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Abstract

As a generalization of reinforcement learning (RL) to parametrizable goals, goal conditioned
RL (GCRL) has a broad range of applications, particularly in challenging tasks in robotics.
Recent work has established that the optimal value function of GCRL Q*(s,a,g) has a
quasimetric structure, leading to targetted neural architectures that respect such structure.
However, the relevant analyses assume a sparse reward setting—a known aggravating factor
to sample complexity. We show that the key property underpinning a quasimetric, viz., the
triangle inequality, is preserved under a dense reward setting as well, specifically identifying
the key condition necessary for triangle inequality. Contrary to earlier findings where dense
rewards were shown to be detrimental to GCRL, we conjecture that dense reward functions
that satisfy this condition can only improve, never worsen, sample complexity. We evalu-
ate this proposal in 12 standard benchmark environments in GCRL featuring challenging
continuous control tasks. Our empirical results confirm that training a quasimetric value
function in our dense reward setting indeed either improves upon, or preserves, the sample
complexity of training with sparse rewards. This opens up opportunities to train efficient
neural architectures with dense rewards, compounding their benefits to sample complexity.

Keywords: Goal conditioned reinforcement learning, reward shaping, quasimetric value functions

1 Introduction

Reinforcement learning (RL) is a popular class of techniques for training autonomous agents to behave (near-
)Joptimally, often without requiring a model of the task or environment. In goal-achieving tasks, traditional
RL learns policies that reach a single goal at the minimum (maximum) expected cost (value) from any
state. Contrastingly in multi-task settings, a goal conditioned value function models the cost-to-go to a
set of goal states, not just one. This generalization from a single-goal case to goal-conditioned RL (GCRL)
yields effective representations—powered by deep neural networks—for value functions capable of capturing
abstract concepts underlying goal achievement in many complex tasks (M. Liu et al., [2022; Plappert et al.,
2018; Wang et al., |2023]).

Recent work has established that the true optimal value function in GCRL is always a quasimetric, i.e.,
a metric without the constraint of being symmetric, but crucially respecting the triangle inequality (B.
Liu et al., [2023 Pitis et al., [2020; Wang & Isola, |2022|). This allows the search for value functions to be
naturally restricted to the space of quasimetrics. Additionally, such functions are designed to be universal
value function approximators (UVFA), i.e., capable of approximating arbitrarily complex value functions.
Accordingly, B. Liu et al. (2023) propose the metric residual network (MRN) architecture for GCRL value
functions that explicitly accommodate an asymmetric component while maintaining the UVFA property
and the triangle inequality. This and other similar approaches search a smaller subset of the space of value
functions, yet the true optimal value function is guaranteed to reside in it. This has led to significant gains
in terms of sample efficiency in recent GCRL advancements (B. Liu et al., |[2023; Wang & Isola, 2022; Wang
et al., 2023).

In this paper, we review some of the theoretical analyses underlying much of the work cited above. In
particular, the proof of the key property of triangle inequality in B. Liu et al. (2023)) is established for a
sparse reward setting that is easy to design but hard to learn from. By contrast, dense reward settings using
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various mechanisms, e.g., reward shaping, intrinsic motivation, human feedback etc., are generally known to
improve sample efficiency. If dense reward-based value functions were to satisfy the triangle inequality, then
their reward bias could be combined with the representational bias of quasimetrics to deliver a double punch
to sample complexity. However, existing negative results (Plappert et al.,[2018) specifically in GCRL show
that dense rewards significantly deteriorate the performance of state-of-the-art RL methods, and might
appear to foreclose a discussion on their efficacy in GCRL. Contradictorily, we show that dense rewards
can indeed bring their benefit to bear in GCRL as long as they satisfy a condition under which the triangle
inequality is preserved for the optimal value function. Furthermore, we establish a condition under which the
triangle inequality is preserved for on-policy value functions that may be encountered during RL iterations.
This result adds nuance to recent contradictory finding (Wang et al., |2023) that on-policy value functions
do not satisfy the triangle inequality. We show experiments in 12 benchmark GCRL tasks to establish that
dense rewards indeed improve sample complexity in some tasks, but does not deteriorate sample efficiency
in any task.

Our main contributions can be summarized as:

e We show that using rewards shaped with potential functions that serve as admissible heuristics, the
optimal value function does satisfy the triangle inequality;

e We define and delineate a progressive criterion for GCRL policies and show that under such policies
the on-policy value function satisfies the triangle inequality;

e Via experiments in 12 standard benchmark GCRL tasks, we show that dense rewards improve sample
complexity as well as the learned policy in 4 of the 12 tasks, while not deteriorating performance in
any task.

2 Background

This section covers the preliminaries on goal conditioned RL, the prevalent solution approaches for GCRL,
and the recent architecture of metric residual networks that we use in this paper.

2.1 Goal-conditioned RL

Goal conditioned RL is modeled by goal-conditioned Markov decision process, M = (S, A,G,T, R, 7, po, pg)-
While S, A, T, py define the state action spaces, the transition function and the initial state distribution just
like a standard MDP, G gives the space of goal states, and pg is the distribution from which a goal is sampled
at the beginning of an episode. Further, the reward function R is additionally parametrized by the goal,
R:S8 x AxGw— R. In the sparse reward setting, R is often defined as

0 ifM(s,a)=g
—1 otherwise

R(S’aag) = { (1)

where M : § x A — G maps the product space of S and A to G. As opposed to the common assumption
G C S, M allows action a to decide whether the goal is reached (B. Liu et al., [2023).

2.2 Solution Approach: DDPG+HER

A popular approach to solving GCRL is a combination of off-policy actor-critic, e.g., DDPG (Lillicrap et al.,
2016) with hindsight experience replay (HER) (Andrychowicz et al., 2017). DDPG in GCRL estimates a
goal conditioned critic

oo
Q"(s,a,9) =B [> 4'rigls0 = s,a0 = a,g
t=0

where the expectation is taken over future steps of rewards generated by the policy (7), and the T, R
functions. The critic is updated by minimizing the mean squared TD error over samples (s¢,a, St+1,9)
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drawn from a replay buffer D,
LQ)=E [(Tt,g +7Q(st41,7(5t41),9) — Q(s¢, Gtvg))Z] . (2)

By ensuring that @ is differentiable w.r.t. actions a, the actor policy 7 is updated in the direction of the
gradient E[V,, Q(s¢, at, g)], where the expectation is again evaluated using samples drawn from D. As these
samples are drawn from state distributions generated by policies different from 7, DDPG is an off-policy
method, although it estimates Q-values in an on-policy way (Eq. . This last aspect will be scrutinized
further in Sec. B.21

Hindsight experience replay (HER) (Andrychowicz et al., [2017)) mitigates the sparse reward problem by
relabeling failed trajectories. Instead of treating all experience traces where the agent failed to achieve a
goal as is, HER changes the goal in some of them to match a step of the trace in hindsight—essentially
pretending as if the agent’s goal all along was to reach the state that it actually did. This transforms some
of the failed episodes into successful experiences that are informative about goal achievement, and allows
the agent to generalize, eventually, to the true goal distribution pg.

2.3 Metric Residual Network

B. Liu et al. (2023) propose a novel neural architecture for GCRL critic based on the insight that the optimal

negated action-value function, —Q*(s, a, g), satisfies the triangle inequality in the sparse reward setting of
Eq. Consequently, they introduce the metric residual network (MRN) that decomposes —@Q into the
sum of a metric and an asymmetric residual component that provably approximates any quasipseudometric.
Specifically,

Q(& a, g) = - (dsym (hsm hsg) + dasym(hsaa hsg)) (3)

where hg, and hg, are latent encodings of concatenated (s, a) and (s, g), dsym and dgsym are symmetric and
asymmetric distance components given by

dsym(z,y) = [[p1(z) — 1 (¥)ll, (4)
dasym (T, y) = mgX(uzi(I) — 12i(Y))+, (5)

p1 and po are neural networks. The provable UVFA property of MRNSs is due to dgsym, while dgym improves
sample efficiency due to its symmetry. We use DDPG+HER with MRN critic architecture as the base GCRL
method for this paper.

3 Triangle Inequality

In this section, we establish that both the optimal value function as well as on-policy value functions satisfy
the triangle inequality under novel conditions.

3.1 Optimal Value Function

Our primary claim is that —Q* satisfies the triangle inequality not only in the sparse reward setting, but
also in the presence of dense rewards, particularly potential shaped rewards. This observation lends GCRL
to improved sample efficiency when approximating —Q* using a combination of MRN and potential shaped
rewards.

We use the standard potential based shaping rewards

F(Saavs/aa/ag) = ’Y(i)(s/,a/,g) - ¢(Saavg) (6)

and a simple potential function

1 — yHs:a.9)/n
L=~

os.0.9) =~ (
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where d is a distance measure between the state and the goal, and 7 is a measure of the atomicity of
actions—distance covered per time step. Note that in the reward regime of Eq.

* 1- rYL*
Q (8,&79)—_( 1_,)/ >
where L* is the optimal expected number of steps required to reach the goal g from state s.
Observation 1. If d(s,a,g) < nL*, then ¢(s,a,g) > Q*(s,a,g),9s,a,g
In other words, if d(s,a,g)/n is an underestimate of L* then the above condition will be satisfied. Thus,
d acts as an admissible heuristic. For this paper, we choose a simple arc-cosine distance d(s,a,g) =
cos™! (M) /7, which is known to be a metric. Here M is defined in the context of Eq.|l| However,

1M (s,a)lllgll
this choice is not necessary for our theoretical results to hold. Rather, it is prompted by its boundedness

and our desire to avoid intricate, environment-specific reward engineering.

We distinguish Q*(s, a, g)—the optimal action values with unshaped sparse rewards—{rom Q% (s, a, g) which
corresponds to action values with rewards shaped by F in Eq.[6] Next we establish the validity of triangle
inequality with Q% in two cases: (i) G =S x Aand (ii)) G #S x A.

3.1.1 Casel: g=Sx A

In this setting, M is the identity mapping. We use the notation z; = (s, a;). The main result is:

Proposition 1. Consider the shaped, goal-conditioned MDP Macr = (S, A, G, T, R+ F,v,po, pg), with
G =8 x A. The optimal universal value function Q% satisfies the triangle inequality: Va', 2% 23 € X,

Qr(z!,2%) + Qp(a®,2°) < Qp(a',2?),
The only condition ¢ must satisfy is

¢(3;a79) > Q*(37aag)vvsva7g (7)

w.r.t. the unshaped value function, for which a sufficient condition is established in Obs. 1.

Proof: Asin (B. Liu et al.,2023), consider the Markov policies 71, g, 73 that are optimal w.r.t. Q% (z!, 2?),
Qi(z2, 2%), Q% (x',2%) and the (non-Markov) policy 1,2 defined for ¢ > 0 as:

2
m12(alsy) = {Wl(alSt)’ v E

ma(alst), otherwise.

Let 7 be the random variable that indicates the first time 7;_,o reaches z2. In the steps below, we notate
F(s¢,a4,8t41,0141,9) as Fy g, and E, 7, )or, 1, r,7 @ Er . for brevity. Then define

r
q%*ﬂ = Eﬂ’l—»%- |:Z’7t(rt,g + Ft,g)|.’£0 = l'l,g = x2:| s
t=0

oo
q%*)?) = ]E7"1~>2;‘ |:Z’7t(rt’g + Ft7g)|.’1:7- = :L,Q,g = $3:|

t=1

= ]E7"1~>2p |:Z(’ytrt7g) +0-— 7T¢T:| .

t=1

Now,

Q;(xl’xz) =Er,. [ 'Yt(rt,g + Ft7g)|x0 = l’lag = xz] +
t=

Ex,.. [ > A (reg + Frg)larp = a9 = 952} (8)
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and 7 = 71,2 for the first 7 steps. Therefore, Q% (21, 2?) — ¢},

- oo
:Eﬂ'lw Z ’yt(rt,9+Ft,9)‘xT :$2,g:$2:|,

“t=7+1

“Ea | S (rg) +1°0() =17, x}
“t=7+1

=En,.. Z (’Ytrt,g) - 77+1¢7+1|x2,$2]
“t=T1+1

=E,[y"[Q" (2% 2?) — ¢(2?,2?)]
< 0 by assumption (Eq. .

Similarly,

o0
Q(aa%) =B [ 2 (g + Filo = 2.5 = ]
t=0

< Y"En,,. {Z 7 (reg + Frg)l2®, :c?’}
t=0

= En.. {ZWHT(TLQ + Ft,g)‘CEQv x?’}
t=0

= ETF27' |:Z 'Ykrk,g +0 - 'VT(b‘r‘xza $3:|
k=1

oo
- Eﬂ'lﬁ,z,‘ |:Z ’Vkrk,g - WT¢T|‘/E27 .T3:|
k=1

2
= 423, (9)
since mg = 1,9 after 7. Therefore, Q% (22, 2%) — ¢3_,5 < 0. Consequently,
Q7IS“1—>2 (xl’xg) = q%%Q + q%a?) > Q*F(l‘l,l'2) + Q}(.’L‘Q,.Z‘S).

But since the optimal Q% (2!, 2%) > QF~2(a!, 23), we arrive at the triangle inequality. O

312 Casell: G£Sx A

The proof of this case closely resembles (B. Liu et al., 2023); we highlight the main difference in blue color
but also provide the rest of the proof for completeness. In this case, M is an onto mapping. Given a goal g,
the GCRL problem effectively reduces to a standard MDP and there exists a deterministic optimal policy
7* for reaching the goal g from an initial state = (sp,ag). Then, under deterministic dynamics,

Qr(z,9)= sup  Qp(z,2').
z':M(z')=g

Assuming the supremum is attainable, let

T, =arg max *(z,z)), 10

g gx,:M(m,):g Qr( ) (10)

then Q% (z,9) = QF(z,24). Assume for contradiction that this is not the case, i.e., Q@ (x,9) # Qf(z, z4).
There are two possibilities:

o If Qf(x,24) > Qp(x,9): This would imply that by using a policy that selects x4 rather than g,
one could achieve a higher return. This contradicts the definition of 7* as the optimal policy, thus
Qn(z,zy) > Q5 (x,g) cannot be true.
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a, b

Figure 1: Counterexample to prove that policy invariance of potential based shaping does not trivially
preserve triangle inequality.

3.1.3

« I Qr(z,2) < Qf(z,9): Let

r = min(M(z,) = ).

such that x, is the first (s,a) pair along the optimal trajectory that achieves the goal. There are
two further cases:

1. After reaching ., 7* will repeatedly return to z,. In this case, we have Q5 (x, z4) > Q5 (z, z;)
by the definition of z, (Eq.[10) and

Q*F(xva) = Q?(l‘,g) - ’7T+1Q;($T5g)
=Qp(z,9) =V Q" (2r,9) — ¢(2+,9)]
> Q%(x,9), by Eq.[1 (11)

Combining the two, we get Qf(x,zy) > Q%(x,9) which contradicts our assumption that

Qp(z,9) > Qp(z,z4).

2. m* never returns to x, after reaching it for the first time. In this case, one can find the next
7/ = mings. (M (z:) = g), such that z, is another (s,a) along the optimal trajectory. Again,
there are two sub-cases:

(a) If 7* repeatedly visits x,/, then the argument in the first case applies.

(b) Otherwise, recursively find the next 7, and so on. Eventually, we may have a last state z¢
such that no ¢ > ( satisfies M (x;) = ¢g. Then, Qf(x,24) > Qf(x,2¢) > Qn(x,g). The last
inequality is derived in the same way as Eq. Alternatively, there may exist an infinite
sequence of such {z,}. Following this sequence, the claim remains true but the supremum is
not attainable. However, in this case an x, can be found in the sequence such that Q% (z, z,)
is arbitrarily close to Q%(z, g). O

Insufficiency of Policy Invariance

A well-known property of potential-based reward shaping is that it does not change the optimal policy (Ng
et al., [1999)). Could the preservation of the quasimetric property of the optimal value function under this
strategy for reward densification be a trivial consequence of this property? We show in this section that that
is not the case. Specifically, we show that violation of Eq.[7] can break triangle inequality without affecting
policy invariance.
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For a counterexample, consider the simple MDP shown in Fig.[I} It has 3 states, S —S3 navigable by action
a and an absorbing state S4 that can only be reached by action b from any other state.

Proposition 2. In the counterexample of Fig. the potential function for various states with goal Sy or
S5 can be set such that policy invariance is preserved, yet the assumption of Eq.[7 as well as the quasimetric
property are violated.

Proof: First note that the optimal policy for goal Sy or S5 is to take action a, as these goals are unreachable
via action b. For some a > 0, we set:

$(51,a,S3) = Q" (S1,a,53) + (satisfies Eq.
#(S2,a,S3) = Q" (S2,a,53) — (violates Eq.[7)
¢(S1,a,52) = Q" (S1,a,82) + (satisfies Eq.

These yield: Q%(51,a,S3) = Q% (51,a,52) = —a, Q5(52,a,53) = a. Since the goals are unreachable via
action b, it is straightforward to set ¢(x, b, *) such that the optimal policy stays unchanged for Q%. However,
now the triangle inequality is violated:

Qr(S1,a,5) + Q(S2,a,S3) = —a+a £ Qr(S1,a,S53) O

This proves the criticality of Eq. [7 and that policy invariance of potential based shaping is insufficient to
ensure the quasimetric property.

3.1.4 Projection

Q75 has the same upper bound as Q*, since @%(s, a,g) = Q*(s,a,9) — ¢(s,a,g) < 0 by Eq. m Consequently,
the MRN architecture needs no modification, specifically to Eq. [3} as the critic output is guaranteed to be
non-positive despite potentially positive shaping rewards. However, % has a more informed lower bound:

Q}(S’ a7g) = Q*(sa Cl,g) - ¢(57 a, g)
1
> T o(s,a,g)
d(s,a,g)/n
__r (12)
L—n

which we impose on the critic. Recent analyses (Gupta et al., |2022)) have shown that projection informed
by shaping effectively reduces the size of the state space for exploration, leading to improved regret bounds.

3.2 On-Policy Value Functions

In their critique of on-policy Q-function estimation methods for GCRL such as DDPG in continuous control
tasks, Wang et al. (2023)) show that on-policy Q-function may not be a quasimetric, even though the optimal
Q-function is. However, their counterexample is an extreme policy that is unlikely to be encountered during
on-policy iterations. In this section, we establish that on-policy Q-functions do indeed satisfy the triangle
inequality (and hence meet the quasimetric criterion) if the policy makes a minimal progress toward the
goal. We call such policies progressive policies and believe they are more relevant to on-policy Q-function
estimation in GCRL. We first formalize the notion of progressive policies, specify our assumption, and finally
show that the corresponding value functions satisfy the triangle inequality.

For notational convenience, we write Ey 7 |s,a),a’~x(s) Simply as Es 4. Note that the on-policy value
function for a policy m satisfies

Q"(s,a,9) = R(s,a,9) + YEs o Q" (s, d’, 9)|. (13)

Definition 1. The progress of a GCRL policy w is given by

Aﬂ-(saaag):]Es’,a’ Qﬂ—(slva/vg) _Qﬂ—(saavg)
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for any (s,a,9) € S x AxG.

We refer to A™ for the optimal policy as A*. We assume that the progress of 7 is not unboundedly different
from that of the optimal policy, i.e., the following holds for some 0 < € < 00

€< A*(Saaa g) - AW(Svavg) < 2e. (14)

Note that (i) € does not need to be small, just finite; (ii) the counterexample in Wang et al. (2023)) does not
satisfy this assumption. Our main result of this section is:

Proposition 3. Consider the goal-conditioned MDP Mac = (S, A, G, T, R,, po,pg)- The on-policy value
function QT defined in Eq. for any policy m that satisfies Eq. also satisfies the triangle inequality:
vl 22, 23 € X,
Q™ (¢, 2%) + Q"(2*,2%) < Q"(z',2%).
Proof: From Eq. [I3] we have,
B [Q7( )| = (@7 (s.0.0) = RGs. 0,00

Then, using Eq. |14 and Def. |1} for either 2 = (x!,22) or z = (22, 2?), the following holds:

A*(2) — A™(2) = Q”;R” Qi ()
Qﬂ—(z) - R(Z) + QW(Z)
Y
1

= (0~ DR - Q7))
> e (by Eq.[4).
Adding for z = (2!, 2?) and z = (22,2%), we get

2ey
L=y

Q™(z',2%) + Q" (2, 2°) < Q*(a',2%) + Q" (2?,27) — (15)

But similarly for z = (21, 23),

A*(2) - A™(2) = Q C1[Q(2) - Q7(2)] < 26

by Eq. This gives Q*(z!,2%) < Q™ (a!,2®) + fi—“i{ Finally, the result is obtained by combining this
with Eq. [15|and noting that the triangle inequality holds for the optimal Q-value function, i.e., Q*(z!, 2?) +

Q* (2%, 2%) < Q*(at, 23). O

This result relies on the triangle inequality of the optimal value function as established before in (B. Liu
et al., |2023)) for sparse rewards and in Sec. for dense rewards. But it does not have any dependence
on whether M is one-to-one or onto, hence the two cases G = S x A and G # S x A do not need to be
distinguished. The result also does not assume any specific form of, or bounds on, the reward function.
Hence it extends readily to shaped rewards as well, as long as the shaped value function respects the same

upper bound (Sec. 3.1.4), Q7.(.) < 0.
4 Related Work

Several value function representations have been proposed for GCRL over the last decade. Schaul et al.
(2015) introduced the bilinear decomposition, later generalized to bilinear value networks (Yang et al.,
2022) with better learning efficiency. Pitis et al. (2020) proposed the deep norm (DN) and wide norm
(WN) families of neural representations that respect the triangle inequality. However, they are restricted
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to norm-induced functions, and are generally unable to represent all functions that respect the triangle
inequality. By contrast, Possion Quasi-metric Embedding (PQE) (Wang & Isola, 2022) can universally
approximate any quasipseudometric, thus improving upon DN/WN. However, as B. Liu et al. (2023)) argue,
PQE captures the restrictive form of first hitting-time when applied to GCRL, whereas MRNs capture the
more general setting of repeated return to goal (Q*(g,g) # 0), while preserving the UVFA property of
PQEs. Durugkar et al. (2021)) introduced a quasimetric that estimates the Wasserstein-1 distance between
state visitation distributions, minimizing which is equivalent to policy optimization in GCRL tasks with
deterministic transition dynamics. While they use the Wasserstein discriminator as a potential for reward
shaping (as intrinsic motivation), our goal is different. We prove that dense rewards via shaping preserves
the triangle inequality for the general class of potential based shaping, not just for the Wasserstein based
quasimetric. Other recent architectures for GCRL use contrastive representation (Eysenbach et al.,2022) but
without regard to quasimetric architecture, and Quasimetric RL (QRL) (Wang et al., [2023|) where temporal
distances are learned, although it is unclear if it respects the triangle inequality in stochastic settings.

While the above literature on representation learning has been centered on expressive and flexible represen-
tations for GCRL, their analyses are generally restricted to sparse reward settings. In fact, past experimen-
tation with dense rewards in GCRL have yielded negative results (Plappert et al., 2018). Plappert et al.
(2018) argue that dense reward signals are hard to learn from because (i) arbitrary distance measures (e.g.,
Euclidean distance and quaternions for rotations) are highly non-linear; (ii) dense rewards bias the policy
toward specific strategies that may be sub-optimal. Similar arguments also appear in (M. Liu et al., 2022).
However, our setting overcomes these objections. First, we establish the sufficient condition (Eq. @ for the
triangle inequality that may not be satisfied by arbitrary distance measures, ¢, providing guidance on the
contrary. And second, we use potential based reward shaping (Ng et al., [1999) which is policy invariant,
hence strategically unbiased. However, we acknowledge the large body of work on reward shaping (Brys
et al., 2014; Devlin & Kudenko, [2012; Knox & Stone, 2009; Tang et al., 2017; Van Seijen et al., |2017) of
various types (e.g., count-based, intrinsic motivation, human advice, etc.) where careful, heuristic reward
design is often employed to explicitly bias the policies.

5 Experimental Results

We use GCRL benchmark manipulation tasks with the Fetch robot and Shadow-hand domains (Plappert
et al., |2018)); see Fig. MRN has been extensively compared with competitive baseline architectures and
found to be superior, viz., BVN (Yang et al., |[2022), DN/WN (Pitis et al., [2020), and PQE (Wang & Isola,
2022). Consequently, we focus on comparing against MRN with sparse rewards as the sole baseline.

We experimentally evaluate the following hypotheses:

Hypothesis 1: Dense rewards can be used in conjunction with MRN architecture for estimating value func-
tions. Specifically, the property of @* function that MRNs capture—that it satisfies the triangle inequality—
is preserved in the presence of shaped rewards with the new value function Q)}.. Dense rewards enable the
less restrictive @} to be learned more efficiently than Q*.

Hypothesis 2: Plappert et al. (Plappert et al., 2018) found that dense rewards hurt RL performance in
GCRL robot manipulation tasks. This negative result contradicts our Hypothesis 1. We conjecture that
their application of dense rewards did not satisfy the required structure—specifically Eq. [f}—which is why
it failed. To confirm this contradiction, we verify that our dense reward setting does not deteriorate RL
performance in any task.

We wuse the MRN code repository publicly available at: https://github.com/Cranial-XIX/
metric-residual-network with simple modifications to add Eq. [f] to the reward function and Eq.
to clip the critic’s output. No other changes were made to any algorithm or neural architecture. In partic-
ular, all parameter values (e.g. layer sizes) were unchanged, except the newly added parameter n was set
to 0.02. This value was selected from the set {0.01,0.02,0.03,0.04,0.05} using performance improvement as
the criterion. For each environment, 5 seeds were used for independent trials, as in (B. Liu et al., 2023).
In each epoch, the agent is trained on 1000 episodes and then evaluated over 100 independent rollouts with
randomly sampled goals. The average success rates in these evaluations are collected over 5 seeds. The
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Figure 2: GCRL benchmark environments (Plappert et al., [2018)). Figure from (B. Liu et al., [2023).
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Figure 3: Comparison of MRN with sparse rewards vs. dense rewards. Learning curves are averaged over
five independent trials, and one standard deviation bands are included. We see statistically significant
improvement of performance due to dense rewards in 4 of the 12 environments, viz., FetchSlide, BlockFull,
Eggfull and PenFull. There is no statistically significant deterioration in any environment.

results are plotted in Fig.[3] All experiments were run on NVIDIA Quadro RTX 6000 GPUs with 24 GiB of
memory each and running on Ubuntu 22.04.

We see from Fig. 3] that indeed dense rewards improve the sample complexity in some environments, to
an extent that is statistically significant as shown with standard deviation bands. In particular, there is
statistically significant improvement in 4 of the 12 environments, viz., FetchSlide, BlockFull, Eggfull and
PenFull. Not only is the sample complexity improved, but also higher quality policies are learned. This
confirms Hypothesis 1. Furthermore, no statistically significant deterioration is observed in any environment,
confirming Hypothesis 2.

6 Conclusion

We have presented generalizations of previous results on triangle inequality in the context of value functions
in GCRL. Specifically, we have shown that the optimal value function satisfies the triangle inequality even
when the reward function is densified with a particular class of shaping functions. Additionally, we have
shown that the on-policy value functions also satisfy the triangle inequality if the underlying policy satisfies
a certain progressive criterion. Both of these findings contradict previously published results in some ways,
which emphasizes the importance of the nuanced conditions behind our results. Experiments in 12 benchmark
GCRL tasks confirm that dense rewards either improve upon or match the sample efficiency of the sparse
reward setting. Future investigations could focus on more general classes of reward functions that preserve
the quasimetric property of value functions and/or lend themselves to other, potentially more effective,
architectures.
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