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Abstract

The rapid development of medical foundation models has shown great promise for
various healthcare applications. However, fine-tuning these models for downstream
tasks remains challenging due to privacy concerns that limit centralized data col-
lection from diverse sources. Federated learning (FL) offers a privacy-preserving
solution by enabling multiple clients to collaboratively train a global model without
sharing their local data. Despite its advantages, FL must balance model perfor-
mance with communication and computation costs. Existing approaches often
use parameter-efficient fine-tuning (PEFT) techniques to reduce communication
overhead by transmitting fewer parameters. However, these methods require clients
to host large foundation models, which is impractical for clients with limited
memory. Meanwhile, conventional knowledge distillation (KD) methods fall short
in FL due to misalignment between pre-trained foundation models and specific
downstream tasks. To overcome these limitations, we propose Federated Repro-
gramming Knowledge Distillation (FedRD), a method that uses lightweight student
models in clients and a medical foundation model on the server. A reprogram-
ming module aligns the foundation model’s feature space with the downstream
task, enabling student models to mimic this representation collaboratively. FedRD
significantly reduces memory and computation requirements while maintaining
high accuracy. Experiments on three medical imaging datasets under non-IID
data distributions demonstrate that FedRD outperforms federated KD and PEFT
methods, offering an effective trade-off between accuracy, communication, and
computational efficiency.

1 Introduction

Large-scale pre-trained foundation models are rapidly being developed for a wide range of down-
stream tasks Bommasani et al. (2021); Abukadah et al. (2024); Zhou et al. (2024a); Munia and Imran
(2025). However, developing medical foundation models remains challenging due to the limited
availability of labeled data Zhang and Metaxas (2024). In many cases, publicly available datasets
have already been used, making it necessary to rely on private or protected data to improve model
generalization. Unfortunately, individual healthcare institutions often lack enough data for specific
tasks, and combining data across centers is generally not feasible. This challenge is primarily due to
strict data privacy regulations, such as the EU’s GDPR, Singapore’s PDPA, and China’s cybersecurity
laws, which prohibit sharing raw patient data for centralized model fine-tuning Chen et al. (2024).
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This problem can be addressed by Federated Learning (FL), a decentralized machine learning
approach that enables clinics with varying resources and heterogeneous data to collaboratively train a
global model without sharing raw data McMahan et al. (2017); Mahanipour and Khamfroush (2025).
However, integrating FL with large foundation models is often impractical due to the substantial
computational and communication overhead involved in optimizing and transmitting billions of
parameters between clients and the server Wu et al. (2024). To mitigate this challenge, recent studies
have adopted parameter-efficient fine-tuning (PEFT) methods, such as adapters Xin et al. (2024); Lu
et al. (2023); He et al. (2023) and Low-Rank Adaptation (LoRA) Hu et al. (2022), which allow fine-
tuning and exchanging only a small subset of model parameters. While these methods significantly
reduce training and communication costs, they do not resolve memory and storage constraints, as the
full foundation model still needs to reside on each client device.

Another approach is knowledge distillation (KD) Hinton et al. (2015); Liu et al. (2023), a model
compression and enhancement technique that transfers knowledge from a foundation model to a
smaller model, treating the foundation model as the teacher and the smaller model as the student.
However, the effectiveness of KD may be limited by a lack of alignment between the pre-trained
foundation model and the student model, particularly when the foundation model’s pre-training data
is inconsistent with the specific downstream task. Model reprogramming is one method that can
mitigate this problem Xu et al. (2023); Zhou et al. (2024b).

In this work, we introduce the first federated reprogramming knowledge distillation framework,
designed to enable the use of medical foundation models for downstream tasks in a distributed setting.
In our approach, a frozen foundation model is hosted on the server, while lightweight student models
are deployed on clients. Unlike federated PEFT methods, our framework does not require a foundation
model on each client, eliminating the memory and design complexity associated with adapting large
models to resource-constrained devices. To improve task relevance, a reprogramming module is
incorporated on the server to align the foundation model’s feature space with the target downstream
task. These reprogrammed features are then used to guide the training of student models, allowing
clients to learn more effective decision boundaries through distillation. Our key contributions are
summarized as follows:

1. We propose the first federated reprogramming knowledge distillation (FedRD) method to
adapt medical foundation models for downstream tasks in distributed environments. FedRD
enables the training of lightweight student models on clients by transferring reprogrammed
knowledge in a more communication- and computation-efficient manner.

2. We conduct extensive experiments on three datasets from different downstream tasks. The
results show that our approach achieves a better balance between model accuracy, commu-
nication overhead, and computational cost compared to existing federated PEFT and KD
methods.

2 Federated Reprogramming Knowledge Distillation

2.1 Problem Statement

We consider a two-tier federated learning architecture. The first tier comprises M clients, de-
noted as {C1, C2, ..., Cm, ..., CM}, where each client Cm holds a local dataset Um = {X,Y } =

{(xi, yi)}Nm
i=1, consisting of Nm data instances. The number of instances may vary across clients,

reflecting a non-uniform data distribution. The second tier consists of a central server, denoted as s,
which coordinates the training process. To preserve the federated nature of the system, M must be at
least two, as a single client would reduce the setup to a centralized scenario. A pre-trained medical
foundation model, denoted by Ft, resides on the server and acts as the teacher model. In parallel, a
lightweight student model, denoted by F global

s , is initialized and maintained on the server. At each
communication round, this student model is broadcast to all clients, where it is referred to locally as
F local
s . The goal is to transfer knowledge from the foundation model to the student models in a way

that maintains high performance while reducing communication and computation costs across the
system.
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((a)) Overview of the proposed FedRD framework.

((b)) Server-side Knowledge Reprogramming block.

Figure 1: Illustration of the proposed FedRD framework. (a) shows the overall structure of the
method, and (b) details the server-side Knowledge Reprogramming block.

2.2 Proposed Method

In this section, we introduce our proposed method, federated reprogramming knowledge distillation
(FedRD). The goal is to collaboratively train lightweight student models on clients by leveraging
the knowledge of a pre-trained teacher foundation model, without deploying the large foundation
model on resource-constrained clients. This design choice addresses the practical limitations of
memory, computation, and communication on the client side. FedRD utilizes a model reprogramming
strategy on the server to adapt the foundation model to the specific downstream task, ensuring that
the extracted features are both consistent and task-relevant before knowledge distillation occurs.
Rather than retraining the entire foundation model, model reprogramming Xu et al. (2023); Zhou et al.
(2024b) enables efficient cross-domain adaptation by introducing lightweight trainable components
including input transformation layers and an output mapping layer. This significantly reduces the
computational overhead while taking advantage of the foundation model’s rich representational
power.

Before initiating server-client communication, the pre-trained teacher foundation model is deployed
on the server. At the start of the training process (round r = 1), the server initializes a randomly
configured lightweight student model, referred to as the global student model, and distributes it to all
clients, denoted as θrm. Each client then performs local training to optimize its local student model by
minimizing the following loss function Lr

m:
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Lr
m(θrm) =

1

Nm

Nm∑
i=1

L(θrm(xi), yi) (1)

where L denotes the training loss function, such as cross-entropy for standard classification tasks,
and xi and yi represent the local input data and corresponding labels. After completing local training,
each client sends its updated student model to the server. The server then aggregates these local
models using a weighted average to update the global student model:

θr+1
m =

∑M
m=1 Nmθrm∑M
m=1 Nm

(2)

On the server side, to leverage the pre-trained teacher foundation model, a trainable reprogramming
module is employed as shown in Fig. 1(b). This module consists of standard residual blocks ϕ(.)
as input transformation layers and a fully connected (FC) layer g(.) as the output mapping layer.
A publicly available dataset related to the downstream task is then used to jointly train both the
reprogramming module and the global student model through a co-training mechanism. This setup
ensures that the reprogrammed features extracted from the foundation model can be effectively
mimicked by the student model’s features, allowing the student to learn decision boundaries that
closely resemble those of the teacher model.

To further enhance feature alignment and enable robust knowledge distillation, Centered Kernel
Alignment (CKA) Kornblith et al. (2019) is used to measure the similarity between the reprogrammed
features of the foundation model and those extracted by the student model. The overall training loss
is thus formulated as follows:

Ltrain = LCE(y, zs) + αLCE(y, zt) + β(LKL(zt, zs) + LCKA(ft, fs)) (3)

where zt = g(ϕ(Ft(x))) and zs = g(Fs(x)) represent the output logits of the teacher foundation
model and the global student model, respectively. The functions ϕ(.) and Ft(.) denote the input
reprogramming module and the frozen teacher model, while Fs(.) is the student model and g(.)
is the shared FC classifier. The hyperparameters α and β control the contributions of different
loss components. In addition to the standard cross-entropy (CE) loss, the Kullback-Leibler (KL)
divergence is used as a logits-based knowledge distillation loss. Furthermore, the CKA-based feature
alignment loss (LCKA) is computed as follows:

LCKA(ft, fs) = − HSIC(P,Q)√
HSIC(P, P ).HSIC(Q,Q)

(4)

where ft and fs denote the reprogrammed features extracted from the foundation model and the
features extracted from the student model, respectively. The pairwise feature similarity matrices are
defined as P = ftf

⊤
t and Q = fsf

⊤
s . To measure the similarity between these feature representations,

we compute the HSIC Criterion as:

HSIC(P,Q) =
P ′.Q′

(n− 1)2
(5)

where P ′ = HPH , Q′ = HQH , and H = In − 1
n11

⊤ is the centering matrix, with n representing
the batch size.

After updating the global student model on the server, it is redistributed to all clients for the next
training round as shown in Fig. 1(a).

3 Experiments
Datasets: The proposed method is evaluated on three publicly available medical image datasets, each
representing a different downstream task: Melanoma Tschandl et al. (2018), COVID-19 (including
two datasets from Rahimzadeh et al. (2021); Yang et al. (2020)), and Brain Tumor Saleh et al. (2020).
Detailed information about each dataset is provided in Table 1. For datasets without official train-test
splits, we used an 80-20 division for training and testing data.
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Table 1: Characteristics of downstream datasets for different tasks.

Dataset Task Modality Classes Data Size

ISIC2018 Tschandl et al. (2018) Melanoma RGB 7 11527
COVID Rahimzadeh et al. (2021); Yang et al. (2020) COVID-19 CT 2 13716

BTC Saleh et al. (2020) Brain tumor MRI 4 3264

Teacher Foundation Models and Lightweight Student Models: To evaluate the proposed method,
we employ two medical foundation models with distinct training approaches: PMC-CLIP Lin et al.
(2023) and LVM-Med MH Nguyen et al. (2023). PMC-CLIP is trained using contrastive learning
on 1.6 million image-caption pairs and utilizes a ResNet-50 architecture as its visual encoder. In
contrast, LVM-Med is developed through self-supervised learning on 1.3 million medical images and
is based on the ViT-B (Vision Transformer Base) architecture. In all experiments, the parameters of
both foundation models are kept frozen. Additionally, ResNet-18, ShuffleNet, and MobileNet are
used as lightweight student models on the client side.

Implementation settings: We conduct experiments in a simulated federated learning environment
with three clients, selected through trial and error. Each client holds a non-IID partition of the dataset
created according to the Dirichlet distribution with a concentration parameter of 0.5. Model training
is performed using the AdamW optimizer with a learning rate of 5e− 3. The loss function includes
two hyperparameters, α and β, which are both initialized to 1 and linearly decreased throughout the
training process Zhou et al. (2024b). Each experiment runs for 50 training rounds, and the results
are reported as the average classification accuracy over three independent runs. All experiments are
conducted using PyTorch 2.5.1 and Tesla V100-SXM2-32GB GPU.

Results and Analysis: For comparison, we select several widely used KD methods: Hint Romero
et al. (2014), VID Ahn et al. (2019), SemCKD Chen et al. (2021), and Crd Tian et al. (2019), and
adapt them from centralized training to the federated learning setting using the same procedure as
vanilla FL, while applying their respective loss functions. Additionally, we include a centralized
reprogramming distillation (Cntr-RD) Zhou et al. (2024b) baseline to provide a more comprehensive
evaluation. Table 2 summarizes the accuracy performance of all methods across different datasets,
teacher foundation models, and student models. In addition, Fig. 2 provides a comparison between
the proposed method and other KD approaches on the COVID and ISIC datasets, using PMC-CLIP
as the teacher model and ResNet-18 as the student model, evaluated in terms of F1 score. The results
demonstrate that our proposed method consistently outperforms the federated KD baselines. This
improvement highlights the benefit of aligning the feature space of the foundation model with the
downstream task, which enhances the quality of knowledge transfer compared to direct federated
distillation approaches. As a result, our method achieves superior performance without incurring
additional computation or communication costs.

Table 3 compares our proposed method with PEFT approaches, specifically Adapter Lu et al. (2023)
and LoRA Hu et al. (2022), which we adapt from centralized to federated settings. In these PEFT
methods, each client is required to host a full foundation model, resulting in high memory con-
sumption, as reflected in the parameter size column. In contrast, our method significantly reduces
both computational and memory requirements, as shown by the lower GPU utilization and smaller
parameter size. Here, PMC-CLIP is used as the foundation model in all three methods, while
ResNet-18 serves as the student model in our proposed method. Additionally, it achieves higher accu-
racy while maintaining a reasonable communication cost. Overall, the results demonstrate that our
reprogramming-based knowledge distillation method offers a better trade-off between performance,
computation/communication efficiency, and training time in federated learning environments.

4 Conclusion

In this work, we propose Federated Reprogramming Knowledge Distillation (FedRD), a novel
approach that differs from existing federated parameter-efficient fine-tuning (PEFT) and knowledge
distillation (KD) methods. Instead of requiring each client to host a full foundation model, FedRD
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Table 2: Comparison of the proposed method with state-of-the-art knowledge distillation methods in
terms of accuracy.

Dataset Student Teacher Cntr-
RD Hint VID SemCKD Crd Ours

COVID

ResNet18
PMC-CLIP 0.9526 0.9215 0.9165 0.9319 0.9372 0.9587
LVM-Med 0.9552 0.9345 0.9142 0.9449 0.8969 0.9484

ShuffleNet
PMC-CLIP 0.7774 0.8242 0.8450 0.8382 0.8423 0.8529
LVM-Med 0.7786 0.8546 0.8757 0.8619 0.8624 0.8851

MobileNet
PMC-CLIP 0.9011 0.8958 0.8715 0.8669 0.9050 0.9685
LVM-Med 0.8730 0.9176 0.9137 0.8883 0.8875 0.9674

ISIC

ResNet18
PMC-CLIP 0.7156 0.6994 0.6687 0.6797 0.6878 0.7169
LVM-Med 0.7235 0.6943 0.6753 0.6891 0.6931 0.7282

ShuffleNet
PMC-CLIP 0.6779 0.6736 0.6545 0.6604 0.6534 0.7030
LVM-Med 0.6376 0.6839 0.6563 0.6697 0.6481 0.7037

MobileNet
PMC-CLIP 0.6693 0.6658 0.6473 0.6666 0.6515 0.6971
LVM-Med 0.6647 0.6684 0.6632 0.6521 0.6554 0.6825

BTC

ResNet18
PMC-CLIP 0.2944 0.2919 0.2855 0.2944 0.2923 0.2970
LVM-Med 0.2969 0.2893 0.2718 0.2867 0.2784 0.2995

ShuffleNet
PMC-CLIP 0.2741 0.2779 0.2858 0.2792 0.2804 0.2978
LVM-Med 0.2791 0.2843 0.2868 0.2893 0.2886 0.2944

MobileNet
PMC-CLIP 0.2740 0.2817 0.2861 0.2859 0.2833 0.2998
LVM-Med 0.2706 0.2766 0.2953 0.2937 0.2867 0.2969

((a)) COVID dataset ((b)) ISIC dataset

Figure 2: Comparison of the proposed method with KD methods using PMC-CLIP and ResNet18 in
terms of F1 score.

collaboratively trains a reprogramming module alongside lightweight student models to adapt a
pre-trained medical foundation model for downstream image classification tasks in a federated setting.
We conduct extensive experiments across three diverse medical imaging datasets using two medical
foundation models and three lightweight student architectures. The results show that FedRD achieves
a strong balance between model performance, communication efficiency, and computational cost,
outperforming existing federated PEFT and KD baselines.

Acknowledgement. This work is funded by career grant provided by the National Science Foundation
(NSF) under the grant number 2340075.
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Table 3: Comparison of the proposed method with PEFT methods in terms of parameter size,
communication cost, GPU utilization, and training time.

PMC-CLIP

Dataset Method Acc. Param
Size (MB)

Comm.
(MB/round)

GPU Util.
(MB) Time(s)

COVID
Adapter 0.7773 1297.42 48.06 100 279.69
LoRA 0.6175 581.46 0.76 57.71 83.13
Ours 0.9587 42.67 256.29 70.79 156

ISIC
Adapter 0.1466 337.50 27.04 90.41 44.37
LoRA 0.0324 581.46 0.76 86.1 64
Ours 0.7169 42.68 256.35 42.8 200.79

BTC
Adapter 0.1878 1297.42 48.06 93.24 47.49
LoRA 0.2435 581.46 0.76 87.48 13.43
Ours 0.2970 42.67 256.32 59.18 46.80

Disclosure of Interests. The authors have no competing interests to declare that are relevant to the
content of this article.
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