
Provably sample-efficient RL with side information
about latent dynamics

Yao Liu∗
Amazon Web Services
yaoliuai@amazon.com

Dipendra Misra
Microsoft Research

dipendra.misra@microsoft.com

Miroslav Dudík
Microsoft Research

mdudik@microsoft.com

Robert E. Schapire
Microsoft Research

schapire@microsoft.com

Abstract

We study reinforcement learning (RL) in settings where observations are high-
dimensional, but where an RL agent has access to abstract knowledge about the
structure of the state space, as is the case, for example, when a robot is tasked to go
to a specific room in a building using observations from its camera, while having
access to the floor plan. We formalize this setting as transfer reinforcement learning
from an abstract simulator, which we assume is deterministic (such as a simple
model of moving around the floor plan), but which is only required to capture
the target domain’s latent-state dynamics approximately up to unknown (bounded)
perturbations (to account for environment stochasticity). Crucially, we assume no
prior knowledge about the structure of observations in the target domain except that
they can be used to identify the latent states (but the decoding map is unknown).
Under these assumptions, we present an algorithm, called TASID, that learns a
robust policy in the target domain, with sample complexity that is polynomial in
the horizon, and independent of the number of states, which is not possible without
access to some prior knowledge. In synthetic experiments, we verify various
properties of our algorithm and compare it with several transfer RL algorithms that
require access to “full simulators” (i.e., those that also simulate observations).

1 Introduction

When learning from scratch, reinforcement learning (RL) in the real world can be very expensive.
For example, a robot learning to navigate in a building might need to explore every possible state
or location, which can be painstakingly costly and time-consuming. Sometimes, however, it is not
necessary to begin such a learning process from scratch. For instance, in the robot example, we might
have access to a general floor map of the building. How can this kind of high-level but imprecise
information be used to learn how to operate in the environment more quickly and more effectively?

In this paper, we study how to effectively leverage prior information in the form of such “abstract”
descriptions of the environment. We formalize this abstract description as an “abstract simulator,”
which, like a map, can be used as an imperfect model. Importantly, our abstract simulators differ
from more standard simulators in that they only focus on the “latent structure” of the environment
dynamics, not on the observations that might be experienced by an agent in the environment.

In general, fully faithful simulators of even the latent dynamics might be hard to build, for instance,
due to the difficulty of exactly modeling all probabilistic outcomes, as when the robot’s actions do

∗The work was done while the author was an intern at Microsoft Research and a graduate student at Stanford.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

robust dynamic programming

perturbed
transitions

deterministic abstract simulator

⇡
<latexit sha1_base64="MMfoOZUbGzRkaB76umvTEWj+CN8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Et4v1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vklat6l1Ua/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBRC43R</latexit>

target environment policy

inverse dynamic models

⇢ = arg max

min
M

V
M

<latexit sha1_base64="JWQXt2W8yQle1sTXToebrFK9Bec=">AAACFHicbZDLSgMxFIYz9VbrbdSlm2ARBKHMVEE3QtGNG6GCvUCnDpk0bUNzGZKMWIZ5CDe+ihsXirh14c63Mb0stPWHwMd/zuHk/FHMqDae9+3kFhaXllfyq4W19Y3NLXd7p65lojCpYcmkakZIE0YFqRlqGGnGiiAeMdKIBpejeuOeKE2luDXDmLQ56gnapRgZa4XuUaD6Ep7DAKlewNFDmAaxphkMOBVhep3B+t3IGGPoFr2SNxacB38KRTBVNXS/go7ECSfCYIa0bvlebNopUoZiRrJCkGgSIzxAPdKyKBAnup2Oj8rggXU6sCuVfcLAsft7IkVc6yGPbCdHpq9nayPzv1orMd2zdkpFnBgi8GRRN2HQSDhKCHaoItiwoQWEFbV/hbiPFMLG5liwIfizJ89DvVzyj0vlm5Ni5WIaRx7sgX1wCHxwCirgClRBDWDwCJ7BK3hznpwX5935mLTmnOnMLvgj5/MHSxieWg==</latexit>

robust abstract
policy ⇢

<latexit sha1_base64="94wfdLRRBjCkyTC3Y5p5yTs2egQ=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT2eyQeSwzs0II+QUvHhTx6g9582+cTfagiQUNRVU33V1Rypmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UZkmtEUUV7obYUM5k7RlmeW0m2qKRcRpJxrf5X7niWrDlHy0k5SGAo8kixnBNpf6OlGDStWv+XOgVRIUpAoFmoPKV3+oSCaotIRjY3qBn9pwirVlhNNZuZ8ZmmIyxiPac1RiQU04nd86Q+dOGaJYaVfSorn6e2KKhTETEblOgW1ilr1c/M/rZTa+CadMppmlkiwWxRlHVqH8cTRkmhLLJ45gopm7FZEEa0ysi6fsQgiWX14l7XotuKzVH66qjdsijhKcwhlcQADX0IB7aEILCCTwDK/w5gnvxXv3Phata14xcwJ/4H3+ACD6jks=</latexit>

stochastic target
environment

high-dimensional
observations

a1
<latexit sha1_base64="ySbGt8uAD/2f2ZwS2sYdVWnJ8NQ=">AAAB6nicdVBNSwMxEJ2tX7V+VT16CRbB05Jtq21vRS8eK9paaJeSTbNtaDa7JFmhlP4ELx4U8eov8ua/Mf0QVPTBwOO9GWbmBYng2mD84WRWVtfWN7Kbua3tnd29/P5BS8epoqxJYxGrdkA0E1yypuFGsHaiGIkCwe6C0eXMv7tnSvNY3ppxwvyIDCQPOSXGSjek5/XyBezWarjsVRB2zzAuVbEluFSsnleQ5+I5CrBEo5d/7/ZjmkZMGiqI1h0PJ8afEGU4FWya66aaJYSOyIB1LJUkYtqfzE+dohOr9FEYK1vSoLn6fWJCIq3HUWA7I2KG+rc3E//yOqkJq/6EyyQ1TNLFojAVyMRo9jfqc8WoEWNLCFXc3orokChCjU0nZ0P4+hT9T1pF1yu5xetyoX6xjCMLR3AMp+BBBepwBQ1oAoUBPMATPDvCeXRenNdFa8ZZzhzCDzhvn1JBjdU=</latexit>

a2
<latexit sha1_base64="NXJYSkQjnOIT/cXnVPTDTiyGwIQ=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZndRJPcgl48RjQxkCxhdjKbDJl9MDMrhCWf4MWDIl79Im/+jZOHoKIFDUVVN91dfiK40hh/WLmV1bX1jfxmYWt7Z3evuH/QVnEqKWvRWMSy4xPFBI9YS3MtWCeRjIS+YHf++HLm390zqXgc3epJwryQDCMecEq0kW5I3+0XS9iu13HFqSJsn2FcrmFDcNmtnVeRY+M5SrBEs1987w1imoYs0lQQpboOTrSXEak5FWxa6KWKJYSOyZB1DY1IyJSXzU+dohOjDFAQS1ORRnP1+0RGQqUmoW86Q6JH6rc3E//yuqkOal7GoyTVLKKLRUEqkI7R7G804JJRLSaGECq5uRXREZGEapNOwYTw9Sn6n7Rd2ynb7nWl1LhYxpGHIziGU3CgCg24gia0gMIQHuAJni1hPVov1uuiNWctZw7hB6y3T1PFjdY=</latexit>

ah
<latexit sha1_base64="bWiHU+k9kDmnTXZkpas6Fy2DSTY=">AAAB6nicdVBNSwMxEJ2tX7V+VT16CRbB05Jtq21vRS8eK9paaJeSTdM2NJtdkqxQlv4ELx4U8eov8ua/Mf0QVPTBwOO9GWbmBbHg2mD84WRWVtfWN7Kbua3tnd29/P5BS0eJoqxJIxGpdkA0E1yypuFGsHasGAkDwe6C8eXMv7tnSvNI3ppJzPyQDCUfcEqMlW5Ib9TLF7Bbq+GyV0HYPcO4VMWW4FKxel5BnovnKMASjV7+vduPaBIyaaggWnc8HBs/JcpwKtg01000iwkdkyHrWCpJyLSfzk+dohOr9NEgUrakQXP1+0RKQq0nYWA7Q2JG+rc3E//yOokZVP2UyzgxTNLFokEikInQ7G/U54pRIyaWEKq4vRXREVGEGptOzobw9Sn6n7SKrldyi9flQv1iGUcWjuAYTsGDCtThChrQBApDeIAneHaE8+i8OK+L1oyznDmEH3DePgGlnY4M</latexit>

f1
<latexit sha1_base64="HtALcy2r4fMnhzd55jBDvzVl1Hw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7Dv9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gDxg42S</latexit>

a0
1

<latexit sha1_base64="lE5pMTT1NXM5ReortstESXhuw1Y=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mqoMeiF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOZMG9f9dkpr6xubW+Xtys7u3v5B9fCoo6NEEdomEY9UL8CaciZp2zDDaS9WFIuA024wvcv87hNVmkXy0cxi6gs8lixkBJtMwudDb1ituXU3B1olXkFqUKA1rH4NRhFJBJWGcKx133Nj46dYGUY4nVcGiaYxJlM8pn1LJRZU+2l+6xydWWWEwkjZkgbl6u+JFAutZyKwnQKbiV72MvE/r5+Y8MZPmYwTQyVZLAoTjkyEssfRiClKDJ9Zgoli9lZEJlhhYmw8FRuCt/zyKuk06t5lvfFwVWveFnGU4QRO4QI8uIYm3EML2kBgAs/wCm+OcF6cd+dj0Vpyiplj+APn8wdKp42+</latexit>

ah�1
<latexit sha1_base64="Rvh/+Cdo7GkfqeKRSTC+GngFkBs=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBC8uMwm0SS3oBePEcwDkiXMTibJkNnZZWZWCEs+wosHRbz6Pd78GycPQUULGoqqbrq7glhwbTD+cFZW19Y3NjNb2e2d3b393MFhU0eJoqxBIxGpdkA0E1yyhuFGsHasGAkDwVrB+Hrmt+6Z0jySd2YSMz8kQ8kHnBJjpRbppaNzb9rL5bFbreKSV0bYvcC4WMGW4GKhcllGnovnyMMS9V7uvduPaBIyaaggWnc8HBs/JcpwKtg02000iwkdkyHrWCpJyLSfzs+dolOr9NEgUrakQXP1+0RKQq0nYWA7Q2JG+rc3E//yOokZVPyUyzgxTNLFokEikInQ7HfU54pRIyaWEKq4vRXREVGEGptQ1obw9Sn6nzQLrld0C7elfO1qGUcGjuEEzsCDMtTgBurQAApjeIAneHZi59F5cV4XrSvOcuYIfsB5+wRGfY+K</latexit>

fh�1
<latexit sha1_base64="nNNU03w1c4lwTxEvlr+rXEyOGo0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWsB/QhrLZTtqlm03Y3Qgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju5nffkKleSwfzSRBP6JDyUPOqLFSO+xnowtv2i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOyVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhDd+xmWSGpRssShMBTExmf1OBlwhM2JiCWWK21sJG1FFmbEJlWwI3vLLq6RVq3qX1drDVaV+m8dRhBM4hXPw4BrqcA8NaAKDMTzDK7w5ifPivDsfi9aCk88cwx84nz/l049H</latexit>

a0
h�1

<latexit sha1_base64="A37KHNf0pVm/FX7MJij3XaagoYA=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPoxbAbBT0GvXiMYB6QLGF2MkmGzM6uM71CWPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3U795hPXRkTqAccx90M6UKIvGEUrtehpNx2ee5NuseSW3RnIMvEyUoIMtW7xq9OLWBJyhUxSY9qeG6OfUo2CST4pdBLDY8pGdMDblioacuOns3sn5MQqPdKPtC2FZKb+nkhpaMw4DGxnSHFoFr2p+J/XTrB/7adCxQlyxeaL+okkGJHp86QnNGcox5ZQpoW9lbAh1ZShjahgQ/AWX14mjUrZuyhX7i9L1ZssjjwcwTGcgQdXUIU7qEEdGEh4hld4cx6dF+fd+Zi35pxs5hD+wPn8AT+Hj3M=</latexit>

Figure 1: Overview of our setup. We propose an algorithm TASID that learns a robust policy π in the
target environment using side information in the form of a fully specified deterministic model, called
an “abstract simulator.” Abstract simulator approximates (possibly stochastic) latent dynamics of the
target environment and thus serves as an idealized description of the the environment. The policy π
selects its actions according to the robust abstract policy ρ, but the latent states need to be inferred
from high-dimensional observations using learned inverse dynamics models.

not have exactly their intended effect. More complex simulators might be more faithful, but simpler
simulators might be easier to build and also more computationally tractable.

In this paper, we address this trade-off with a particular design choice: First, we assume that the
abstract simulator is deterministic. Indeed, an ordinary map, which implicitly represents what new
position will be reached by a particular action, is such a deterministic model. Compared to fully
probabilistic models, deterministic ones are especially simple to build and work with.

On the other hand, a deterministic model will not in general capture the “noise” of real-world dynam-
ics. Therefore, we seek algorithms that will learn policies that are robust to errors or “perturbations”
in the model represented by the abstract simulator. To this end, in Section 4, we present a new
algorithm called TASID that provably finds a policy achieving a certain level of performance for any
target environment whose dynamics can be reasonably approximated by a given abstract simulator,
up to some quantifiable perturbation level, and with arbitrarily different observations. (Figure 1
visualizes our setup and approach.)

In the robot example, although a map is intuitively helpful for reducing the need for exploration, there
is still much to be inferred, for instance, how locations on the map correspond to locations in the
building, and, even more challenging, how they correspond to rich, high-dimensional observations
experienced via cameras or other sensors. Our algorithm solves these challenges, building on prior
work on learning from such observations [Krishnamurthy et al., 2016, Jiang et al., 2017].

Furthermore, our theoretical guarantees show that we do indeed save dramatically on sample com-
plexity (measured by the required number of interactions with the target environment) by not having
to explore the entire environment, and instead focusing the task of learning observations just to the
states that lead towards accomplishing the task. Indeed, our algorithm’s sample complexity is entirely
independent of the size of the state space, assuring efficiency even when the state space is extremely
large, as is often the case. We are able to achieve this result because of specific assumptions and
criteria for success, as outlined above, namely, near-deterministic latent dynamics, knowledge of the
abstract simulator, and the benchmark of a robust policy rather than an optimal policy.

In Section 5, we empirically evaluate TASID in two domains. The first represents a challenging prob-
lem requiring strategic exploration. We show that TASID is able to efficiently achieve the robust policy
value while the PPO algorithm [Schulman et al., 2017] augmented with exploration bonus [Burda
et al., 2019b] and domain randomization [Tobin et al., 2017] does not solve the problem. The second
domain is a visual grid world that tests the robustness of TASID to dynamics perturbation and the
change of state-space size. We show that TASID succeeds empirically in agreement with our theory.

2

2 Related Work

Transfer RL. The goal of transfer RL is to speed up learning in a target environment by leveraging
a model (or some other form of knowledge) learnt in a source environment [Taylor and Stone,
2009, Lazaric, 2012]. For our setting, the most relevant are the methods that can transfer between
environments with different observation spaces. The dominant line of research requires access to a
hand-coded inter-task mapping, which is used to introduce constraints, shape rewards, or warm-start
learning in the target environment [Taylor and Stone, 2005, Taylor et al., 2007a, Fernández et al.,
2010, Mann and Choe, 2013, Brys et al., 2015]. Instead of hand-coding, several works seek to learn
inter-task mappings using structural information such as factorization [Liu and Stone, 2006, Taylor
et al., 2007b, Soni and Singh, 2006]. Van Driessel and Francois-Lavet [2021] and Sun et al. [2022]
do not require such structural information, and only posit assumptions similar to our block MDP
assumption, but without requiring near-deterministic latent dynamics. Latent dynamics learnt in the
source domain is used to create auxiliary tasks that regularize learning in the target domain.

These methods show empirical promise of transferring information about latent dynamics. Their
focus is mainly on modeling and experiments, whereas our work also seeks to derive theoretical
guarantees that showcase the benefits of transfer. We derive sample complexity that is independent of
the size of the state space and observation space, which would be impossible without transfer. Among
the cited works, Mann and Choe [2013] also show benefits of transfer, but their sample complexity
generally scales linearly with the size of the target observation space. The strong bound that we
derive requires a near-deterministic latent dynamics, and so it is not as broadly applicable.

Provably efficient RL with rich observations. Our modeling setup and theoretical analysis build
on the prior work that considers large-dimensional “rich” observations, but simpler (tabular) latent
dynamics [Krishnamurthy et al., 2016, Jiang et al., 2017, Du et al., 2019]. To circumvent the
hardness of learning in general partially-observed MDPs (POMDPs), these methods impose structural
assumptions, such as the block MDP assumption used here. These methods, like ours, learn with
sample complexity that is independent of the size of the observation space, but, unlike ours, that is
polynomial in the size of the latent state space. Using existing MDP lower bounds [Kakade, 2003],
this dependence is unavoidable for general latent dynamics, even when the decoding function of
observations to latent states is known. We overcome this fundamental obstacle by assuming that the
latent dynamics is near-deterministic, and the deterministic approximation is known.

Robust RL. Our solution concept and the underlying algorithm build on robust dynamic programming
methods [Iyengar, 2005, Bagnell et al., 2001]. However, we are using this concept in a fundamentally
new way to achieve sample complexity improvements in transfer learning. This is one of the key
conceptual innovations of our work.

3 Problem Setting

We next formalize our modeling setup and assumptions. As a running example, we consider a
navigation problem on a floor of a building, where the goal is to reach a certain location by a robot
that can turn left and right and move forward. The robot senses the environment via lidar readings
and/or a camera, but it does not have access to its position or orientation. We use the notation ∆(S)
for the set of probability distributions over a set S, and [n] to denote the set {1, 2, . . . , n}.

3.1 Target environment

We assume that the target environment is a block MDP (see, e.g., Du et al., 2019, Misra et al., 2020,
Zhang et al., 2020). In a block MDP, observations are high-dimensional (e.g., lidar and camera
readings), but emitted by a finite number of latent states (e.g., location and orientation of a robot);
latent states are not directly observed, but they can be determined from the observations they emit.

Formally, a block MDP is a triple M = 〈M,X , q〉. The first component of the triple is a standard
episodic MDP M = 〈S,A, sinit, H, T,R〉, referred to as the latent MDP, with a finite state space S,
referred to as the latent state space, a finite action space A, initial latent state sinit, horizon H ,
transition function T : [H] × S × A → ∆(S), and reward function R : [H] × S × A → [0, 1];
transition probabilities and reward function values are written as Th(s′ | s, a) and Rh(s, a). The
second component of the block MDP triple is an observation space X , which is typically large and

3

possibly infinite. The final component is an emission function q : S → ∆(X), which describes the
conditional distribution over observations given any latent state; its values are written as q(s | x).

We assume that q satisfies the block MDP assumption, meaning that there exist disjoint sets {Xs}s∈S
such that if x ∼ q(· | s) then x ∈ Xs with probability 1. This means that there exists a perfect decoder
φM : X → S that maps an observation x to the unique state φM(x) that emits it.

An agent interacts with a block MDP in a sequence of episodes, each generated as follows: Initially,
s1 = sinit. At each step h = 1, . . . ,H , the agent observes xh ∼ q(· | sh), then takes action ah,
accrues reward rh = Rh(sh, ah), after which the MDP transitions to state sh+1 ∼ Th(· | sh, ah). The
agent does not observe the latent states sh, only the observations xh and rewards rh. Observations
and actions up to step h are denoted x1:h and a1:h.

We denote the block MDP describing the target environment by M? = 〈M?,X , q?〉 where
M? = 〈S,A, sinit, H, T

?, R?〉 is the target latent MDP. The perfect decoder for M? is denoted as φ?.

Practicable policy. Behavior of an agent in a target environment is formalized as a (non-Markovian)
practicable policy. A practicable policy prescribes which action to take given any sequence of
observations, i.e., it is a mapping π : X≤H → A, where X≤H = ∪Hh=1X h. The action taken by π on
x1:h is written πh(x1:h). The expected sum of rewards in M, when actions ah are chosen according
to a practicable policy π, i.e., when ah = πh(x1:h), is referred to as the value of π in M and denoted
V πM = EM,π[r1 +r2 + · · ·+rH]; the subscript in the expectation signifies the probability distribution
over episode realizations when the environment follows M, and actions are chosen according to π.

We also allow practicable policies to be (Markovian) mappings π : [H] × X → A which choose
every action according to the last observation, so that ah = πh(xh) for all h. Whether a particular
practicable policy is Markovian or not will generally be clear from context.

3.2 Abstract simulator

Our learning algorithm can interact with the target environment, but it additionally has access to an
abstract simulator, which provides an idealized and abstracted version of the target environment.
Formally, an abstract simulator is an episodic MDP denoted M◦ = 〈S,A, sinit, H, T

◦, R◦〉, with the
same state space, action space, start state and horizon as the latent MDP M?, but not necessarily the
same transition and reward functions. Furthermore, we assume that abstract simulator is deterministic:

Assumption 1. The abstract simulator M◦ is deterministic, i.e., T ◦h (sh+1 | sh, ah) ∈ {0, 1}.

In order for the abstract simulator to be useful, it must approximate target environment. In this
paper we assume that the target environment can be viewed as a “perturbed” version of the abstract
simulator, using a notion of perturbation inspired by the concept of trembling-hand equilibria from
extensive-form games [Selten, 1975]. Specifically, we say that an MDP M ′ is an η-perturbation of
another MDP M if its dynamics can be realized by following M ’s dynamics while distorting agent
actions according to some (unknown) “noise” distribution, referred to as ξ in the definition below,
which keeps actions unchanged with probability at least 1− η:

Definition 1 (η-perturbation). We say that an MDPM ′ = 〈S,A, sinit, H, T
′, R′〉 is an η-perturbation

of an MDP M = 〈S,A, sinit, H, T,R〉 if there exists a function ξ : [H] × S × A → ∆(A) that
satisfies ξh(a | s, a) ≥ 1− η for all h, s, a, and such that

T ′h(s′ | s, a) =
∑
a′∈A Th(s′ | s, a′)ξh(a′ | s, a)

R′h(s, a) =
∑
a′∈ARh(s, a′)ξh(a′ | s, a)

for all h, s, a, s′; thus MDP M ′ can be viewed as following the dynamics of M in which each action
a is stochastically replaced (“perturbed”) according to ξ.

The set of all η-perturbations of M is denoted C(M,η).

We assume that the target environment is an η-perturbation of the abstract simulator for a value of
η < 0.5. Thus, most of the time the target environment transitions after each action “as intended”
(i.e., following known dynamics of the abstract simulator), but with a probability at most η it may
depart from the intended action due to an inherent, but unknown stochasticity:

Assumption 2. M? is an η-perturbation of the abstract simulator M◦ for some η < 0.5.

4

Abstract policy. Behavior of an idealized agent that can directly access latent state is formalized as
a (Markovian) abstract policy. An abstract policy prescribes what action to take in each state s at a
given step h, i.e., it is a mapping ψ : [H]× S → A; we write ψh(s) for the action taken by ψ in step
h and state s. The expected sum of rewards in an episodic MDP M = 〈S,A, sinit, H, T,R〉, when
following ψ is called the value of ψ in M and denoted V ψM = EM,ψ[r1 + r2 + · · ·+ rH].

Robust abstract policy. Since the latent MDP in the target domain is a perturbation of the abstract
simulator, we will seek to obtain policies that are robust to any allowed perturbation. For a given
abstract simulator M◦ and the perturbation level η, we define a robust abstract policy ρ to be a policy
that achieves the largest possible value under the worst-case choice of perturbation:

ρ = argmax
ψ∈Ψ

min
M∈C(M◦,η)

V ψM , (1)

where Ψ is the set of all mappings from [H]× S to A.

In a natural way, a robust abstract policy ρ can be composed with the perfect decoder φ? to obtain a
(Markovian) practicable policy ρ◦φ? : [H]×X → Amapping observations in the target environment
to actions while still maximizing the worst-case reward among perturbations of M◦. We aim for
algorithms that find practicable policies that perform almost as well as this robust practicable policy.

3.3 The learning setting

We can now formally define our learning setting. A learning algorithm Alg in this setting receives
as input a deterministic abstract simulator (episodic MDP) M◦ = 〈S,A, sinit, H, T

◦, R◦〉, meaning
it receives the entire MDP represented in tabular form (or some other computationally convenient
form). The algorithm is also provided with oracle access to a target environment (block MDP),
M? = 〈M?,X , q?〉. This means that the algorithm cannot directly access M? itself, but can interact
with it as an agent would, executing actions ah, and receiving back observations xh and rewards rh
in a sequence of episodes, as described above. Finally, Alg is given parameters ε > 0, δ > 0, and
η < 0.5. It is assumed that M? is an η-perturbation of M◦. The assumption that we know the value
of η is not essential and we discuss in Section 4.4 how it can be removed.

After interacting with M?, the algorithm outputs a practicable policy π. The goal of learning is
for π to have value almost as good as the robust practicable policy with high probability, that is,
for V πM? ≥ V ρ◦φ

?

M? − ε with probability at least 1 − δ (where probability is over the algorithm’s
randomization as well as randomness in the interactions with the target environment). Furthermore,
we require the number of episodes executed by the algorithm before outputting a policy π to be
bounded by a polynomial in the number of actions |A|, the horizon H , 1/ε, 1/δ, and 1/(1 − 2η).
Note importantly that this polynomial must have no explicit dependence on the number of states |S|
or observations |X | in the target environment. An algorithm that satisfies these criteria (given the
stated assumptions) is said to achieve an efficient transfer from abstract simulator.

4 Main Algorithm

Our main contribution is an algorithm TASID, which achieves efficient transfer from an abstract
simulator. The algorithm operates in two stages. In the first stage, it determines the robust abstract
policy ρ for the provided abstract simulator via robust dynamic programming (Algorithm 1). In the
second stage, it interacts with the target environment (via oracle access) in order to learn to predict
the current latent state based on the history of observations and actions. The learnt decoding map is
then composed with the robust abstract policy to obtain the practicable policy that is returned by the
algorithm (see Algorithm 2).

4.1 Robust dynamic programming for abstract simulator

We obtain the robust abstract policy by instatiating the robust dynamic programming algorithm
of Bagnell et al. [2001] and Iyengar [2005] to our specific notion of perturbation. The algorithm
proceeds by filling out values of the robust value function Ṽ , which quantifies the largest sum of
rewards achievable starting at any step h and state s, when assuming the worst-case perturbation of
the input MDP M◦. Specifically,

Ṽh(s) = max
ψ∈Ψ

min
M∈C(M◦,η)

EM,ψ

[
rh + rh+1 + · · ·+ rH

∣∣ sh = s
]
.

5

Algorithm 1 Robust Dynamic Programming. RDP(M◦, η)

Input: An episodic MDP M◦ = 〈S,A, sinit, H, T
◦, R◦〉, perturbation level η.

1: ṼH+1(s)← 0 for all s ∈ S
2: for h = H, . . . , 1 do
3: for all s ∈ S, a ∈ A: Q̃h(s, a)← R◦h(s, a) +

∑
s′ T
◦
h (s′ | s, a)Ṽh+1(s′)

4: for all s ∈ S: Ṽh(s)← (1− η) maxa Q̃h(s, a) + ηmina Q̃h(s, a)

5: Return ρ defined by ρh(s) = argmaxa Q̃h(s, a)

Algorithm 2 Transfer from Abstract Simulator using Inverse Dynamics. TASID(M?,M◦,F , η, ε, δ)
Input: Oracle access to target environment M?, deterministic abstract simulator M◦,

optimization-oracle access to a function class F ⊆ {X 2 → ∆(A)},
perturbation level η < 0.5, target accuracy ε > 0, failure probability δ.

1: Let ρ be the robust policy returned by RDP(M◦, η)

2: Let nD := 8H2|A|3 ln(|F|/δ)
ε(1−2η)2

3: Let π1(x) := ρ1(sinit) for all x ∈ X // Define practicable policy in step h = 1

4: for h = 1, . . . ,H − 1 do
5: Dh ← ∅ // Gather dataset Dh for learning “inverse dynamics” in step h
6: for nD times do
7: Follow π1:h−1 for h− 1 steps to observe xh
8: Take action ah uniformly at random and observe xh+1

9: Dh ← Dh ∪ {(xh, ah, xh+1)}
10: fh := arg maxf∈F

∑
(xh,ah,xh+1)∈Dh ln f(ah | xh, xh+1) // Learn “inverse dynamics”

11: Define αh : X 2 → A as // Define “shadow action” decoder
αh(xh, xh+1) = argmaxa∈A fh(· | xh, xh+1)

12: Define φh+1 : X h+1 → S such that // Define state decoder
φh+1(x1:h+1) is the state sh+1 reached in M◦, when starting in sinit and executing

a′1 = α1(x1, x2), . . . , a′h = αh(xh, xh+1)

13: Define πh+1 : X h+1 → A as // Define practicable policy
πh+1(x1:h+1) = ρh+1

(
φh+1(x1:h+1)

)
14: return π = (π1, . . . , πH)

Similar to standard dynamic programming, the value function in robust dynamic programming can
be filled out beginning with h = H + 1, where we have Ṽh(s) = 0, and proceeding backward. In our
case, the values Ṽh(s) can be obtained from Ṽh+1(s) using a closed-form expression (line 4), which
leverages intermediate values Q̃h(s, a). Note that Q̃ is not quite the robust state-action value function,
because it assumes that the action at step h is left unperturbed (and only considers the worst-case
perturbation in the following steps). The function Q̃ is used to derive the robust policy (line 5).

Theorem 1. For any abstract simulator M◦ and any perturbation level η, Algorithm 1 returns the
robust policy ρ = argmaxψ∈Ψ minM∈C(M◦,η) V

ψ
M .

(The proof of this theorem and all other proofs in this paper are deferred to the appendix.)

4.2 Learning a decoder in the target environment

We cannot directly apply the robust abstract policy in the target environment, because the latent states
are not observable. Therefore, we construct a “state decoder” in the target environment, which uses the
history of observation in an episode to predict the current latent state; the state decoder is combined
with the robust abstract policy to obtain the practicable policy. Formally, a (non-Markovian) state
decoder is a mapping φ : X≤H → S. In step h of an episode, the history of previous observations
x1:h is used as an input, and the decoder predicts the latent state sh. To construct such a state decoder,
we crucially leverage the abstract simulator M◦.

6

The abstract simulator M◦ is deterministic, so a specific sequence of actions a1, . . . , ah always leads
to the same state. The latent MDP in the target environment is a perturbation of the abstract simulator.
This means that when an agent takes action ah in step h, most of the time the environment transitions
according to T ◦(· | sh, ah), but sometimes (with probability at most η) it transitions according to
some other action. The action ah gets replaced with some “shadow” action a′h according to an
unknown noise distribution ξ, and the latent state then transitions according to T ◦(· | sh, a′h). If we
knew shadow actions a′1, . . . , a

′
h, we could then recover the current latent state by simulating that

same sequence of actions in the abstract simulator.

To obtain shadow actions, we learn an “inverse dynamics” model, which predicts a′h from the
observations xh and xh+1 (an approach also used in previous work on block MDPs). We learn a
separate inverse dynamics model for each step of an episode. In step h, we sample triplets of the
form (xh, ah, x

′
h) across multiple episodes in the target environment, and then fit a model fh for the

conditional probability of ah given xh and x′h. The model fh(ah | xh, x′h) is referred to as an inverse
dynamics model, because it “inverts” the dynamics represented by the transition function. We show
that if we were able to obtain an exact model f?h of the conditional probability, then the action a with
the largest probability f?h(a | xh, x′h) would be the correct shadow action.

As is standard in the block MDP literature, in order to fit an inverse dynamics model, we assume
access to an optimization algorithm capable of fitting functions from some class F ⊆ {X 2 → ∆(A)}
to data; we call this algorithm an optimization oracle for F . The class F should be sufficiently
expressive to approximate the required conditional probability distribution.

We now have all the pieces required to describe our algorithm. The algorithm first constructs the
robust abstract policy (line 1), and defines the practicable policy π1 at the initial step h = 1, where the
latent state is known to be sinit (line 3). The algorithm then proceeds iteratively to fill in π2, . . . , πH . In
iteration h, the algorithm first learns the inverse dynamics model fh with the help of the optimization
oracle (line 5–10). The inverse dynamics model is then used to obtain the shadow action decoder
αh (line 11), which predicts which action caused the transition from xh to xh+1. Using the shadow
action decoders up to step h, we can construct a state decoder φh+1 (line 12), which for a given
history of observations x1:h+1, first predicts their corresponding shadow actions a′1, . . . , a

′
h and then

uses the abstract simulator to determine the state sh+1 that they lead to. Finally, using the state
decoder φh+1, we define the practicable policy at the step h + 1 to return the same action as the
abstract robust policy would return on the decoded state (line 13).

4.3 Sample Complexity of TASID

We next provide the sample complexity analysis of TASID, showing that it indeed achieves efficient
transfer from an abstract simulator. In addition to Assumptions 1 and 2, we also need to ensure that
the function class F is expressive enough to approximate the conditional probability distribution
being fitted by the inverse dynamics model. It turns out that this target probability distribution
can be expressed in terms of the transition function of the block MDP M?, which is the function
T? : [H]×X ×A → ∆(X) equal to

T?
h(x′ | x, a) := q?(x′ | s′ = φ?(x′))Th

(
s′ = φ?(x′)

∣∣ s = φ?(x), a
)
.

Using T?, we can write the exact inverse dynamics model as f?h(a | x, x′) =
T?h(x′|x,a)∑

a′∈AT?h(x′|x,a′) .

To state our assumption, let Ph denote the distribution over triples (xh, ah, xh+1) sampled in line 7-8,
and let f̃h be the maximizer (in F) of the expected log likelihood under Ph:

f̃h := argmax
f∈F

Ex,a,x′∼Ph [ln f(a | x, x′)].

Assumption 3 (Approximate realizability). There exists εF ≥ 0 such that for every h ∈ [H], and for
all triples (x, a, x′) in the support of Ph

f?h(a | x, x′) ≤ (1 + εF)f̃h(a | x, x′).

Exact realizability assumptions (with εF = 0) are standard in the block MDP literature [Du et al.,
2019, Agarwal et al., 2020]. Here we only assume approximate realizability, which can be assured
for any εF > 0 by choosing a sufficiently expressive class such as deep neural networks. In practice,
we choose classes that express some inductive biases (such as feature invariance, factorization, etc.).

We are now ready to state our main theoretical result—sample complexity of TASID.

7

Theorem 2. Let M◦ be a deterministic abstract simulator. Let M? be a target environment for
which M? is an η-perturbation of M◦ for some η < 0.5. Let F be a class of functions that
satisfies Assumption 3 with εF ≤ (1−2η)2

8H4|A|3 . Then for any ε > 0 and δ ∈ (0, 1), Algorithm 2 with
oracle access to M?, optimization-oracle access to F , and inputs M◦, η, ε/2, and δ, executes
n = O

(H3|A|3 ln(|F|/δ)
ε(1−2η)2

)
episodes and returns a practicable policy π that with probability at least

1− δ satisfies

V πM? ≥ V ρ◦φ
?

M? − ε.

Thus, Algorithm 2 achieves efficient transfer from an abstract simulator, meaning that its sample
complexity is independent of the sizes of |S| and |X |. We also achieve a fast rate, O(1/ε), with
respect to the sub-optimality ε. The assumption on εF is not restrictive, because we can always choose
a sufficiently expressive class. Note that previous works simply assume εF = 0 [e.g., Du et al., 2019,
Agarwal et al., 2020, Misra et al., 2020]. The dependence on ln |F| is standard; for neural networks it
is proportional to the number of bits to store the network weights. For example, if the neural network
has 1000 weights represented by doubles (i.e., with 64 bits) then ln |F| = (ln 2) · 64000. There may
be room to improve dependence on the horizon H and action space size |A|, but these were not our
focus here.

4.4 Extensions

In the appendix, we show how TASID, under additional assumptions, can be extended to settings
where the abstract simulator has a stochastic start state (but deterministic transitions).

The assumption that η is known is not necessary. If η is not known, it is possible to carry out a form
of binary search as follows: Run the algorithm with η = 1/4 and verify whether it achieves the
performance guarantee. If it does, continue with η = 1/8 (splitting the interval (0, 1/4]), otherwise
continue with η = 3/8 (splitting the interval (1/4, 1/2)), and run the algorithm again. If the goal is
to recover η up to the precision εη , then we just need to repeat this log2(1/2εη) times.

Although our focus here is on transfer from an abstract simulator, and we emphasize the relative ease
of constructing abstract simulators, our approach could also be used for transfer learning between
two block MDP environments that share latent space structure. In the source domain, we could use
an existing block MDP approach [e.g., Misra et al., 2020] to infer latent structure, which could then
be used as an abstract simulator to speed up learning in the target domain using TASID.

5 Experiments

We evaluate TASID in two simulation environments, focusing on four of its properties: sample
complexity independent of state-space size; scalability to complex visual observations; robustness of
the policy it learns; and scalability to large state spaces. We summarize the results here and defer
the details, including hyperparameter selection, detailed environment descriptions, algorithm and
baselines implementation and a full description of results under various setups to the appendix.

Can TASID solve problems that require strategic exploration? We theoretically showed that
TASID can solve problems that require performing strategic exploration using a small number of
episodes. We test this empirically on a challenging environment called combination lock.

Combination lock. We first describe the abstract simulator M◦ visualized in Figure 2a. It has an
action space A, horizon H , and a state space {(h, i) | h ∈ {0} ∪ [H], i ∈ [3]}, with the initial state
(0, 1). As we will see, states {(h, 1), (h, 2) | h ∈ [H]} are good states from which optimal return is
possible, while states {(h, 3) | h ∈ [H]} are bad states. In state (h, 1), one good action leads to state
(h+ 1, 1), and all other |A| − 1 actions lead to state (h+ 1, 2). In state (h, 2), one good action leads
to state (h+ 1, 2), another good action leads to state (h+ 1, 1), and all other |A| − 2 actions lead
to (h + 1, 3). All actions in state (h, 3) lead to state (h + 1, 3). The identities of good actions are
unknown and are different for different states. Any transition to state (H, 1) gives a reward of 9.5,
whereas transition to state (H, 2) gives a reward of 10, and transition to state (H, 3) gives a reward
of 0. To “mislead” the agent, transitions from (h, 2) to (h+ 1, 3) give a reward of 1 and transitions
from (h, 1) to (h+ 1, 1) give a reward of −1/H . All other transitions give a reward of 0.

8

H, 3

H, 2

H, 1

R = 1

R = �1/H
R = 9.5

R = 10

R = �1/H

R = 1

R = �1/H

(0, 1)
<latexit sha1_base64="Yrx1AM5ors3cfUcNx3CEgNN4SOs=">AAAB7XicdVDLSgMxFM3UV62vqks3wSJUkCHTsbbdFd24rGAf0A4lk2ba2MxkSDJCGfoPblwo4tb/ceffmD4EFT1w4XDOvdx7jx9zpjRCH1ZmZXVtfSO7mdva3tndy+8ftJRIJKFNIriQHR8ryllEm5ppTjuxpDj0OW3746uZ376nUjER3epJTL0QDyMWMIK1kVpFdAad036+gOwycmoXLkQ2MnArhpTKqFZ1oTNXECqAJRr9/HtvIEgS0kgTjpXqOijWXoqlZoTTaa6XKBpjMsZD2jU0wiFVXjq/dgpPjDKAgZCmIg3n6veJFIdKTULfdIZYj9Rvbyb+5XUTHVS9lEVxomlEFouChEMt4Ox1OGCSEs0nhmAimbkVkhGWmGgTUM6E8PUp/J+0Srbj2qWb80L9chlHFhyBY1AEDqiAOrgGDdAEBNyBB/AEni1hPVov1uuiNWMtZw7BD1hvn8XGjfU=</latexit>

(1, 1)
<latexit sha1_base64="0pjEpEIVhIIq0jWMWhZrX73zns0=">AAAB7XicdVDLSgMxFM3UV62vqks3wSJUkCHTsbbdFd24rGAf0A4lk2ba2MxkSDJCGfoPblwo4tb/ceffmD4EFT1w4XDOvdx7jx9zpjRCH1ZmZXVtfSO7mdva3tndy+8ftJRIJKFNIriQHR8ryllEm5ppTjuxpDj0OW3746uZ376nUjER3epJTL0QDyMWMIK1kVpF5ww6p/18Adll5NQuXIhsZOBWDCmVUa3qQmeuIFQASzT6+ffeQJAkpJEmHCvVdVCsvRRLzQin01wvUTTGZIyHtGtohEOqvHR+7RSeGGUAAyFNRRrO1e8TKQ6VmoS+6QyxHqnf3kz8y+smOqh6KYviRNOILBYFCYdawNnrcMAkJZpPDMFEMnMrJCMsMdEmoJwJ4etT+D9plWzHtUs354X65TKOLDgCx6AIHFABdXANGqAJCLgDD+AJPFvCerRerNdFa8ZazhyCH7DePgHHTo32</latexit>

(2, 1)
<latexit sha1_base64="34wLPXatV8AOiTB4P7VEJ8pCYoE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSJUkCEzY227K7pxWcE+oB1KJk3b2MxkSDJCGfoPblwo4tb/ceffmD4EFT1w4XDOvdx7TxBzpjRCH1ZmZXVtfSO7mdva3tndy+8fNJVIJKENIriQ7QAryllEG5ppTtuxpDgMOG0F46uZ37qnUjER3epJTP0QDyM2YARrIzWL7hl0Tnv5ArJLyKleeBDZyMArG+KWULXiQWeuIFQAS9R7+fduX5AkpJEmHCvVcVCs/RRLzQin01w3UTTGZIyHtGNohEOq/HR+7RSeGKUPB0KaijScq98nUhwqNQkD0xliPVK/vZn4l9dJ9KDipyyKE00jslg0SDjUAs5eh30mKdF8YggmkplbIRlhiYk2AeVMCF+fwv9J07Udz3Zvzgu1y2UcWXAEjkEROKAMauAa1EEDEHAHHsATeLaE9Wi9WK+L1oy1nDkEP2C9fQLI1o33</latexit>

(2, 2)
<latexit sha1_base64="HuTzQjE1og6gduyqDgdHFasDTP8=">AAAB7XicdVDLSgMxFM3UV62vqks3wSJUkCEzY227K7pxWcE+oB1KJk3b2MxkSDJCGfoPblwo4tb/ceffmD4EFT1w4XDOvdx7TxBzpjRCH1ZmZXVtfSO7mdva3tndy+8fNJVIJKENIriQ7QAryllEG5ppTtuxpDgMOG0F46uZ37qnUjER3epJTP0QDyM2YARrIzWL7hl0T3v5ArJLyKleeBDZyMArG+KWULXiQWeuIFQAS9R7+fduX5AkpJEmHCvVcVCs/RRLzQin01w3UTTGZIyHtGNohEOq/HR+7RSeGKUPB0KaijScq98nUhwqNQkD0xliPVK/vZn4l9dJ9KDipyyKE00jslg0SDjUAs5eh30mKdF8YggmkplbIRlhiYk2AeVMCF+fwv9J07Udz3Zvzgu1y2UcWXAEjkEROKAMauAa1EEDEHAHHsATeLaE9Wi9WK+L1oy1nDkEP2C9fQLKW434</latexit>

(1, 2)
<latexit sha1_base64="ftfhHMJTyd0OSbb8cZkATR4FIcg=">AAAB7XicdVDLSgMxFM3UV62vqks3wSJUkCEzY227K7pxWcE+oB1KJk3b2MxkSDJCGfoPblwo4tb/ceffmD4EFT1w4XDOvdx7TxBzpjRCH1ZmZXVtfSO7mdva3tndy+8fNJVIJKENIriQ7QAryllEG5ppTtuxpDgMOG0F46uZ37qnUjER3epJTP0QDyM2YARrIzWLzhl0T3v5ArJLyKleeBDZyMArG+KWULXiQWeuIFQAS9R7+fduX5AkpJEmHCvVcVCs/RRLzQin01w3UTTGZIyHtGNohEOq/HR+7RSeGKUPB0KaijScq98nUhwqNQkD0xliPVK/vZn4l9dJ9KDipyyKE00jslg0SDjUAs5eh30mKdF8YggmkplbIRlhiYk2AeVMCF+fwv9J07Udz3Zvzgu1y2UcWXAEjkEROKAMauAa1EEDEHAHHsATeLaE9Wi9WK+L1oy1nDkEP2C9fQLI0433</latexit>

(2, 3)
<latexit sha1_base64="ENdqt0gMGvsuj94lw2WckqbDUcs=">AAAB7XicdVDLSgMxFM3UV62vqks3wSJUkCEzY227K7pxWcE+oB1KJk3b2MxkSDJCGfoPblwo4tb/ceffmD4EFT1w4XDOvdx7TxBzpjRCH1ZmZXVtfSO7mdva3tndy+8fNJVIJKENIriQ7QAryllEG5ppTtuxpDgMOG0F46uZ37qnUjER3epJTP0QDyM2YARrIzWL7hn0Tnv5ArJLyKleeBDZyMArG+KWULXiQWeuIFQAS9R7+fduX5AkpJEmHCvVcVCs/RRLzQin01w3UTTGZIyHtGNohEOq/HR+7RSeGKUPB0KaijScq98nUhwqNQkD0xliPVK/vZn4l9dJ9KDipyyKE00jslg0SDjUAs5eh30mKdF8YggmkplbIRlhiYk2AeVMCF+fwv9J07Udz3Zvzgu1y2UcWXAEjkEROKAMauAa1EEDEHAHHsATeLaE9Wi9WK+L1oy1nDkEP2C9fQLL4I35</latexit>

(a) Combination lock environment

0 100000 200000 300000 400000 500000
Number of episodes

5

10

15

20

25

30

35

40

H
or

iz
on

PPO
PPO + RND
TASID
PPO + DR
PPO + RND + DR

(b) Horizon solved vs episodes

0 100000 200000 300000 400000 500000
Number of episodes

0

2

4

6

8

M
ov

in
g

A
ve

ra
ge

 o
f R

et
ur

n

PPO
PPO + RND
TASID
PPO + DR
PPO + RND + DR
Robust value

(c) Reward curve for H = 40

Figure 2: (a): Latent MDP in the combination lock. (b): The largest problem (expressed as horizon
H) that each algorithm can solve (defined as reaching 95% of the value of the robust policy) within
500 000 episodes; we consider H = 5, 10, 15, 20, 25, 40 and |A| = 10. We report median number of
episodes across five trials with different seeds (see the appendix for full details). (c): Total reward per
episode for the problem sizeH = 40. TASID is a batch algorithm trained on the first 100 000 episodes,
thus its performance before the end of training is very low and after the end of training stays constant.
Shaded bands correspond to the 95% Student’s t confidence intervals (here and elsewhere in paper).

The latent MDP M? of the target environment is constructed by taking a random η-perturbation
of M◦ for η = 0.1. Exploration in both M? and M◦ can be difficult due to misleading rewards and
challenging dynamics, where most actions lead to bad states. The optimal policy in M◦ finishes in
the state (H, 2) and achieves the value of 10. However, the robust policy will attempt to visit the state
(H, 1) which lies on a more stable trajectory. Meanwhile, the optimal policy in M◦ will fail in M?,
because perturbations are likely to move the agent into a bad state.

Observations in the target environment are real-valued vectors of dimension 2dlog2(H+4)e. For a
latent state (h, i), the observation is generated by first creating an (H + 4)-dimensional vector by
concatenating one-hot encodings of h and i, element-wise adding Gaussian noise, applying a fixed
coordinate permutation, and finally multiplying the vector with a Hadamard matrix.

We compare TASID with four baselines. The first is PPO [Schulman et al., 2017], a policy-gradient-
based algorithm. The second is PPO-RND, which augments PPO with an exploration bonus based
on prediction error [Burda et al., 2019b]. These two baselines do not use abstract simulator and run
on the target environment from scratch. The other two baselines, PPO+DR and PPO+RND+DR,
enhance PPO and PPO+RND with domain randomization (DR), where the policy is pre-trained on a
set of randomized block MDPs [Tobin et al., 2017]. PPO+DR and PPO+RND+DR are designed for
transfer RL, but unlike our work, they rely on observation-based similarity. During the pre-training
phase of domain randomization, we generate block MDPs by following a similar process as the one
used to generate the target environment. However, when generating the emission function, we only
generate a random permutation matrix and the other components are kept the same as in the target
environment. This randomization set includes the true emission function and transition dynamics.

For baseline algorithms, we run grid search over hyperparameters listed in Table 3 in Appendix D,
separately for each environment specification (each value of H), and report the best results of
PPO(+RND)(+DR). For TASID, we consider only one hyperparameter, the number of training
episodes per time step nD, and search over three possible values: 1000, 2500, 10000.

Figure 2b plots the size of the problem (expressed as horizon H) that each algorithm can solve
(defined as reaching at least 95% of the value of the robust policy) within a given number of
episodes; we considered H = 5, 10, 15, 20, 25, 40. The plot shows that PPO and PPO+DR fail to
solve the problem beyond the smallest size (H = 5), which is not surprising as they are not designed
to perform strategic exploration. PPO+RND can solve the problem until H = 20, but fails for
H = 25, showing that RND bonus helps to an extent but cannot solve harder problems. Interestingly,
PPO+RND+DR underperforms compared to PPO+RND even though it has access to pre-training.
We believe this is because RND reward bonus does not work well with domain randomization which
can mislead the RND bonus by randomizing the observation. Finally, TASID can solve the problem
for all values of H and is more sample efficient than the baselines.

Can TASID scale to complex observation spaces? We evaluate TASID in the visual MiniGrid
environment [Chevalier-Boisvert et al., 2018] with noisy observations. We test on the grid world

9

(a) Minigrid (b) Noise

0.1 0.2 0.3 0.4 0.5
Perturbation Upper Bound (eta)

0.0

0.2

0.4

0.6

0.8

1.0

P
ol

ic
y

va
lu

e

TASID (n=200,000)
Robust Value
Optimal policy
Robust Value - .025/(1-2*eta)^2

(c) Performance vs perturbation

20 40 60 80 100
Height of the Grid Map

0.0

0.2

0.4

0.6

0.8

1.0

P
ol

ic
y

va
lu

e

TASID (n=200,000)
Robust Value
Optimal policy

(d) Performance vs state space size

Figure 3: (a,b): Map of a 7× 11 MiniGrid environment with noisy observations and five actions: for-
ward, turn left, turn right, turn left + forward, turn right + forward. (c): The performance of TASIDwith
different amount of perturbation η. (d): The performance of TASID with different heights of the map.

map shown in Figure 3a. The green square represents the goal and orange squares are lava that
should be avoided. The agent’s position and direction is shown by the red triangle. The agent gets a
reward of 1 on reaching the goal, −1 for reaching the lava, and −0.01 for every other step. The state
encodes the position and direction of the agent and the current time step. There are 5 actions: move
forward, turn left, turn right, and combinations of turning and moving. The abstract simulator M◦
models the deterministic transitions on the grid. The target environment is an η-perturbation of M◦
for η = 0.1. The agent cannot observe the whole map as in Figure 3a, but only an image of the 7× 7
grids (56× 56 pixels) in the direction it is facing, with i.i.d. random noise added to all black pixels as
shown in Figure 3b. This type of random noise has been studied in the literature and has been shown
to pose challenge for RL algorithms [Burda et al., 2019a].

In this grid world, the agent can either use the top route to reach the goal, or a bottom route. The
top route is shorter but the agent is more likely to visit the lava due to perturbations. Therefore, the
robust policy prefers the bottom route which is longer but more robust.

How robust is TASID to different η? Our theoretical analysis suggests that the suboptimality
scales as O(1/(1 − 2η)2). We evaluate this error empirically in the grid world environment for
various values of η in [0.1, 0.5] and show the results in Figure 3c. The performance matches the
theoretical prediction of V ρ◦φ

?−O(1/(1− 2η)2) until η = 0.3, and becomes even better for larger η.
Interestingly, even though the theoretical guarantee is vacuous at η = 0.5, the algorithm still learns
a non-trivial policy with the value greater than that of a random policy. Note that we tune the value
of nD rather than use the value suggested by our theory.

How does TASID’s performance scale with |S|? We showed theoretically that TASID’s sample
complexity to learn a near-optimal robust policy is independent of the size of the state space. We
empirically test this by varying the height of the grid world environment while keeping the width and
the horizon H , and overall layout the same. Results are presented in Figure 3d. As height changes
from 10 to 100, the size of the state space increases ten times; however, we do not see a significant
drop in the performance of TASID when using a fixed number of episodes in the target environment.

6 Conclusion and Future Work

We presented a new algorithm TASID for transfer RL in block MDPs that quickly learns a robust
policy in the target environment by leveraging an abstract simulator. We have also proved a sample
complexity bound, which does not scale with the size of the state space or the observation space.
Finally, we demonstrated theoretical properties by empirical evaluation in two domains.

Our work raises many important questions. Our theoretical analysis depends on the assumption that
the abstract simulator is deterministic and the the target environment is its perturbation. Is it possible
to relax these requirements and still obtain sample bounds that do not scale with the state space
size? One direction might be to leverage “full simulators” (including observations), and incorporate
observation similarity between the simulator and the real environment, along with similarity in the
latent dynamics. Another important question is how to extend the presented approach to continuous
control problems in robotics, which are natural domains for sim-to-real transfer.

10

References
Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. FLAMBE: Structural com-

plexity and representation learning of low rank MDPs. In NeurIPS, pages 20095–20107, 2020.

J Andrew Bagnell, Andrew Y Ng, and Jeff G Schneider. Solving uncertain Markov decision processes.
Technical report, Carnegie Mellon University, 2001.

Tim Brys, Anna Harutyunyan, Matthew E. Taylor, and Ann Nowé. Policy transfer using reward
shaping. In AAMAS, pages 181–188, 2015.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. In ICLR, 2019a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. ICLR, 2019b.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for OpenAI gym. https://github.com/maximecb/gym-minigrid, 2018.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford.
Provably efficient RL with rich observations via latent state decoding. In ICML, pages 1665–1674.
PMLR, 2019.

Fernando Fernández, Javier García, and Manuela Veloso. Probabilistic policy reuse for inter-task
transfer learning. Robot. Auton. Syst., 58(7):866–871, 2010.

Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257–280, 2005.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contex-
tual decision processes with low Bellman rank are PAC-learnable. In ICML, pages 1704–1713.
PMLR, 2017.

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. PhD thesis,
University College London, 2003.

Akshay Krishnamurthy, Alekh Agarwal, and John Langford. PAC reinforcement learning with rich
observations. NeurIPS, 2016.

Alessandro Lazaric. Transfer in reinforcement learning: A framework and a survey. In Marco
Wiering and Martijn van Otterlo, editors, Reinforcement Learning: State-of-the-Art, pages 143–
173. Springer, 2012.

Yaxin Liu and Peter Stone. Value-function-based transfer for reinforcement learning using structure
mapping. In AAAI, pages 415–420, 2006.

Timothy A Mann and Yoonsuck Choe. Directed exploration in reinforcement learning with transferred
knowledge. In EWRL, pages 59–76. PMLR, 2013.

Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic state
abstraction and provably efficient rich-observation reinforcement learning. In ICML, pages 6961–
6971. PMLR, 2020.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. EPOpt: Learning
robust neural network policies using model ensembles. ICLR, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Reinhard Selten. A reexamination of the perfectness concept for equilibrium points in extensive
games. International Journal of Game Theory, 4(1):25–55, 1975.

Vishal Soni and Satinder Singh. Using homomorphisms to transfer options across continuous
reinforcement learning domains. In AAAI, pages 494–499, 2006.

11

https://github.com/maximecb/gym-minigrid

Yanchao Sun, Ruijie Zheng, Xiyao Wang, Andrew Cohen, and Furong Huang. Transfer RL across
observation feature spaces via model-based regularization. ICLR, 2022.

Matthew E. Taylor and Peter Stone. Behavior transfer for value-function-based reinforcement learning.
In AAMAS, pages 53–59, 2005.

Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
JMLR, 10:1633–1685, 2009.

Matthew E Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-task mappings for temporal
difference learning. JMLR, 8, 2007a.

Matthew E. Taylor, Shimon Whiteson, and Peter Stone. Transfer via inter-task mappings in policy
search reinforcement learning. In AAMAS, 2007b.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In IROS,
pages 23–30. IEEE, 2017.

Geoffrey Van Driessel and Vincent Francois-Lavet. Component transfer learning for deep RL based
on abstract representations. arXiv preprint arXiv:2111.11525, 2021.

Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin
Gal, and Doina Precup. Invariant causal prediction for block MDPs. In ICML, pages 11214–11224.
PMLR, 2020.

12

	Introduction
	Related Work
	Problem Setting
	Target environment
	Abstract simulator
	The learning setting

	Main Algorithm
	Robust dynamic programming for abstract simulator
	Learning a decoder in the target environment
	Sample Complexity of TASID
	Extensions

	Experiments
	Conclusion and Future Work
	Proofs for Algorithm 1
	An alternative Proof for Algorithm 1 from the First Principles

	Proofs for Algorithm 2
	Accuracy of action classification
	One-step accuracy of action decoder
	Analysis of the sample complexity

	Analysis with Stochastic Initial State
	Learning decoder initial states
	Aligning the learned decoder states

	Experiment Details
	Experiment Details in Combination Lock
	Experiment Details in MiniGrid

