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ABSTRACT

Goal-Conditioned continuous control tasks remain challenging due to the sparse
reward signals. To address this issue, many relabelling methods like Hindsight Ex-
perience Replay have been developed and bring significant improvement. Though
relabelling methods provide an alternative to an expert demonstration, the major-
ity of the relabelled data are not optimal. If we can improve the quality of the
relabelled data, the sample efficiency, as well as the agent performance, should
be improved. To this end, we propose a novel meta-algorithm Self-Imitation Pol-
icy Learning through Iterative Distillation (SPLID) which relies on the concept
of δ-distilled policy to iteratively level up the quality of the target data and agent
mimics from the relabeled target data. Under certain assumptions, we show that
SPLID has good theoretical properties of performance improvement and local
convergence guarantee. Specifically, in the deterministic environment, we de-
velop a practical implementation of SPLID, which imposes δ-distilled policy by
discriminating First Hit Time (FHT). Experiments show that SPLID outperforms
previous Goal-Conditioned RL methods with a substantial margin.

1 INTRODUCTION

Goal-Conditioned Sparse Reward (GCSR) tasks are one of the most challenging tasks in reinforce-
ment learning. In these tasks, the goal is combined with the current state as the input of a policy, and
only when the agent successfully achieves the desired goal will the agent be assigned with a non-
trivial reward, making the task extremely challenging for random-exploration-based algorithms. In
many cases, the GCSR task is closely related to the Multi-Goal task, where the goal is not fixed
and can be set anywhere in the state space. In order to solve a GCSR task, an agent has to learn a
generalizable solution that can be applied to a variety of similar tasks. For example, robotic object
grasping is such a GCSR task: the target object can be placed at any position on the table, henceforth,
the robot needs to control its arm to get closer to the position of the object and then grasps it. The
objective of learning such a policy is to find a feasible path from the current state to the goal (Tamar
et al., 2016). The work of Plappert et al. (2018) provides a series of these Goal-Conditioned tasks
in robotics control.

In previous works, reward shaping (Ng et al., 1999), hierarchical reinforcement learning (Dietterich,
2000; Barto & Mahadevan, 2003), curriculum learning (Bengio et al., 2009), and learning from
demonstrations (Schaal, 1997; Atkeson & Schaal, 1997; Argall et al., 2009; Hester et al., 2018; Nair
et al., 2018) is proposed to tackle the challenges of learning through sparse rewards. All of those
approaches heavily rely on prior knowledge or expert demonstrations for a given task. The work
of Hindsight Experience Replay (HER) (Kaelbling, 1993; Andrychowicz et al., 2017) is proposed
to relabel failed trajectories and assigns hindsight credits as complementary to the primal sparse
rewards, to address the difficulty in exploration through the way of Temporal Difference (TD) learn-
ing. Differently, the recent work of GCSL (Ghosh et al., 2019b) proposes to solve the GCSR tasks,
extending HER through iterative supervised learning, i.e., there are no value networks that are opti-
mized based on TD learning. However, in both HER and GCSL, there is no guarantee on the quality
of the relabeled data, nor there is a guarantee on the policy improvement based on those relabeled
data. On the other hand, the work of PCHID (Sun et al., 2019) proposes an intuitive approach for
GCSR tasks in a supervised learning manner, but the sample efficiency is limited by the explicit
curriculum setting.
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In this work, we aim at improving sample efficiency in GCSR tasks, by improving the quality of
relabeled data. Notice that GCSL performs behavior cloning on all the successful experience af-
ter relabeled without considering improving the quality of the relabeled data, where quality can be
measured by the timesteps taken to achieve the goal or other means. Since the quality of the expert
demonstration that behavior cloning relies on determines the performance and the sample efficiency
of the training, it is natural to ask if we can also improve the quality in the target of the behavior
cloning. To this end, we propose a meta-algorithm Evolutionary Policy Distillation (SPLID), mo-
tivated by the theoretical insight, and instantiate it with a practical algorithm in the GCSR tasks to
further improve learning efficiency.

We summarize our contributions as follows:

• To evaluate the quality of the policy in the Multi-Goal RL, we introduce the concept of
δ-distilled policy. Motivated by leveling up the quality of the target policy of the behavior
cloning, we propose a novel meta-algorithm called SPLID, which iteratively distills the
target policy through pursuing δ-distilled policy and conducting self-imitation learning.

• From the theoretical aspect, we prove that under certain assumptions, SPLID has a mono-
tonic performance improvement guarantee and a local convergence guarantee.

• We specialize such meta-algorithm on a practical implementation in the GCSR tasks with
the deterministic environment, where SPLID searches δ-distilled policy by distinguishing
First Hit Time (FHT) and enhances exploration by parameter noise.

• We demonstrate the proposed practical implementations on the goal-oriented tasks bench-
mark and show our method SPLID can work in isolation to solve GCSR tasks with im-
proved sample efficiency than previous methods involving HER, PCHID, GCSL, and ES.

2 PRELIMINARIES

Multi-Goal Markov Decision Process. We first consider a Markov Decision Process (MDP) de-
noted by a tupleM containing (S,A, r, T , ρ(s0),G, γ), where S is a finite discrete state space, A
denotes the finite discrete action space , r(s, g) : S×G 7→ R is the reward function. In this paper we
focus on a special case where the reward function is binary, i.e., tasks with sparse reward. Without
loss of generalization, we also assume that reward is bounded in [0, 1]. γ ∈ (0, 1) is the discount
factor. T : S × A 7→ ∆(S) is the transition kenrel and T (st+1 | st, at) represents the probability
of the state transition from st to st+1 given the action at. Here we denote by ∆(X ) distribution
set defined on any measurable set X . ρ(s0) is the start state distribution. G is the finite goal space
and we assume the goal obeys the fixed distribution pG(·) ∈ ∆(G) at the beginning of each episode.
Policy of the agent takes the form π(a | s, g) : S × G 7→ ∆(S) and π induces the state distribution
ρtπ(· | g) = P(st = · | π, g). We denote ρπ(· | g) = 1

1−γ
∑∞
t=1 γ

tρtπ(·) as the discounted average
state distribution induced by π. For convenience, we assume that the environment transits to the null
state with recieving reward 1 each time step once the agent reaches the goal. For the introduction of
nerual network, we parameterize the policy π by πθ, where parameter lies in a certain region θ ∈ Θ.
We denote that ΠΘ = {πθ : θ ∈ Θ} the parameterized policy class and assume that optimal policy
falls into it, i.e.,π? ∈ ΠΘ.

Universal Value Function Approximator The Universal Value Function Approximator
(UVFA) Schaul et al. (2015) extends the state space of Deep Q-Networks (DQN) Mnih et al. (2015)
to include goal state as part of the input, which is useful in the setting where there are multiple goals
to achieve. Moreover, Schaul et al. (2015) shows that in the UVFA setting, the learned policy can
generalize to previously unseen state-goal pairs. Specifically, let S(S,G) = S×G denote the extended
state space ofM where G is a finite goal space. Normally, a representation mapping m(·) : S → G
is assumed to be known in such multi-goal RL frameworks (Plappert et al., 2018).

Hindsight Experience Replay. Learning with sparse rewards in RL problems remains challenging
due to the difficulty to reach the reward through random explorations. Hindsight Experience Replay
(HER) proposes to relabel the failed rollouts as successful ones (Andrychowicz et al., 2017) as a
method to deal with the goal-oriented sparse reward problem. The agent in HER receives a reward
when reaching either the original goal or the relabeled goal in each episode by storing both original
transition pairs ((st, g), at, (st+1, g), r) and relabeled transitions ((st, g

′), at, (st+1, g
′), r′) in the
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replay buffer, where g′ is a certain hindsight goal that will be visited in the following steps, i.e.,
there exist k such that g′ = m(st+k), and r′ is the hindsight reward, which will be 1 when the
hindsight goal is achieved.

3 SELF-IMITATION POLICY LEARNING THROUGH ITERATIVE DISTILLATION

3.1 THEORETICAL FRAMEWORK

First, we consider a multi-goal MDP with infinite horizon, where the discounted goal-specified
return V (π, g) takes the form

V (π, g) =

∞∑
t=0

Est∼ρtπ(·|g)[γ
tr(st, g)],

and ρtπ is the visitation measure induced by π. Then the target of the agent is to maximize the
discounted return J(π), i.e.,J(π) = Eg∼pGV (π, g). This problem can be extremely hard when the
goal specified reward r(·, g) is sparse or binary. To address this problem with sample efficiency,
we are motivated by behavior cloning that mimics a policy from an oracle in a supervised learning
manner, e.g. human experts. To implement such a supervised learning method, one issue faced
is the access to the oracle data, which is not available in our problem setting, and the quality of
the oracle data also determines the performance of the mimicked policy. Although HER (Rauber
et al., 2017) proposes to relabel failure trajectory to successful one with a different goal and GCSL
(Ghosh et al., 2019b) applies HER in the behavior cloning method, it is inadequate for GCSL to
achieve sample efficiency. Because it considers all the policy reaching the goal as the target in the
supervised learning and the quality of the target policy it mimics may be a burden in improving the
sample efficiency. To this end, besides the combination of HER and behavior cloning as GCSL do,
we desire to improve the target policy dynamically, that is assured by an oracle to be qualified to
lead the present policy. Such a process corresponds to the policy distillation, where it is oriented
with an evolutionary target policy selected by an oracle. We will introduce how we implement such
oracle-guided policy distillation by the paradigm of behavior cloning to boost sample efficiency
from the theoretical perspective. Similar to previous work (Ghosh et al., 2019b; Xu et al., 2019), we
only study the discrete case from the perspective of theory. To utilize the relabeling strategy (Rauber
et al., 2017) to address GCSR, we first analyze the formal definition of relabeling strategy.
Definition 1 (Relabeling Strategy). We define the relabeling strategy of policy π with initial goal g
in the t-timestep as ηtπ(g′ | g) : G × G × N×ΠΘ 7→ ∆(G).

By definition 1, relabeling strategy is a time varying distribution, reflecting the relabeling preference
w.r.t. the time step in one trajectory. We remark that in HER, such relabelling distribution matches
the average state visitation distribution induced by the model policy ηtπ(· | g) ∝

∑∞
i=t ρπ(· | g), and

in GCSL it matches the last step visitation distribution (finite horizon T ) i.e.,ηtπ(· | g) = ρTπ (· | g),
for all g ∈ G and π ∈ ΠΘ. The next step is to formally evaluate the quality of the target policy that
acts as the target of behavior cloning. We introduce the definition of δ-distilled policy as follows.
Definition 2 (δ-Distilled Policy). We define the δ-distilled policy π̃ ∈ ΠΘ of a policy π ∈ ΠΘ, if the
following condition is satisfied:

G(π̃‖π) :=
∑
g′∈G

Eg∼ρπ̃(m−1(·)|g′)

[
pG(g) · (V (π̃, g)− V (π, g))

]
≥ δ,

where δ is a nonnegative constant and ρπ̃(m−1(·) | g′) is defined as
∑
{s∈S:m(s)=·} ρπ̃(m(s) | g′).

Intuitively, if π̃ is the δ-distilled policy of π, it means that π̃ performs nearly strictly better than π for
the goals that π̃ reached. Here the initial goal distribution pG(g) acts as the weight in the weighted
sum, reflecting the prior favor of such performance advantage. We remark that δ-distilled policy
does not directly give the relationship of the return J(π̃) and J(π) because of the covirate shift in
the goal distribution. Nevertheless, such δ-distilled policy is easier to search than the policy with
higher return, since we only need to focus on the goals reached by the δ-distilled policy itself rather
than the entire goal space G.

Before we move on, we first need to avoid the meaningless case when δ keeps zero, which is achieved
by the following assumption.
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Assumption 1 (Avoid δ Keeping Zero ). We assume that

supp(pG(·)) ∩ supp(ρπ(m−1(·) | g)) 6= Φ,

for all goal g ∈ G and policy π ∈ ΠΘ, where Φ is the empty set.

Assumption 1 excludes the environments where the goal-oriented regions under pG are blocked
away from the agents. This assumption can be easily satisfied by a wide variety of tasks in RL and
multi-goal RL, e.g. goal-reaching tasks.

Based on the assumption and previous intuitive insights, we present a meta-algorithm in Algorithm
1 to solve GCSR tasks iteratively, which is named Self-Imitation Policy Learning through Iterative
Distillation (SPLID) and involves three main stages for each episode.

Stage 1: Exploration To search for such δ-distilled policy, we need produce new behavior policy
π̃(k) from old model policy πθ(k−1) with the enhancement of exploration. To ensure robustness, we
control such exploration span by constrainting the total variation between π̃(k) and πθ(k−1) as

sup
g∈G,s∈S

DTV (π̃(k)(· | s, g)‖πθ(k−1)(· | s, g)) ≤ ε, (1)

where ε is an absolute constant.
Stage 2: Distill the Target We owe an oracle to judge whether this new behavior policy π̃(k) is
our desired δ-distilled policy. If it is, then we mix π̃(k) with old target policy π(k−1) with a certain
proportion, otherwise we skip this stage without changing target policy, i.e.,π(k) = π(k−1). The
mixture process satisfies that

ρπ(k) = (1− αk)ρπ(k−1) + αkρπ̃(k) , (2)

where αk ∈ (0, 1) is the mixture proportion at the k-th episode. Such a mixture process is also used
for ensure the smoothness of the update.
Stage 3: Behavior Cloning To update parameter θ(k), we conduct behavior cloning towards the
π(k) after relabeling, where the relabeled strategy is η. If we define the surrogate function Fη(πθ‖π̄)
as

Fη(πθ‖π̄) := Eg∼pG(·)

∞∑
t=0

Est∼ρtπ̄(·|g),g′∼ηtπ̄(·|g)γ
tDTV (π̄(· | s, g′)‖πθ(· | s, g′)), (3)

for all policy π, π̄ ∈ ΠΘ, and goal g ∈ G, where DTV (p‖q) :=
∑
x |p(x) − q(x)|/2 is the total

variation. Although in behavior cloning, KL divergence is usually adopted as the distance of polices,
minimizing KL divergence is also equivalent to minimize total variation by Pinker’s Inequality. Then
the behavior cloning process corresponds to the following optimization w.r.t. θ.

θ(k) = argmin
θ∈Θ

Fη(πθ‖π(k)). (4)

Algorithm 1 Self-Imitation Policy Learning through Iterative Distillation(SPLID): Meta Algorithm

1: Initialize parameter θ(0) and target policy π(0) with uniform distribution.
2: for episode k = 1, ...,K do
3: Enhance exploration from πθ(k−1) to generate a new behavior policy π̃(k) with constraint

Equation 1.
4: Sample trajectories from the environment following π̃(k)(· | ·, g). //Exploration
5: if π̃(k) is a δ-distilled policy (Definition 2) of πθ(k−1) then
6: Mix π̃(k) and π(k−1) to obtain π(k) via Equation 2. //Distill the target
7: else
8: Keep target policy unchanged π(k) = π(k−1).
9: end if

10: Relabel the target policy π(k) and conduct behavior cloning to update θ(k) via Equation 4.
11: //Behavior Cloning
12: end for
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3.2 THEORETICAL ANALYSIS

As SPLID is aimed at boosting the sample efficiency, we analyze the theoretical performance of
SPLID in this section. To begin with, we assert the following assumption to restrict the relabeling
strategy ηtπ , which ensures that relabeling will contribute to the policy learning.
Assumption 2 (Proper Relabeling). It holds that

inf
g∈supp(pG(·))

Eg′∼pG(·)η
t
π(g | g′) ≥ Cπ > 0,

for all policy π ∈ ΠΘ, t ∈ N and an absolute constant Cπ only relevant with π, where supp(·) is the
support set.

Assumption 2 is easy to be satisfied when the relabeling strategy is selected as random sampling
with a certain probability, which has been applied in practice. Another usual method is to use the
visitation measure as the relabeling strategy, for example, HER applies the uniform future state
relabeling strategy, i.e.,ηtπ(· | g) ∝

∑∞
i=t γ

iρiπ(· | g). When π is near optimal, the relabeling
strategy ηtπ of HER also satisfies this assumption.

Based on the assumption, the following theorem shows the local convergence of Algorithm 1.
Theorem 1 (Local Convergence). For a multi-goal MDP with infinite horizon, under Assumption 2,
it holds for Algorithm 1 that,

|J(π?)− J(πθ(k))| ≤
2

(1− γ)2
∆k + |J(π?)− J(π(k))|,

for all policies π? ∈ ΠΘ and k ∈ [K], where ∆k is defined as

∆k := C−1
π
θ(k)

Fη(πθ(k)‖π(k)),

where Cπ
θ(k)

and ε are specified in Assumption 2 and Equation 1 respectively.

Proof of Theorem 1. See detailed proof in Appendix B.1.

Theorem 1 reveals that Algorithm 1 can converge to the local optimality if the locally optimal pol-
icy π? has the same discounted return with π(k) and the surrogate function is minimized to zero.
Furthermore, we establish the following theorem to show the guarantee of monotonicity on the dis-
counted return.
Theorem 2 (Policy Improvement Guarantee). For a multi-goal MDP with infinite horizon, under
Assumption 1 and 2, it holds for Algorithm 1 that ,

J(πθ(k))− J(πθ(k−1)) ≥ δ −
2

(1− γ)2
[(1− αk)(∆k−1 + ε) + ∆k], (5)

where ∆k is defined in Theorem 1, ε is specified in Equation 1, and αk is defined in Equation 2.

Proof of Theorem 2. See detailed proof in Appendix B.1.

We motivate the proof by the following decomposition.

J(πθ(k))− J(πθ(k−1)) = J(πθ(k))− J(π(k))︸ ︷︷ ︸
(i)

+ J(π(k)))− J(π̃(k))︸ ︷︷ ︸
(ii)

+ J(π̃(k))− J(πθ(k−1))︸ ︷︷ ︸
(iii)

. (6)

Term (i) in Equation 6 corresponds to the performance gap from the behavior cloning and is a direct
conclusion of Theorem 1. Term (ii) in Equation 6 matches how π(k) is mixed by π(k−1) and π̃(k),
although this term requires more steps to control. Term (iii) in Equation 6 reflects how δ- distilled
policy π̃(k) contributes to the performance improvement.

From Theorem 2, it suggests that once the surrogate function can be minimized near to zero and the
exploration rate is controlled, then the positive δ on the RHS of Equation 5 will dominate, ensuring
the monotonicity of the return.
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Figure 1: Protocol of Self-Imitation Policy Learning through Iterative Distillation (SPLID) in the practical
implementation (Algorithm 2).

3.3 PRACTICAL IMPLEMENTATION

In this section, we desire to propose a practical implementation of the meta-algorithm SPLID (Algo-
rithm 1). Although Algorithm 1 has the theoretical performance improvement and local convergence
guarantee, the selection of the δ-distilled policy (Line 3 of Algorithm 1) and how to generate a new
behavior policy (Line 5 of Algorithm 1) require detailed implementations. To this end, we con-
sider instantiating Algorithm 1 in the case where the transition kernel of the environment T and all
the policies in ΠΘ are deterministic and we show that we are able to select such δ-distilled policy
in a practical method by the following proposition, which characterizes the relationship between
δ-distilled policy and First Hit Time (FHT).
Proposition 1. Suppose the transition kernel of the environment T and all the policy in ΠΘ are
deterministic and Assumption 1 holds. Then π̃ is the δ-distilled policy of π, if π̃ achieves goals with
strictly less FHT than π, where FHT is defined as FHT(π, g) := min{t ∈ N : m(st) = g, st ∼ ρtπ}.

Proof of Proposition 1. See proof in Appendix B.3.

Based on Proposition 1, we instantiate Algorithm 1 to a concrete algorithm in Algorithm 2 (see full
algorithm in Appendix A), which also achieves empirical success in the continuous environments
with mild stochasticity. The whole pipeline of Algorithm 2 is illustrated in Figure 1.. For simplicity,
we also name Algorithm 2 SPLID and we introduce three main stages of it for each episode as
follows.

Stage 1: Exploration with a New Policy SPLID utilizes the idea of parameter noise (Plappert
et al., 2017) to enhance exploration to generate new behavior policy. Specifically, SPLID maintains
an deterministic policy πθk−1

at the (k − 1)-th episode, parameterized as a policy network. In the
k-th episode a new stochastic behavior policy π̃(k) is generated by

π̃(k) = πθ(k−1) + Z,Z ∼ N (0, σ2). (7)

According to Equation 7, the behavior policy π̃(k) comes from adding a Gaussian exploration noise
upon the old model policy πθ(k−1) , as in previous deterministic policy learning literature (Lillicrap
et al., 2015; Fujimoto et al., 2018). Concretely, during training, π̃(k) first interacts with the environ-
ment and collects a batch of transition samples, permitting us to generate a batch of state-goal-action
pairs, regardless of their optimality. These state-goal-action pairs contain a set of transition tuples
(s, g′, a), where g′ denotes the hindsight goal. i.e.,the starting point, finally achieved the goal, and
the corresponding actions are included in each of these transition tuples. From an oracle-perspective,
these state-action pairs can be regarded as ones generated from a series of unknown deterministic
policies instead of a known stochastic behavior policy π̃(k) and each pair provides an individual
solution for the state-goal pair (s, g′) task. Such a method enables us to obtain more alternatives
for the later selection process, which increases the sample efficiency. Owing to the Equation 7, the
constraint in Equation 1 between πθ(k−1) a nd π̃(k) is naturally satisfied with a high probability since
ε in Equation 1 is upper bounded with the polynomial of σ with a high probability.

Stage 2: Select and Relabel As the instantiation of Line 5 in Algorithm 1 into Algorithm 2, by
Proposition 1, SELECT function chooses δ-distilled policy by comparing the FHT. To this end,
we empirically apply a SELECT function to distinguish FHT and store the fragments of the policy
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with strictly less FHT in a buffer B = {(si, g′i, ai)}i=1,2,...,N ,. The SELECT function can be
implemented by resetting the environment to a given previous state, which is always tractable in
simulation (Nair et al., 2018), Specifically, SELECT function takes in an episode generated by
π̃(k). Suppose the episode (st, at, st+1, at+1, ..., st+h) is of length h, the SELECT function resets
environment to the starting state of this episode st and runs πθ(k−1) for up to k steps, trying to reach
the final achieved state st+k. i.e.,, at every step, an action of πθ(k−1)(s,m(st+h)) is performed. If
πθ(k−1) is NOT able to reach st+k within k steps, the corresponding transition tuple (st,m(st+h), at)
will be collected in the buffer B and we will update θ from these tuples later. As horizons in the
practical tasks are usually finite, we truncate the horizon by T . While in practice, we apply a
notion of learning horizon H ≤ T , that is, during selection process we also truncate FHT with
H ,i.e.,FHT = min{H,FHT}. The introduction of H is a necessary trade-off, which will be
explained from the perspectives of both the theory and ablation study in Section 4.1.

Stage 3: Behavior Cloning Then, we can apply behavior cloning to update πθ following the same
procedure as in Algorithm 1. To be specific, we use supervised learning to minimize the Mean
Squared Error between the action stored in the buffer and the action πθ predicted as follows

πθ = arg min
πθ∈ΠΘ

1

N

N∑
i=1

(πθ(si, g
′
i)− ai)2, (8)

where N is the mini-batch size , (si, g
′
i, ai) is sampled from the buffer B and πθ(s, g) := {a ∈

A : πθ(a | s, g) = 1}. From this point of view, the SPLID method is also composed of evolution
strategy and policy distillation, where a stochastic target policy π̃(k) acts as the perturbation on the
action space and produces diverse strategies (a population), and we choose those well-performed
strategies to distill their knowledge into πθ (a selection).

Moreover, although plenty of policy gradient methods leverage action space noise in exploration Lil-
licrap et al. (2015); Schulman et al. (2017); Fujimoto et al. (2018), there is a clear gap between those
perturbations and the evolutionary insight in our methods: The most important difference between
action space noise in SPLID and previous policy gradient methods is that SPLID regards those
stochastic variants as from a series of unknown oracle deterministic policies, then use a selection
function as a filter the well-performed unknown oracle policies and finally distill those transitions
to the model policy. On the other hand, previous policy gradient methods do not contain such a se-
lection step, but instead, use all those variants to estimate the value function and improve the policy
through policy gradient accordingly.

4 EXPERIMENTS

4.1 RESULT ON THE GOAL CONDITIONED TASKS BENCHMARKS

Figure 2: Three goal-oriented tasks involved in this paper.

We demonstrate the proposed method on the Goal-Conditioned task, Fetch benchmarks (Plappert
et al., 2018). Specifically, we evaluate our method on the FetchPush, FetchSlide, and FetchPickAnd-
Place (see Figure 2 for illustration and Plappert et al. (2018) for detailed description). These three en-
vironments are nearly deterministic, satisfying the condition of Proposition B.3. They are also reset-
table so that we can apply SELECT function in Algorithm 2. We compare our proposed method with
the HER (Andrychowicz et al., 2017; Plappert et al., 2018) released in OpenAI Baselines (Dhariwal
et al., 2017). We also include PCHID (Sun et al., 2019), GCSL (Ghosh et al., 2019b), and Evolution-
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Figure 3: Test performance (Success Rate) of SPLID (our proposed method), GCSL, PCHID, HER, ES, and
SPLID without SELECT function. Results are averaged under 5 random seeds.

ary Strategy (ES) (Salimans et al., 2017) as the baseline. To show the effect of SELECT function,
we include the ablation study of SPLID without SELECT function.

Figure 3 shows the comparison of different approaches, where we adopt the success rate as the metric
of performance. For each environment, we conduct 5 experiments with different random seeds and
plot the averaged learning curve. SPLID shows superior learning efficiency and can learn to solve
the task in fewer episodes in all the three environments, compared with HER, GCSL, PCHID, and
ES. Ablation study on the SELECT function of SPLID reveals the indispensable role of SELECT
function in distilling the goal and reaching high sample efficiency and corresponds to the theoretical
analysis in Section 3.2. In Appendix D, we also plot the performance of the ablation study on
SELECT function in metric of the average return, which demonstrates how SELECT function plays
a role in searching for δ-distilled policy and improves the quality of the target of behavior cloning.

We also observe that GCSL fails in all these three environments, even performing worse than SPLID
without SELECT function. Because of the difficulty of these three benchmarks, only relabeling to
the last step like GCSL is inadequate for effective learning. On the contrary, SPLID relabels with all
future states with selective relabeling strategy and leverages the qualify of the target policy, making it
able to cope with the complicated tasks. We conduct more experiments where GCSL has non-trivial
performance and SPLID still outperforms GCSL on these environments. The details and results are
in Appendix E.
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Figure 4: Ablation study on learning horizon H.
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Figure 5: Ablation study on exploration factor σ.

Exploration Factor The exploration factor σ controls the randomness of behavior policy π̃(k) and
therefore determines the behavior of generated samples. While larger σ helps the agents to benefit

8
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exploration by generating samples with large variance, smaller σ helps to generate a biased sample
with little variance. Here we need to select a proper σ to balance the variance and bias and help
achieve higher performance guarantee in Theorem 2, where ε is determined by exploration factor σ.
Figure 5 shows our ablation study on the selection of different exploration factors. The results are
generated with 5 different random seeds. We find in all environments, the exploration factor σ = 1
provides sufficient exploration and relatively high learning efficiency.

Learning Horizon In our proposed method, the parameter of learning horizonH ≤ T determines
the maximal length of sample trajectories the policy can learn from. Intuitively, smallerH decreases
the learning efficiency as the policy is limited by its small horizon, making it hard to plan for the
tasks that need more steps to solve. Strictly, whenH is smaller, then the δ in Theorem 2 is higher and
the stricter selection makes the buffer contain less data. On the other hand, larger H will provide a
better concept of the local as well as global geometry of the state space, and thus the agent may learn
to solve more challenging tasks. Also, large H suggests lower δ but probably higher αk in Theorem
2, meaning we have a larger buffer but with perhaps lower quality as the target of behavior cloning.
Another issue of using larger H is the introduction of more interactions with the environment to
gain enough buffer data with the need of more computation time. Moreover, as the tasks normally
do not need lots of steps to finish, when the learning horizon is getting too large, more noisy actions
will be collected and be considered as better solutions and hence impede the learning performance.
Figure 4 shows our ablation studies on the selection of learning horizonH . The results are generated
with 5 different random seeds. We find that H = 8 provides satisfactory results in all of the three
environments.
It is worth noting that PCHID can be seen as a special case of SPLID if we gradually increase the
learning horizon in SPLID from 1 to H . From this perspective, as shown in Figure 4 where at the
beginning of learning a smaller Horizon leads to poor performance, the performance of PCHID is
upper bounded by SPLID.

5 RELATED WORK

Supervised and Self-Imitate Approaches in RL. Recently, several works put forward to use su-
pervised learning to improve the stability and efficiency of RL. Zhang et al. (2019) propose to utilize
supervised learning to tackle the overly large gradients problem in policy gradient methods. In or-
der to improve sample efficiency, the work chose to first design a target distribution proposal and
then used supervised learning to minimize the distance between present policy and the target policy
distribution. The Upside-Down RL proposed by Schmidhuber (2019) used supervised learning to
mapping states and rewards into action distributions, and therefore acted as a normal policy in RL.
Their experiments show that the proposed UDRL method outperforms several baseline methods Sri-
vastava et al. (2019). In the work of Sun et al. (2019), a curriculum learning scheme is utilized to
learn policies recursively. The self-imitation idea relevant to SPLID is also discussed in the con-
current work of Ghosh et al. (2019a), but SPLID further uses the SELECT function to improve the
quality of collected data for self-imitation learning. Ghosh et al. (2019b) propose a new algorithm
GCSL applying behavior cloning methods in multi-goal tasks with relabelling methods and SPLID
is aimed at improving the sample efficiency of their algorithm through leveling up the quality of the
target policy to imitate on. Due to the page limit, we postpone the remaining discussions on related
works in Appendix C.

6 CONCLUSION

This work proposes a novel meta-algorithm Self-Imitation Policy Learning through Iterative Distil-
lation (SPLID), which relies on the concept of δ-distilled policy to iteratively level up the quality of
the target and relabelled data that the agent mimics. From the perspective of theory, we study the
local convergence and monotonic performance improvement guarantee, under certain assumptions.
We also implement a practical version of SPLID and test it on the Multi-Goal Benchmarks. Experi-
ments show that SPLID outperforms other goal goal-oriented RL methods with a substantial margin,
which also corresponds to the theoretical analysis. Since meta-algorithm SPLID shares good theo-
retical properties, it is worthwhile in the future work to study how to instantiate it in other practical
manners.
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REPRODUCIBILITY STATEMENT

For the theoretical work in this paper, all the assumptions have been clarified immediately after the
occurrence and all the detailed proofs of theorems can be found in the Appendix. For the empirical
work, we submit a zip of Jupyter Notebooks as supplementary material, where we record all the
codes used for the experiments. All these efforts guarantee the reproducibility of our work.
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A PESUDOCODE: PRACTICAL IMPLEMENTATION OF SPLID

Algorithm 2 SPLID: Practical Implementation

1: Require
2: 1.A reward function r(s, g) = 1 if g = m(s) else 0.
3: 2. Learning Horizon H .
4: Initialize replay buffer B = {} and θ(0).
5: for episode k = 1, ...,K do
6: Generate a new policy π̃(k) = πθ(k−1) + Z,Z ∼ N (0, σ2) //Exploration
7: Generate initial state s0 and goal g by the environment
8: for t = 1, ..., T do
9: Select an action by the behavior policy at = π̃(k)(st, g)

10: Execute the action at and get the next state st+1

11: end for
12: for t = 1, ..., T do
13: for h = 1, ...,H do
14: Calculate additional goal according to st+h by g′ = m(st+h)
15: if SELECT(st, g′) = True then
16: Store (st, g

′, at) in B //Distill the target
17: end if
18: end for
19: end for
20: Sample a minibatch from buffer B
21: Do supervised learning to update θ via Equation 4. //Behavior Cloning
22: end for

B DETAILED PROOF

B.1 PROOF OF THEOREM 1

Proof. To prove Theorem 1, we first introduce one lemma to bridge the gap between the behavior
cloning and performance difference.

Lemma 1. For a multi-goal MDP with infinite horizon, it holds that

|V (π, g)− V (π?, g)| ≤ 2‖r(·, g)‖∞
(1− γ)2

Es∼ρπ(·|g)[DTV (π?(· | s, g)‖π(· | s, g))],

where for every goal g ∈ G and policies π, π? ∈ ΠΘ. Here DTV (p‖q) is the total variation between
two probability measures p and q, and ρπ(· | g) is the discounted average state visitation measure
induced by policy π, and ‖ · ‖∞ is the∞-norm.

Proof. It is a direct corollary of one-goal MDP case in Theorem 5.1 of Xu et al. (2019).

To ease the reading, we define π̄ = πθ(k) in the proof. By the definition of surrogate function in
Equation 3, it holds that

Fη(πθ‖π̄) = Eg∼pG(·)

∞∑
t=0

Est∼ρtπ̄(·|g),g′∼ηtπ̄(·|g)γ
tDTV (π̄(· | s, g′)‖πθ(· | s, g′))

≥ Eg∼pG(·)

∞∑
t=0

Est∼ρtπ̄(·|g),g′∼ηtπ̄(·|g)γ
tI(g = g′)DTV (π̄(· | s, g′)‖πθ(· | s, g′))

≥ Cπ̄Eg∼pG(·)

∞∑
t=0

Est∼ρtπ̄(·|g)γ
tDTV (π̄(· | s, g)‖πθ(· | s, g))

≥ Cπ̄Eg∼pG(·)Es∼ρπ̄(·|g)DTV (π̄(· | s, g)‖πθ(· | s, g)).

12
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Applying Lemma 1, it yields that

2

(1− γ)2
Fη(πθ‖π̄) ≥ Cπ̄Eg∼pG(·)|V (πθ, g)− V (π̄ | g)|)

≥ Cπ̄|Eg∼pG (V (πθ, g)− V (π̄ | g))|
= Cπ̄|J(πθ)− J(π̄)|,

where the first inequality follows from the fact that |r(s, g)| ≤ 1 for all (s, g) ∈ S × G and the last
inequality relies on the fact that absolute function | · | is convex. Then we prove Theorem 1 by taking
additional triangle inequality.

B.2 PROOF OF THEOREM 2

Proof. Recall the motivated decomposition in Equation 6 as follows,

J(πθ(k))− J(πθ(k−1)) = J(πθ(k))− J(π(k))︸ ︷︷ ︸
(i)

+ J(π(k)))− J(π̃(k))︸ ︷︷ ︸
(ii)

+ J(π̃(k))− J(πθ(k−1))︸ ︷︷ ︸
(iii)

. (9)

Applying Theorem 1 with π? = π(k), then we immediately obtain the desired result of term (i) in
Equation 9. Then it suffices to bound the next two terms.

Term (ii) in Equation 9 By the mixture rule in Equation 2 , we have that

J(π(k))− J(π̃(k)) = ((1− αk)J(π(k−1)) + αkJ(π̃(k)))− J(π̃(k))

= (1− αk)(J(π(k−1))− J(π̃(k)))

= (1− αk)
(
J(π(k−1))− J(πθ(k−1))︸ ︷︷ ︸

(iia)

+ J(πθ(k−1))− J(π̃(k))︸ ︷︷ ︸
(iib)

)
.

(10)

First we deal with term (iia) in Equation 10, and we observe that term (iia) has the similar forms with
term (i) in Equation 9 but differs with index k. Hence we bound term (iia) by applying Theorem 1.
It suggests that

(iia) ≥ −Cπ(k)

2

(1− γ)2
Fη(πθ(k)‖π(k)).

As for the term (iib) in Equation 10, recall that the π̃(k) is generated by πθ(k−1) with constraint in
Equation 1. Again we applying Lemma 1, we derive that

(iib) ≥ |J(πθ(k−1))− J(π̃(k))|

= −
∣∣∣Eg∼pG(·)

(
V (πθ(k−1) , g)− V (π̃(k), g)

)∣∣∣
≥ −Eg∼pG(·)

∣∣∣(V (πθ(k−1) , g)− V (π̃(k), g)
)∣∣∣

≥ − 2

(1− γ)2
sup
s,g

DTV (πθ(k−1)(· | s, g)‖π̃(k)(· | s, g))

≥ − 2ε

(1− γ)2
,

where the last inequality holds due to Equation 1. Hence, we lower bound term (ii) in Equation 10
as follows.

(ii) ≥ −2(1− αk)

(1− γ)2
[Cπ(k−1)Fη(πθ(k−1)‖π(k−1)) + ε].
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Term (iii) in Equation 9 To ease the reading, we denote that π := π̃(k) and π̄ := πθ(k−1) in this
proof. By the idea of importance sampling and Definition 2, we have that

J(π)− J(π̄) = Eg∼pG(·)[V (π, g)− V (π̄, g)]

= Eg′∼pG(·),g∼ρπ(m−1(·)|g′)
pG(g)

pG(g′)ρπ(m−1(g) | g′)
[V (π̃, g)− V (π̄, g)]

≥ Eg′∼pG(·),g∼ρπ(m−1(·)|g′)
pG(g)

pG(g′)
[V (π, g)− V (π̄, g)]

=
∑
g′∈G

pG(g)Eg∼ρπ(m−1(·)|g′)[V (π, g)− V (π̄, g)]

= G(π‖π̄) ≥ δ.

To sum up, plugging term (i), term (ii), and term (iii) into Equation 9, we finally obtain that

J(πθ(k))− J(πθ(k−1)) ≥ δ −
2

(1− γ)2
Cπ(k)Fη(πθ(k)‖π(k))

− 2(1− αk)

(1− γ)2
[Cπ(k−1)Fη(πθ(k−1)‖π(k−1)) + ε],

which concludes the proof of Theorem 2.

B.3 PROOF OF PROPOSITION 1

Proof. Under the conditions of Proposition 1, it holds that

V (π, g) =

∞∑
i=FHT (π,g)

γi = γFHT (π,g)/(1− γ)

and γ ∈ (0, 1), then if FHT (π̃, g) > FHT (π, g), it holds that V (π̃, g) > V (π, g). If π̃ achieve
goals with strictly less FHT than π, we have that for all g ∈ G, Eg∼ρπ̃(m−1(·)|g′)

[
(V (π̃, g) −

V (π, g))
]
≥ δ0 > 0. By Assumption 1, Proposition 1 holds for certain absolute constant δ.

C MORE RELATED WORKS

Evolution Strategies and Parameter Noise. The Evolution Strategy (ES) was proposed by Sali-
mans et al. (2017) as an alternative to standard RL approaches, where the prevailing temporal differ-
ence based value function updates or policy gradient methods are replaced as perturbations on the
parameter space to resemble the evolution. Later on, Campos et al. (2018) improved the efficiency
of ES by means of importance sampling. Besides, the method was also extended to be combined
with Novelty-Seeking to further improve the performance (Conti et al., 2018). Thereafter, Plappert
et al. (2017) proposed to use Parameter Noise as an alternative to the action space noise injection
for better exploration. They show such a perturbation on the parameter space can be not only used
for ES methods, but also collected to improve the sample efficiency by combining it with traditional
RL methods. While previous ES algorithms apply perturbations on the parameter noise and keep
the best-performed variates, our approach implicitly execute the policy evolution by distilling better
behaviors, therefore our approach can be regarded as an evolutionary method based on action space
perturbation.

Learning with Experts and Policy Distillation. Policy Distillation (PD) was proposed to extract
the policy of a trained RL agent with a smaller network to improve the efficiency as well as the final
performance or combine several task-specific agents together (Rusu et al., 2015). Latter extensions
proposed to improve the learning efficiency (Schmitt et al., 2018), enhance multi-task learning (Teh
et al., 2017; Arora et al., 2018). All of those methods start from a trained expert agent or human
expert experience that can solve a specific task (Czarnecki et al., 2019). As a comparison, our
proposed method focus on extracting knowledge from stochastic behaviors, which is capable to act
as a feasible policy itself with regard to the primal task. In PD, a deterministic teacher policy is
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provided and can be queried to generate enough data to teach the student policy. However, in SPLID
all the teacher policies are unknown as they are stochastic variants of the student policy. We regard
those stochastic variants as they are from unkonwn deterministic oracle policies and distill those
policies through the single corresponding trajectory. In SPLID, the teacher model is unknown and
can not be queried as in PD.

D DISCUSSIONS ABOUT δ-DISTILLED POLICY AND SELECT FUNCTION
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Figure 6: Average Return of SPLID and SPLID w/o SELECT function on Fetch environments. Results are
averaged under 5 seeds.

In this section, we discuss the role of δ-distilled policy in the practical implementation of SPLID.
Theorem 2 reveals the theoretical guarantees of the performance of SPLID, which relies on the δ-
distilled policy. Only a proper and absolute δ can SPLID enjoy performance improvement guarantee
by Theorem 2. In the practical implementation of SPLID, because of Proposition B.3, we pursue
such δ-distilled policy by comparing First Hit Time (FHT). With the help of SELECT function , we
can distinguish whether π̃(k) has shorter FHT than πθ(k−1) and hence implement Line 5 of meta-
algorithm SPLID (Algorithm 1) in a practical manner. To show how the δ-distilled policy selected
by SELECT function contributes to our policy learning in practice, we conduct three experiments
on Fetch environments and apply average return to show the performance of SPLID and SPLID w/o
SELECT function. Here return is calculated by summing over all the rewards agent receives during
one episode and we take 50 episodes to average the results. Once the agent reaches in the desired
goal in fewer time steps, it will receive higher return. (At each step, the agent will receive reward
1 once it reaches the goal and will receive reward 0 otherwise.) According to figure 6, SPLID still
outperforms SPLID w/o SELECT with a substantial margin, revealing the function of δ-distilled
policy in improving the qualify (FHT) of trained policy.

E MORE DISCUSSIONS ABOUT SPLID AND GCSL

As discussed in Section 4.1, GCSL has trivial performance out of serval reasons. To validate our
insight, we conduct GCSL and our proposed method on three new environments: Point2D Four
Rooms, Sawyer Door, and Reacher. First we introduce these three environments, which are illus-
trated in figure 7.

Point2D-FourRoom-v1 Point2D-FourRoom-v1 is taken from the open-source environment
multi world and it requires the blue point to reach the green circle. The state space [−5, 5]× [−5, 5]
has two dimensions representing Cartesian coordinates of the blue point, and the action space
[−1, 1]× [−1, 1] also has two dimensions meaning the horizontal and vertical displacement. There
are four rooms separated by gray walls. The goal space is the same as state space, which means
m(s) = s. The bule point and the green circle are randomly initialized in the state space. The al-
lowable error ε of reaching goal is the radius of the target circle and is set as 1 . The reward function
is defined as:

r (sXY , gXY ) = 1
(
‖sXY − gXY ‖22 ≤ ε

)
.

The maximum frames of an episode is 50.
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SawyerDoor-v0 The SawyerDoor-v0 environment is revised from multi-world. The Sawyer robot
is required to open the door to a desired angle. The state space (4-dimensional) consists of the
Cartesian coordinates of the Sawyer end-effector and the door’s angle. The action space is 3 -
dimensional and controls the position of the end-effector. The desired goals are uniform from 0 to
0.83 radians. And the reward function is defined as:

r (sXY , gXY ) = 1 (|sangle − gangle | ≤ ε)
where the allowable error ε is set as 0.06. The maximum frames of an episode is 50.

Reacher-v2 The Reacher environment is revised from OpenAI Gym (Dhariwal et al., 2017). States
are 11-dimensional, which indicates the angles, the positions, and the velocity of the joints. Actions
are 2 -dimensional and control the movement of two joints. The goals are 2 -dimension representing
the expected XY position. And the state-to-goal mapping is m(s) = s[−3 : −1], where the last
three dimensions are the XYZ position of the end-effect. The reward function is defined as:

r (sXY , gXY ) = 1
(
‖sXY − gXY ‖22 ≤ ε

)
where the allowable error ε is set as 0.05. The maximum frames of an episode is 50.

On these three new environments, we conduct our proposed method and GCSL respectively and
derive the results in figure 8 and figure 9. Although GCSL has non-trivial performance, it is clear
that our proposed method SPLID outperforms GCSL in terms of both success rate and average
return.

Target
Point
Wall

Figure 7: Three new environments: Point2D Four Rooms, Sawyer Door, and Reacher.
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Figure 8: Average Return of SPLID and GCSL on three new environments. Results are averaged under 5 seeds.
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Figure 9: Success Rate of SPLID and GCSL on three new environments. Results are averaged under 5 seeds.
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