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Abstract

Variational Inference (VI) is a popular alternative to asymptotically exact sampling in
Bayesian inference. Its main workhorse is optimization over a reverse Kullback-Leibler
divergence (RKL), which typically underestimates the tail of the posterior and causes mis-
calibration and potential degeneracy (over-pruning). Importance sampling (IS), on the
other hand, is often used to fine-tune and debias the estimates of approximate Bayesian
inference procedures. The quality of IS crucially depends on the choice of the proposal
distribution. Ideally, the proposal distribution has heavier tails than the target, which is
unachievable by minimizing the RKL. We thus propose a novel combination of optimization
and sampling techniques for approximate Bayesian inference by constructing an IS proposal
distribution through the minimization of a forward KL (FKL) divergence. This approach
guarantees asymptotic consistency and a fast convergence towards both the optimal IS
estimator and the optimal variational approximation.

1. Introduction

Bayesian analysis provides a powerful framework to encode complex hierarchical structures
and prior beliefs and capture posterior uncertainty about latent variables θ given observed
data x via the posterior p(θ|x). The inferential goal often involves computing expectations
over this posterior distribution, Eθ∼p(θ|x)[f(θ)], for some function f which is generally ac-
complished by sampling. Unfortunately, the posterior distribution is often difficult to sample
from directly, and approximate inference methods are necessary to estimate posterior func-
tionals. These methods include optimization-based techniques such as variational inference
(VI) (Jordan et al., 1999; Wainwright and Jordan, 2008), and sampling-based techniques
such as Markov Chain Monte Carlo (MCMC) (Brooks et al., 2011; Andrieu et al., 2003)
and importance sampling (IS) (Gelman and Meng, 1998).

Variational inference has grown in popularity among these methods due to the computa-
tional convenience of minimizing the reverse (exclusive) Kullback-Leibler divergence (RKL
or KL(q||p)) over a tractable family of distributions. Furthermore, formulating inference as
divergence minimization enables the application of recent advances in stochastic optimiza-
tion (Bottou, 2010; Hoffman et al., 2013) and automatic differentiation (Maclaurin et al.,
2015). However, the quality of VI approximations, when the variational family does not
exactly match the target, is of major concern, especially when the approximation is used to
estimate posterior expectations (Yao et al., 2018; Campbell and Li, 2019; Rainforth et al.,
2018; Huggins et al., 2020).

With importance sampling (Gelman and Meng, 1998; Owen, 2013), one can re-weigh
posterior summaries from a variational approximation q(θ) in order to correct for the error
in q as compared to the target at the cost of additional variance relative to a simple Monte
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Carlo estimate. The performance of q when used as an IS proposal can also be a practical
diagnostic for whether p(θ|x) should be approximated by q(θ) (Yao et al., 2018).

Importance sampling is thus still a relevant tool especially in the modern era of ap-
proximate inference where the family of approximate distributions is often mis-specification
and refinement might be needed to de-bias posterior summaries.However, practical applica-
tions of importance sampling are challenged by the choice of proposal distribution, which
is particularly difficult in multimodal and high-dimensional settings. One potential way
out of this conundrum is to use of variational inference to construct a tractable proposal
distribution for IS and thereby capitalize on the complementary strengths of IS and VI. Un-
fortunately, the VI approximations obtained by RKL minimization are not ideal proposal
distributions for IS due to the light tails resulting from entropy penalization (Minka et al.,
2005). This typically leads to heavy-right tails in the distribution of importance weights,
which can lead to unstable IS estimates, sometimes with infinite variance (Yao et al., 2018).
On the other hand, forward (inclusive) KL divergence (FKL) (Minka et al., 2005) controls
the worst-case estimation error of importance sampling (Chatterjee and Diaconis, 2018).
Furthermore, forward KL does not suffer from issues of covariance underestimation (Minka
et al., 2005; Campbell and Li, 2019) or zero forcing (Hoffman, 2017).

We propose to replace reverse KL with forward KL as the variational objective that
supplies an IS proposal distribution. We make the following contributions in this vein:

1. We derive a self-normalized importance sampling estimate for the FKL divergence.
2. We show how FKL-based boosting can be used to better harness the combination of

IS and VI to address the challenge of estimating multimodal target distributions.
3. We show that FKL boosting is guaranteed to converge at a rate of O( 1

K ), where K is
the number of boosting iterations, to the best approximation from a family of mixture
distributions. This implies convergence to the optimal proposal distribution as per
the results of Chatterjee and Diaconis (2018). Our proposed algorithm is a principled
inference technique, with a well-defined computation-quality trade-off, that can be
used independently or as a refining step to correct for a given approximation’s error.

2. Background

Let θ denote the variable of interest with probability density p, and let f denote a function
of θ. Our goal is to estimate an expectation Eθ∼p(θ|x) [f(θ)]. In Bayesian inference, θ
generally represents a latent variable to be integrated over in the posterior distribution,
p(θ|x), conditioned on the observed data x.

If one can draw S samples {θs}Ss=1 from the target distribution p(θ|x) then the expec-
tation over the target distribution can be estimated by simple Monte Carlo integration.
However, p(θ|x) is typically only known up to a normalization constant and thus cannot be
readily sampled from. Instead, given samples from an approximation q(θ) of the posterior,
we can estimate the expectation as:

Ep(θ|x)[f(θ)] ≈
∑S

i=1 f(θs)ws∑S
i=1ws

. (1)

If the samples are weighted equally (i.e., ws = 1), Eq. (1) is equivalent to the VI estimate,
which has low variance but can be biased and inconsistent (Owen, 2013).
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If instead we weigh by the importance ratios, ws = p(θs|x)
q(θs) , we recover the IS estimate:

Eθ∼p(θ|x) [f(θ)] = Eθ∼q(θ)
[
p(θ|x)

q(θ)
f(θ)

]
, (2)

which is asymptotically consistent (O(1/S) bias) but with possibly infinite variance.

2.1. Variational Inference with Reverse KL Minimization

Variational inference posits a family Q of distributions that are easy to evaluate or sample
from, and defines the variational approximation q∗ ∈ Q as the distribution that minimizes
the reverse Kullback-Leibler (RKL) divergence to the posterior p: q∗ = argmin

q∈Q
KL(q‖p).

Unless the choice ofQ exactly includes the target distribution, minimizing the reverse KL
divergences leads to an q∗ that underestimates the target co-variance. The decomposition
of this divergence sheds light on the cause:

KL(q‖p) = Eq[log q]− Eq[log p] (3)

The first term in Eq. (3) is the entropy of q whose penalization is known to cause light
tails. Furthermore, the second term is minimized when q = 0 for p > 0, leading to zero
forcing or over-pruning (Higgins et al., 2016). The RKL divergence thus favors a single
mode (mode seeking) and is biased towards avoiding false positives, which can cause severe
under-estimation of the covariance (Blei et al., 2016; Murphy, 2012) and poses difficulties
when approximating heavy-tailed (Guo et al., 2016; Li and Turner, 2016; Dieng et al., 2017)
or multimodal targets (Miller et al., 2017). This effect is illustrated in Figure F.

2.2. Importance Sampling and Forward KL

Since the the variational family Q rarely includes the true posterior, refining posterior ap-
proximations through importance weighting is often recommended to de-bias expectations
of interest (Yao et al., 2018; Vehtari et al., 2015). However, the light tails of VI approxima-
tions using RKL can lead to high or even infinite variance for the IS estimator.

As an alternative to RKL, minimizing the forward KL divergence can mitigate the issue
of covariance underestimation and light tails. Consider the decomposition of the FKL:

KL(p‖q) = Ep[log p]− Ep[log q]. (4)

In Eq. (4), the cross-entropy is minimized by setting q > 0 whenever p > 0, which leads
to mass covering as illustrated in Figure F. With tails that are more likely to cover the
target distribution p, an approximation q∗ generated by minimizing the FKL can lead to
an IS estimate (Eq. (2)) with lower variance. Chatterjee and Diaconis (2018) show that the
forward KL divergence controls the downstream worst-case estimation error of IS.

3. Methodology

We develop our novel approach to integrate variational inference and importance sampling
using the forward KL divergence with a focus on multimodal targets. Note that we assume
the target density p and the approximation q share the same support which can be Rd or a
subset thereof. This guarantees that p is absolutely-continuous with respect to q (noted as
p� q) and vice-versa which is necessary for the definition of the KL divergence.
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3.1. Forward KL-based Variational Approximation for IS

By Theorem 1.1 of Chatterjee and Diaconis (2018), we know that the variance of an im-

portance sampling estimate scales as O
(
eKL(p‖q)
√
S

)
, where the number of samples S required

for importance sampling to provide accurate mean estimates scales exponentially with the
KL divergence KL(p‖q). Therefore, an optimal proposal distribution should minimize the
forward KL divergence which is computationally difficult given the need for samples from
an un-normalized target p. Alternatively, the reverse KL divergence, which utilizes sam-
ples from q instead, can be regarded as a tractable approximation with unknown bias (Yao
et al., 2018). However, for tractable choices of Q (i.e. when KL(q||p) 6= 0) it has been
demonstrated that minimizing the RKL is not guaranteed to minimize the FKL diver-
gence (Campbell and Li, 2019). Furthermore, the light tails of the RKL minimization
solution can lead to unstable IS estimates (Yao et al., 2018).

Therefore, we seek to directly minimize the forward KL objective instead of the RKL to
estimate the optimal IS proposal with improved covariance and tail estimation. From the IS
point of view, this combination with VI enables a computationally efficient and principled
construction of optimal proposal distributions.

3.2. Self-Normalized IS Approximation of Forward KL

We cannot compute the forward KL divergence exactly for unnormalized target distribu-
tions. This stems from the expectation under the target p in Eq. (4)). By contrast, the
RKL takes the expectation in Eq. (3)) under a normalized approximation q. Therefore, to
approximate FKL, we can rearrange densities inside the expectation as follows:

KL(p‖q) = Ep
[
log

(
p

q

)]
= Eq

[
p

q
log

(
p

q

)]
. (5)

Eq. (5) can then be approximated through self-normalized importance sampling (SNIS)
(Murphy, 2012) which is known to generally be consistent:

θs ∼ q(θ) rs =
p(θs|x)

q(θs)
ws =

rs∑S
s=1 rs

KL(p‖q) =

S∑
s=1

ws · log

(
p(θs|x)

q(θs)

)
.

The SNIS estimation can have arbitrarily high variance depending on q. Gradients of
Eq. (5) with respect to the parameters of qi can also have high variance since we optimize
over the same distribution from which samples are drawn. For certain distributions, the
reparametrization trick can reduce this variance (Kingma and Welling, 2013). Regardless,
gradient variance is less of a concern in the following sequential approximation framework.

3.3. Forward KL-Based Boosting

We seek to sequentially construct a proposal mixture distribution q that is both easy to
sample from and minimizes the FKL divergence to ensure efficient IS estimation.

The design of a variational family Q can be challenging a priori which often leads to
model misspecification in VI estimates. Our experiments in App. D rely on the family
of Gaussian mixtures due to the low variance of reparametrization gradients (Kingma and
Welling, 2013). Our framework also supports mixtures of heavy-tailed distributions which
are desirable for adaptive IS (Geweke, 1989).
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Our proposal distribution at the Kth boosting iteration is qK(θ) :=
∑K

i=1 λifi(θ;φi). At
each boosting iteration, we minimize the forward KL between the mixture qi and the target
p while holding the parameters of previously-learned mixture components fixed:

argmin
qi∈Q

KL(p‖qi) = argmin
fi,γ

KL (p‖γfi + (1− γ)qi−1) . (6)

This is known to be more efficient and more stable than the joint optimization of all mixture
components at each iteration (Locatello et al., 2018a). The mixture weight for the new
component is then set to λi = γ, and all other weights {λj}i−1

j=1 are re-scaled by (1 − γ).
Mixture weights can be further adjusted with a fully-corrective weight search using the
gradient derived in Eq. (20) (Guo et al., 2016; Locatello et al., 2018b). We provide an
alternative approach to building qK using the remainder in App. B.

3.4. Lower Self-Normalized IS Variance with Boosting

The main computational concern in estimating the FKL divergence with SNIS is the vari-
ance of IS in Eq. (5). However, the sequential construction described above enables further
rearrangements of the SNIS approximation which can lead to a lower variance than the naive
approximation of Eq. (5). For the first approach, the global objective can be re-written as:

argmin
qi∈Q

KL(p‖qi) = argmin
qi∈Q

Ep
[
log

p

qi

]
= argmin

fi,γ
Eqi
[
p

qi
log

p

γfi + (1− γ)qi−1

]
(7)

= argmin
fi,γ

Eqi−1

[
p

qi−1
log

p

γfi + (1− γ)qi−1

]
(8)

Eq. (8), which is only possible in a sequential setting such as ours, reduces the gradient
variance since the component being estimated, fi, is independent of the distribution qi−1

from which samples are drawn to approximate the FKL. Furthermore, we can draw a large
number of samples from qi−1 a single time at the start of each boosting iteration.

The SNIS approximation of Eq. (8) given samples θs from qi−1 can be computed as:
S∑
s=1

ws[log p(θs)− log (λfi(θs) + (1− λ)qi−1(θs))], (9)

where ws are the self-normalized importance weights computed as in Eq. (6).

3.5. Initialize with Reverse KL, Refine with Forward L

Our sequential construction of the proposal can reduce the variance of the SNIS approxi-
mation of the FKL divergence by drawing samples from the previously-estimated and fixed
mixture distribution qi−1. However, in the first boosting iteration, we do not have an
existing approximation to sample from. Instead, Eq. (9) can be re-written as follows:

argmin
qi∈Q

Ep
[
log

p

qi

]
= argmin

fi,γ
Efi

[
p

fi
log

p

γfi + (1− γ)qi−1

]
. (10)

This exacerbates the sensitivity to the initialization of fi. In fact, if fi were initialized
to be sharply peaked at zero, for example, then our SNIS estimate of FKL cannot properly
capture the tails. Therefore, a diffuse initialization is recommended.

However, an even more practical initialization would use RKL-based VI to identify the
mode of the target and provide a computationally efficient approximation that can be refined
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by FKL boosting in later iterations. As such, this FKL-boosting workflow can be considered
as general framework for the iterative refinement of any given posterior approximation to
be used for the estimation of expectations of interest. This best combines the strengths of
VI and IS as the first iteration of RKL minimization can reduce the variance of the SNIS
approximation of FKL for the following iterations.

4. Analysis

We provide theoretical analysis of the proposed method of performing IS with a proposal
distribution constructed from FKL-based boosting (further analysis in App. C).

4.1. Forward KL Controls Moment Estimation Error

Minimizing the FKL implicitly minimizes the error in posterior probabilities and moments
via its control on total variational (through Pinsker’s inequality(Tsybakov, 2008)) and n-
Wasserstein as follows (Bolley and Villani, 2005): Assume that the probability density q is
n-exponentially integrable. Then for target distribution p such that p� q:

Wn(q, p) ≤ CEIn (q)

[
KL(p‖q)1/n +

KL(p‖q)
2

1/2n
]
, (11)

where CEIn (q) = infx0∈Rd,α>0

(
3
α + 2

α log
∫
eα‖x−x0‖

n
q(x)dx

)
.

This implies convergence in up to nth moments (Bolley and Villani, 2005).
Note that because of the symmetry of Wasserstein distances, we can switch probability

densities p and q in the above inequalities and obtain bounds in terms of RKL. However,
that would incur the n-exponential integrability condition on the target probability p, which
boils down to generalized sub-gaussianity of its tail.

The n-exponential integrability assumption does not need to be satisfied by the target
density p in the case of Eq. (11). Instead, it is only required of the family of variational
approximations q which is easier to enforce and verify (and is automatically satisfied by the
mixture of Gaussians). A smaller constant CEIn can also be achieved by the same reasoning.

4.2. Forward KL Boosting Converges at O(1/K)

Assuming p � q, which can be verified by the design of Q, the functional gradient of the
forward KL divergence is derived in App. E.5 as δKL(p||q)

δq = −p
q . The convexity of KL(p‖q)

in q is well established in the literature (proven with the log-sum inequality). Furthermore,
we show in App. 4.2 that the FKL functional is also β-smooth in q where β depends on the
range of the values that the density q can take. This requires bounding q away from zero
and from above which is typical in prior theoretical work (Guo et al., 2016) and aligns with
practice as it can translate to a bounded parameter space for a given family of distributions.

For a convex and strongly smooth functional, the greedy sequential approximation
framework of Zhang (2003) provides an asymptotic guarantee for the convergence to a
target distribution in the convex hull of a given base family such that the approximation

error at the Kth iteration is : KL(p‖qK) = KL

(
p

∥∥∥∥∑K
i=1 λifi

)
= O(1/K). This framework

does not require each iteration to exactly solve for the optimal mixture component which
can be difficult for the non-convex optimization sub-problems.
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Appendix A. Related Work

We present related work on improving estimates of the expectation over intractable target
distributions that are high dimensional, heavy tailed, and/or multimodal.

A.1. Variational Inference Divergences

Prior work has addressed the covariance underestimation and light tails pathologies of
reverse KL minimization while seeking to improve the quality of the approximation as an
IS proposal through the minimization of alternative divergences such as (reversed) Renyi-α
(Li and Turner, 2016), χ2 (α = 2) (Dieng et al., 2017), or Hellinger (α = 1/2) (Campbell
and Li, 2019) divergences. FKL can be seen as a special case of α divergences when α→ 1
which is not considered in any of these prior VI works.

A.2. Forward KL for Approximate Inference

While the forward KL’s computational inconvenience has limited its use for variational in-
ference, inference techniques such as Belief Propagation (BP) and Expectation Propagation
(EP) can be regarded as performing FKL minimization locally (Minka et al., 2005). This
is different from how a KL divergence is typically used in VI since EP/BP do not optimize
a global objective that is related to the KL divergence and are thus not guaranteed to con-
verge. Furthermore, EP/BP does not provide an easy estimate or bound on the marginals.
Another set of techniques that utilize variants of the FKL divergence includes reweighted
wake-sleep (Bornschein and Bengio, 2014) which alternates minimizing an approximation
of FKL during the sleep phase while minimizing an approximation of RKL during the wake
phase leading to systemic bias.

A.3. Variational Boosting

Variational boosting (VB)(Jerfel, 2017; Miller et al., 2017; Guo et al., 2016; Locatello et al.,
2018a) has been suggested in various forms to address the multimodality challenge for
variational inference. Variational boosting posits a family of mixture distributions Qk:

Qk =

{
q : q(θ) =

k∑
i=1

λifi(θ), λ ∈ ∆k

}
, (12)

and iteratively refines a variational mixture approximation by adding and re-weighting one
(typically Gaussian) mixture component at a time in order to minimize the global objective:

{µi}ki=1, {Σi}ki=1, {λi}ki=1

← argmin
µ,Σ,λ

KL

(
k∑
i=1

λifi(θ;µi,Σi)

∥∥∥∥p(θ|x)

)
.

This form of reverse KL-based boosting is known to struggle with degeneracy where the
optimization at certain boosting iterations can lead to point-mass components (Campbell
and Li, 2019). Ad-hoc regularization techniques are often deployed in practice (Locatello
et al., 2018a), but are not necessarily sufficient (Campbell and Li, 2019). To address this
pathology of RKL-based boosting, Campbell and Li (2019) proposed a boosting algorithm,
based on the Hellinger divergence, which is still not guaranteed to scale well with dimension.
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A.4. Adaptive Importance Sampling

The adaptive IS (AIS) literature presents a range of techniques that involve adapting pro-
posal distributions for multimodal targets. Adaptive multiple IS (Cornuet et al., 2012) and
incremental mixture IS (Raftery and Bao, 2010) are two of the most popular methods. How-
ever, none of the existing works directly optimize for the FKL divergence which controls the
worst case IS estimation error. For example, Cappé et al. (2008) minimize an entropy crite-
rion whereas Douc et al. (2007) minimize the empirical variance of the importance weights,
which does not necessarily correlate with the quality of IS estimation (Vehtari et al., 2015).

A.5. Combining IS and VI

As outlined in Table 1, VI and VB suffer from covariance underestimation, and can struggle
to approximate heavy-tailed distributions. AIS, on the other hand, can approximate heavy-
tailed targets but cannot scale efficiently in dimensionality. A combination of these two
lines of research may benefit from their complementary strengths while sidestepping shared
weaknesses (e.g., multimodality). However, it is often difficult to combine optimization-
based and sampling-based inference techniques. This is because sampling methods such
as MCMC define the approximate distribution implicitly such that its density cannot be
evaluated. This has driven the development of alternatives to the KL divergence such as
the variational contrastive divergence (Ruiz and Titsias, 2019). However, we are not aware
of similar work for IS that leverages the computational efficiency of VI through a unifying
loss such as the FKL divergence.

Other prior proposals combining importance weighting and VI (Domke and Sheldon,
2018) have still focused on minimizing the reverse KL, and thus do not inherently capture
heavier tails of the target distribution. Prangle (2019) recently presented concurrent work
on combining IS and VI. However, their method relies on normalizing flows for constructing
the proposal distribution such that it does not guarantee a multimodal approximation.

Failure Mode VI IS VB AIS Ours

Multimodality 7 7 3 3 3

Heavy-tailed target 7 3 7 3 3

Cov underestimation 7 3 7 3 3

High-dim scalability 3 7 3 7 3*

Table 1: Comparing approximate inference techniques.

Appendix B. An Alternative approach to FKL-Based Boosting:
Minimizing the Remainder

As we seek to construct an optimal proposal through the minimization of an SNIS approx-
imation of FKL, a trade-off arises: “should we make the distribution easier to sample from
in order to minimize the SNIS variance or should we bring it closer to the target in order
to improve the worst-case IS estimation error?” In particular, the closer the proposal gets
to a multimodal target, the harder it may be to sample from. Therefore, this trade-off
translates to two distinct approaches for the greedy additive construction of an optimal
proposal mixture distribution.
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The first approach described in Section 3.3 is the most straightforward as it minimizes
the forward KL between the mixture qi and the target p while holding the parameters of
previously-learned mixture components fixed.

Alternatively, define the remainder distribution at iteration i as ri(θ) = p(θ|x)
qi(θ)

. A second
approach is to minimize the FKL between each new component and ri, which may be
simpler with fewer modes than p:

argmin
fi

KL(ri‖fi) = argmin
fi

KL

(
pi
qi−1

∥∥∥∥fi) .
The mixture weight can be estimated in this scenario for each mixture component by gra-
dient descent using the gradient with respect to FKL (see App. E.4).

This second approach is appealing because, at each boosting iteration, ri becomes shal-
lower with fewer modes which makes it easier to sample from than the multimodal proposal
qi. This approach can also be motivated by gradient boosting (Friedman, 2001) or match-
ing pursuit (Mallat and Zhang, 1993) where one seeks to identify the mixture component
that best fits the functional residual. Furthermore, this approach might be less prone to
degeneracy. In fact, a derivation of this approach for the reverse KL, in App. E.2, identifies
intrinsic entropy regularization which is often incorporated ad-hoc in similar objectives.

B.1. Lower Variance SNIS with Boosting

The remainder-based objective can also be re-written:

argmin
fi

KL(ri‖fi) = argmin
fi

Efi

[
ri
fi

log
ri
fi

]
.

This objective also enjoys lower gradient variance since the distribution being sampled
from is a single Gaussian component and not a multimodal proposal. However, the light
tails of a single Gaussian component can lead to high variance SNIS estimates in the case
of severe mismatch with the target distribution. Therefore, the choice of either should be
guided by assumptions about the tails of the target. However, given comparable empirical
results of the two approaches, we limit the analysis of Section 4 and the experiments of
Section D to the first and more straightforward approach.

Appendix C. Additional Analysis

C.1. Sample Complexity of SNIS

By Theorem 1.1 of Chatterjee and Diaconis (2018), we know that the variance of an impor-

tance sampling estimate scales as O
(
eKL(p‖q)
√
S

)
, where the number of samples S required for

importance sampling to provide accurate mean estimates scales exponentially with the KL
divergence KL(p‖q).

C.2. Computation-Quality Trade-Off

While our our iterative algorithm which is guaranteed to converge asymptotically to the
optimal proposal distribution, we can identify three sources of approximation error: the
variational inference error, the SNIS approximation bias which depends on the number of
samples, and the greedy sequential approximation error which depend on the number of VI
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iterations, IS samples, and boosting iterations, respectively. These three hyperparameters
thus finely control the compute-quality trade-off of our framework.

From previous sections, we observe a trade-off between sample complexity of SNIS versus
the optimization complexity of variational boosting. Inclusion of more mixture components
K and more accurate optimization in the variational boosting steps can save exponentially
many samples in SNIS. However, there is a diminishing gain in increasing K. We demon-
strate in Fig. 4 this effect: both FKL boosting and RKL boosting decreases forward KL
divergence as more variational components are added. The decrease slows down signifi-
cantly after inclusion of 3 mixture components. We therefore introduce in the experiments
up to 3 mixture components and select the best performance on validation data set. From
Fig. 4 and the experimental results, we observe uniform improvements of FKL over RKL
methods.

Appendix D. Experiments

We evaluate the performance of the proposed method when applied to Bayesian linear
regression (BLR) and Bayesian neural networks (BNNs) using a Gaussian prior and a heavy
tailed prior. We use four datasets from UCI Dua and Graff (2017). We split each dataset
into five randomly drawn 90%/10% train/test splits, which we denote Dtrain = {xi, yi}Ntrain

i=1

and Dtest = {xi, yi}Ntest
i=1 , with input xi and output yi. We report the mean and std. dev.

of results over all splits.
We demonstrate our proposed method with K = 1, 2, and 3 boosting iterations. We

refer to fitting a single Gaussian, or K = 1, as FKL VI. For runs with more than one
boosting iteration, we initialize the first component using the RKL, and optimize subsequent
iterations using the FKL, as described in Section 3.5.

Optimization details: We use the ADAM optimizer Kingma and Ba (2014) for each
boosting iteration with a fixed learning rate and compute gradients based on a fixed number
of samples using Autograd Maclaurin et al. (2015). At the end of each boosting iteration,
mixture weights are fully re-optimized using simplex-projected gradient descent Bubeck
(2014) based on the analytical gradient in Eq. (20). Details about practical considerations
and hyperparameters can be found in App.D, and we include our code with the submission.

Comparisons: We compare our approach to variational boosting using reverse KL
Miller et al. (2017). First, we compare to fitting a single Gaussian distribution to the target
to minimize the RKL (RKL VI). We also compare to variational boosting with two and
three components, also minimizing RKL (RKL VB). For the comparison to RKL VI and
RKL VB, we use the same parametrization, initialization, and optimization techniques as
for FKL VI and FKL VB. This might lead to discrepancies compared to the published
results Miller et al. (2017); however, keeping these details consistent better disentangles the
effect of the RKL vs. FKL optimization.

We also compare to directly sampling from the target distribution using Hamiltonian
Monte Carlo (HMC) Neal (2011), implemented using the TensorFlow Probability library
Dillon et al. (2017). We additionally ran 3 HMC chains in parallel and averaged the results,
similar to Hoffman and Ma (2020). Results were comparable between 1 and 3 HMC chains,
and we include the results for 3 chains in App. D.
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D.1. Toy Data

Figure 1: Evolution of (exact) FKL divergence and the mean-squared error of moment
estimation (using samples from the FKL solution) on the task of estimating a 2D
GMM of 20 components (Ma et al., 2018).

Figure 2: Density plots of FKL boosting on Cauchy (from left to right: iterations 1, 5, and
10).

D.2. BLR and BNNs with Gaussian Priors

Method Wine (d=14) Boston (d=16) Concrete (d=11) Power (d=7)

HMC -0.998 (± 0.067) -2.822 (± 0.084) -3.755 (± 0.051) -2.942 (± 0.039)

RKL VI -1.004 (± 0.057) -2.809 (± 0.088) -3.766 (± 0.045) -2.956 (± 0.034)

RKL VB 2 -1.001 (± 0.053) -2.825 (± 0.081) -3.764 (± 0.052) -3.275 (± 0.029)

RKL VB 3 -0.999 (± 0.058) -2.832 (± 0.085) -3.763 (± 0.047) -3.215 (± 0.027)

FKL VI -0.985 (± 0.072) -2.791 (± 0.091) -3.762 (± 0.056) -2.954 (± 0.0031)

FKL VB 2 -0.991 (± 0.076) -2.779 (± 0.090) -3.761 (± 0.051) -2.955 (± 0.034)

FKL VB 3 -0.990 (± 0.080) -2.796 (± 0.092) -3.765 (± 0.047) -2.956 (± 0.033)

Table 2: Predictive log probabilities on test for BLR with Gaussian prior (5 train/test
splits).

We first apply the same Gaussian prior as Miller et al. (2017) for both BNNs and BLR.
We place a Gaussian prior over each weight in the model, and an inverse Gamma prior on
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Method Wine (d=653) Boston (d=753) Concrete (d=503) Power (d=303)

HMC -0.982 (± 0.078) -2.498 (± 0.096) -3.271 (± 0.076) -2.835 (± 0.033)

RKL VI -0.992 (± 0.066) -2.858 (± 0.077) -3.230 (± 0.047) -2.951 (± 0.037)

RKL VB 2 -0.994 (± 0.054) -2.832 (± 0.055) -3.253 (± 0.058) -3.363 (± 0.041)

RKL VB 3 -0.981 (± 0.057) -2.769 (± 0.091) -3.294 (± 0.042) -3.522 (± 0.054)

FKL VI -0.981 (± 0.067) -2.477 (± 0.055) -2.897 (± 0.060) -2.848 (± 0.037)

FKL VB 2 -0.972 (± 0.082) -2.551 (± 0.066) -3.469 (± 0.069) -2.946 (± 0.037)

FKL VB 3 -0.967 (± 0.069) -2.881 (± 0.048) -3.449 (± 0.066) -3.227 (± 0.039)

Table 3: Predictive log probabilities on test for BNNs with Gaussian prior (5 train/test
splits).

the variances:

α ∼ Gamma(1, 0.1); τ ∼ Gamma(1, 0.1);

wi ∼ N (0, 1/α); y|x,w, τ ∼ N (φ(x,w), 1/τ),

where w is the set of weights, and φ(x,w) is either a linear function of x (BLR) or a
multi-layer perception (BNN). For our BNNs, we set φ to be a one-hidden layer neural
network with 50 hidden units and ReLU activation function, as done by Miller et al. (2017);
Hernández-Lobato and Adams (2015). The full set of parameters that we sample is θ =
(w,α, τ). We use the posterior predictive distribution to compute the distribution for a
given new input x:

p(y|x,Dtrain) =

∫
p(y|x, θ)p(θ|Dtrain)dθ. (13)

We use importance sampling to estimate this posterior predictive distribution given S
samples θs ∼ q(θ):

p(y|x,Dtrain) ≈ 1

S

S∑
i=1

p(θs|Dtrain)

q(θs)
p(y|x, θs), (14)

where q(θ) is the proposal distribution fit to the posterior p(θ|Dtrain) using either forward
KL refinement (our method, FKL VB) or reverse KL refinement (RKL VB, Miller et al.
(2017)).

Note that Miller et al. (2017) does not use importance sampling to estimate the posterior
predictive distribution. We add importance weights here as an ablation to limit our analysis
to the difference between FKL and RKL optimization. For completness, we report the
estimates without IS using RKL VB in App. D.

For the comparison with HMC, we do not use importance sampling due to lack of an
explicit density function, and instead compute (13) by averaging over direct HMC samples
from the posterior distribution p(θ|Dtrain):

p(y|x∗,Dtrain) ≈ 1

L

L∑
l=1

p(y|x∗, θ(l)), θ(l) ∼ p(θ|Dtrain) (15)
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As our final evaluation metric, we report the average predictive log probabilities on
held-out test data:

1

|Dtest|
∑

x,y∈Dtest

log p(y|x,Dtrain). (16)

D.3. BLR with Heavy Tailed Priors

Method Wine (d=13) Boston (d=15) Concrete (d=10) Power (d=6)

HMC -0.999 (± 0.064) -2.908 (± 0.082) -3.754 (± 0.052) -2.942 (± 0.039)

RKL VI -0.997 (± 0.070) -2.847 (± 0.076) -3.766 (± 0.052) -2.951 (± 0.031)

RKL VB 2 -0.992 (± 0.075) -2.856 (± 0.067) -3.765 (± 0.047) -3.317 (± 0.039)

RKL VB 3 -0.999 (± 0.064) -2.878 (± 0.070) -3.773 (± 0.055) -3.372 (± 0.036)

FKL VI -0.987 (± 0.072) -2.900 (± 0.064) -3.750 (± 0.052) -2.950 (± 0.032)

FKL VB 2 -1.090 (± 0.115) -2.858 (± 0.090) -3.769 (± 0.039) -3.912 (± 0.023)

FKL VB 3 -1.098 (± 0.102) -2.845 (± 0.098) -3.767 (± 0.054) -4.482 (± 0.014)

Table 4: Predictive log probabilities on test for BLR with heavy tailed prior (5 train/test
splits).

In addition to the Gaussian prior, we also perform Bayesian linear regression with a
heavy tailed prior. Following Campbell and Li (2019) we place a T2 prior on the weights.
We use the same inverse Gamma prior on the variance:

τ ∼ Gamma(1, 0.1); w ∼ T2(0, ATA);

y|x,w, τ ∼ N (φ(x,w), 1/τ),

where A is fixed, and each entry is drawn i.i.d. before the optimization process: Aij ∼
N (0, 1). For these BLR experiments, φ(x,w) is a linear function of x with weight parameters
w. The full set of parameters that we sample is θ = (w, τ). We again estimate the same
posterior predictive distribution in Eq. (13) using importance sampling in Eq. (14), and
report the average predictive log probabilities from Eq. (16).

Appendix E. Derivations

E.1. Connecting Forward KL to other metrics used for VI

By the monotonicity of Renyi-α divergences, given that limα→1Dα(p, q) = KL(p‖q), and
from Dieng et al. (2017) :

KL(p‖q) ≤ D2(p, q) ≤ χ2(p, q) (17)

E.2. Reverse KL remainder: intrinsic entropy regularization

Computing the remainder-reverse KL objective using our approach leads to the well-known
although usually ad-hoc entropy regularization (e.g. Locatello et al. (2018a)).

KL(fi‖ri) = KL(fi‖
p

qi−1
) = Efi [log

fiqi−1

p
] = Efi [log

qi−1

p
] + Efi [log fi] (18)
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As we can see, while the first term is the mean of the log-residual under the new
component fi, the typical objective for gradient boosting, the second term is the entropy of
fi.

E.3. SNIS derivation

Since we do not assume to know the normalization constant of p, we shall approximate
the above quantities by self-normalized importance sampling while making the distinction
between the normalized p and the un-normalized p̂:

θs ∼ qi−1, ws =
ˆp(θs)

qi−1(θs)
, wsnorm =

ws∑
sw

s
(19)

Eqi−1 [
p

qi−1
log

p

λfi + (1− λ)qi−1
] =

Eqi−1 [ p̂
qi−1

log p
λfi+(1−λ)qi−1

]

Eqi−1 [ p̂
qi−1

]

≈
∑
s

ˆp(θs)
qi−1(θs)∑
s

ˆp(θs)
qi−1(θs))

[log
p(θs)

λfi(θs) + (1− λ)qi−1(θs)
] =

∑
s

wsnorm[log p(θs)− log (λfi(θs) + (1− λ)qi−1(θs))]

E.4. Gradients of mixture weights

For forward KL:

∇λiEp

log p− log

K∑
j

λjqj

 = −Ep

∇λi log

K∑
j

λjqj


= −Ep

[
qi∑K
j λjqj

]
= −Eqi

[
p

q

]
. (20)

For reverse KL:

∇λiEq[log q − log p] = E∑K
j λjqj

[∇λi log (
K∑
j

λjqj)]

= Eqi [log q − log p]

E.5. The functional gradient of the forward KL divergence

We assume supp p ⊆ supp q: that is, p is absolutely continuous with respect to the varia-
tional approximation qi which can be ensured by the design of the variational family Q.

Let D(q) = KL(p‖q). Functional gradient δD
δq can be computed from the Taylor expan-

sion of the KL functional Friedman (2001) as follows:

lim
ε→0

D(q + ε · h)−D(q)

ε
=

∫
∂D

∂q
hdx (21)
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As detailed in the App. E.5
D(q + ε · h)−D(q)

ε
=

1

ε

∫
p log p− p log (q + εh)

+ p log p− p log q

= −1

ε

∫
p log (q + εh)− p log q

= −1

ε

∫
p log (1 + ε

h

q
)

We have the logarithmic inequality x
x+1 ≤ log (1 + x) ≤ x∀x > −1 where we can substitute

εhq > 0 for x and arrive at

−h
q
≤ −1

ε
log (1 + ε

h

q
) ≤ −

h
q

1 + εhq
By the monotone convergence theorem we can take the limit inside the integral and arrive
at

lim
ε→0

∫
−p1

ε
log (1 + ε

h

q
) =

∫
−ph

q
(22)

δD(q)

δq
= −p

q

E.6. Boosting convergence analysis

For a convex and strongly smooth functional, the greedy sequential approximation frame-
work of Zhang (2003) provides an asymptotic guarantee for the convergence to a target
distribution in the convex hull of the base family at a rate of O(1/K) where K is the num-
ber of boosting iterations. This framework does not require each iteration to exactly solve
for the optimal mixture component which can be difficult in variational inference.

While the convexity of KL(p‖q) in q is well established in the literature (proven with
the log-sum inequality) for the forward KL divergence functional, we can show that FKL is
also β-smooth in q where β depends on the maximum and minimum values that the density
q can take. To establish strong smoothness, on the other hand, stricter assumptions about
the densities are necessary. If we assume that all densities are bounded away from 0 and
from above q1 then for any pair of densities q1 and q2 there exists a β = sup p

q1∗q2 ≥ 0 such

that the functional gradient δD
δq is β- Lipschitz, that is

∣∣∣ δDδq (q2)− δD
δq (q1)

∣∣∣ ≤ β|q2 − q1|. We

can verify this choice of β: ∣∣∣∣δDδq (q2)− δD

δq
(q1)

∣∣∣∣ =

∣∣∣∣−pq2
− −p

q1

∣∣∣∣ (23)

=

∣∣∣∣p(q2 − q1)

q2q1

∣∣∣∣ (24)

=
p

q2q1
|q2 − q1| (25)

≤ β|q2 − q1| (26)

19



Forward KL Refinement

Note that the boundedness assumptions are not unrealistic in practice and can translate
to a bounded parameter space for a given family of distributions.

KL(p‖qi) = KL(p‖
k∑
i

λifi) = O(1/k) (27)
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Appendix F. Supporting Figures

Minimize Reverse KL: KL(q‖p) = Eq[log q
p ]

−4 −3 −2 −1 0 1 2 3 4
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Mode seeking

Zero forcing

p
q

Minimize Forward KL: KL(p‖q) = Ep[log p
q ]
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Mean seeking

Mass coveringp
q

Figure 3: Results of minimizing RKL vs. FKL for a Gaussian variational approximation.
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Figure 4: A comparison in terms of the FKL divergence to a Cauchy target distribution
over the course of variational boosting using the FKL and RKL divergences.
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