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Reproducibility Summary1

.2

Scope of Reproducibility3

Pang et.al. [1] presented Max-Mahalanobis center (MMC) loss and argued that MMC loss is adversarial more robust4

than SCE. The author’s SCE loss conveys inappropriate supervisory signals to the model, leading to sparse sample5

density in the feature space. In this reproducibility challenge we verify the claims that training with MMC loss produces6

adversarially robust models while also enabling accuracy comparably with models trained with SCE loss.7

Methodology8

We used the code as present in the repository provided by Pang et.al. [1]. We used their files to implement our9

experiments and test their hypothesis. We used Nvidia GeForce RTX 2080 Ti to perform all our experiments. It took a10

total of around 500 GPU hours.11

We used adaptive attacks to test out the main claims of the paper. Our main goal was to prove the various hypothesis12

stated by the authors.13

We also reproduce the MMC loss and optimal center generation algorithm in the PyTorch framework, which can help14

the PyTorch practitioner facilitate further research15

Results16

We reproduced all the experiments as done by Pang et.al. [1] and could not see significant difference between the our17

results. All the results were within 2% of the values presented in the paper. We could also validate the hypothesis as18

stated by the authors of the paper. We believe that the paper gives a very good idea of what other objectives other than19

SCE loss could look like.20

What was easy21

It is easy to replicate the originals results because the code was publicly available. Also implementing MMC loss was22

also pretty straight forward.23

What was difficult24

The paper is very theoretical and it was difficult to understand some parts of it. Additionally, running adaptive attacks25

was tough because you had to go and change the loss function in cleverhans library for every experiment that had to be26

run. This was a tedious task. There were some places where we had to look at the proper documentation of a library to27

understand what was actually happening in the code.28

Communication with original authors29

Some of our doubt regarding the theory and implementation details were clarified by the original authors via email and30

in the issues of their Github repository.31
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1 Introduction32

Deep Neural Networks have shown great success in many vision and language-related tasks. However, Deep neural33

networks (DNN’s) are vulnerable to small input perturbations that are indistinguishable to the human eye but can easily34

fool the neural network, as demonstrated in [2, 3]. These perturbed inputs are known as adversarial attacks, and these35

attacks drive the trained models to classify objects which were previously classified with high accuracy wrongly. This36

unexpected behavior of DNNs raises some of the security concerns in DNN based systems [4, 5] thus limits the usage37

of DNN’s in self-driving cars, robotics, and other related fields. The existence of adversarial nature in deep neural38

networks is still an open problem, and this has led to a plethora of publications on adversarial attacks and robustness.39

Several methods exist for achieving adversarial robustness, such as [6, 7] proposes verification-based methods and40

training provable robust network. The only problem with these verification based methods is that they are slow and hard41

to scale. Other adversarial defense method includes adversarial training (AT) [8] of networks. These methods have42

shown state-of-the-art performance; however, AT is usually accompanied by a drop in accuracy on clean inputs, and AT43

is computationally expensive, as demonstrated in our experiments.44

The original paper [1] introduces a novel MMC loss objective that significantly increases the robustness against strong45

adversarial attacks with little additional computation as compared to SCE loss. The paper presents the theoretical46

shortcoming of SCE loss function in inducing high sample density regions in the feature space. The MMC loss function47

introduces untrainable class centers around which the sample gathers in the feature space by minimizing the squared48

norm between the data points and the corresponding class center. These untrainable class centers are at an optimal49

distance from each other. The authors also investigated the theoretical foundations of MMC loss and demonstrated50

how higher density regions are induced around the class centers using the MMC loss compared to SCE loss. Our main51

contribution is listed below -52

• We reproduce the results mentioned in the original paper and validate the results presented in the original53

paper.54

• We further perform experiments to validate claims and assumptions made in the original paper. These55

experiments conclude that MMC loss can be used as a reliable metric of uncertainty on predictions and56

demonstrates substantial robustness to strong adaptive attacks. Additional experiments includes training time57

comparsion and effect of optimizers on MMC loss.58

• Finally, we re-implement the optimum center generation algorithm (initially present in MATLAB ".mat" file)59

and MMC loss in Pytorch to facilitate further research in this area. We then present demerits of MMC loss60

over SCE. We also implement Hierarchical Max-Mahalanobis(HMMC) a variant of original MMC loss.61

Outline of the paper: The immediate next section 2 presents a detailed discussion on theory related to sample density62

induced by SCE loss and MMC loss. Section 3 presents our experimental setup in reproducing our results. 4 contains63

the results of our experiments and a discussion on the results.64

2 Theory65

In this section, we will present the theoretical foundation related to MMC loss and SCE loss. Firstly, we mathematically66

define the induced sample density then we compare the relative induced sample density in the feature space for SCE67

loss and MMC loss.68

2.1 Sample Density69

The sample density [9] SD(z), is defined as -70

SD(z) =
∆N

VOL(∆B)

where z is defined as a point in the feature space z = Z(x), corresponding to an input x in the dataset D having N71

number of training samples. Vol() denotes the volume of a set, ∆B represents the small neighboring region near the72

point z, and ∆N denotes the number of training points in ∆B. Note that the mapped feature z still corresponds to a73

particular label y.74

Remark 1: The distribution of the samples in the feature space is directly influenced by loss L(z, y) used during75

training. Since the supervisory signal is loss minimization, the sample density mainly varies along the orthogonal to76

loss contours.77
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As a consequence of Remark 1 we can define ∆B in feature space as ∆B = {z ∈ Rd|L(z, y) ∈ [C,C + ∆(C)]},78

where C = L(z, y), and ∆C > 0 is a small value. Now we can define V ol(∆B) to be equal to the volume between the79

loss contours C and C + ∆C for a label y in the feature space.80

2.2 Generalized SCE Loss81

The family of SCE loss and its variants can be defined as -82

Lg−SCE(Z(x), y) = −1Ty log[softmax(h)]

where the logit h = H(z) ∈ RL is a general transformation of the feature z. The linear transformation h = Wz + b is83

usually used in conjunction with SCE loss. A couple of other transformation has also been proposed, [10] proposed use84

of large-margin Gaussian Mixture loss, where h = −(z−µi)TΣ(z−µi)−mδi,y . [11] proposed the Max-Mahalanobis85

linear discriminant analysis, where hi = −||z − µ∗i ||22. The authors argue that all the logits fall under the family of86

g-SCE loss with quadratic logits:87

hi = −(z − µi)TΣi(z − µi) +Bi
where Bi are the bias variables. Also, linear transformation is a special case of the quadratic logits.88

The authors proved that, the sample density induced by g-SCE loss is proportional to Nk,k̃. Dk,k̃ refers to the total set89

of data points in the dataset whose true class is k while k̃ is the class with the highest prediction amongst other classes.90

Nk,k̃ is just the total number of points in Dk,k̃. Formally given (x, y) ∈ Dk,k̃, z = Z(x) and Lg−SCE(z, y) = C, the91

sample density near the feature point z is92

SD(z) ∝
Nk,k̃ · pk,k̃(C)

[Bk,k̃ + log(Ce−1)
σk−σk̃

]
d−1
2

where for the input-label pair in Dk,k̃, Lg−SCE ∼ pk,k̃(C).93

Remark 2: The author argued that the problem in SCE loss mainly roots from applying the softmax function in during94

the training procedure. Softmax function causes the loss value to depend only on the relative relation among logits.95

This dependency leads to indirect and unexpected supervisory signals on the learned features representation, such that96

the points with low loss values tend to spread over the space in an sparsely. The authors also argued that in practice, the97

feature points do not move to infinity due of the existence of batch normalization layers in DNNs.98

Remark 3: While deriving the loss contours induced by g-SCE loss an assumption is taken that log[Σl 6=yexp(hl)] can99

be approximated by hỹ where hỹ = argmaxl 6=yhl. However we found that it is not always true as demonstrated in our100

experiments ref section 4.101

Remark 4: Through simple derivation, the authors proved that the loss contour induced by g-SCE loss is (d − 1)102

dimensional hypersphere.103

2.3 MMC Loss104

The Max-Mahalanobis Center (MMC) loss is defined as -105

LMMC(Z(x), y) =
1

2
||z − µ∗y||22

where µ∗ = {µ∗l }l∈[L] are the centers of the Max-Mahalanobis distribution (MMD) [12]. MMD is a special case of106

gaussian mixture distribution with an identity covariance matrix. The MMD centers µ∗ are a set of untrainable centers107

calculated before the training procedure. These centers act as a converging point of all the training samples belonging108

to a specific class y. Another interesting point to note about MMC loss is that it is defined in regression format without109

softmax activation.110

Remark 5: The MMC loss centers are untrainable and fixed at the starting of the training process. These centers are111

located such that the minimum angle between any two centers is maximized. For example, in the case of 2 centers,112

they will be on a line; in the case of 3 centers, they will be present at the vertices of an equilateral triangle, and for four113

centers, they will be positioned on the vertices of a regular tetrahedron as shown in Figure 1.114

In the original paper [1] the author proved that, the sample density induced by the MMC loss is proportional toNk rather115

than Nk,k̃ as in the case of SCE loss and its variants. Formally given (x, y) ∈ Dk, z = Z(x) and LMMC(z, y) = C,116

the sample density near the feature point z is117

SD(z) ∝ Nk · pk(C)

C
d−1
2
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Figure 1: MMC centers

where for the input-label pair in Dk there is LMMC ∼ pk(C).118

Now we list down some of merits of using MMC loss over SCE loss -119

• Higher sample density: As mentioned above, the sample density induced by MMC loss is proportional to120

Nk, where Nk on an average is N/num_class. While on the other hand, the g-SCE loss is proportional to121

Nk,k̃ and on average, it is equal to N/(num_class)2.122

• Faster Convergence: The MMC loss explicitly focuses on minimizing the intra-class distance between the123

training samples and fixed class centers. There is no internal trade-off between intraclass dispersion and124

inter-class dispersion, which leads to faster convergence.125

• Uncertainty Estimation: The MMC loss induces high-density regions in the feature space. Thus any sample126

having a feature representation this is not close to the any of the class center makes it very likely that it does not127

belong to any of the respective classes and hence MMC loss can also be used as a reliable metric to measure128

the uncertainty on the predictions.129

2.4 Scope of reproducibility130

The paper talks about better utilising the dataset to train adversarially robust models while also not losing out the high131

accuracies. They aim to do this with a new loss function Max Mahalanobis Centre Loss. They first show that the132

Softmax Cross-Entropy loss(SCE) conveys supervisor inappropriate supervisory signals to the model, leading to sparse133

sample density in the feature space, and demonstrates how MMC loss is not afflicted with the same problem.134

This section roughly tells a reader what to expect in the rest of the report. Clearly itemize the claims you are testing:135

• Reliable robustness even under strong adaptive attacks.136

• MMC loss value also becomes a reliable metric of the uncertainty on returned predictions.137

• MMC Loss is not much computationally expensive than SCE loss.138

• Higher sample density is induced by MMC loss as compared to SCE loss.139

• Global and Feature feature representation comparison between SCE and MMC loss.140

Each experiment in Section 4 will support (at least) one of these claims, so a reader of your report should be able to141

separately understand the claims and the evidence that supports them.142

3 Methodology143

In this section, we will describe all the experimental settings involved during the training and inference phase. We will144

also report the adversarial attacks used to evaluate the performance.145

For our experiments, we have used MNIST [13], CIFAR-10 and CIFAR-100 [14] and datasets to evaluate the perfor-146

mance of the proposed losses. The paper uses momentum SGD(momentum value - 0.9)with every model they have147

trained. All MNIST based-models have been trained for 50 epochs, and all CIFAR-10 and CIFAR-100 based-models148

have been trained for 200 epochs. The learning rate is initially 0.01 but decays by a factor of 0.1 at both 100 and149

150 epochs. We used Nvidia GeForce RTX 2080 Ti to perform all our experiments. The network architecture used150

as a backbone is ResNet-32 with five core layer blocks[15]. This architecture has been kept constant in all of our151

experiments.152
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The original code is present at https://github.com/P2333/Max-Mahalanobis-Training and we release our153

code at https://github.com/kaiyon07/rp2020_rethinking_softmax .We use the same set of hyperparameters154

that have been used by the authors to maintain consistency with the paper that we are reproducing. However, we found155

several minor inconsistencies while replicating the results using the original code-base. These are as follows -156

• Use of Data-Augmentation Methods: The authors have used a few data augmentation methods like flipping157

(horizontal flip), shifting (both vertical=0.1 and horizontal=0.1), and ZCA whitening (ε=10−6), which has not158

beeen mentioned in the original paper.159

• MMC-10(rand) has not been implemented: The author has given flags for training using MMC loss with160

random centers, but it has not been implemented in the repository.161

3.1 Adversarial attacks162

We are using the same adversarial attack models as used in the Pang [1]. The attacks they have used are comprehensive163

and cover many threat models, giving a better evaluation of the proposed loss.164

• White-box l∞ distortion attack: The PGD method proposed by Madry [16] has been widely studied and is165

said to be a universal first order adversary.166

• White-box l2 distortion attack: Carlini and Wagner (C&W) [17] attacks are used in the paper.167

• Black-box transfer-based attack: Momentum Iterative Method (MIM) [18] is used.168

• Black-box gradient-free attack: SPSA attacks are used.169

• General-purpose attack: The paper also evaluates the robustness of the model to addition of random170

noises [19] and random rotation [20].171

All the above attacks are modified to be adaptive attacks [21, 17] to remove the effect of gradient masking while172

evaluating the robustness of the proposed loss.173

4 Results and Discussion174

In this section, we present the results of our experiment and discussion based on our observations.175

4.1 Evaluation on Adversarial Attacks176

We first evaluate the models trained on MMC loss and SCE loss with different adversarial attacks as proposed in the177

original paper [1]. We were able to reproduce all the adversarial attacks mentioned in the paper, and no inconsistencies178

related to accuracy were found. So, we think that putting the two tables here would provide little value to the reader.179

The models have been evaluated both on adaptive attacks and non-adaptive attacks. We observed that across all training180

methods involving MMC loss, testing accuracy under non-adaptive untargeted attacks is always significantly greater181

than adaptive untargeted attacks. We observe that methods trained with either untargeted or targeted attacks show182

greater accuracy under adaptive targeted PGD attacks than under non-adaptive targeted PGD attacks for perturbations183

of (ε = 8
256 ) while the reverse is true for PGD attacks with perturbation of (ε = 16

256 ).184

185

4.2 Training Time Comparison186

We also evaluate our model based on the time taken for the training procedure keeping the epochs and batch size fixed187

across the dataset. We train our model for 50 epochs with a batch size of 50.188

Method Dataset Number of classes Timing (in min)
Standard SCE MNIST 10 39.8

Standard MMC MNIST 10 48.075
Adversarial SCE MNIST 10 271.14

Adversarial MMC MNIST 10 280
Standard SCE CIFAR10 10 54.04

Standard MMC CIFAR10 10 55.23
Standard SCE CIFAR100 100 42.8

Standard MMC CIFAR100 100 45.55

189
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Table 1: Training time for different methods190

The difference between timings of SCE and MMC loss is shown in Table 1. Little difference is observed between191

training times for MMC loss and SCE loss. This observation validates the claim of the paper that MMC is not much192

computation expensive than SCE loss. We also observe that (AT) hugely increases the training time, nearly ≈ 7× the193

training time under standard training procedure for both SCE and MMC loss.194

4.3 Effects of Optimizer195

We try different optimizers to check which optimizer is suitable with MMC loss. As you can see in Table 2, Momentum196

SGD gives the best accuracy with the least time .197

Optimizer Resulting accuracy Training Time(min)
Momentum SGD 99.69% 47.7

Adam 99.53% 62.7
RMSProp 99.40% 55.9

198

Table 2: Experiment to determine optimal CMM value for use with MMC loss. Models trained on MNIST dataset for
50 epochs using MMC loss.199

4.4 Uncertainty Prediction200

We validate one of the merits of MMC, that is, MMC can reliably estimate the uncertainty in the prediction. To validate201

this hypothesis, we tested the performance of the models with a random image. This hypothesis will test the confidence202

aware learning capability of MMC loss over SCE loss. E.g., we are interested in knowing the output score of SCE and203

MMC loss when we feed a car image as a test image into a model trained on a cat and dog dataset. If the model gives204

high probability scores to a particular class, it implies that the model is overly confident about the predictions. Ideally, it205

should be around 0.5 for dog class and 0.5 for cat class for SCE loss.206

For this experiment, an image of a lion resized to (32× 32) was taken for the models trained on MNIST, and for models207

trained on CIFAR-10 and CIFAR-100, a random image from the MNIST dataset was used. The scores of the final layers208

are given in Table 3. The results demonstrate the uncertainty of prediction when MMC loss is used. Models with SCE209

loss give high probabilities for even irrelevant classes, which is undesirable. MMC loss gives a high norm value for all210

classes, which implies that the lion’s feature representation is very different from the class center representation and is211

nearly equidistant from all the class centers. This experiment demonstrates another hypothesis by the authors: MMC212

loss value also becomes a reliable metric of the uncertainty on returned predictions. In Table 3 the values of the top213

three classes have been reported.214

Method Dataset Class 1 Class 2 Class 3
Standard SCE MNIST 0.997 0.00292 0.00004

Standard MMC MNIST -1618.7 -1670 -1680
Standard SCE CIFAR-10 1 0 0

Standard MMC CIFAR-10 -10143 -10152 -10564
Standard SCE CIFAR-100 1 0 0

Standard MMC CIFAR-100 -138439 -139005 -141384

215

Table 3: Top 3 Scores on different models. Models trained on MMC loss give the distance from each class center as
scores while models trained on SCE loss give probabilities for each class as scores.216

4.5 Relative Dependency in g-SCE Loss217

We also verify the assumption that log[Σl 6=yexp(hl)] cannot be smoothly approximated by hỹ where hỹ =218

argmaxl 6=yhl on each datapoint as mentioned in Remark 3. For this experiment we use ResNet-32 model trained on219

CIFAR10 dataset using SCE loss. We then compare (hỹ) where hỹ = argmaxl 6=yhl with remaining eight class score220

values. Our observation is that for CIFAR10 dataset around 9.16% of the samples have comparable (< 5×) second and221

third class scores. Thus log[Σl 6=yexp(hl)] cannot be approximated by just hỹ . For more accurate results it is advisable222

to use top five values of the class scores (hl where l is class centers having top 5 scores such that l 6= y) for a clean223

approximation.224
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4.6 Effect of MMC loss Constant (CMM )225

We also investigate a model’s performance trained with MMC for different scaling constant (CMM ). For our exper-226

imentation, we used the value of CMM = {1, 5, 10, 100} and measured the effect of (CMM ) on the accuracy of the227

model. As clear from Table (CMM = 10) yields the optimal results while (CMM = 100) yields poor result because the228

model fails to converge due to high loss values. The high loss value is because the considerable value of (CMM ) results229

in large l2 norm values in the case of MMC. When CMM is set as 100, the resulting accuracy is like picking a class230

randomly from the ten classes from the dataset.231

CMM values Resulting accuracy
1 92.16%

10 92.57%
50 68.92%

100 10%

232

Table 4: Experiment to determine optimal CMM value for use with MMC loss. Models trained on CIFAR10 dataset for
200 epochs using MMC loss.233

4.7 Feature Representation234

Figure 2 represents the feature visualization of MNIST dataset and Figure 3 represents the feature visualization of235

CIFAR10 dataset. For simplicity, we have used isometric projection on a circle in the case of MMC loss. As evident236

from the Figure 2 and 3 the sample density is higher in the case of MMC loss.237

This fixed untrainable class center in MMC is favored in the MNIST dataset cases where each class is unrelated to the238

other. While in the case of cifar-10, we want our feature representation to depict both inter-class relation and intra-class239

relation, which is more favored in SCE loss. In the figure 3(b), the class with orange color represents a cat, and the240

class with pink color represents a dog. Ideally, we want our feature representation to capture some common relations241

between dog and cat. They are more similar to each other as compared to other classes like airplane marked in red. In242

our ideal representation, dog and cat centers should be near to each other than the airplane. This inter-class nature is243

somewhat captured by SCE loss, not by MMC loss due to fixed untrainable class centers. Figure 3(b) depicts how class244

centers should be initialized when two class have a common representation. Distance should be minimized between245

such classes and maximized between other classes.246

Figure 2: Comparions of Embedding Representation of SCE and MMC for MNIST dataset. Fig 1(a) is for SCE loss
and Fig(b) for MMC loss.

Finally, we implement hierarchical Max-Mahalanobis (HMMC) loss a variant of MMC loss as mentioned in the247

supplementary section of the original paper. The authors presented HMMC loss algorithm for datasets like CIFAR100248

where each class have multiple subclasses. CIFAR100 has 20 superclass and 5 sub-classes in each superclass. We first249

generate 20 MMC centers with CMM = C1 and then we generate 5 MMC centers using CMM = C2 where C1 >> C2.250

If a label l is the jth class in the ith superclass, then µHl = µi + µj . We experimented with multiple values of C1 and251

C2. We got poorest results when C1 approach 100. The best range from C1 is between [5, 20] and for C2 is between252

[0.1, 2]. We were unable to beat the performance of original MMC centers using HMMC centers.253

7



Figure 3: Comparions of Embedding Representation of SCE and MMC for CIFAR dataset. Fig(a) is for SCE loss and
Fig(b) for MMC loss.

5 Conclusion254

Our experiments investigate the validity of the original paper’s results, and we find that MMC loss presents as a viable255

alternative to SCE. Our experiments empirically demonstrate how MMC loss induces high-density regions in the256

feature space. All our results support the central claims made in the paper. The experiments show that MMC loss leads257

to reliable robustness under strong adversarial attacks at the cost of little extra computation. The method they have258

proposed is novel, and their analysis in the paper gives considerable insight into the development of new objective259

functions.260
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