., 2017; Stiennon et al., 2020; Wu et al., 2021). However,
acquiring preferences is typically costly, imposing high de-
mands on feedback efficiency (Lee et al., 2021b; Park et al.,
2022; Liang et al., 2022).

Query selection schemes in PbRL. It is widely acknowl-
edged that the query selection scheme plays a crucial role in
PbRL for improving feedback efficiency (Christiano et al.,
2017; Biyik & Sadigh, 2018; Biyik et al., 2020; Ibarz et al.,
2018; Lee et al., 2021b). Motivated by this idea, prior
works commonly assess the information quality of queries
using metrics such as entropy (Biyik & Sadigh, 2018; Ibarz
et al., 2018; Lee et al., 2021b), the L2 distance in feature
space (Biyik et al., 2020) or ensemble disagreement of the
reward model (Christiano et al., 2017; Ibarz et al., 2018; Lee
et al., 2021b; Park et al., 2022; Liang et al., 2022). Based on
these metrics, researchers often employ complex sampling
approaches such as greedy sampling (Biyik & Sadigh, 2018),
K-medoids algorithm (Biyik & Sadigh, 2018; Rdusseeun &
Kaufman, 1987), or Poisson disk sampling (Bridson, 2007;
Biyik et al., 2020), etc., to sample the most “informative”
queries. Despite adding extra computational costs, it is ob-
served that these complex schemes often benefit little to
policy learning, and sometimes perform similarly to the sim-
plest scheme that directly queries humans with randomly
selected queries (Lee et al., 2021b; Ibarz et al., 2018). In
this paper, we identify a common issue with the existing
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schemes, query-policy misalignment, which shows that the
selected seemingly “informative” queries may not align well
with the current interests of RL agents, providing an expla-
nation of why existing schemes often lead to less improved
feedback efficiency.

Other techniques for improving feedback efficiency. In
addition to designing effective query selection schemes,
there are other efforts to improve the feedback efficiency of
PbRL from various perspectives. For instance, some works
focus on ensuring that the initial queries are feasible for
humans to provide high-quality preferences by initializing
RL agents with imitation learning (Ibarz et al., 2018) or
unsupervised-pretraining (Lee et al., 2021b). (Liang et al.,
2022) shows that adequate exploration can improve both
sample and feedback efficiency. Recently, (Park et al., 2022)
applies pseudo-labeling (Lee et al., 2013) in semi-supervised
learning along with temporal cropping data augmentation to
remedy the limited human preferences and achieves SOTA
performances. Note that our proposed method is orthogonal
to these techniques and can be used in conjunction with any
of them with minimal code modifications.

3. Preliminary
The RL problem is typically specified as a Markov Decision
Process (MDP) (Puterman, 2014), which is defined by a
tuple M := (S,A, r, T, γ). S,A represent the state and
action space, r : S × A → R is the reward function, T :
S ×A → S is the dynamics and γ ∈ (0, 1) is the discount
factor. The goal of RL is to learn a policy π : S → A that
maximizes the expected cumulative discounted reward.

Off-policy actor-critic RL. To tackle the high-
dimensional state-action space, off-policy actor-critic RL
algorithms typically maintain a parametric Q-function
Qθ(s, a) and a parametric policy πϕ(a|s), which are
optimized via alternating between policy evaluation
(Eq. (1)) and policy improvement (Eq. (2)) steps. The
policy evaluation step seeks to enforce Qθ(s, a) to be
consistent with the empirical Bellman operator that backs
up samples (s, a, s′) stored in replay buffer D, while the
policy improvement step improves πϕ via maximizing the
learned Q-value:

Q̂k+1 ← argmin
Q

Es,a,s′∼D[(r(s, a)

+ γEa′∼π̂k(a′|s′)
[
Q̂k (s′, a′)]−Q(s, a))2]

(1)

π̂k+1 ← argmax
π

Es∼D,a∼π(a|s)

[
Q̂k+1(s, a)

]
(2)

Preference-based RL. Different from the standard RL
setting, the reward signal is not available in PbRL. In-
stead, a (human) overseer provides preferences between
pairs of trajectory segments, and the agent leverages these
feedbacks to learn a reward function r̂ψ : S × A → R
to be consistent with the provided preferences. A trajec-
tory segment σ is a sequence of observations and actions

{sk, ak, · · · , sk+L−1, ak+L−1} ∈ (S ×A)L, which is typ-
ically shorter than the whole trajectories. Given a pair of
segments (σ0, σ1), the overseer provides a feedback sig-
nal y indicating which segment the overseer prefer, i.e.,
y ∈ {0, 1}, where 0 indicates the overseer prefers segment
σ0 over σ1, 1 otherwise. Following the Bradley-Terry model
(Bradley & Terry, 1952) , we can model a preference pre-
dictor Pψ using the reward function r̂ψ(s, a):

Pψ
[
σ1 ≻ σ0

]
=

exp
∑
t r̂ψ

(
s1t , a

1
t

)∑
i∈{0,1} exp

∑
t r̂ψ

(
sit, a

i
t

) (3)

where σ1 ≻ σ0 denotes the overseer prefers σ1 than σ0.
Typically, r̂ψ is optimized by minimizing the cross-entropy
loss of preference predictor Pψ and the true preference label
y.

Lreward = − E
(σ0,σ1,y)∼Dσ

[(1− y) logPψ
[
σ0 ≻ σ1

]
+ y logPψ

[
σ1 ≻ σ0

]
]

(4)
where Dσ denotes the preference buffer which stores the
history overseer’s preferences {(σ0, σ1, y)}. Most recent
PbRL methods (Lee et al., 2021b; Park et al., 2022; Liang
et al., 2022) are built upon off-policy actor-critic RL al-
gorithms to enhance sample and feedback efficiency. In
these methods, pairs of segments (σ0, σ1) are selected from
trajectories in the off-policy RL replay buffer D. These se-
lected pairs are then sent to the overseer for preference query,
yielding feedback (σ0, σ1, y). These feedback instances are
subsequently stored in the separate preference buffer Dσ

for reward learning. The query selection scheme refers to
the strategy that decides which pair of segments (σ0, σ1)
should be selected from D for preference query prior to the
reward learning. An effective query selection scheme is of
paramount importance to achieve high feedback efficiency
in PbRL.

4. Query-Policy Misalignment
A motivating example. In this section, we conduct an
intuitive experiment to demonstrate a prevalent but long-
neglected issue: query-policy misalignment, which accounts
for the poor feedback efficiency of existing query selection
schemes. Specifically, as illustrated in Figure 2(a), we con-
sider a 2D continuous space with (x, y) coordinates defined
on [−10, 10]2. For each step, the RL agent can move ∆x
and ∆y ranging from [−1, 1]. We want the agent to navigate
from the start to the goal as quickly as possible. We run
PEBBLE (Lee et al., 2021b), a popular PbRL method, with
two widely used query selection schemes in previous stud-
ies: uniform query selection that randomly selects segments
to query preferences and disagreement query selection that
selects the segments with the largest ensemble disagreement
of preference predictors (Lee et al., 2021b; Christiano et al.,
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Figure 2: Impacts of query-policy misalignment in PbRL training.

Figure 3: Query-policy misalignment

2017; Ibarz et al., 2018; Park et al., 2022). We also run PEB-
BLE with near on-policy query selection that selects the
recently collected segments from the policy-environment
interactions and will be further investigated in later content.
We track the visitation distribution dπ of current agent’s pol-
icy π throughout the training process and plot the selected
segments of different query selection schemes in Figure 2(d).
Please refer to the Appendix B for detailed experimental
setups.

We observe that the selected segments of existing query
selection schemes typically fall outside the scope of the
visitation distribution dπ (marked with green circles). We
refer to this phenomenon as query-policy misalignment, as
illustrated in Figure 3. Such misalignment wastes valuable

feedback because the overseer provides preferences on expe-
riences that are less likely encountered by, or in other words,
irrelevant to the current RL agent’s learning. Therefore,
although these selected segments may improve the overall
quality of the reward model in the full state-action space,
they contribute little to RL training and potentially cause
feedback inefficiency. By contrast, near-on-policy selection
selects fresh segments that are recently visited by the current
RL policy, enabling timely feedback on the current status
of the policy and leading to significant performance gain,
as shown in Figure 2(c). Furthermore, while the learned re-
ward of near on-policy query selection may differ from the
ground truth reward, it provides the most useful information
to guide the agent to navigate toward the right direction and
more strictly discourages detours as compared to the vague
per-step ground truth reward. This suggests that the learned
reward captures more targeted information in solving the
task while also blocking out less useful information in the
ground truth reward, thus enabling more effective policy
learning.

Insights from the theoretical perspective. As mentioned
earlier, existing PbRL methods struggle with feedback inef-
ficiency caused by query-policy misalignment. Surprisingly,
we find that this issue can be easily resolved by two pivotal
techniques: near on-policy query selection and hybrid expe-
rience replay. To provide a comprehensive understanding
of these two techniques, we begin by outlining a theoretical
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analysis that encapsulates the underlying intuition behind
them. Given the learned reward function r̂ψ and the current
stochastic policy π, we denote Qπ

r̂ψ
as the Q-function of

π associated with r̂ψ and Q̂π
r̂ψ

as the estimated Q-function
obtained from the policy evaluation step in Eq. (1), which
serves as an approximation of Qπ

r̂ψ
. Qπ

r denotes the Q-
function of π with true reward r. Define the distribution-
dependent norms ∥f(x)∥µ := Ex∼µ [|f(x)|]. We present
the following theorem:
Theorem 4.1. Given the two conditions ∥r̂ψ − r∥dπ ≤ ϵ

and ∥Qπ
r̂ψ

− Q̂π
r̂ψ
∥dπ ≤ α, the value approximation error

∥Qπ
r − Q̂π

r̂ψ
∥dπ is upper bounded as:

∥Qπ
r − Q̂π

r̂ψ
∥dπ ≤ ϵ

1− γ
+ α (5)

The proof is presented in Appendix A. Note that both the
conditions are dependent on dπ, when they are jointly sat-
isfied, the Q-function of the current policy π with learned
reward can be adequately estimated with bounded devia-
tion from the Q-function of π with true reward. If we look
more closely, the condition ∥r̂ψ − r∥dπ ≤ ϵ implies that
the reward (or preference) prediction should exhibit higher
accuracy within the on-policy distribution dπ , which reveals
why near on-policy selection can boost the performance.
On the other hand, the condition ∥Qπ

r̂ψ
− Q̂π

r̂ψ
∥dπ ≤ α im-

plies that the policy evaluation, based on empirical Bellman
iteration, should also be approximately accurate within dπ .

5. Query-Policy Alignment for
Preference-based RL (QPA)

Inspired by the insights from Theorem 4.1, we introduce
an elegant solution: QPA, which can effectively address
query-policy misalignment and is also compatible with ex-
isting off-policy PbRL methods with only 20 lines of code
modifications. Please see Algorithm 1 for the outline of our
method.

5.1. Near On-policy Query Selection

In contrast to existing query selection schemes, we highlight
that the segment query selection should be aligned with the
on-policy distribution. In particular, it is crucial to ensure
that the pairs of segments (σ0, σ1) selected for preference
queries are within the scope of the current policy’s visitation
distribution dπ. By assigning more overseer’s feedback to
segments obtained from on-policy trajectories of the current
policy π, we aim to enhance the accuracy of the preference
(reward) predictor specifically within the on-policy distri-
bution dπ . This aligns with the intuition from the condition
∥r̂ψ − r∥dπ ≤ ϵ. We refer to this query selection scheme as
on-policy query selection.

In practice, a natural approach to implement on-policy query

selection is to utilize the current policy π to interact with the
environment and generate a set of trajectories. Then, pairs
of segments (σ0, σ1) can be selected from these trajectories
to obtain overseer’s preference query. While such “absolute”
on-policy query selection ensures that all selected segments
conform to the on-policy distribution dπ , it may have a neg-
ative impact on the sample efficiency of off-policy RL due
to the additional on-policy rollout. Instead of performing
the “absolute” on-policy query selection, an alternative is
to select segments that are within or “near” on-policy distri-
bution. As we mentioned in Section 3, in typical off-policy
PbRL, (σ0, σ1) are selected in trajectories sampled from the
RL replay buffer D. A simple yet effective way to perform
near on-policy query selection is to choose (σ0, σ1) from the
most recent trajectories stored in D. For the sake of clarity,
we refer to the buffer that stores the most recent trajectories
as the near on-policy buffer Don. It’s worth noting that this
simple approach strikes a balance between on-policy query
and sample efficiency in RL. Furthermore, it is particularly
easy to implement and enables a minimalist modification to
existing PbRL methods. Take the well-known and publicly-
available B-pref (Lee et al., 2021a) PbRL implementation
framework as an example, all that’s required is to reduce the
size of the first-in-first-out query selection buffer, which can
be thought of as a knockoff of Don.

5.2. Hybrid Experience Replay

Following the near on-policy query selection and reward
learning procedure, it’s also important to ensure that value
learning is aligned with the on-policy distribution. Specifi-
cally, more attention should be paid to improving the verac-
ity of Q-function within on-policy distribution dπ , where the
preference (reward) predictor performs well in the preced-
ing step, in accordance with the insight from the condition
∥Qπ

r̂ψ
− Q̂π

r̂ψ
∥dπ ≤ α in Theorem 4.1.

To update the Q-function, existing off-policy PbRL algo-
rithms perform the empirical Bellman iteration Eq.(1) by
simply sampling transitions (s, a, s′) uniformly from the re-
play buffer D. Although the aforementioned near on-policy
query selection can effectively facilitate the learning of the
reward function within dπ, the Q-function may not be ac-
curately approximated on dπ due to inadequate empirical
Bellman iterations using (s, a, s′) transitions drawn from
dπ . Taking inspiration from combined Q-learning (Zhang &
Sutton, 2017) and some prioritized experience replay meth-
ods that consider on-policyness (Liu et al., 2021; Sinha et al.,
2022), we devise a hybrid experience replay mechanism.
To elaborate, we still sample transitions (s, a, s′) uniformly,
but from two different sources. Specifically, half of the
uniformly sampled transitions are drawn from D, while the
other half are drawn from the near on-policy buffer Don.
The proposed mechanism can provide assurance that the
Q-function is updated adequately near dπ .
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Algorithm 1: QPA
Input :Frequency of overseer feedback K, number of

queries per feedback session M , near on-policy
buffer size N , data augmentation ratio τ

Initialize :Initialize replay buffer D, query buffer Dσ , near
on-policy buffer Don with size N

1 (Option) Unsupervised pretraining (Lee et al., 2021b)
2 for each iteration do
3 Collect and store new experience

D ← D ∪ {(s, a, r, s′)}, Don ← Don ∪ {(s, a, r, s′)}
4 if iteration %K == 0 then

/* Near on-policy query selection
(see Section 5.1) */

5 {(σ0, σ1)}Mi=1 ∼ Don

6 Query for preferences {y}Mi=1, and store preference
Dσ ← Dσ ∪ {

(
σ0, σ1, y

)
}Mi=1

7 for each gradient step do
8 Sample a minibatch preferences

B ←
{
(σ0, σ1, y)

}h
i=1
∼ Dσ

/* Data augmentation for reward
learning (see Section 5.3) */

9 Generate augmented preferences
B̂ ←

{
(σ̂0, σ̂1, y)

}h×τ
i=1

based on B
10 Optimize Lreward in Eq. (4) w.r.t. r̂ψ using B̂

11 for each gradient step do
/* Hybrid experience replay (see

Section 5.2) */

12 Sample minibatch Dmini ← {(s, a, r, s′)}
n
2
i=1 ∼ D,

Don
mini ← {(s, a, r, s′)}

n
2
i=1 ∼ D

on

13 Optimize SAC agent using Dmini ∪ Don
mini

5.3. Data Augmentation for Reward Learning

Besides the above two key designs, we also adopt the tem-
poral data augmentation technique for reward learning (Park
et al., 2022). To further clarify, we randomly subsample
several shorter pairs of snippets (σ̂0, σ̂1) from the queried
segments (σ0, σ1, y), and put these (σ̂0, σ̂1, y) into the pref-
erence buffer Dσ for optimizing the cross-entropy loss in
Eq.(4). Data augmentation has been widely used in many
deep RL (Kostrikov et al., 2020; Laskin et al., 2020b;a)
algorithms, and also has been seamlessly integrated into pre-
vious PbRL algorithms for consistency regularization (Park
et al., 2022). Diverging from the practical implementation
in (Park et al., 2022), we generates multiple (σ̂0, σ̂1, y) in-
stances from a single (σ0, σ1, y), as opposed to generating
only one (σ̂0, σ̂1, y) instance from each (σ0, σ1, y), which
effectively expands the preference dataset. An in-depth abla-
tion analysis of the data augmentation technique is provided
in Section 6.3.

6. Experiment
In this section, we present extensive evaluations on 6 lo-
comotion tasks in DMControl (Tassa et al., 2018) and 3

robotic manipulation tasks in MetaWorld (Yu et al., 2020).
Similar to prior works (Christiano et al., 2017; Lee et al.,
2021b;a; Park et al., 2022; Liang et al., 2022), we assume
the existence of an oracle scripted overseer who provides
preferences y on (σ0, σ1) based on the cumulative ground
truth rewards of each segment defined in the benchmark
environments. We evaluate the performance of PbRL algo-
rithms based on these ground truth reward functions.

6.1. Implementation and Experiment Setups

QPA can be incorporated into any off-policy PbRL algo-
rithms. We implement QPA on top of the widely-adopted
PbRL backbone framework B-Pref (Lee et al., 2021a).

In our experiments, we demonstrate the efficacy of QPA in
comparison to PEBBLE (Lee et al., 2021b) and the SOTA
method, SURF (Park et al., 2022). As QPA, PEBBLE, and
SURF all employ SAC (Haarnoja et al., 2018) for policy
learning, we utilize SAC with ground truth reward as a
reference performance upper bound for these approaches.
For PEBBLE and SURF, we employ the disagreement query
selection scheme in their papers that selects segments with
the largest ensemble disagreement of reward models (Lee
et al., 2021b; Park et al., 2022; Ibarz et al., 2018; Christiano
et al., 2017). To be specific, we train an ensemble of three
reward networks r̂ψ with varying random initializations
and select (σ0, σ1) based on the variance of the preference
predictor Pψ. While leveraging an ensemble of reward
models for query selection may offer improved robustness
and efficacy in complex tasks as observed in (Lee et al.,
2021b; Ibarz et al., 2018), the additional computational cost
incurred by multiple reward models can be unacceptable
in scenarios where the reward model is particularly large,
e.g., large language models (LLM). Hence in QPA, we opt
to use a single reward model and employ near on-policy
query selection (simply randomly selects segments from the
on-policy buffer Don). After all feedback is provided and
the reward learning phase is complete, we switch from the
hybrid experience replay to the commonly used uniform
experience replay for policy evaluation in QPA.

In each task, QPA, SURF, and PEBBLE utilize an equal
amount of total preference queries and the same feedback
frequency for a fair comparison. We perform 10 evaluations
on locomotion tasks and 100 evaluations on robotic manipu-
lation tasks across 5 runs every 104 environment steps and
report the mean (solid line) and 95% confidence interval
(shaded regions) of the results, unless otherwise specified.
Please see Appendix B for more details.

6.2. Benchmarks Tasks with Scripted Teachers

Locomotion tasks in DMControl suite. DMControl
(Tassa et al., 2018) provides diverse high-dimensional
locomotion tasks based on MuJoCo physics (Todorov

6



Query-Policy Misalignment in Preference-Based Reinforcement Learning

Figure 4: Learning curves on locomotion tasks as measured on the ground truth reward. The dashed black line represents the last
feedback collection step.

Figure 5: Learning curves on robotic manipulation tasks as measured on the ground truth success rate. The dashed black line represents
the last feedback collection step.

et al., 2012). We choose 6 complex tasks in DMControl:
Walker walk, Walker run, Cheetah run, Quadruped walk,
Quadruped run, Humanoid stand. Figure 4 shows the learn-
ing curves of SAC (green), QPA (red), SURF (brown), and
PEBBLE (blue) on these tasks. As illustrated in the figure,
QPA enjoys significantly better feedback efficiency and out-
performs SURF and PEBBLE by a substantial margin on all
the tasks. To be mentioned, the SOTA PbRL method SURF
adopts a pseudo-labeling based semi-supervised learning
technique to enhance feedback efficiency. By contrast, QPA
removes these complex designs and achieved consistently
better performance with a minimalist algorithm. To further
demonstrate the feedback efficiency of QPA, we have in-
cluded additional experimental results in Appendix C, show-
casing the performance of these methods under varying

total amounts of feedback and different feedback frequen-
cies. Surprisingly, we observe that in some complex tasks
(e.g., Quadruped walk, Quadruped run), QPA can even sur-
pass SAC with ground truth reward during the early training
stages, despite experiencing stagnation of performance im-
provement as feedback provision is halted in the later stages.
We provide additional experiment results in Section 6.4 to
further elaborate on this phenomenon.

Robotic manipulation tasks in Meta-world. We conduct
experiments on 3 complex manipulation tasks in Meta-world
(Yu et al., 2020): Door-unlock, Drawer-open, Door-open.
The learning curves are presented in Figure 5. Similar to
prior works (Christiano et al., 2017; Lee et al., 2021b;a;
Park et al., 2022; Liang et al., 2022), we employ the ground
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Figure 6: Contribution of each technique in QPA, i.e., near on-policy query (OP), hybrid experience replay (HR), and data augmentation
(DA). The dashed black line represents the last feedback collection step.

(a) Quadruped walk (b) Quadruped run (c) Humanoid stand

Figure 7: Learning curves of QPA compared to SAC with ground truth reward given more overseer feedback throughout the entire
training process .

truth success rate as a metric to quantify the performance
of these methods. Once again, these results provide further
evidence that QPA effectively enhances feedback efficiency
across a diverse range of complex tasks.

6.3. Ablation Study

To evaluate the impact of each design component in QPA,
we incrementally apply near on-policy query (OP), hybrid
experience replay (HR), and data augmentation (DA) to
the backbone algorithm PEBBLE. Figure 6 confirms that
near on-policy query has a positive impact on performance
improvement. Moreover, the combination of near on-policy
query and experience replay proves to be indispensable for
the success of our method. While data augmentation does
not always guarantee performance improvement, it tends
to enhance performance in most cases. We provide more
component analysis results in Appendix C.

QPA also exhibits good hyperparameter robustness and
achieves consistent performance improvement over SURF
and PEBBLE across various tasks with different parameter
values of the query buffer size N and data augmentation
ratio τ . We provide detailed ablation results on hyperparam-
eters in Appendix C. In all the tasks presented in Figure 4
and Figure 5, we utilize a data augmentation ratio of τ = 20.
For locomotion tasks and the majority of manipulation tasks,

we set the size of the near on-policy buffer as N = 10.

6.4. Additional Benefit of the Reward Learned by QPA

As observed in Section 6.2, although SAC with ground truth
reward is expected to attain higher performance as com-
pared to PbRL algorithms built upon SAC, it is found that
QPA can surpass it during the early training stages in certain
tasks. To further investigate this phenomenon, we conduct
experiments that increase the total amount of feedback and
allow the overseer to provide feedback throughout the train-
ing process. As illustrated in Figure 7, QPA often exhibits
faster learning compared to SAC with ground truth reward
in this setting, and in Quadruped run task even achieves
higher scores. This phenomenon may be attributed to the
ability to encode the long-term horizon information of
the reward function learned by QPA, which can be more
beneficial for the current policy to learn and successfully
solve the task. Such a property is also uncovered in the
motivating example in Section 4. This intriguing and note-
worthy phenomenon also highlights the possibility of PbRL
methods with learned rewards outperforming RL methods
with per-step ground truth rewards. We hope that this ob-
servation will inspire further investigations into the essence
of learned rewards in PbRL and foster the development of
more feedback-efficient PbRL methods in the future.

8
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7. Conclusion and Discussion
This paper addresses a long-neglected issue in existing PbRL
studies, namely query-policy misalignment, which hinders
the existing query selection schemes from effectively im-
proving feedback efficiency. To tackle this issue, we propose
a bidirectional query-policy alignment (QPA) approach that
incorporates near on-policy query selection and hybrid ex-
perience replay. QPA can be implemented with minimal
code modifications on existing PbRL algorithms. Simple
yet effective, extensive evaluations on DMControl and Meta-
World benchmarks demonstrate substantial gains of QPA
in terms of feedback and sample efficiency, highlighting
the importance of addressing the query-policy misalignment
issue in PbRL research. However, note that the query-policy
misalignment issue is inherently not present in on-policy
PbRL methods, as they naturally select on-policy segments
to query preferences. These methods, however, suffer from
severe sample inefficiency compared to off-policy PbRL
methods. In contrast, our QPA approach not only enables
sample-efficient off-policy learning, but also achieves high
feedback efficiency, presenting a superior solution for the
practical implementation of PbRL in real-world scenarios.
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A. Proofs
In this section, we present the proof of the theoretical interpretation in Theorem 4.1. Note that we do not aim to provide a
tighter bound but rather to offer an insightful theoretical interpretation to query-policy alignment.

Given the learned reward function r̂ψ , the current stochastic policy π and its state-action visitation distribution dπ , we denote
Qπ
r̂ψ

as the Q-function of π associated with r̂ψ and Q̂π
r̂ψ

as the estimated Q-function obtained from the policy evaluation
step in Eq. (1), which serves as an approximation of Qπ

r̂ψ
. Qπ

r denotes the Q-function of π with true reward r. Define the
distribution-dependent norms ∥f(x)∥µ := Ex∼µ [|f(x)|]. We first recall Theorem 4.1 and then present its proofs.

Theorem 1. Given the two conditions ∥r̂ψ − r∥dπ ≤ ϵ and ∥Qπ
r̂ψ

− Q̂π
r̂ψ
∥dπ ≤ α, the value approximation error

∥Qπ
r − Q̂π

r̂ψ
∥dπ is upper bounded as:

∥Qπ
r − Q̂π

r̂ψ
∥dπ ≤ ϵ

1− γ
+ α (6)

Proof. By repeatedly applying triangle inequality, we have

∥Qπ
r − Q̂π

r̂ψ
∥dπ = ∥Qπ

r −Qπ
r̂ψ

+Qπ
r̂ψ

− Q̂π
r̂ψ
∥dπ

≤ ∥Qπ
r −Qπ

r̂ψ
∥dπ + ∥Qπ

r̂ψ
− Q̂π

r̂ψ
∥dπ

= E(s,a)∼dπ
∣∣∣Qπ

r (s, a)−Qπ
r̂ψ
(s, a)

∣∣∣+ α

= E(s,a)∼dπ |r(s, a) + γEs′∼T,a′∼πQπ
r (s

′, a′)

− r̂ψ(s, a)− γEs′∼T,a′∼πQπ
r̂ψ
(s′, a′)|+ α

≤ ϵ+ γ∥Qπ
r −Qπ

r̂ψ
∥dπ + α

≤ ϵ+ γϵ+ γ2ϵ+ ...+ γ∞ϵ+ α

=
ϵ

1− γ
+ α

(7)

B. Experimental Details
B.1. 2D Navigation Experiment in Section 4

In this section, we present the detailed task descriptions and implementation setups of the motivating example in Section 4.

Task description. As illustrated in Figure 2 (a), we consider a 2D continuous space with (x, y) coordinates defined on
[−10, 10]2. For each step, the RL agent can move ∆x and ∆y ranging from [−1, 1]. The objective for the agent is to
navigate from the starting point (1, 1) to the goal location (10, 10) as quickly as possible. The hand-engineered reward
function (ground truth reward in Figure 2 (b)) to provide preferences is defined as the negative distance to the goal, i.e.,

r(s, a) = −
√
(x− 10)

2
+ (y − 10)

2.

Implementation details. We train PEBBLE (Lee et al., 2021b) using 3 different query selection schemes: uniform query
selection, disagreement query selection, and near on-policy query selection (see Section 5.1). In each feedback session,
we can obtain one pair of segments to query overseer preferences. The total amount of feedback is set to 8. Each segment
contains 5 transition steps. For all schemes, we select the 1st queries using uniform query selection according to PEBBLE
implementation. After the 1st query selection, we start selecting queries using different selection schemes. The 2nd selected
pairs of segments of different schemes are tracked in Figure 3, and the 3rd to 5th selected pairs are tracked in Figure 2 (d).

B.2. DMControl and Meta-world Experiments

B.2.1. TASK DESCRIPTIONS

Locomotion tasks in DMControl suite. DMControl (Tassa et al., 2018) provides diverse high-dimensional locomotion
tasks. For our study, we choose 6 complex tasks Walker walk, Walker run, Cheetah run, Quadruped walk, Quadruped run,
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(a) Walker walk (b) Walker run (c) Cheetah run (d) Quadruped walk (e) Quadruped run (f) Humanoid stand

Figure 8: Rendered images of locomotion tasks from DMControl.

Humanoid stand as depicted in Figure 8. In Walker walk and Walk run, the ground truth reward is a combination of terms
encouraging an upright torso and forward velocity. The observation space is 24 dimensional, and the action space is 6
dimensional. In Cheetah run, the ground truth reward is linearly proportional to the forward velocity up to a maximum
of 10m/s. The observation space is 17 dimensional, and the action space is 6 dimensional. In Quadruped walk and
Quadruped run, the ground truth reward includes the terms encouraging an upright torso and forward velocity. The
observation space is 58 dimensional, and the action space is 12 dimensional. In Humanoid stand, the ground truth reward is
composed of terms that encourage an upright torso, a high head height, and minimal control. The observation space is 67
dimensional, and the action space is 21 dimensional.

Robotic manipulation tasks in Meta-world. Meta-world (Yu et al., 2020) provides diverse high-dimensional robotic
manipulation tasks. For all Meta-world tasks, the observation space is 39 dimensional and the action space is 4 dimensional.
For our study, we choose 3 complex tasks Door unlock, Drawer open, Door open as depicted in Figure 8. For Door unlock,
the goal is to unlock the door by rotating the lock counter-clockwise and the initial door position is randomized. For
Drawer open, the goal is to open a drawer and the initial drawer position is randomized. For Door open, the goal is to
open a door with a revolving joint and the initial door position is randomized. Please refer to (Yu et al., 2020) for detailed
descriptions of the ground truth rewards.

(a) Door unlock (b) Drawer open (c) Door open

Figure 9: Rendered images of robotic manipulation tasks from Meta-world.

B.2.2. IMPLEMENTATION DETAILS

Implementation framework. We implement QPA on top of the widely-adopted PbRL backbone framework B-Pref1 (Lee
et al., 2021a). B-Pref provides a standardized implementation of PEBBLE (Lee et al., 2021b), which can be regarded as the
fundamental backbone algorithm for off-policy actor-critic PbRL algorithms. Therefore, similar to prior works (SURF (Park
et al., 2022), RUNE (Liang et al., 2022), etc), we opt for PEBBLE as our backbone algorithm as well. B-Pref implements 3
distinct buffers: the RL replay buffer D, the query selection buffer D′ and the preference buffer Dσ. D stores historical
trajectories for off-policy RL agent’s training. D′ is a copy of D excluding the predicted reward. It is specifically utilized for
segment query selection. Dσ stores the historical feedback (σ0, σ1, y) for reward training. Every time the reward model
r̂ψ is updated, all of the past experience stored in D is relabeled accordingly. We implement SURF using their officially
released code2, which is also built upon B-Pref.

Query selection scheme. For PEBBLE and SURF, we employ the ensemble disagreement query selection scheme in

1https://github.com/rll-research/BPref
2https://openreview.net/forum?id=TfhfZLQ2EJO
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their papers. To be specific, we train an ensemble of three reward networks r̂ψ with varying random initializations. When
selecting segments from D′, we firstly uniformly sample a large {(σ0, σ1)} batch from D′. Subsequently, we choose
(σ0, σ1) from this batch based on the highest variance of the preference predictor Pψ . For QPA, we simply reduce the size
of D′. This minimal modification ensures that the first-in-first-out buffer D′ exclusively stores the most recent trajectories,
effectively emulating the characteristics of the near on-policy buffer Don. In QPA, instead of utilizing ensemble disagreement
query based on multiple reward models, we use a single reward model and employ near on-policy query selection (simply
randomly selects segments from the near on-policy buffer Don). This approach significantly reduces the computational cost
compared to ensemble disagreement query selection, particularly in scenarios where the reward model is notably large,
such as large language models (LLMs). Although leveraging an ensemble of reward models for query selection may offer
improved robustness and efficacy in complex tasks as observed in (Lee et al., 2021b; Ibarz et al., 2018), we showcase that
QPA, employing the simple near on-policy query selection, can substantially outperform SURF and PEBBLE with ensemble
disagreement query selection.

Data augmentation. In the officially released code of SURF, they implement the temporal data augmentation, which
generates one (σ̂0, σ̂1, y) instance from each (σ0, σ1, y) pair. In contrast to their implementation, in QPA, we generate
multiple (σ̂0, σ̂1, y) instances from a single (σ0, σ1, y) pair, which effectively expands the preference dataset. Specifically,
we sample multiple pairs of snippets (σ̂0, σ̂1) from the queried segments (σ0, σ1, y). These pairs of snippets (σ̂0, σ̂1)
consist of sequences of observations and actions, but they are shorter than the corresponding segments (σ0, σ1). In each pair
of snippets (σ̂0, σ̂1), σ̂0 has the same length as σ̂1, but they have different initial states.

Hyperparameter setting. QPA, PEBBLE, and SURF all employ SAC (Soft Actor-Critic) (Haarnoja et al., 2018) for
policy learning and share the same hyperparameters of SAC. We provide the full list of hyperparameters of SAC in Table 1.
Both QPA and SURF utilize PEBBLE as the off-policy PbRL backbone algorithm and share the same hyperparameters of
PEBBLE as listed in Table 2. The additional hyperparameters of SURF based on PEBBLE are set according to their paper
and are listed in Table 3. The additional hyperparameters of QPA are presented in Table 4.

Table 1: Hyperparameters of SAC

Hyperparameter Value Hyperparameter Value

Discount 0.99 Critic target update freq 2
Init temperature 0.1 Critic EMA 0.005
Alpha learning rate 1e-4 Actor learning rate 5e-4 (Walker walk,
Critic learning rate 5e-4 (Walker walk, Cheetah run,

Cheetah run, Walker run)
Walker run) 1e-4 (Other tasks)

1e-4 (Other tasks) Actor hidden dim 1024
Critic hidden dim 1024 Actor hidden layers 2
Critic hidden layers 2 Actor activation function ReLU
Critic activation function ReLU Optimizer Adam
Bacth size 1024

C. More Experimental Results
In this section, we present more experimental results. For each task, we perform 10 evaluations across 5 runs every 104

environment steps and report the mean (solid line) and 95% confidence interval (shaded regions) of the results, unless
otherwise specified.

C.1. Results under Varying Total Feedback and Feedback Frequencies

To further demonstrate the feedback efficiency of QPA, we compare its performance with that of SURF and PEBBLE under
varying total feedback and different feedback frequencies on certain locomotion tasks. As illustrated in Figure 10-13, QPA
(red) consistently outperforms SURF (brown) and PEBBLE (blue) across a wide range of total feedback quantities and
feedback frequencies.
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Table 2: Hyperparameters of PEBBLE

Hyperparameter Value

Length of segment 50
Unsupervised pre-training steps 9000
Total feedback 100 (Walker walk, Cheetah run, Walker run)

1000 (Quadruped walk, Quadruped walk)
2000 (Door unlock)
3000 (Drawer open, Door open)
10000 (Humanoid stand)

Frequency of feedback 5000 (Humanoid stand, Drawer open, Door open)
20000 (Walker walk, Cheetah run, Walker run, Door unlock)
30000 (Quadruped walk, Quadruped walk)

# of queries per session 10 (Walker walk, Cheetah run, Walker run)
30 (Drawer open, Door open)
50 (Humanoid stand)
100 (Quadruped walk, Quadruped walk, Door unlock)

Size of query selection buffer 100

Table 3: Additional hyperparameters of SURF

Hyperparameter Value

Unlabeled batch ratio 4
Threshold 0.999 (Cheetah run), 0.99 (Other tasks)
Loss weight 1
Min/Max length of cropped segment [45, 55]
Segment length before cropping 60

Table 4: Additional hyperparameters of QPA

Hyperparameter Value

Size of near on-policy buffer N 30 (Drawer open), 10 (Other tasks)
Data augmentation ratio τ 20
Min/Max length of subsampled snippets [35, 45]

C.2. Additional Ablation Study

We emphasize that the outstanding performance of QPA, as demonstrated in Section 6, was not achieved by meticulously
selecting QPA’s hyperparameters. On the contrary, as indicated in Table 4, we consistently use a data augmentation ratio of
τ = 20 across all tasks and use a near on-policy buffer size of N = 10 in the majority of tasks. To delve deeper into the
impact of hyperparameters on QPA’s performance, we conduct an extensive ablation study across a range of tasks. The total
amount of feedback and feedback frequency remain unchanged from Section 6.

Effect of data augmentation ratio τ . The data augmentation ratio, denoted as τ , represents the number of instances
(σ̂0, σ̂1, y) generated from a single pair (σ0, σ1, y). To explore the impact of the data augmentation ratio on QPA’s
performance, we evaluate the performance of QPA under different data augmentation ratios τ ∈ {0, 10, 20, 100}. Figure
14 illustrates that QPA consistently demonstrates superior performance across a diverse range of data augmentation ratios.
While a larger data augmentation ratio does not necessarily guarantee improved performance, it is worth noting that τ = 20
is generally a favorable choice in most cases.

Effect of near on-policy buffer size N . The size of the on-policy buffer, denoted as N , signifies the number of the recent
trajectories stored in the first-in-first-out buffer Don. A larger N implies that the near on-policy buffer Don contain additional
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historical trajectories generated by a past policy π′ that may be significantly different from the current policy π, potentially
deviating from the main idea of near on-policy query selection. Therefore, it is reasonable for QPA to opt for a smaller
value of N . To further investigate how the on-policy buffer size affects QPA’s performance, we evaluate the performance of
QPA under different on-policy buffer sizes N ∈ {5, 10, 50}. Figure 15 demonstrates QPA consistently showcases superior
performance, particularly when using a smaller value for N .

In Quadruped run, it is observed that QPA with N = 50 does not exhibit improved performance. This outcome can be
attributed to the fact that the larger value of N compromises the essence of near “on-policy” within Don. This once again
highlights the significance of the near on-policy query selection principle. A smaller value of N may not always result in
a significant improvement in performance. This could be because the pair of segments selected from a very small near
on-policy buffer is more likely to be similar to each other, resulting in less informative queries. Overall, it is generally
considered favorable to select N = 10 for achieving better performance.

Additional component analysis. To further evaluate the impact of each design component in QPA, we provide more
component analysis results in Figure 16. Based on the results presented in Section 6.3, we conduct a supplementary
experiment where we solely employ the hybrid experience replay (HR) component in QPA. It is worth noting that in
certain tasks, using only the hybrid experience replay technique can result in slightly improved performance. This could be
attributed to the advantage of on-policyness (Liu et al., 2021; Sinha et al., 2022) that is facilitated by hybrid experience
replay. Figure 16 confirms that the combination of near on-policy query selection and hybrid experience replay is essential
to QPA’s success.

D. Human Experiments
In this section, we compare the agent trained with real human preferences (provided by the authors) to the agent trained with
hand-engineered preferences (provided by the hand-engineered reward function in Appendix B.2.1) on the Cheetah run task.
We report the training results in Figure 17.

Avoiding reward exploitation via human preferences. As shown in Figure 17, the agent trained with real human
preferences exhibits more natural behavior, while the agent trained with hand-engineered preferences often behaves more
aggressively and may even roll over. This is because the hand-engineered reward function is based solely on the linear
proportion of forward velocity, without fully considering the agent’s posture. Consequently, it can be easily exploited
by the RL agent. Take Figure 18 as an example: when comparing the behaviors of “Stand still” and “Recline”, humans
would typically not prefer the latter, as it clearly contradicts the desired behavior of “running forward”. However, in our
experiments, we observe that the hand-engineered overseer would favor “Recline” over “Stand still”, as the hand-engineered
preferences only consider the forward velocity and overlook the fact that the agent is lying down while still maintaining
some forward velocity. This highlights the advantages of RL with real human feedback over standard RL that training with
hand-engineered rewards.
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Figure 10: Learning curves on Walker walk under varying total amounts of feedback {60, 100, 150}. The dashed black line represents
the last feedback collection step.

Figure 11: Learning curves on Cheetah run under varying total amounts of feedback {60, 100, 140}. The dashed black line represents
the last feedback collection step.

Figure 12: Learning curves on other tasks under different total amounts of feedback. The dashed black line represents the last feedback
collection step.

Figure 13: Learning curves on Walker walk under varying feedback frequencies. The dashed black line represents the last feedback
collection step.
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(a) Walker walk (b) Cheetah run (c) Walker run

(d) Quadruped walk (e) Quadruped run (f) Humanoid stand
Figure 14: Learning curves on locomotion tasks under different data augmentation ratios τ ∈ {0, 10, 20, 100} of QPA. The dashed
black line represents the last feedback collection step.

(a) Walker walk (b) Cheetah run (c) Walker run

(d) Quadruped walk (e) Quadruped run (f) Humanoid stand
Figure 15: Learning curves on locomotion tasks under different sizes of near on-policy buffer N ∈ {5, 10, 50} of QPA. The dashed
black line represents the last feedback collection step.
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Figure 16: Contribution of each technique in QPA, i.e., near on-policy query (OP), hybrid experience replay (HR), and data augmentation
(DA). The dashed black line represents the last feedback collection step.

(a) Agent trained with human preferences

(b) Agent trained with hand-engineered preferences

Figure 17: Human experiments on Cheetah run task.

(a) Stand still (b) Recline

Figure 18: A pair of segments.

18


